TW586227B - Manufacture of bipolar transistors including silicon-germanium/silicon heterojunction - Google Patents

Manufacture of bipolar transistors including silicon-germanium/silicon heterojunction Download PDF

Info

Publication number
TW586227B
TW586227B TW91132765A TW91132765A TW586227B TW 586227 B TW586227 B TW 586227B TW 91132765 A TW91132765 A TW 91132765A TW 91132765 A TW91132765 A TW 91132765A TW 586227 B TW586227 B TW 586227B
Authority
TW
Taiwan
Prior art keywords
silicide layer
substrate
germanium
protective
layer
Prior art date
Application number
TW91132765A
Other languages
Chinese (zh)
Other versions
TW200302579A (en
Inventor
Fumihiko Hirose
Original Assignee
Mitsubishi Heavy Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Ind Ltd filed Critical Mitsubishi Heavy Ind Ltd
Publication of TW200302579A publication Critical patent/TW200302579A/en
Application granted granted Critical
Publication of TW586227B publication Critical patent/TW586227B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66242Heterojunction transistors [HBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Bipolar Transistors (AREA)
  • Weting (AREA)

Abstract

A semiconductor substrate used for manufacturing heterojunction bipolar transistors. The semiconductor substrate includes a substrate mainly formed from silicon, a silicon-germanium layer disposed to cover the silicon substrate, and a protective silicon layer substantially consisting of silicon. The protective silicon layer is deposited on the silicon-germanium layer.

Description

586227586227

玟、麵_ ' r ; — *..* - : ·;:!«.. ... ;.... ., . : 說月應敘明·發明所屬之技術領域、先前技術、内容、實施方式及圖式簡軍說明)面 、 面 _ 'r; — * .. *-: ·;:! «.. ...; .....,.: The month should state the technical field, prior art, content, Brief description of the implementation mode and diagram)

發明背景 本發月係關於一種製造包含鍺石夕化物/石夕化物異質接人 面之雙極電晶體(HBT)的方法,以及適合用來製造 體之半導體基板。 日 /包含鍺矽化物/矽化物異質接合面之雙極電晶體(HBTS) 係以10十億赫茲(GHz)或更高的高頻率運作,因此是用於高 速通信裝置或高速功率電晶體。 ^ 圖1顯不傳統異質接合面之雙極電晶體(HBT)的剖面圖。 矽基板102之主要表面,係以作為HBT集極之用的磊晶矽化 物層103覆蓋。此一磊晶矽化物層1〇3之上表面係以作為 HBT基極之用的鍺矽化物層ι〇1覆蓋。作為hbt射極之用的 重摻雜石夕化物層104沈積於鍺矽化物層101之上。集極電極 105係沈積於矽基板1〇2之背面。射極電極ι〇6係形成於矽化 物層104上。基極電極1 〇7係形成於鍺矽化物層1 〇丨上。傳統 的HBT具有小的輸入阻抗,因此以高速運作。 通常以化學氣相沈積(CVD)形成鍺矽化物膜。圖2顯示用 於鍺矽化物膜之沈積的傳統CVD裝置。此一 CVD裝置包含 一沈積反應室109,一基板支架11〇,及一承載搖動反應器 111。將以鍺矽化物膜覆蓋的基板1〇8載入沈積反應室1〇9 中,並固定於基板支架110。基板支架110包含一加熱器(未 顯示)以升高矽基板1 08的溫度。在鍺矽化物膜之沈積期間 586227Background of the Invention The present invention relates to a method for manufacturing a bipolar transistor (HBT) containing a germanium oxide / lithium oxide heterojunction, and a semiconductor substrate suitable for manufacturing a body. Japan / Bipolar Transistors (HBTS) containing germanium silicide / silicide heterojunctions operate at high frequencies of 10 gigahertz (GHz) or higher and are therefore used for high-speed communication devices or high-speed power transistors. ^ Figure 1 shows a cross-section of a bipolar transistor (HBT) without a conventional heterojunction. The main surface of the silicon substrate 102 is covered with an epitaxial silicide layer 103 used as an HBT collector. The upper surface of this epitaxial silicide layer 103 is covered with a germanium silicide layer ι01 which is used as the HBT base. A heavily doped fossil material layer 104 for use as an hbt emitter is deposited on the germanium silicide layer 101. The collector electrode 105 is deposited on the back surface of the silicon substrate 102. The emitter electrode ιo is formed on the silicide layer 104. The base electrode 107 is formed on the germanium silicide layer 101. Traditional HBT has a small input impedance and therefore operates at high speed. A germanium silicide film is usually formed by chemical vapor deposition (CVD). Figure 2 shows a conventional CVD apparatus for the deposition of a germanium silicide film. The CVD apparatus includes a deposition reaction chamber 109, a substrate holder 110, and a shaking reactor 111. The substrate 10 covered with the germanium silicide film is loaded into the deposition reaction chamber 109 and fixed to the substrate holder 110. The substrate holder 110 includes a heater (not shown) to raise the temperature of the silicon substrate 108. During the deposition of germanium silicide film

(2) ,沈積反應室109供應包含氫矽化物氣體之沈積氣體,如甲 矽烷與乙矽烷,以及氫鍺化物氣體,如鍺烷。氫矽化物與 氫鍺化物之反應形成錯矽化物膜。 鍺矽化物層101的沈積係藉由下列過程來完成。以磊晶石夕 化物層103覆蓋的矽基板102經由承載搖動反應室U1傳送 到沈積反應室109,並固定於矽化物支架11 〇。接著,石夕基 板102以攝氏800度〜攝氏900度的溫度,熱處理1〇〜6〇分鐘。 熱處理將氧與碳從蠢晶带化物層103的表面上移除。接著石夕 基板1 0 2的溫度調整到理想的沈積溫度’ 一般是在攝氏5 0 〇 度〜攝氏800度的範圍。接著供應沈積氣體到沈積反應室ι〇9 中,同時矽基板102保持於理想的沈積溫度。然後藉由停止 沈積氣體的供應,或冷卻矽基板108,停止鍺矽化物層1〇 i 的沈積。錯石夕化物層101的厚度可以藉由沈積時間與/或沈 積反應室的壓力來調整。鍺矽化物膜的濃度則可以藉由沈 積氣體的組成來調節。 在鍺矽化物層101沈積之後,藉由與鍺矽化物層1 〇 i相同 的CVD方法,在鍺矽化物層101上沈積矽化物層104。鍺石夕 化物層101與矽化物層104的沈積係以不同的CVD反應室來 實施,以避免污染。鍺矽化物層101與矽化物層1〇4具有不 同的導電類型,而且通常要求矽化物層104是重摻雜的。如 果鍺矽化物層101與矽化物層104是在相同的反應室沈積, 其將使重摻雜的雜質殘留在反應室中。殘留的雜質可能污 染錯石夕化物層10 1。使用不同反應室供錯石夕化物層1 0 1與石夕 化物層104之沈積,有效地避免雜質的污染。 586227(2) The deposition reaction chamber 109 supplies a deposition gas containing a hydrosilicide gas, such as silane and disilane, and a germanohydrogen gas, such as germane. The reaction of hydrosilicide and germanohydrogenide forms a silicide film. The germanium silicide layer 101 is deposited by the following process. The silicon substrate 102 covered with the epitaxial stone layer 103 is transferred to the deposition reaction chamber 109 via the load-shaking reaction chamber U1 and fixed to the silicide bracket 11. Next, the Shi Xi substrate 102 is heat-treated at a temperature of 800 ° C to 900 ° C for 10 to 60 minutes. The heat treatment removes oxygen and carbon from the surface of the stupid banding layer 103. Then, the temperature of the Shi Xi substrate 102 is adjusted to an ideal deposition temperature ', which is generally in a range of 500 ° C to 800 ° C. A deposition gas is then supplied into the deposition reaction chamber 109, while the silicon substrate 102 is maintained at a desired deposition temperature. Then, by stopping the supply of the deposition gas, or cooling the silicon substrate 108, the deposition of the germanium silicide layer 10 i is stopped. The thickness of the staggered oxide layer 101 can be adjusted by the deposition time and / or the pressure of the deposition reaction chamber. The concentration of germanium silicide film can be adjusted by the composition of the deposition gas. After the germanium silicide layer 101 is deposited, a silicide layer 104 is deposited on the germanium silicide layer 101 by the same CVD method as the germanium silicide layer 101. The germanium oxide layer 101 and the silicide layer 104 are deposited in different CVD reaction chambers to avoid contamination. The germanium silicide layer 101 and the silicide layer 104 have different conductivity types, and the silicide layer 104 is generally required to be heavily doped. If the germanium silicide layer 101 and the silicide layer 104 are deposited in the same reaction chamber, it will leave heavily doped impurities in the reaction chamber. Residual impurities may contaminate the wrong petrochemical layer 101. Different reaction chambers are used for the deposition of the stone oxide layer 101 and the stone oxide layer 104 to effectively avoid the contamination of impurities. 586227

