TW593730B - Process of direct low-temperature growth of carbon nanotubes on a substrate - Google Patents
Process of direct low-temperature growth of carbon nanotubes on a substrate Download PDFInfo
- Publication number
- TW593730B TW593730B TW091105805A TW91105805A TW593730B TW 593730 B TW593730 B TW 593730B TW 091105805 A TW091105805 A TW 091105805A TW 91105805 A TW91105805 A TW 91105805A TW 593730 B TW593730 B TW 593730B
- Authority
- TW
- Taiwan
- Prior art keywords
- metal
- layer
- vapor deposition
- substrate
- carbon
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0272—Deposition of sub-layers, e.g. to promote the adhesion of the main coating
- C23C16/0281—Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/021—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/02—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
- C23C28/023—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/60—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
- C30B29/605—Products containing multiple oriented crystallites, e.g. columnar crystallites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/842—Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
- Y10S977/843—Gas phase catalytic growth, i.e. chemical vapor deposition
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/84—Manufacture, treatment, or detection of nanostructure
- Y10S977/89—Deposition of materials, e.g. coating, cvd, or ald
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Cold Cathode And The Manufacture (AREA)
- Catalysts (AREA)
Description
593730
發明領域 人Λν Λ ; 碳管(carb〇n _〇tubes)的 二ί:;:尤其力有關一種通過低溫熱化學氣相沈積之方式 :3有—明治架構活性觸媒系統之基材上 碳管的方法。 状力乂长不米 發明背景 奈米碳管(carbon nanotubes )具有非常特別的性 土,諸如低密度、高強度、高勒性、可撓曲、高表面積、 表面曲度大、高熱導度、導電性特異等等,所以吸引許 研究工作者專注於開發其可能的應用方式,例如複合材 料、微電子元件、平面顯示器、無線通訊、燃料電池以及 鐘離子電池料。以奈米碳管作為電子發射源之場發射顯 不裔(carbon nanotube field emissi〇n ,簡稱 CNT-FED)為一極具潛力的新型平面顯示器,通常較大型的 CjT-FED製程是以奈米碳管摻混導電膠體,經混漿、網印 等技術佈植於導電玻璃基板表面,再經攝氏4 5 〇到5 5 〇度之 燒結步驟以去除漿料中的高分子物質,以形成一導電性良 好之電子放射薄膜。這樣的CNT-FED製程除了需經數個步义 驟、技術較為煩瑣外,而且奈米碳管不易均勻分散於該導 電膠體中。 目剷此夠合成具備場發射電子功能的奈米碳管的方法 有電弧放電法(arc discharge)、雷射蒸發法(laser vaporization)和熱化學氣相沈積法(thermal chemical
ITR111320.ptd 第5頁 593730 五、發明說明(2) vapor deposition,thermal CVD)等等。電弧放電法和 雷射蒸發法不僅無法控制奈米碳管產物之長度及管徑,且 其產率相當低。另外會產生相當多的非定形碳 (amorphous carb〇n ),需要進一步純化處理。此外,這 些製程的操作溫度都超過攝氏1 0 0 0度,無法直接在玻璃基 材上合成奈米碳管。因此,一般認為熱化學氣相沈積法最 有潛力成為低溫生產奈米碳管的技術主流。 夕過去熱化學氣相沈積法合成奈米碳管技術,主要是以 多孔性氧化矽(porous silica)、沸石(ze〇lite)、氧 化銘(alumina)或氧化鎂(magnesiuin 〇xide)為擔體, 亚以含浸法(impregnation)製備沈積於該擔體上的活性 =屬觸媒。選用以上擔體的主要原因是因為此類擔體為相 當穩定之惰性氧化物’不易在加溫時與活性金屬觸媒反 應,使得活性金屬觸媒失去活性,而無法進行奈米碳管之 ^成反應。選用之活性金屬主要為鐵、鈷或鎳,並加入微 里金屬如銅、钥、猛、鋅或鉑等加以調節反應活性。使用 該沈積於擔體的活性金屬觸媒在反應器中進行催化積碳反 應生成奈米碳官的反應條件包括:對反應器導入惰性氣體 (氦、氬、氮氣)、氫氣、及碳源氣體,反應溫度通常為 650至1000 C,壓力為1至2大氣壓,反應時間為1至12〇分 鐘。所使用的碳源包括碳氫化合物或一氧化碳。反應結束 後需以酸液將擔體去除,才能得到較純的奈米碳管,以供 CNT-FED製程使用或其他用途。 ’、 於目前CNT-FED的製程中,奈米碳管須透過前述的煩
lTRI11320.ptd 第6頁 593730 五、發明說明(3) 瑣步驟,才能被附著於基材表面,以致於基材表面之奈米 碳管的分佈與排列將受到許多製程因素的影響,例如奈米 碳管之純度與規格、添加量的多募、奈米碳管在混漿過程 之分散情形以及網印的技巧等等,無形中降低了 C n τ — e d 的良率,增加了 CNT-FED的製造成本。但如果能將奈米破 管直接生長於基材表面,則以上的問題將多不存在, CNT-FED的製程便可獲得重大改善,而且奈米碳管的合成 將成為CNT-FED的製程中的一段模組,可於同一製程内系 統化地監控品管整個製造過程,提高CNT — FED的良率。 一般而言,可經鍛燒之财溫玻璃的形變溫度(strain temperature )最高可達65(TC,較差的鈉玻璃形變溫度約 5 5 0 C或更低,故若要以熱化學氣相沈積法直接將奈米石炭 管生長於基板表面,則其反應溫度不能超過基材的形變溫 度’亦即最好低於60 0 t:。然而製程溫度太低,一般的觸 媒活性就不足以合成奈米碳管,故需開發一高活性的特殊 觸媒系統,以低於6〇 〇。〇的低溫下進行奈米碳管合成。 ^洲專利申請案EP 1 〇 6 1 04 1 A 1揭示一種低溫熱CVd設 ,和利用設備合成奈米碳管的方法,是將該設備中的反應 g二成在空間上鄰接氣體輸入部分、用於熱分解輸入氣體 2第區,和空間上鄰接排氣部分、用於利用前述的分解 氣體合成奈米碳管第二區,並且,保持兩區的溫度,使第 ::的溫度低於第一區的溫度。在奈米碳管之生成反應區 兩種不同之觸媒基板,其中一片作為助觸媒使用,主 要作用為加速乙炔裂解,成份為pd、Cr及以等,另一片則
第7頁 593730 五、發明說明(4) 沉積有鐵、鈷、鎳或其合金觸媒膜,是主要生成奈米 的觸媒。將具有鐵、鈷、錄或其合金觸媒膜的觸媒基板 蝕刻氣腐蝕,形成納米級催化性顆粒,利用上述設備先於 第一區高熱分解碳源氣,然後,通過第二區在等於或低於 基片形變溫度的溫度下使用被助觸媒分解的碳源氣’經執 化學氣相沉積反應,在基板上上每個隔離的納米級催化= 金屬顆粒上生長垂直排列的碳納米管。此前案技術除了使 用攝氏450至65 0度的低溫反應區段外,仍須使用攝氏7〇〇 至1 0 0 0度的高溫進行碳源氣的熱分解(第一區),並非是純 低溫製程,也因此此前案技術必須使用特殊的CVD反應 器。此外於此前案技術中必須於兩基材上形成兩種不同的 金屬觸媒層,再將此兩種基材以金屬層相對的方式間隔著 一段距離放置於熱CVD反應器中。很明顯的,此前案技術 的製私複雜、成本南、且不容易實施。 歐洲專利申請案EP 1 0 6 1 043 A1揭示一種利用金屬觸 媒層低溫合成碳納米管的方法。在該合成方法中,在芙材 上形成金屬觸媒層,該金屬觸媒層被飯刻形成隔離的納卡 級催化性金屬顆粒。然後,通過在等於或低於基片形變溫 度的溫度下用被分解的碳源氣,經熱化學汽相沈積,在$ 片上每個隔離的納米級催化性金屬顆粒上生長垂直排列的 碳納米管。該被分解的碳源氣係使用一碳源氣分解金屬觸 媒層。於此前案技術中必須於兩基材上形成兩種不同的金 屬觸媒層’再將此兩種基材以金屬層相對的方式間隔著一 段距離放置於熱CVD反應器中。很明顯的,此前案技術為