(3) 矽化物層104的沈積係藉由下列程序來達成。覆蓋鍺矽化 物層1 01的矽基板102,被傳送到沈積反應室中。接著矽基 板102以攝氏800度〜攝氏900度的溫度,熱處理1〇〜分鐘。 熱處理將氧與碳從鍺矽化物層1 〇丨的表面上移除。接著石夕基 板102的溫度調整到理想的沈積溫度,一般是在攝氏5〇〇度〜 攝氏800度的範圍。接著供應氫矽化物到沈積反應室中,同 時矽基板102保持於理想的沈積溫度。然後藉由停止氫矽化 物的供應,或冷卻矽基板108,停止矽化物層1〇4的沈積。 矽化物層1 04的厚度可以藉由沈積時間與/或沈積反應室的 壓力來調整。 製程良率與鍺矽化物異質接合面雙極電晶體(HBTs)性能 的改良,要求鍺矽化物層與矽化物層具有少的缺陷與平坦 的。包含於鍺矽化物層與矽化物層中的缺陷造成泄漏電流 。此外,這些層不良的平坦度使製程的精確度惡化,並降 低製程良率。鍺矽化物層與矽化物層的缺陷與不良的平坦 度是鍺矽化物異質接合面雙極電晶體(HBTs)製造的一個問 題。 目刖s忍為缺陷與不良的平坦度係由下列兩個原因所引起 。一個原因是包含於鍺矽化物層與矽化物層中的應力,其 他的原因則是這些層表面的污染。 應力是由鍺矽化物層與矽化物層之晶格常數間的些微差 異所引起的。鍺矽化物層晶格常數隨著鍺濃度的增加而增 加。因此,在鍺矽化物層與矽化物層的接合面上存在晶格 錯位。晶格錯位引起作用於鍺石夕化物層與石夕化物層上的應 586227 力。應力引起鍺矽化物層中錯位’因而引起堆疊錯誤。堆 疊錯誤造成鍺矽化物層之較差的平坦度。 賓(Bean)等人在應用物理通訊(Applied physics 第54期(1989年)第925頁中,揭示適當的鍺濃度與鍺矽化物 層厚度有效地降低鍺矽化物層中的缺陷。所揭示的條件有 效地避免應力所造成之缺陷與平坦度惡化的產生。 可疋’鍺石夕化物層之沈積條件的最佳化,對於抑制由污 染所造成之缺陷與平坦度惡化的產生是無效的。尤其是在 沈積反應室之間傳送期間,沈積於錯石夕化物層上的污染物 是很難移除的。鍺矽化物層表面上的污染物引起矽化物層 中的堆疊錯誤,因此使矽化物層的平坦度惡化。 目前認為鍺石夕化物層表面上的污染物包含氧,碳,氟, 與金屬元素。污染物的減少傳統上是以化學清洗與真空反 應室中高溫的熱處理來達成。RCA清洗是一個化學移除污 染物的典型方法。RCA清洗包含下列步驟: (1) 純水清洗數分鐘; (2) 在攝氏75度下,浸浴於溶液中數分鐘,此一溶液由 氫氧化銨,過氧化氫,與水所組成; (3) 純水清洗數分鐘; (4) 於室溫下,浸浴於1%重量百分比的氟氫酸中數分鐘; (5) 純水清洗數分鐘; (6) 在室溫下,浸浴於溶液中數分鐘,此一溶液由鹽酸 ,過氧化氫,與水所組成; (7) 純水清洗數分鐘; 586227(3) The silicide layer 104 is deposited by the following procedure. The silicon substrate 102 covering the germanium silicide layer 101 is transferred to the deposition reaction chamber. Next, the silicon substrate 102 is heat-treated at a temperature of 800 ° C to 900 ° C for 10 minutes to 10 minutes. The heat treatment removes oxygen and carbon from the surface of the germanium silicide layer 100. Next, the temperature of the Shixi substrate 102 is adjusted to an ideal deposition temperature, which is generally in the range of 500 ° C to 800 ° C. Hydrosilicide is then supplied to the deposition reaction chamber while the silicon substrate 102 is maintained at the desired deposition temperature. Then, by stopping the supply of hydrosilicide, or cooling the silicon substrate 108, the deposition of the silicide layer 104 is stopped. The thickness of the silicide layer 104 can be adjusted by the deposition time and / or the pressure of the deposition reaction chamber. The improvement of process yield and the performance of germanium silicide heterojunction bipolar transistors (HBTs) requires that the germanium silicide layer and silicide layer have fewer defects and flatness. Defects contained in the germanium silicide layer and the silicide layer cause leakage current. In addition, the poor flatness of these layers deteriorates the accuracy of the process and reduces the process yield. Defects and poor flatness of the germanium silicide layer and silicide layer are a problem in the fabrication of germanium silicide heterojunction bipolar transistors (HBTs). The defects in flatness and poor flatness are caused by the following two reasons. One reason is the stress contained in the germanium silicide layer and the silicide layer, and the other cause is the contamination of the surface of these layers. The stress is caused by a slight difference between the lattice constants of the germanium silicide layer and the silicide layer. The lattice constant of the germanium silicide layer increases as the germanium concentration increases. Therefore, there is a lattice misalignment on the junction surface of the germanium silicide layer and the silicide layer. The lattice dislocation causes a stress of 586227 on the germanium oxide layer and the stone layer. The stress causes a dislocation ' in the germanium silicide layer and thus causes a stacking error. Stacking errors result in poor flatness of the germanium silicide layer. Bean and others in Applied Physics Communication (Applied Physics No. 54 (1989), p. 925) revealed that proper germanium concentration and germanium silicide layer thickness effectively reduce defects in germanium silicide layers. Revealed The conditions effectively avoid the occurrence of defects and flatness deterioration caused by stress. The optimization of the deposition conditions of the germanium oxide layer is not effective in suppressing the generation of defects and flatness deterioration caused by pollution. Especially during the transfer between sedimentation reaction chambers, it is difficult to remove the contaminants deposited on the whetstone layer. The contaminants on the surface of the germanium silicide layer cause stacking errors in the silicide layer, thus silicifying The flatness of the material layer deteriorates. It is currently believed that the pollutants on the surface of the germanite layer include oxygen, carbon, fluorine, and metal elements. The reduction of pollutants has traditionally been achieved by chemical cleaning and high temperature heat treatment in a vacuum reaction chamber. RCA cleaning is a typical method of chemically removing contaminants. RCA cleaning includes the following steps: (1) pure water for several minutes; (2) immersed in the solution at 75 degrees Celsius Minutes, this solution consists of ammonium hydroxide, hydrogen peroxide, and water; (3) washed with pure water for several minutes; (4) immersed in 1% by weight of hydrofluoric acid for several minutes at room temperature (5) Wash with pure water for several minutes; (6) Soak in the solution for several minutes at room temperature. This solution consists of hydrochloric acid, hydrogen peroxide, and water; (7) Wash with pure water for several minutes; 586227