593730 五、發明說明(5) 改進EP 1 0 6 1 04 1 A1之製程專利,主要的進步 加熱系統更改為一段式加熱系統,但對於觸 顯之進步性’仍需在兩片基板上使用兩種不 統0 發明要旨 本發明的一主要目的在提供一種直接於基 成奈米碳管的方法,其不具有前述先前技藝的 本發明的另一目的在提供一種直接於基材 奈米碳管的方法,其具有其觸媒系統製備簡易 本發明的另一目的在提供一種直接於基材 奈米碳管的方法’其具有其觸媒組成容易調整 述發明目的,一種依照本發明疗 合成奈米碳管的方法,包含下歹 材上形成一金屬擔體層; 屬擔體層上形成一金屬觸媒層; 媒金屬層上形成一覆蓋金屬層; 碳源氣體藉由熱化學氣相沈積方 金屬觸媒層及覆蓋金屬層的男 屬擔體層及覆蓋金屬層分別具# 的厚度,且前者較後者為厚; 體層包含一貴金屬; 為將兩段式 系統並無明 之觸媒系 於基材上低溫 a )於一基 b )於該金 c )於該觸 d )使用一 该金屬擔體層 奈米碳管; 其中該金 至5 0微米之間 該金屬擔 材上低溫合 缺點。 上低溫合成 的優點。 上低溫合成 及控制的優 完成的直接 步驟: 及 該基材具有 一面上成長 一介於0. 1 593730
5亥覆盖金屬層包含一貴 該金屬觸媒層包含選自 成之族群的一金屬。 較佳的,步驟a)的金屬 氣相沈積、物理氣相沈積、 較佳的,步驟a)的金屬 粒控介於〇 · 1 -1 〇微米的貴金 媒層上,及烘乾燒結所獲得 較佳的,步驟b)的金屬 氣相沈積、物理氣相沈積、 較佳的,步驟b)的金屬觸媒 較佳的,步驟C)的覆蓋 氣相沈積、物理氣相沈積、 較佳的,步驟C)的覆蓋 粒徑介於〇· 1-10微米的貴金 媒層上’及烘乾所獲得的塗 較佳的,步驟a)的金屬 銅,其中以銀為更佳。 金屬;及 鐵、蘇、鎳及其等之合金所組 擔體層係藉由真空濺鍍、化學 網印或電鍍的方式被形成。 擔體層的形成包含將一分散有 屬粒子的膠液網印於該金屬觸 的塗層。 觸媒層係藉由真空濺鍍、化學 網印或電鍍的方式被形成。更 層係藉由電鍍的方式被形成。 金屬層係藉由真空濺鍍、化學 網印或電鍍的方式被形成。 金屬層的形成包含將一分散有 屬粒子的膠液塗佈於該金屬觸 層。 擔體層包含銀、金、鉬、把或
較佳# ’步驟a)的金屬擔體層與步驟C)的覆蓋 包含一相同的貴金屬。 較佳的,步驟b)的金屬觸媒層包含鎳。 較佳的,步驟步驟d)的熱化學氣相沈積係於一介於 400至600 °c的反應溫度’―介於0.5至2大氣壓的壓力進行 ;ι於1至1 2 0为知的反應時間;該碳源氣體包含碳氫化合
593730 五、發明說明(7) 物或一氧化碳。 本發明之其他目的及進一步製程,將藉由以下之實施 例配合圖示予以說明如下。 只 較佳具體實施例的詳細說明 、本發明揭示一種直接於基材上低溫合成奈米碳管的方 法,有別於刖述EP申請案所揭示的消去性合成奈米金屬觸 媒的方式,本發明以加成性的方法製備觸媒。首先在基材 表面塗佈一層不需去除的觸媒擔體,亦即該擔體將不$響 下游產品與其製程。以CNT_FED為例,銀膠中的銀顆粒^即曰 可作為觸媒擔體,因為銀膠為CNT —FED製程中所必需使用 的表面接著劑,所以此擔體將不需去除即可直 CNT-FED製程中。然後於此類擔體表面再塗佈—層^舌^ ^ :女】,最後再於活性金屬觸媒層上塗佈一層 的 ,金屬。形成這三層金屬層的方法包括真空激鍍、= 於:理氣相沈積、網印或電鍍等等。這樣特殊的觸 吉11且化學氣相沈積反應的條件下便可以在基材表面 妾生長不米碳管,而且將反應溫度控制在6〇〇 以 可快t且大量地合成奈米碳管。 -成ϊ =比較’本發明主要優點有:—、觸媒系統的 程,製程二、安全且易於放大。二、採用一段式低溫製 2 3早且安全性高為,遠優於一段高溫裂解、一段 低服奴化的兩段式製程,所以也有助於降低CNT-FED的生 產成本。二、活性金屬觸媒層可以電鍍方式形成,其組成
I 593730 五、發明說明(8) 容易調整及控制而且可以嵌入CNT-FED生產製程。四、觸 媒系統為單一式反應系統不需額外的助觸媒基板。五、不 需以電漿蝕刻(plasma etching)之方式活化觸媒系統可簡 化製程。六、第三層之覆蓋金屬層有助於生成之奈来碳管 層與基板表面之接合。 本發明的一種直接於基材上低溫合成奈米碳管的方法 的一較佳具體實施例,包含如圖一所示的步驟。先取一片 基材浸在丙酮中清洗,輔以超音波震盪3〇分鐘後取出,乾 燥備用。此步驟為前處理,目的為徹底清潔基材表面以方 便金屬擔體的形成。上述的基材可為矽晶圓、石英玻璃、 強化玻璃、鈉玻璃、ΙΤ0導電玻璃或氧化矽在此實施例中 使用鈉玻璃。以網印方式將銀膠塗佈於基材上,麸後於* 氣中以400 °C烘乾燒結30分鐘,基材上便形成一層以銀'為^ 主體的金屬擔體層’其厚度為5 - 2 0微米。該銀膠包含粒徑 1-5微米銀粒子,銀固含量50 —65 wt%,其他為纖維素樹脂 (Cellulose resin)及溶劑dl-Ι-對—稀帖醇 (cU-a-terpineol)(該銀膠(Print sUver 叩討…係購自 台灣新竹市:詠欣有限公司,商品代號B_Ap〇1)。再將此某 材作為陰極置於電解液中進行電鍍,以製備活性金屬觸ς 層丄電解液中含有過渡金屬的鹽類,過渡金屬如鐵、鈷、 鎳等,鹽類可為硝酸鹽或硫酸鹽,鹽類濃度居於〇 〇 〇 1Μ 1Μ之間,電鍍時間為5秒到10分鐘之間。在此實施例中使 用硝酸鎳,濃度5 mM,電鍍時間30_6〇 sec,所獲得 性金屬觸媒層厚度為5-3G微米。完成之後,以丙酮濕潤,
lTRI11320.ptd 593730 五、發明說明(9) 再在活性金屬觸媒層之上塗佈稀釋過之銀膠溶液, 銀膠溶液係將前述銀膠!克溶於9克丙酮溶劑而製備= 完成的基材以1 〇 0 C烘乾3 0分鐘,所獲得的覆蓋金屬声尸 度為5-15微米。 θ * 將具有上述觸媒糸統的基材置於一 CVD反應器中進行 熱化學氣相沈積反應,反應的進料氣體包括惰性氣體氮氣 (流量5 0 0 s c c m )、氫氣(流量7 5 s c c m )及作為碳源的乙炔 (流量2 5 s c c m ),反應溫度為4 7 5 °C,反應時間為3分鐘, 壓力為1大氣壓。反應後在基材表面直接長成的奈米碳管 具有分佈於30-70奈米的管徑,這些奈米碳管可在低電壓 下放射出電子。
ITRI11320.ptd 第13頁 593730
ITR111320.ptd 第14頁
Claims (1)
- ,六 一 下列步驟,直接於基材上低溫合成奈米碳管的方法,包含 形成—金屬擔體層; c) 於=觸媒層上形成一金屬觸媒層; 、邊觸媒金屬層卜拟氺 d) 使用一碳源氣俨^埶=盍金屬層,及 =金屬擔體層、金屬“及、二二氣相沈積於該基材具有 奈米碳管; 媒層及覆盍金屬層的那一面上成長 至5〇ί: = ?ϊ層及覆蓋金屬層分別具有-介於〇·ι t間的厗度,且前者較後者 屬擔體層包含—貴金屬; 金屬層包含-責金屬;及 成之工觸:】包含選自鐵4、錄及其等之合金所組 擔體層第1項的方法,其中步驟a)的金屬 網印或電…式;:;成化學氣相沈積、物理氣相沈積、 3.如申請專利範 擔體層的形成包含將 屬粒子的膠液網印於 的塗層。圍第2項的方法,其中步驟a)的金屬 一分散有粒徑介於0· 1-10微米的責金 該金屬觸媒層上,及烘乾燒結所獲得ITR111320.ptd 第15頁 ---«J 593730 六、申請專利範圍 4. 如申請專利範圍第1項的方法,其中步驟b)的金屬 觸媒層係藉由真空濺鍍、化學氣相沈積、物理氣相沈積、 網印或電鑛的方式被形成。 5. 如申請專利範圍第4項的方法,其中步驟b)的金屬 觸媒層係藉由電鑛的方式被形成。 6. 如申請專利範圍第1項的方法,其中步驟c)的覆蓋 金屬層係藉由真空濺鍍、化學氣相沈積、物理氣相沈積、 網印或電鍍的方式被形成。 7. 如申請專利範圍第1項的方法,其中步驟c)的覆蓋 金屬層的形成包含將一分散有粒徑介於0. 1-10微米的貴金 屬粒子的膠液塗佈於該金屬觸媒層上,及烘乾所獲得的塗 層。 8. 如申請專利範圍第1項的方法,其中該金屬擔體層 包含銀、金、翻、I巴或銅。 9. 如申請專利範圍第8項的方法,其中該金屬擔體層 包含銀。 1 0.如申請專利範圍第1項的方法,其中該金屬擔體層 與覆蓋金屬層包含一相同的貴金屬。lTRI11320.ptd 第16頁 593730 六、申請專利範圍 11. 如申請專利範圍第8項的方法,其中金屬觸媒層包 含鎳。 12. 如申請專利範圍第1項的方法,其中步驟d)的熱 化學氣相沈積係於一介於4 0 0至6 0 0 °C的反應溫度,一介於 0.5至2大氣壓的壓力進行一介於1至120分鐘的反應時間; 該複源氣體包含碳氫化合物或一氧化碳。ITRI11320.ptd 第17頁
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091105805A TW593730B (en) | 2002-03-25 | 2002-03-25 | Process of direct low-temperature growth of carbon nanotubes on a substrate |
US10/237,695 US6855376B2 (en) | 2002-03-25 | 2002-09-10 | Process of direct growth of carbon nanotubes on a substrate at low temperature |
JP2002289670A JP3580548B2 (ja) | 2002-03-25 | 2002-10-02 | 基質表面におけるカーボンナノチューブの低温直接合成法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW091105805A TW593730B (en) | 2002-03-25 | 2002-03-25 | Process of direct low-temperature growth of carbon nanotubes on a substrate |
Publications (1)
Publication Number | Publication Date |
---|---|
TW593730B true TW593730B (en) | 2004-06-21 |