(5) (8) 在室溫下,浸浴於1%重量百分比的氟氫酸中數分鐘; (9) 純水清洗數分鐘; (10) 在室溫下,浸浴於溶液中數分鐘,此一溶液由硫酸 ,過氧化氫,與水所組成; (11) 純水清洗數分鐘; 及 (12) 自旋乾燥。 可是’因為化學清洗使用的酸非均向地餘刻錯矽化物層 ’化學清洗在鍺矽化物層的表面上形成蝕刻凹陷,因而使 鍺矽化物層的平坦度惡化。蝕刻凹陷降低了鍺矽化物異質 接合面雙極電晶體(HBTs)的製程良率。 鍺矽化物層表面上的清洗可以藉由使用有機溶劑,如丙 來達成。可是,污染物並不能被有機溶劑有效地移除。 另一個問題是矽化物層沈積之前熱處理所造成,來自鍺 矽化物層的錯蒸汽。如上所述,在矽化物層沈積到鍺矽化 物層之前,基板以攝氏8 00度〜攝氏900度的溫度熱處理,以 移除鍺矽化物層表面上的污染物。熱處理有效地減少鍺矽 化物層表面上氧與碳的濃度到低於偵測極限。可是,熱處 理使鍺從鍺矽化物層蒸發。鍺蒸汽使鍺矽化物層的平坦度 惡化。鍺矽化物之較差的平坦度,使提供於其上之矽化物 層的平坦度惡化。 提供一種技術,有效地將缺陷從異質接合面雙極電晶體 (HBTs)中排除,並改善包含於HBTs中之層的平坦度是有益 的。 586227(5) (8) immersed in 1% weight percent hydrofluoric acid for several minutes at room temperature; (9) washed with pure water for several minutes; (10) immersed in solution for several minutes at room temperature This solution consists of sulfuric acid, hydrogen peroxide, and water; (11) cleaned with pure water for several minutes; and (12) spin-dried. However, because the acid silicide layer is used to chemically clean the silicon silicide layer, the chemical cleaning forms etched depressions on the surface of the germanium silicide layer, thereby deteriorating the flatness of the germanium silicide layer. Etching depressions reduce the process yield of germanium silicide heterojunction bipolar transistors (HBTs). Cleaning on the surface of the germanium silicide layer can be achieved by using an organic solvent such as propylene. However, contaminants cannot be effectively removed by organic solvents. Another problem is the stray vapor from the germanium silicide layer caused by the heat treatment before the silicide layer is deposited. As described above, before the silicide layer is deposited on the germanium silicide layer, the substrate is heat-treated at a temperature of 800 ° C to 900 ° C to remove contaminants on the surface of the germanium silicide layer. The heat treatment effectively reduces the concentration of oxygen and carbon on the surface of the germanium silicide layer to below the detection limit. However, thermal treatment causes germanium to evaporate from the germanium silicide layer. The germanium vapor deteriorates the flatness of the germanium silicide layer. The poor flatness of the germanium silicide deteriorates the flatness of the silicide layer provided thereon. It would be beneficial to provide a technique that effectively excludes defects from heterojunction bipolar transistors (HBTs) and improves the flatness of the layers contained in the HBTs. 586227

發明概要 因此’本發明之目的在從包含鍺矽化物/矽化物接合面之 異質接合面雙極電晶體(HBT)中排除缺陷,以及改善包含於 HBT中之層的平坦度。 在本發明之一態樣中,一半導體基板包含一主要由矽所 形成的基板,一沈積以覆蓋矽基板之鍺矽化物,以及一實 質上由石夕化物所組成之保護矽化物層。保護之矽化物層係 沈積於鍺矽化物層上。SUMMARY OF THE INVENTION It is therefore an object of the present invention to eliminate defects from a heterojunction bipolar transistor (HBT) including a germanium silicide / silicide junction and to improve the flatness of a layer included in the HBT. In one aspect of the present invention, a semiconductor substrate includes a substrate mainly formed of silicon, a germanium silicide deposited to cover the silicon substrate, and a protective silicide layer consisting essentially of a silicon oxide. A protected silicide layer is deposited on the germanium silicide layer.

保護層宜沈積以完全地覆蓋鍺矽化物層的上表面。 保護層的厚度宜等於或超過50埃,並如此限定,使保護 層在異質接合面雙極電晶體的運作上沒有實質上的效應。 基板可以包含一重摻雜的矽基板,以及少量摻雜的磊晶 矽化物層。 在本發明之另一態樣中,一種製造用來生產異質接合面 雙極電晶體之半導體基板的方法,包括: 提供一主要由矽化物所形成之基板; 沈積一鍺矽化物層,以覆蓋該基板;The protective layer should be deposited to completely cover the upper surface of the germanium silicide layer. The thickness of the protective layer should be equal to or more than 50 Angstroms, and is so limited that the protective layer has no substantial effect on the operation of the heterojunction bipolar transistor. The substrate may include a heavily doped silicon substrate and a lightly doped epitaxial silicide layer. In another aspect of the present invention, a method of manufacturing a semiconductor substrate for producing a heterojunction bipolar transistor includes: providing a substrate mainly formed by silicide; and depositing a germanium silicide layer to cover The substrate;

沈積一保護之矽化物層於鍺矽化物層之上表面上。 在本發明之又另一態樣中,一種製造異質接合面雙極電 晶體之方法,包括: 提供一半導體基板包括: 一主要由矽化物所形成之基板; 沈積以覆蓋該基板之鍺矽化物層; 一保護之矽化物層沈積於鍺矽化物層上,此一保護之 -10- 586227A protective silicide layer is deposited on the upper surface of the germanium silicide layer. In yet another aspect of the present invention, a method for manufacturing a heterojunction bipolar transistor includes: providing a semiconductor substrate including: a substrate formed mainly of silicide; and a germanium silicide deposited to cover the substrate Layer; a protected silicide layer is deposited on the germanium silicide layer, this protected -10- 586227

矽化物層實質上由矽化物所組成; 在保護之矽化物層的上表面上,沈積一矽化物層。 _ 此一製造方法宜包括: 使用酸液化學清洗半導體基板。 · 化學清洗可以包含至少鹽酸溶液中的第一浸浴與由硫酸 與過氧化氫所組成之溶液中的第二浸浴兩者其中之一。 如果製造方法包括下列,是有益的: 將半導體體基板暴露於臭氧環境。 如果製造方法也包含下列,是有益的: € 在沈積♦化物層之前,對半導體基板做熱清洗。 熱清洗宜以高於攝氏800度溫度之熱處理來達成。 圖式簡單說明 圖1顯示傳統異質接合面雙極電晶體(ΗΒτ)的剖面圖; 圖2顯示用來製造傳統異質接合面雙極電晶體(ηβτ)之傳 統CVD裝置; 圖3顯示在本發明之一具體實施例中,用來製造異質接合 面雙極電晶體(HBTs)之半導體基板; 圖4顯示在本發明之一具體實施例中,用來製造半導體基 鲁 板之CVD裝置; & 圖5至9係一剖面圖,顯示在此一具體實施例中,製造半 導體基板之製程; _ 圖10顯示在此一具體實施例中,用來製造異質接合面雙 極電晶體(HBTs)的另一 CVD裝置; -· 圖11至14係剖面圖,顯示在此一具體實施例中,製造異 -11 - 586227The silicide layer is substantially composed of a silicide; a silicide layer is deposited on the upper surface of the protected silicide layer. _ This manufacturing method should include: Chemical cleaning of the semiconductor substrate using an acid solution. • Chemical cleaning may include at least one of a first immersion bath in a hydrochloric acid solution and a second immersion bath in a solution consisting of sulfuric acid and hydrogen peroxide. It is beneficial if the manufacturing method includes the following: Exposing the semiconductor substrate to an ozone environment. It is beneficial if the manufacturing method also includes the following: € The semiconductor substrate is thermally cleaned before the deposit layer is deposited. Thermal cleaning should be achieved by heat treatment at a temperature higher than 800 degrees Celsius. Brief Description of the Drawings Figure 1 shows a cross-sectional view of a conventional heterojunction bipolar transistor (ΗΒτ); Figure 2 shows a conventional CVD apparatus for manufacturing a conventional heterojunction bipolar transistor (ηβτ); and Figure 3 shows the present invention In a specific embodiment, a semiconductor substrate for manufacturing a heterojunction bipolar transistor (HBTs) is shown in FIG. 4; FIG. 4 shows a CVD apparatus for manufacturing a semiconductor base board in a specific embodiment of the present invention; & 5 to 9 are cross-sectional views showing a process for manufacturing a semiconductor substrate in this embodiment; FIG. 10 shows a process for manufacturing heterojunction bipolar transistors (HBTs) in this embodiment. Another CVD apparatus;-· Figs. 11 to 14 are sectional views showing the fabrication of a different embodiment in this specific embodiment-586227

⑻ 質接合面雙極電晶體(HBTs)的製程; 圖15顯示所製造之異質接合面雙極電晶體(HBT)的剖面 圖。 較佳具體實施例詳細說明 圖3顯示在本發明之一具體實施例中,用來製造異質接合 面雙極電晶體(HBTs)之半導體基板。如圖3所示,半導體2 板包含一 η型矽基板9-1,一 p型鍺矽化物層9-2,以及一薄 的保護矽化物層9-3。鍺矽化物層9_2係沈積於矽基板之 主(上)表面上,而保護矽化物層9-3則是沈積於鍺矽化物層 9-2上。保護矽化物層9-3完全地覆蓋鍺矽化物層9_2的上表 面。如下面將敘述的,矽化物層9_3係當作保護層之用。應 注意的是矽基板9-1可以包含重摻雜的η型基板,以及沈積 於重摻雜之η型基板上之少量摻雜的磊晶矽化物層(未顯示) 。在此一情況中,鍺石夕化物層9-2係沈積於羞晶石夕化物層上。 圖3所示之半導體基板係提供給異質接合面雙極電晶體 (ΗΒΤ)之製造《經由在保護矽化物層9_3上,沈積一具有適 當厚度之矽化物層,此一製造允許形成理想的結構化鍺矽/ 矽(SiGe/Si)接合面。 如果保護石夕化物層9-3的厚度等於或超過5〇埃,則是有益 的。具有等於或超過50埃之厚度的保護矽化物層、3有效地 在化學清洗期間,保護緒碎化物層9-2免於化學損壞。 另一方面’如果保護矽化物層9-3之厚度如此薄,以致於 允許保護石夕化物層9-3在異質接合面雙極電晶體(hbts)之 運作上不具實質上的效應,也是有益的。 -12- 586227程 Manufacturing process of HBTs; Figure 15 shows a cross-section view of the fabricated HBTs. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Fig. 3 shows a semiconductor substrate for manufacturing heterojunction bipolar transistors (HBTs) in a specific embodiment of the present invention. As shown in FIG. 3, the semiconductor 2 board includes an n-type silicon substrate 9-1, a p-type germanium silicide layer 9-2, and a thin protective silicide layer 9-3. The germanium silicide layer 9_2 is deposited on the main (upper) surface of the silicon substrate, and the protective silicide layer 9-3 is deposited on the germanium silicide layer 9-2. The protective silicide layer 9-3 completely covers the upper surface of the germanium silicide layer 9_2. As will be described below, the silicide layer 9_3 is used as a protective layer. It should be noted that the silicon substrate 9-1 may include a heavily doped n-type substrate, and a lightly doped epitaxial silicide layer (not shown) deposited on the heavily doped n-type substrate. In this case, the germanium oxide layer 9-2 is deposited on the skeletal oxide layer. The semiconductor substrate shown in FIG. 3 is provided for the fabrication of a heterojunction bipolar transistor (HBT). By depositing a silicide layer with an appropriate thickness on the protective silicide layer 9_3, this fabrication allows the formation of an ideal structure. SiGe / Si interface. It is advantageous if the thickness of the protective fossil material layer 9-3 is 50 angstroms or more. A protective silicide layer having a thickness equal to or more than 50 angstroms, 3 effectively protects the shredded layer 9-2 from chemical damage during chemical cleaning. On the other hand, if the thickness of the protective silicide layer 9-3 is so thin that it allows the protective silicide layer 9-3 to have no substantial effect on the operation of the heterojunction bipolar transistors (hbts), it is also beneficial. of. -12- 586227

(9) 下列是製造圖3所示之半導體基板的製程。 圖4顯示用來製造半導體基板之CVD裝置1〇-1。鍺矽化物 · ·, 層9-2與保護矽化物層9-3之沈積係藉由CVD裝置10-1來達 · 成。此一 CVD裝置10-1包含一沈積反應室1-1。真空幫浦2-1 ” 連接到沈積反應室1 -1以將沈積反應室1 -1抽真空。用來固 定基板6-1的基板支架3-1放置在沈積反應室1-1中。基板支 架3-1包含一加熱器4-1以加熱基板至理想的溫度。沈積反 應室1-1具有一來源氣體5-1。來源氣體5-1包含甲石夕烧與錯 烷。當沈積摻雜η型或p型雜質的薄膜時,可以添加磷化氫 ® 氣體與乙硼烷氣體到來源氣體5-1中。安排承載搖動反應室 7-1與通道閥門8-1以將基板6-1載入沈積反應室1-1中。基板 6-1係經由通道閥門8-1,從承載搖動反應室7-1載入沈積反 應室1 -1。 製造半導體基板的製程始於提供如圖5所示之石夕基板9-1 。此一石夕基板9-1具有一 <100>之結晶方向,與4英对(in)的 直徑。在鍺矽化物層9-2的沈積之前,矽基板9-1的表面以 RC A清洗洗淨。如上所述,rc A清洗包含一系列步驟: (1) 純水清洗數分鐘; · (2) 在攝氏75度下,浸浴於溶液中數分鐘,此一溶液由 氫氧化銨,過氧化氫,與水所組成; (3) 純水清洗數分鐘; (4) 於室溫下,浸浴於1%重量百分比的氟氫酸中數分鐘; - (5) 純水清洗數分鐘; / (6) 在室溫下,浸浴於溶液中數分鐘,此一溶液由鹽酸 -13- 586227 (ίο) ,過氧化氫,與水所組成; (7) 純水清洗數分鐘; (8) 在室溫下,浸浴於1%重量百分比的氟氫酸中數分鐘; (9) 純水清洗數分鐘; (10) 在室溫下,浸浴於溶液中數分鐘,此一溶液由硫酸 ,過氧化氫,與水所組成; (11) 純水清洗數分鐘;及 (12) 自旋乾燥。 在RAC清洗之後,如圖6所示,矽基板9-1被載入沈積反 應室1-1中,接著固定於基板支架3-1。接著以真空幫浦2-1 將沈積反應室1- 1抽真空至1 X 1 〇-9托(T〇rr)❶在抽真空之後 ,如圖7所示,矽基板9-1以攝氏800度900度之溫度熱清洗5 分鐘。熱處理有效地從矽基板9-1的表面上移除氧與碳。 在熱清洗之後,矽基板9-1的溫度接著被調節到攝氏700 度。然後,如圖8所示,沈積鍺矽化物層9-2與保護矽化物 層 9-3〇 沈積的詳細過程如下。包含乙矽烷與鍺烷的來源氣體5-1 供應到沈積反應室1-1中。調整鍺烷的分壓到4χ 1〇·5托 (Torr)。來源氣體5-1之1〇分鐘的供應,在矽基板9-1上沈積 2000埃的鍺矽化物層9-2。沈積的溫度超過攝氏500度,有 效地幫助曱矽烷的反應,因而改善了鍺矽化物層9-2的結晶 度。 鍺矽化物層9-2與保護矽化物層9-3的沈積係藉由下列反 應方程式所表示的反應來達成: 586227(9) The following is a process for manufacturing the semiconductor substrate shown in FIG. 3. FIG. 4 shows a CVD apparatus 10-1 for manufacturing a semiconductor substrate. The germanium silicide layer is deposited by the CVD device 10-1 through the deposition of the layer 9-2 and the protective silicide layer 9-3. The CVD apparatus 10-1 includes a deposition reaction chamber 1-1. The vacuum pump 2-1 "is connected to the deposition reaction chamber 1 -1 to evacuate the deposition reaction chamber 1 -1. The substrate holder 3-1 for fixing the substrate 6-1 is placed in the deposition reaction chamber 1-1. The substrate The support 3-1 includes a heater 4-1 to heat the substrate to a desired temperature. The deposition reaction chamber 1-1 has a source gas 5-1. The source gas 5-1 contains metazite and stilbene. For thin films with η-type or p-type impurities, phosphine® gas and diborane gas can be added to the source gas 5-1. Arrange to carry the shaking reaction chamber 7-1 and the channel valve 8-1 to the substrate 6- 1 is loaded into the deposition reaction chamber 1-1. The substrate 6-1 is loaded into the deposition reaction chamber 1 -1 from the load-shaking reaction chamber 7-1 through the passage valve 8-1. The process of manufacturing a semiconductor substrate begins by providing The Shixi substrate 9-1 shown in Figure 5. This Shixi substrate 9-1 has a crystal orientation of < 100 > and a diameter of 4 inches (in). Before the deposition of the germanium silicide layer 9-2, The surface of the silicon substrate 9-1 is cleaned and washed with RC A. As mentioned above, rc A cleaning includes a series of steps: (1) pure water for several minutes; · (2) immersed in a solvent at 75 ° C For several minutes, this solution consists of ammonium hydroxide, hydrogen peroxide, and water; (3) Wash with pure water for several minutes; (4) Soak in 1% by weight of hydrofluoric acid at room temperature For several minutes;-(5) Wash with pure water for several minutes; / (6) Soak in the solution for several minutes at room temperature. This solution consists of hydrochloric acid-13-586227 (ίο), and water. Composition; (7) Wash with pure water for several minutes; (8) Soak in 1% weight percent hydrofluoric acid for several minutes at room temperature; (9) Wash with pure water for several minutes; (10) At room temperature , Immersed in the solution for several minutes, this solution consists of sulfuric acid, hydrogen peroxide, and water; (11) pure water for several minutes; and (12) spin drying. After RAC cleaning, as shown in Figure 6 As shown, the silicon substrate 9-1 is loaded into the deposition reaction chamber 1-1, and then fixed to the substrate holder 3-1. Then, the deposition reaction chamber 1-1 is evacuated to 1 X 1 〇- with a vacuum pump 2-1. 9 Torr (Torr) ❶ After vacuuming, as shown in Figure 7, the silicon substrate 9-1 was thermally cleaned at a temperature of 800 ° C and 900 ° C for 5 minutes. The heat treatment was effectively moved from the surface of the silicon substrate 9-1 Oxygen and carbon After the thermal cleaning, the temperature of the silicon substrate 9-1 is then adjusted to 700 degrees Celsius. Then, as shown in FIG. 8, the detailed process of the deposition of the germanium silicide layer 9-2 and the protective silicide layer 9-3 It is as follows. A source gas 5-1 containing disilane and germane is supplied to the deposition reaction chamber 1-1. The partial pressure of germane is adjusted to 4 × 10.5 Torr. The source gas 5-1 is 10 minutes A 2000 angstrom germanium silicide layer 9-2 was deposited on a silicon substrate 9-1. The deposition temperature exceeds 500 degrees Celsius, which effectively helps the reaction of samarium silane, thereby improving the crystallinity of the germanium silicide layer 9-2. The deposition of the germanium silicide layer 9-2 and the protective silicide layer 9-3 is achieved by a reaction represented by the following reaction equation: 586227