Family
ID=28037902
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW091105805A TW593730B (en) | 2002-03-25 | 2002-03-25 | Process of direct low-temperature growth of carbon nanotubes on a substrate |
Country Status (3)
Country | Link |
---|---|
US (1) | US6855376B2 (zh) |
JP (1) | JP3580548B2 (zh) |
TW (1) | TW593730B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7625544B2 (en) | 2005-09-23 | 2009-12-01 | Tsinghua University | Method for manufacturing carbon nanotubes |
CN103184425A (zh) * | 2013-03-13 | 2013-07-03 | 无锡格菲电子薄膜科技有限公司 | 一种低温化学气相沉积生长石墨烯薄膜的方法 |
TWI402212B (zh) * | 2007-04-27 | 2013-07-21 | Korea Kumho Petrochem Co Ltd | 合成奈米碳管之裝置及方法 |
TWI474371B (zh) * | 2004-07-06 | 2015-02-21 | Samsung Electronics Co Ltd | 圖案化奈米粒子場射極 |
Families Citing this family (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR421701A0 (en) * | 2001-04-04 | 2001-05-17 | Commonwealth Scientific And Industrial Research Organisation | Process and apparatus for the production of carbon nanotubes |
GB0226590D0 (en) * | 2002-11-14 | 2002-12-24 | Univ Cambridge Tech | Method for producing carbon nanotubes and/or nanofibres |
US7560136B2 (en) * | 2003-01-13 | 2009-07-14 | Nantero, Inc. | Methods of using thin metal layers to make carbon nanotube films, layers, fabrics, ribbons, elements and articles |
US7656027B2 (en) | 2003-01-24 | 2010-02-02 | Nanoconduction, Inc. | In-chip structures and methods for removing heat from integrated circuits |
US7273095B2 (en) | 2003-03-11 | 2007-09-25 | United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Nanoengineered thermal materials based on carbon nanotube array composites |
US20070114658A1 (en) * | 2004-08-24 | 2007-05-24 | Carlos Dangelo | Integrated Circuit Micro-Cooler with Double-Sided Tubes of a CNT Array |
US7538422B2 (en) * | 2003-08-25 | 2009-05-26 | Nanoconduction Inc. | Integrated circuit micro-cooler having multi-layers of tubes of a CNT array |
US7732918B2 (en) * | 2003-08-25 | 2010-06-08 | Nanoconduction, Inc. | Vapor chamber heat sink having a carbon nanotube fluid interface |