〇i)〇i)

Si2H6(氣體)+2Si — 2Si(吸收)+6H(吸收),Si2H6 (gas) + 2Si — 2Si (absorption) + 6H (absorption),

GeH4(氣體)+ 4Si — 2Ge(吸收)與4H(吸收),及 2H(吸收)—H2(氣體)。 在鍺矽化物層9-2的沈積之後,停止鍺烷的供應,但持續 乙矽烷的供應。乙矽烷10秒鐘的供應沈積50埃的保護矽化 物層9-3。在保護矽化物層9-3的沈積之後,停止乙矽烷的 供應與矽基板9-1的加熱。半導體基板的製造過程便完成。 覆蓋鍺矽化物層9-2與保護矽化物層9-3的半導體基板,稱 為半導體基板13。接著半導體基板13從沈積反應室1-1卸下 ,並暴露於圖9所示的空氣中。 保護矽化物層9-3有效地避免鍺矽化物層9-2表面污染物 。保護矽化物層9-3覆蓋鍺矽化物層9-2,並當作保護層之 用。半導體基板13對空氣的暴露並不會導致錯碎化物層9-2 表面的污染。 半導體基板13對空氣的暴露可能污染保護矽化物層9-3 的表面。可是,很容易以化學清洗來移除保護石夕化物層9-3 表面上的污染物。保護矽化物層9-3是抗酸的,其允許使用 化學清洗來清洗半導體基板13。 半導體基板13適合用來製造分別包含錯梦/硬 異質接合面雙極電晶體(HBTs)。製造異質接合面雙極電晶 體(HBTs)製程敘述如下。 製造過程始於半導體基板13表面的化學清洗。首先,半 導體基板13放到鹽酸溶液中浸浴。此一溶液係以純水稀釋 45重量百分比的鹽酸來製備。浸浴於鹽酸溶液中有效地移 -15-GeH4 (gas) + 4Si — 2Ge (absorption) and 4H (absorption), and 2H (absorption) —H2 (gas). After the germanium silicide layer 9-2 was deposited, the supply of germane was stopped, but the supply of disilane was continued. A supply of disilane for 10 seconds deposits a protective silicide layer 9-3 of 50 angstroms. After the deposition of the protective silicide layer 9-3, the supply of disilane and the heating of the silicon substrate 9-1 are stopped. The manufacturing process of the semiconductor substrate is completed. The semiconductor substrate covering the germanium silicide layer 9-2 and the protective silicide layer 9-3 is referred to as a semiconductor substrate 13. The semiconductor substrate 13 is then removed from the deposition reaction chamber 1-1 and exposed to the air shown in FIG. 9. Protecting the silicide layer 9-3 effectively prevents the surface contamination of the germanium silicide layer 9-2. The protective silicide layer 9-3 covers the germanium silicide layer 9-2 and functions as a protective layer. Exposure of the semiconductor substrate 13 to air does not cause contamination of the surface of the fragile material layer 9-2. The exposure of the semiconductor substrate 13 to the air may contaminate the surface of the protective silicide layer 9-3. However, it is easy to remove the contaminants on the surface of the protective stone layer 9-3 by chemical cleaning. The protective silicide layer 9-3 is acid-resistant, which allows the semiconductor substrate 13 to be cleaned using chemical cleaning. The semiconductor substrate 13 is suitable for manufacturing bipolar transistors (HBTs) each including a dream / hard heterojunction junction. The process for manufacturing heterojunction bipolar electric crystals (HBTs) is described below. The manufacturing process begins with chemical cleaning of the surface of the semiconductor substrate 13. First, the semiconductor substrate 13 is immersed in a hydrochloric acid solution. This solution was prepared by diluting 45 weight percent hydrochloric acid with pure water. Effectively move in immersion in HCl solution -15-

586227 除半導體基板13表面上的天然氧化物。鹽酸溶液對純水的 體積比是1 : 49。 接著,半導體基板13放到由硫酸與過氧化氫所組成的溶 液中浸浴。硫酸與過氧化氫溶液的體積比是丨·· 2。此一溶 液包含硫酸與過氧化氫,其有效地移除半導體基板13表面 上的污染物。 保濩矽化物層9-3有效地保護鍺矽化物層9-2免於酸的化 學钱刻,因而保持錯石夕化物層9_2的平坦度。化學清洗後的 光學微影照相已經證實沒有觀察到表面的不規則,如蝕刻 凹陷。 可經使用X射線光電子光譜儀來分析保護矽化物層9-3表 面上之污染物的濃度。碳濃度少於5χ 1〇u原子/平方公分 (atoms/cm2),而金屬的濃度則少於偵測下限,也就是說, 少於lx 10原子/平方公分(at〇ms/crn2)。已經證實碳與金屬 的濃度是足夠低。氧濃度是在1 X l〇i5原子/平方公分 (atoms/cm2)的量級。約]^ 10i5原子/平方公分(at〇ms/cm2) 的氧濃度不是一個問題,因為可以藉由下面敘述的熱清洗 來移除約lx 1015原子/平方公分(at〇ms/cm2)的氧污染物。 在化學清洗前或後,半導體基板13暴露於臭氧的環境中 是有益的。臭氧環境可以藉由紫外線對空氣輻射來產生。 臭氧環境有效地降低半導體基板13表面的碳濃度。586227 Removes natural oxides on the surface of the semiconductor substrate 13. The volume ratio of hydrochloric acid solution to pure water is 1:49. Next, the semiconductor substrate 13 is immersed in a solution composed of sulfuric acid and hydrogen peroxide. The volume ratio of sulfuric acid to hydrogen peroxide solution is 丨 2. This solution contains sulfuric acid and hydrogen peroxide, which effectively removes contaminants on the surface of the semiconductor substrate 13. The protection silicide layer 9-3 effectively protects the germanium silicide layer 9-2 from the chemical etch of the acid, and thus maintains the flatness of the staggered silicide layer 9_2. Optical lithography after chemical cleaning has confirmed that no surface irregularities, such as etched depressions, are observed. X-ray photoelectron spectroscopy can be used to analyze the concentration of contaminants on the surface of the protective silicide layer 9-3. The carbon concentration is less than 5x10u atoms / cm2 (atoms / cm2), and the metal concentration is less than the lower detection limit, that is, less than lx 10 atoms / cm2 (at0ms / crn2). Carbon and metal concentrations have proven to be sufficiently low. The oxygen concentration is on the order of 1 × 10 5 atoms / cm 2. The oxygen concentration of about 10i5 atoms / cm2 (at0ms / cm2) is not a problem, because about 1x 1015 atoms / cm2 (at0ms / cm2) of oxygen can be removed by the thermal cleaning described below. Pollutants. It is beneficial that the semiconductor substrate 13 is exposed to an ozone environment before or after chemical cleaning. The ozone environment can be generated by ultraviolet radiation to the air. The ozone environment effectively reduces the carbon concentration on the surface of the semiconductor substrate 13.

在化學清洗之後,於保護矽化物層9-3上,沈積當作射極 之用的厚矽化物層。矽化物層的沈積係藉由圖1 〇所示之另 一CVD裝置10-2來達成。此一CVD裝置10-2的配置與CVD -16- °〇^27After chemical cleaning, a thick silicide layer is deposited on the protective silicide layer 9-3 as an emitter. The silicide layer is deposited by using another CVD apparatus 10-2 shown in FIG. The configuration of this CVD device 10-2 and CVD -16- ° 〇 ^ 27

署 1 /\ 、 心1的配置完全相同。CVD裝置10-2包含一沈積反應 室1 9 古 ^ 真空幫浦2-2係連接到沈積反應室1-2以將沈積反應The configuration of signature 1 / \ and heart 1 are exactly the same. The CVD apparatus 10-2 includes a deposition reaction chamber 190. A vacuum pump 2-2 series is connected to the deposition reaction chamber 1-2 to

=U抽真空。用來固定基板6-2的基板支架3-2包含一加熱 裔4·2以將基板6-2加熱至理想的溫度。沈積反應室1-2具有 &源氣體5_5。來源氣體5-2包含甲矽烷與鍺烷。當沈積 捧雜η型或p型雜質的薄膜時,可以添加磷化氫氣體與乙硼 燒氣體到來源氣體5-2中。安排承載搖動反應室7-2與通道 闊門8·2以將基板6-2載入沈積反應室1-2中。基板6-2係經由 通道閥門8-2,從承載搖動反應室7-2載入沈積反應室1-2。 厚的矽化物層的沈積始於將半導體基板13載入圖11所示 之沈積反應室1-2中。如圖12所示,在將沈積反應室1-2抽 真空之後,於攝氏800度〜攝氏900度的溫度,熱清洗半導體 基板13 5分鐘。熱清洗移除半導體基板13表面上的氧。= U evacuates. The substrate holder 3-2 for holding the substrate 6-2 includes a heating element 4 · 2 to heat the substrate 6-2 to a desired temperature. The deposition reaction chamber 1-2 has & source gas 5_5. The source gas 5-2 contains silane and germane. When depositing a thin film doped with n-type or p-type impurities, phosphine gas and diboron combustion gas may be added to the source gas 5-2. The load-bearing shaking reaction chamber 7-2 and the channel wide door 8.2 are arranged to load the substrate 6-2 into the deposition reaction chamber 1-2. The substrate 6-2 is loaded into the deposition reaction chamber 1-2 from the load-bearing shaking reaction chamber 7-2 via the passage valve 8-2. The deposition of a thick silicide layer starts by loading the semiconductor substrate 13 into a deposition reaction chamber 1-2 shown in FIG. As shown in FIG. 12, after the deposition reaction chamber 1-2 is evacuated, the semiconductor substrate is thermally cleaned at a temperature of 800 ° C to 900 ° C for 13 minutes. The thermal cleaning removes oxygen on the surface of the semiconductor substrate 13.

保護矽化物層9-3完全覆蓋鍺矽化物層9-2,避免熱清洗 期間鍺從鍺矽化物層9-2的蒸發。發明者的實驗已經證實具 有等於或超過50埃厚度的保護矽化物層9-3,有效地抑制鍺 的蒸發。 在熱清洗之後,調整半導體基板13的溫度至攝氏700度, 接著將包含乙矽烷(Si2H6)的來源氣體5-2引進圖13所示之 沈積反應室1-2中。乙矽烷氣體的壓力調整至2.2χ 1(Γ4托 (Torr)。可以添加磷化氫或乙硼烷氣體到來源氣體5-2中。 乙矽烷氣艎的反應沈積矽化物層9-4。矽化物層9-3與9-4 合起來形成厚的石夕化物層9-6,而當作射極之用。石夕化物層 9-6具有6000埃的厚度。在矽化物層9-4的沈積之後,半導 -17- 586227The protective silicide layer 9-3 completely covers the germanium silicide layer 9-2 to avoid the evaporation of germanium from the germanium silicide layer 9-2 during the thermal cleaning. Experiments by the inventors have confirmed that a protective silicide layer 9-3 having a thickness of 50 angstroms or more effectively suppresses the evaporation of germanium. After the thermal cleaning, the temperature of the semiconductor substrate 13 is adjusted to 700 degrees Celsius, and then a source gas 5-2 containing disilane (Si2H6) is introduced into the deposition reaction chamber 1-2 shown in FIG. The pressure of the disilane gas is adjusted to 2.2 × 1 (Γ4 Torr). Phosphine or diborane gas can be added to the source gas 5-2. The silicide layer of the disilane gas deposits 9-4. Silicide The material layers 9-3 and 9-4 are combined to form a thick stone material layer 9-6, which is used as an emitter. The stone material layer 9-6 has a thickness of 6000 angstroms. In the silicide layer 9-4 After the deposition, the semiconducting -17-586227

體基板13在下文中將稱為半導體基板14。應注意的是因為 經由薄矽化物層9-3的雜質擴散。保護矽化物層9-3的導電 類型可以變成與矽化物層9-4相同的導電類型。 石夕化物層9-4的沈積宜在高於攝氏500度的溫度實施。低 於攝氏500度的沈積溫度降低沈積速率至低於1〇埃/分鐘, 而增加異質接合面雙極電晶體(HBTs)製造之整個流程的時 間(TAT)。 接著,如圖14所示,半導體基板14自沈積反應室1-2卸載 。光學微影照相已經證實半導體基板14在結晶與平坦度上 是極為優越的。在矽化物層9_6的表面上,沒有觀察到不規 則’同時結晶缺陷的濃度被將降低到低於1〇〇〇/平方公分 (cm2) 〇 在矽化物層9-6形成之後,便蝕刻部分矽化物層,以 暴露出部分鍺矽化物層9-2。基極電極9-7係形成於鍺矽化 物層的暴露部分,而射極電極9_8係形成於矽化物層9_6上 。集極電極係形成於矽基板9]的背面。矽基板9」當作集 極之用,鍺矽化物層9_2當作基極之用,而矽化物層9_6則 當作射極。應注意的是圖15中的矽基板包含一重摻雜的 石夕基板9-la與一少量摻雜的磊晶矽化物層9-lb。 併入矽化物層9-6的保護矽化物層9-3,因為其薄的厚度 ,在異質接合面雙極電晶體(HBT)的運作上實質上不具效應。 已經執行比較性的實驗證實此一具體實施例中製造過程 的優點。 已經製造出第一個樣品基板,其具有完全等於此一具體 586227The body substrate 13 will be referred to as a semiconductor substrate 14 hereinafter. It should be noted that the impurities diffuse through the thin silicide layer 9-3. The conductivity type of the protection silicide layer 9-3 can be changed to the same conductivity type as the silicide layer 9-4. The deposition of the stone oxidant layer 9-4 is preferably performed at a temperature higher than 500 degrees Celsius. Deposition temperatures below 500 degrees Celsius reduce the deposition rate to less than 10 Angstroms / minute and increase the time (TAT) of the entire process of manufacturing heterojunction bipolar transistors (HBTs). Next, as shown in FIG. 14, the semiconductor substrate 14 is unloaded from the deposition reaction chamber 1-2. Optical lithography has confirmed that the semiconductor substrate 14 is extremely superior in crystallinity and flatness. No irregularities were observed on the surface of the silicide layer 9_6. At the same time, the concentration of crystal defects was reduced to less than 1000 / cm2 (cm2). After the silicide layer 9-6 was formed, the portion was etched The silicide layer is exposed to expose a part of the germanium silicide layer 9-2. The base electrode 9-7 is formed on the exposed portion of the germanium silicide layer, and the emitter electrode 9_8 is formed on the silicide layer 9_6. The collector electrode system is formed on the back surface of the silicon substrate 9]. The silicon substrate 9 "is used as a collector, the germanium silicide layer 9_2 is used as a base, and the silicide layer 9_6 is used as an emitter. It should be noted that the silicon substrate in FIG. 15 includes a heavily doped Shi Xi substrate 9-la and a lightly doped epitaxial silicide layer 9-lb. The protective silicide layer 9-3, which incorporates the silicide layer 9-6, has substantially no effect on the operation of the heterojunction bipolar transistor (HBT) because of its thin thickness. Comparative experiments have been performed to confirm the advantages of the manufacturing process in this particular embodiment. The first sample substrate has been manufactured with exactly the same as this specific 586227

(15) 實施例中之半導體基板13的結構,除了保護矽化物層9_3並 未整合其中。接著對第一個樣品基板實施上述熱清洗。在 熱清洗之後,便直接在鍺;6夕化物層9-2上沈積矽化物層(對 應於矽化物層9-4)。在沈積的矽化物層中,已經觀察到大 量的堆疊錯誤。堆疊錯誤的濃度是每一平方公分數十萬的 量級。已經考慮到堆疊錯誤係導因於鍺矽化物層上所產 生的姓刻凹陷。此外,矽化物層沈積之前的熱清洗,已經 迫使鍺從鍺矽化物層9-2蒸發。鍺的蒸發已經降低鍺矽化物 層9-2中鍺的濃度。 已經製造其他的樣品基板,其在鍺石夕化物層9_2上分別包 含保護石夕化物層。保護矽化物層的厚度少於5〇埃。一個樣 ασ基板包含一 3 〇埃厚度的保護石夕化物層,而另一個則是包 έ 40埃厚度的保護石夕化物層。兩個樣品基板皆有化學清 洗。化學清洗後,在兩個樣品基板中皆觀察到蝕刻凹陷。 接著’在樣品基板上分別形成厚的矽化物層。在厚的矽化 物層沈積後,在兩個樣品基板中,皆觀察到每平方公分有 數千個堆疊錯誤。已經證實比50埃薄的保護矽化物層9-3使 沈積於保護矽化物層9-3上之矽化物層9-4的結晶性惡化。 雖然已經以其相當程度之特殊較佳形式敘述本發明,應 了解的是可以在建構細節中改變本發明之較佳形式,並採 取局部的組合與安排,而不脫離下文申請專利範圍之本發 明的精神與範圍。 -19- 586227 (16) 圖式代表符號說明 102 碎基板 103 磊晶矽化物層 101 錯石夕化物層 104 重摻雜之矽化物層 105, 9-9 集極電極 106, 9-8 射極電極 107, 9-7 基極電極 109 沈積反應室 110 基板支架 111 承載搖動反應室 9-1 η型矽基板 9-2 Ρ型錯Α夕化物層 9-3, 9-4 保護矽化物層 10-1, 10-2 化學氣相沈積裝置 1-1, 1-2 沈積反應室 2-1, 2-2 真空幫浦 3-1, 3-2 基板支架 4-1, 4-2 加熱器 6-1, 6-2 基板 5-1,5-2 來源氣體 7-1, 7-2 承載搖動反應室 8-1,8-2 通道閥門 13,14 半導體基板(15) The structure of the semiconductor substrate 13 in the embodiment is not integrated except for protecting the silicide layer 9_3. Then, the first sample substrate was subjected to the above-mentioned thermal cleaning. After thermal cleaning, a silicide layer is deposited directly on the germanium oxide layer 9-2 (corresponding to the silicide layer 9-4). A large number of stacking errors have been observed in the deposited silicide layers. The concentration of stacking errors is on the order of hundreds of thousands per square centimeter. It has been considered that the stacking error is due to the inscription depression generated on the germanium silicide layer. In addition, thermal cleaning prior to the silicide layer deposition has forced germanium to evaporate from the germanium silicide layer 9-2. The evaporation of germanium has reduced the germanium concentration in the germanium silicide layer 9-2. Other sample substrates have been manufactured that each include a protective stone layer on the germanium oxide layer 9_2. The thickness of the protective silicide layer is less than 50 angstroms. One sample ασ substrate contains a protective stone layer with a thickness of 30 angstroms, and the other is a protective stone layer with a thickness of 40 angstroms. Both sample substrates are chemically cleaned. After chemical cleaning, etched depressions were observed in both sample substrates. Next, a thick silicide layer is formed on each of the sample substrates. After the thick silicide layer was deposited, thousands of stacking errors per square centimeter were observed in both sample substrates. It has been confirmed that the protective silicide layer 9-3 thinner than 50 Angstroms deteriorates the crystallinity of the silicide layer 9-4 deposited on the protective silicide layer 9-3. Although the present invention has been described in its particular preferred form to a considerable degree, it should be understood that the preferred form of the present invention can be changed in construction details, and partial combinations and arrangements can be adopted without departing from the scope of the present invention, which is under the scope of patent application Spirit and scope. -19- 586227 (16) Symbolic representation of the diagram 102 Fragmented substrate 103 Epitaxial silicide layer 101 Whetstone layer 104 Heavy doped silicide layer 105, 9-9 Collector electrode 106, 9-8 Emitter Electrode 107, 9-7 Base electrode 109 Deposition reaction chamber 110 Substrate holder 111 Carrying shaking reaction chamber 9-1 η-type silicon substrate 9-2 P-type silicon oxide layer 9-3, 9-4 Protective silicide layer 10 -1, 10-2 Chemical vapor deposition equipment 1-1, 1-2 Deposition reaction chamber 2-1, 2-2 Vacuum pump 3-1, 3-2 Substrate holder 4-1, 4-2 Heater 6 -1, 6-2 Substrates 5-1, 5-2 Source gases 7-1, 7-2 Carry the shaking reaction chamber 8-1, 8-2 Channel valves 13, 14 Semiconductor substrates

-20- 586227 (17)-20- 586227 (17)

9-6 9-la 9-lb 厚的碎化物層 重摻雜之矽基板 少量摻雜之矽基板 -21 -9-6 9-la 9-lb thick shattered layer heavily doped silicon substrate lightly doped silicon substrate -21-

Claims (1)

拾、申請專利範圍 1. -種用來製造異質接合面雙極電晶體之導體基板,包含 一主要由矽所形成之基板; 沈積以覆蓋矽基板之一鍺矽化物層;及 實質上由石夕組成之一保護矽化物層,該保護矽化物層 係沈積於鍺矽化物層上。 2. 如申清專利範圍第1項之半導體基板,該保護層係沈積 以覆蓋該鍺石夕化物層之上表面。 3·如申請專利範圍第1項之半導體基板,該保護矽化物層 之厚度等於或超過50埃。 4·如申請專利範圍第3項之半導體基板,該保護矽化物層 之該厚度係決定以使該保護矽化物層對該異質接合面 雙極電晶體之運作實質上不具效應。 5.如申請專利範圍第1項之半導體基板,該基板包含: 一重推雜之石夕基板,及 一少量摻雜之磊晶矽化物層。 6· 一種製造用來生產異質接合面雙極電晶體之半導體基 板的方法,該方法包括: 提供一主要由矽化物所形成之基板; 沈積一鍺矽化物層以覆蓋該基板; 沈積一保護之矽化物層於鍺矽化物層之上表面上。 7·如申請專利範圍第6項之方法,其中該基板包含: 一重摻雜之矽基板,及 一少量摻雜之磊晶矽化物層,其上沈積該鍺矽化物層。1. Patent application scope 1. A conductor substrate for manufacturing a heterojunction bipolar transistor, including a substrate mainly formed of silicon; a germanium silicide layer deposited to cover one of the silicon substrates; and substantially made of stone One of the components is a protective silicide layer, which is deposited on the germanium silicide layer. 2. For the semiconductor substrate of claim 1 of the patent scope, the protective layer is deposited to cover the upper surface of the germanium oxide layer. 3. If the semiconductor substrate of the first patent application scope, the thickness of the protective silicide layer is equal to or more than 50 angstroms. 4. If the semiconductor substrate of the third patent application scope, the thickness of the protective silicide layer is determined so that the operation of the protective silicide layer on the heterojunction bipolar transistor is substantially ineffective. 5. The semiconductor substrate according to item 1 of the scope of patent application, the substrate comprising: a doubly doped Shi Xi substrate, and a small amount of doped epitaxial silicide layer. 6. · A method of manufacturing a semiconductor substrate for producing a heterojunction bipolar transistor, the method comprising: providing a substrate mainly formed by silicide; depositing a germanium silicide layer to cover the substrate; depositing a protective layer The silicide layer is on the upper surface of the germanium silicide layer. 7. The method according to item 6 of the patent application, wherein the substrate comprises: a heavily doped silicon substrate, and a lightly doped epitaxial silicide layer on which the germanium silicide layer is deposited. 該保護矽化物層之厚度 如申請專利範圍第6項之方法 等於或超過50埃。 如申請專利範圍第8項之半導體基板,該保護梦化物層 之該厚度係決定以使該保護矽化物層對該異質接合^ 雙極電晶體之運作實質上不具效應。 種製造異質接合面雙極電晶體之方法,包括·· 提供一半導體基板,其包含: 一主要由石夕化物所形成之基板; 沈積以覆蓋該基板之一鍺带化物層;及 一保護之矽化物層沈積於鍺矽化物層上,該保護之 石夕化物層實質上由矽化物所組成; 在保護之矽化物層的上表面上,沈積一矽化物層。 如申請專利範圍第1 〇項之方法,該保護矽化物層之厚度 等於或超過50埃。 如申請專利範圍第10項之半導體基板,該保護矽化物層 之该厚度係決定以使該保護石夕化物層對該異質接合面 雙極電晶體之運作實質上不具效應。 如申請專利範圍第10項之方法,進一步包括·· 使用酸液化學清洗該半導體基板。 如申請專利範圍第13項之方法,其中化學清洗可以包含 至少鹽酸溶液中的第一浸浴與由硫酸與過氧化氫所組 成之溶液中的第二浸浴兩者其中之一。 如申請專利範圍第13項之方法,進一步包括: 將該半導體體基板暴露於臭氧環境。 586227The thickness of the protective silicide layer is equal to or more than 50 angstroms as in the method of the patent application No. 6. For a semiconductor substrate with the scope of patent application No. 8, the thickness of the protective silicide layer is determined so that the operation of the protective silicide layer for the heterojunction ^ bipolar transistor is substantially ineffective. A method of manufacturing a heterojunction bipolar transistor, comprising: providing a semiconductor substrate comprising: a substrate formed mainly of stone oxide; a germanium band layer deposited to cover the substrate; and a protective layer A silicide layer is deposited on the germanium silicide layer, and the protected silicide layer is substantially composed of silicide; a silicide layer is deposited on the upper surface of the protected silicide layer. If the method of claim 10 is applied, the thickness of the protective silicide layer is equal to or more than 50 angstroms. For a semiconductor substrate with the scope of application for item 10, the thickness of the protective silicide layer is determined so that the operation of the protective silicide layer on the heterojunction bipolar transistor is substantially ineffective. The method of claim 10, further comprising: chemically cleaning the semiconductor substrate using an acid solution. For example, the method of claim 13 in the patent application, wherein the chemical cleaning may include at least one of a first dipping bath in a hydrochloric acid solution and a second dipping bath in a solution consisting of sulfuric acid and hydrogen peroxide. The method of claim 13 may further include: exposing the semiconductor substrate to an ozone environment. 586227 16. 如申請專利範圍第10項之方法,進一步包括: 在沈積該矽化物層之前,對該半導體基板做熱清洗。 17. 如申請專利範圍第16項之方法,其中該熱清洗係以高於 攝氏800度溫度之熱處理來達成。16. The method of claim 10, further comprising: thermally cleaning the semiconductor substrate before depositing the silicide layer. 17. The method according to item 16 of the patent application scope, wherein the thermal cleaning is achieved by heat treatment at a temperature higher than 800 degrees Celsius.
TW91132765A 2001-11-19 2002-11-07 Manufacture of bipolar transistors including silicon-germanium/silicon heterojunction TW586227B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001353295A JP2003151987A (en) 2001-11-19 2001-11-19 Semiconductor substrate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW200302579A TW200302579A (en) 2003-08-01
TW586227B true TW586227B (en) 2004-05-01

Family

ID=19165337

Family Applications (1)

Application Number Title Priority Date Filing Date
TW91132765A TW586227B (en) 2001-11-19 2002-11-07 Manufacture of bipolar transistors including silicon-germanium/silicon heterojunction

Country Status (3)

Country Link
JP (1) JP2003151987A (en)
DE (1) DE10253895A1 (en)
TW (1) TW586227B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060011906A1 (en) * 2004-07-14 2006-01-19 International Business Machines Corporation Ion implantation for suppression of defects in annealed SiGe layers
US7102205B2 (en) * 2004-09-01 2006-09-05 International Business Machines Corporation Bipolar transistor with extrinsic stress layer
TW200705553A (en) * 2005-06-28 2007-02-01 Nxp Bv Doping profile improvement of in-situ doped n-type emitters
JP5045095B2 (en) * 2006-12-26 2012-10-10 信越半導体株式会社 Manufacturing method of semiconductor device
EP3552231A1 (en) * 2016-12-07 2019-10-16 Victoria Link Limited Rare earth nitride structures and devices and method for removing a passivating capping
CN110060920A (en) * 2018-07-09 2019-07-26 南方科技大学 NiGe single crystal film and preparation method and application thereof
CN113718257B (en) * 2021-08-24 2023-11-07 安徽光智科技有限公司 Method for etching germanium ingot

Also Published As

Publication number Publication date
JP2003151987A (en) 2003-05-23
DE10253895A1 (en) 2003-06-26
TW200302579A (en) 2003-08-01

Similar Documents

Publication Publication Date Title
JP2937817B2 (en) Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device
US6811448B1 (en) Pre-cleaning for silicidation in an SMOS process
TW511129B (en) Manufacturing method for semiconductor device
KR20040008193A (en) Low temperature load and bake
TW200830367A (en) Process for manufacturing epitaxial wafers for integrated devices on a common compound semiconductor III-V wafer
US6580104B1 (en) Elimination of contaminants prior to epitaxy and related structure
JP2012506629A (en) Semiconductor device manufacturing method, semiconductor device, and semiconductor device manufacturing facility
TW586227B (en) Manufacture of bipolar transistors including silicon-germanium/silicon heterojunction
EP0762484B1 (en) Method of forming an epitaxial layer with minimal autodoping
JP4278635B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2001244215A (en) Semiconductor element and its manufacturing method
TW560081B (en) Power transistor, semiconductor substrate for devices and method for manufacturing the same
US20150179743A1 (en) Graphene as a Ge Surface Passivation Layer to Control Metal-Semiconductor Junction Resistivity
US6228166B1 (en) Method for boron contamination reduction in IC fabrication
JP2011023431A (en) Method of fabricating silicon carbide semiconductor device
EP0813232B1 (en) Method of reducing the amount of carbon in an interface between an epitaxial film and a Si substrate
JP3589801B2 (en) Method of forming oxide film on semiconductor substrate surface
JPWO2002099890A1 (en) Semiconductor layer and method for forming the same, and semiconductor device and method for manufacturing the same
JP3571160B2 (en) Method for forming oxide film on semiconductor surface and method for manufacturing semiconductor device
JP5672659B2 (en) Method for manufacturing silicon carbide semiconductor device
JP2000353706A (en) Production of semiconductor device
JPH07297151A (en) Fabrication of semiconductor device
Kim et al. Ex situ wafer surface cleaning by HF dipping for low temperature silicon epitaxy
JP2002289612A (en) Method for forming oxide film on semiconductor substrate surface and method for manufacturing semiconductor device
Ohi et al. Enhanced electrical quality of low‐temperature (T dep≤ 800° C) epitaxial silicon deposited by plasma‐enhanced chemical vapor deposition