US8048688B2 (en) * | 2006-10-24 | 2011-11-01 | Samsung Electronics Co., Ltd. | Method and apparatus for evaluation and improvement of mechanical and thermal properties of CNT/CNF arrays |
US7477527B2 (en) * | 2005-03-21 | 2009-01-13 | Nanoconduction, Inc. | Apparatus for attaching a cooling structure to an integrated circuit |
US20070126116A1 (en) * | 2004-08-24 | 2007-06-07 | Carlos Dangelo | Integrated Circuit Micro-Cooler Having Tubes of a CNT Array in Essentially the Same Height over a Surface |
US7109581B2 (en) * | 2003-08-25 | 2006-09-19 | Nanoconduction, Inc. | System and method using self-assembled nano structures in the design and fabrication of an integrated circuit micro-cooler |
US20060012281A1 (en) * | 2004-07-16 | 2006-01-19 | Nyan-Hwa Tai | Carbon nanotube field emitter and method for producing same |
JP2006080170A (ja) * | 2004-09-08 | 2006-03-23 | Hitachi Cable Ltd | Cnt入り配線材の製造方法およびスパッタリング用ターゲット材 |
KR100682863B1 (ko) * | 2005-02-19 | 2007-02-15 | 삼성에스디아이 주식회사 | 탄소나노튜브 구조체 및 그 제조방법과, 탄소나노튜브 구조체를 이용한 전계방출소자 및 그 제조방법 |
KR20070003467A (ko) * | 2005-07-02 | 2007-01-05 | 삼성전자주식회사 | 면광원장치와 이를 포함하는 액정표시장치 |
KR100707199B1 (ko) * | 2005-07-12 | 2007-04-13 | 삼성전자주식회사 | H2o 플라즈마를 이용한 단일벽 탄소나노튜브의 저온성장방법 |
CN100515935C (zh) * | 2005-09-02 | 2009-07-22 | 鸿富锦精密工业(深圳)有限公司 | 碳纳米管生长装置及方法 |
US20090320991A1 (en) * | 2005-09-30 | 2009-12-31 | Paul Boyle | Methods of synthesis of nanotubes and uses thereof |
JP5057010B2 (ja) * | 2005-11-01 | 2012-10-24 | ニッタ株式会社 | カーボンファイバの製造方法 |
KR100668352B1 (ko) * | 2006-01-05 | 2007-01-12 | 삼성전자주식회사 | 질소 도핑된 단일벽 탄소나노튜브의 제조방법 |
JP2009530214A (ja) * | 2006-01-30 | 2009-08-27 | 本田技研工業株式会社 | カーボン単層ナノチューブの成長のための触媒 |
JP5343324B2 (ja) * | 2007-04-06 | 2013-11-13 | 富士通セミコンダクター株式会社 | 基板構造及びその製造方法 |
EP2276341A1 (en) * | 2008-03-07 | 2011-01-26 | Dow AgroSciences LLC | Stabilized oil-in-water emulsions including meptyl dinocap |
US8323439B2 (en) * | 2009-03-08 | 2012-12-04 | Hewlett-Packard Development Company, L.P. | Depositing carbon nanotubes onto substrate |
US20100300984A1 (en) * | 2009-05-27 | 2010-12-02 | Kastner James R | Nanostructured Carbon Supported Catalysts, Methods Of Making, And Methods Of Use |
CN103154340B (zh) * | 2010-10-18 | 2014-11-05 | 斯莫特克有限公司 | 纳米结构体器件和用于制造纳米结构体的方法 |
MY173082A (en) * | 2011-07-06 | 2019-12-25 | Mimos Berhad | A method of fabricating a nanocomposite thin film with metallic nanoparticles |
JP2015040140A (ja) * | 2013-08-21 | 2015-03-02 | 日東電工株式会社 | カーボンナノチューブシート |
CN103964413B (zh) * | 2014-04-17 | 2016-04-27 | 北京大学 | 一种提高碳纳米管平行阵列密度的方法 |
US9604194B2 (en) | 2014-10-14 | 2017-03-28 | Saudi Arabian Oil Company | Synthesis of ordered microporous carbons by chemical vapor deposition |
US10724136B2 (en) * | 2016-01-20 | 2020-07-28 | Honda Motor Co., Ltd. | Conducting high transparency thin films based on single-walled carbon nanotubes |
US20190341623A1 (en) * | 2018-05-01 | 2019-11-07 | National Technology & Engineering Solutions Of Sandia, Llc | Carbon coated nano-materials and metal oxide electrodes, and methods of making the same |
CN115430424B (zh) * | 2021-06-01 | 2024-06-18 | 中国科学院大连化学物理研究所 | 一种耐高温抗烧结的负载型铜纳米催化剂及其制备和应用 |
CN114635121A (zh) * | 2022-01-17 | 2022-06-17 | 温州大学 | 一种铂辅助催化的碳纳米管生长方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100376197B1 (ko) | 1999-06-15 | 2003-03-15 | 일진나노텍 주식회사 | 탄소 소오스 가스 분해용 촉매금속막을 이용한탄소나노튜브의 저온 합성 방법 |
EP1061041A1 (en) | 1999-06-18 | 2000-12-20 | Iljin Nanotech Co., Ltd. | Low-temperature thermal chemical vapor deposition apparatus and method of synthesizing carbon nanotube using the same |
US20020160111A1 (en) * | 2001-04-25 | 2002-10-31 | Yi Sun | Method for fabrication of field emission devices using carbon nanotube film as a cathode |
TW502282B (en) * | 2001-06-01 | 2002-09-11 | Delta Optoelectronics Inc | Manufacture method of emitter of field emission display |
-
2002
- 2002-03-25 TW TW091105805A patent/TW593730B/zh not_active IP Right Cessation
- 2002-09-10 US US10/237,695 patent/US6855376B2/en not_active Expired - Fee Related
- 2002-10-02 JP JP2002289670A patent/JP3580548B2/ja not_active Expired - Fee Related
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI474371B (zh) * | 2004-07-06 | 2015-02-21 | Samsung Electronics Co Ltd | 圖案化奈米粒子場射極 |
US7625544B2 (en) | 2005-09-23 | 2009-12-01 | Tsinghua University | Method for manufacturing carbon nanotubes |
TWI402212B (zh) * | 2007-04-27 | 2013-07-21 | Korea Kumho Petrochem Co Ltd | 合成奈米碳管之裝置及方法 |
CN103184425A (zh) * | 2013-03-13 | 2013-07-03 | 无锡格菲电子薄膜科技有限公司 | 一种低温化学气相沉积生长石墨烯薄膜的方法 |
CN103184425B (zh) * | 2013-03-13 | 2016-12-28 | 无锡格菲电子薄膜科技有限公司 | 一种低温化学气相沉积生长石墨烯薄膜的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20030180461A1 (en) | 2003-09-25 |
US6855376B2 (en) | 2005-02-15 |
JP2003277034A (ja) | 2003-10-02 |
JP3580548B2 (ja) | 2004-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW593730B (en) | Process of direct low-temperature growth of carbon nanotubes on a substrate | |
JP3580549B2 (ja) | カーボンナノチューブの低温熱化学蒸着用金属触媒 | |
Teo et al. | Catalytic synthesis of carbon nanotubes and nanofibers | |
US7329398B2 (en) | Preparation of carbon nanotubes | |
US6720240B2 (en) | Silicon based nanospheres and nanowires | |
US7834349B2 (en) | Silicon based nanospheres and nanowires | |
Zhu et al. | Synthesis of bamboo-like carbon nanotubes on a copper foil by catalytic chemical vapor deposition from ethanol | |
US20030111334A1 (en) | Process for preparing carbon nanotubes | |
CN100545985C (zh) | 制备包含纳米结构的场致发射阵列 | |
CN101314465A (zh) | 分支型碳纳米管的制备方法 | |
CA2483401A1 (en) | Process for preparing carbon nanotubes | |
AU2001294278A1 (en) | Preparation of carbon nanotubes | |
CN101370734A (zh) | 用富勒烯官能化的碳纳米管 | |
WO2003024594A2 (en) | A nano-supported catalyst for nanotube growth | |
Gangele et al. | Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: a review | |
JP2003528419A5 (zh) | ||
EP2402285B1 (en) | Method for fabricating composite material comprising nano carbon and metal or ceramic | |
EP2305601B1 (en) | Nanotube-nanohorn composite and process for production thereof | |
JP2002206169A (ja) | カーボンナノチューブ接合体およびその製造方法 | |
CN1193930C (zh) | 直接在基材上低温合成纳米碳管的方法 | |
Yoshihara et al. | Growth mechanism of carbon nanotubes over gold-supported catalysts | |
US20080203884A1 (en) | Field emission cathode and method for fabricating same | |
TW200800387A (en) | Catalyst for catalyzing carbon nanotubes growth | |
JP3628290B2 (ja) | 炭化水素の分解による接触的カーボンナノファイバーの製造方法及びその触媒 | |
JP5142258B2 (ja) | 炭素担持貴金属ナノ粒子触媒の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |