TW535232B - Enhanced sacrificial layer etching technique for microstructure release - Google Patents

Enhanced sacrificial layer etching technique for microstructure release Download PDF

Info

Publication number
TW535232B
TW535232B TW090122886A TW90122886A TW535232B TW 535232 B TW535232 B TW 535232B TW 090122886 A TW090122886 A TW 090122886A TW 90122886 A TW90122886 A TW 90122886A TW 535232 B TW535232 B TW 535232B
Authority
TW
Taiwan
Prior art keywords
layer
microstructure
substrate
patent application
scope
Prior art date
Application number
TW090122886A
Other languages
Chinese (zh)
Inventor
Michel Despont
Ute Drechsler
Gregoire Genolet
Peter Vettiger
Original Assignee
Ibm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibm filed Critical Ibm
Application granted granted Critical
Publication of TW535232B publication Critical patent/TW535232B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3063Electrolytic etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00444Surface micromachining, i.e. structuring layers on the substrate
    • B81C1/00468Releasing structures
    • B81C1/00476Releasing structures removing a sacrificial layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0101Shaping material; Structuring the bulk substrate or layers on the substrate; Film patterning
    • B81C2201/0102Surface micromachining
    • B81C2201/0105Sacrificial layer
    • B81C2201/0109Sacrificial layers not provided for in B81C2201/0107 - B81C2201/0108

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Weting (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

A method for at least partially releasing microstructures from a substrate is provided. The method comprises the steps of: (a) providing a substrate (2); (b) depositing onto said substrate (2) a first layer (4) and a second layer (6), the first layer (4) and the second layer (6) each comprising an electrically conducting material and each having a different oxido-reduction potential; (c) electrically connecting the first layer (4) and the second layer (6); (d) forming a microstructure (8) on the first (4) and second (6) layers deposited in step (b) to produce an intermediate structure (10); and (e) electrochemically etching said second layer (6) by immersing the intermediate structure (10) formed in step (d) in an electrolyte (12).

Description

535232 A7 ___ B7 五、發明 一~^ ~— -- ' 發明領域 本發明一般相關於微結構的形成。更特定的,本發明相 關於取起或釋放微結構。再更特定的,本發明相關於以犧 牲層技術為基礎的釋放技術。 發明背景,先前技藝 犧牲層技術在微工程學中非常的重要。其可以釋放或取 起需要自行立起(free-standing)的整個結構或只是某個部分。 犧牲材料係用來”形成”或是"間隔"來做出希望的形狀並 在稍後移除。某些情形下’當光阻用來定義圖樣,其為一 犧牲層,因為大部分總是要被移除的。然而,在目前的本 文中,犧牲處理參考為那些用來做出自行立起或取起結構 的。 標準的釋放技術利用化學方式來藉由蝕刻移除層,例 如,藉由電漿或濕蝕刻技術。這個技術可引導等方性的蝕 刻’如此在犧牲層下層钱刻的側面相當程度的取決於其厚 度。而那些犧牲層一般是在微米的範圍,要放出很大的結 構是很困難有時甚至是不可能的。 US-A-5286335揭示一項處理,提供取起厚度通常在1 到2 0微米間薄膜半導體。磊晶層沈積在犧牲層(用鋁砷化物 做的’ A1 As)位在成長的基質上。在塗層此磊晶層一透明 的載子層後’此犧牲層被蝕刻掉來從長出的基質上釋放出 磊晶層與透明載子層的組合。蝕刻是用標準H F : Η 2 0 (1 : 1 〇) 蝕刻電解液做的。 US-A-5465 009揭示類似的處理,其中的取起藉由一致 -4 - ^紙浪尺度適财_家鮮(CNS) Α4規格(21GX 297公爱) " --- 535232 A7535232 A7 ___ B7 V. Invention 1 ~ ^ ~--'FIELD OF THE INVENTION The present invention is generally related to the formation of microstructures. More specifically, the invention relates to picking up or releasing microstructures. More specifically, the present invention relates to a release technology based on a sacrificial layer technology. BACKGROUND OF THE INVENTION Prior art sacrificial layer technology is very important in microengineering. It can release or pick up the entire structure or just a part that needs to be free-standing. The sacrificial material is used to "form" or "space" to make the desired shape and remove it later. In some cases, when a photoresist is used to define a pattern, it is a sacrificial layer because most of it is always removed. However, in the present text, the sacrificial treatment references are those used to make self-standing or lifting structures. Standard release techniques use chemical methods to remove layers by etching, for example, by plasma or wet etching techniques. This technique can lead to isotropic etching, so the side of the money etched under the sacrificial layer depends to a considerable extent on its thickness. Those sacrificial layers are generally in the micrometer range, and it is difficult or sometimes impossible to release a large structure. US-A-5286335 discloses a process that provides a thin film semiconductor with a pick-up thickness typically between 1 and 20 microns. The epitaxial layer is deposited on the sacrificial layer ('A1 As made of aluminum arsenide) on the growing substrate. After coating the epitaxial layer with a transparent carrier layer, the sacrificial layer is etched away to release the combination of the epitaxial layer and the transparent carrier layer from the grown substrate. Etching is done using a standard H F: Η 2 0 (1: 1 〇) etching electrolyte. US-A-5465 009 reveals a similar treatment, in which the pick-up is by consensus -4-^ paper wave scale suitable for wealth_ 家 鲜 (CNS) Α4 size (21GX 297 public love) " --- 535232 A7

、 k裝置陣列來圖樣載子層而更容易做到。因為在犧 牲層蝕刻期間的任何犧牲層蝕刻必須債j面進行的最大距離 ’I、於裝置間的間隔,從長出基質釋放此裝置的時間短了許 ^,疋固定的,且與裝置陣列的大小無關的。說明的處理 σ、、適用於尽度範圍從次微米到數十微米,可能到$ 〇微米 或更夕之半‘體可見片斷的操作。直徑範圍可以從數十微 米到數百微米,並可接近甚至超過1釐米。 然而,大部分的情形下,因為相較於犧牲層厚度需要的 下層蝕刻很大側面,蝕刻時間還是非常的長,造成損害所 要釋放微結構的風險。這在不能傳透裝置層的實例中特別 疋k樣的。然而,因為供應未用過的蝕刻溶解液到蝕刻介 面的困難’在下層钱刻甚至是不可能的。 對於裝置的整個釋放,一個可能是利用失去裝置與基質 間介面上的黏性,在拉起裝置的時候。然而,在介面上特 殊黏性層次的控制是困難的,因為黏著必須,另一方面來 說,要好到足以處理取起前的結構,以及,另一方面, 要夠單薄到可以釋放結構。再者,特定的㈣控制對處^ 參數極端的敏感。 發明概要 因此,本發明的目的是提供簡單的方法來釋放基質的微 結構,來避免已知處理的缺點。 本發明的再另一個目的是提供可以增強微結構的下層蝕 刻的方法,藉由增加犧牲層的蝕刻率。 ^ 本發明的再另一個目的是提供允許犧牲層的電蝕刻的方, K device array to pattern the carrier layer and more easily. Because any sacrificial layer etching during the sacrificial layer etching must be performed at the maximum distance 'I, the interval between the devices, the time to release the device from the growing substrate is much shorter, fixed, and arrayed with the device. The size is irrelevant. The illustrated processing, σ, is suitable for operations ranging from sub-microns to tens of micrometers, possibly to $ 0 micrometers or even half of the 'body-visible segment'. The diameter can range from tens of micrometers to hundreds of micrometers, and can approach or even exceed 1 cm. However, in most cases, the etching time is very long compared to the large side etching required for the sacrificial layer thickness, which causes the risk of damaging the microstructure to be released. This is particularly k-like in examples where the device layer cannot be transmitted through. However, it is even impossible to engrav the underlying layer because of the difficulty in supplying unused etching solution to the etching interface. For the entire release of the device, one may be to use the viscosity of the interface between the device and the substrate when the device is pulled up. However, it is difficult to control the special level of adhesion on the interface, because adhesion must be, on the other hand, good enough to handle the structure before picking up, and, on the other hand, thin enough to release the structure. Furthermore, certain chirp controls are extremely sensitive to parameters. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a simple method to release the microstructure of a matrix, avoiding the disadvantages of known processes. Yet another object of the present invention is to provide a method for enhancing the under-etching of a microstructure by increasing the etching rate of a sacrificial layer. ^ Yet another object of the present invention is to provide a method that allows the electrical etching of a sacrificial layer.

535232 五、發明説明( 法,而不需要額外的電源供應。 &些及其他目的與優點可藉由申請專利範圍第1 揣一 的方法做到。 、T询不 本發明的較佳具體實例再相關的申請專利範圍中說明。 圖示簡述 ° —本發明的較佳具體實例將在後面更詳盡的說明,只藉由 範例的方式,併同隨付的圖示,其中: 曰 圖1A,1C概要的顯示處理的步驟做出一部份微結構自行 立起或是從基質完整的釋放出,根據本發明的方法;. 圖2A到2C概要的顯示對一不平坦基質的與圖1八到1匸 同處理步驟; 圖3 A及3B概要的顯示用來钱刻非常薄的預結構犧牲材料 的處理步驟,根據本發明的方法; 圖4概要的顯示適當電解液中的結構配置,根據本發明的 方法;以及 回描述大土元可塑膠尖端陣列的完整取起,根據本 的處理。 較佳具體實例的詳細說明 本2明要尋找便於利用增強犧牲層的姓刻率來釋放微結 構’藉由電解液姓到而不需要外部的電源供應。微結構可 以包含微電子及/或為機械裝置或類似的。另外,術語”微 結構••並不限制在微米範圍中的結構’但是-般的,表示非 常小的結構’例如奈米中範圍的結構(奈結構)及類似的。 然而,在下面的,術語”微結構"將當做所有型態結構的集 297公釐) 適用中國國家標準(CNS) M規格(2$ 535232 A7535232 V. Description of the invention (without the need for additional power supply.) These and other objectives and advantages can be achieved by the method of applying for the first one of the scope of the patent application. Inquire about the preferred specific examples of the present invention It will be explained in the related patent application scope. Brief description of the diagram °-The preferred specific examples of the present invention will be described in more detail later, by way of example only, and accompanying diagrams, where: Figure 1A The steps of the 1C outline display process make a part of the microstructure stand on its own or are completely released from the matrix, according to the method of the present invention; Figures 2A to 2C are schematic illustrations of an uneven substrate and Figure 1 8 to 1 different processing steps; Figures 3 A and 3B outline the processing steps used to etch very thin pre-structured sacrificial materials according to the method of the present invention; Figure 4 outlines the structural configuration in a suitable electrolyte, According to the method of the present invention; and to describe the complete picking up of the large earthen element plastic tip array, according to the present process. Detailed description of the preferred specific examples The present invention is to find the surname engraving rate that facilitates the use of enhanced sacrificial layers The release of the microstructure is achieved by the electrolyte without the need for an external power supply. The microstructure can include microelectronics and / or mechanical devices or similar. In addition, the term "microstructure" is not limited to the micrometer range Structures "but-like, meaning very small structures" such as nano-range structures (nano structures) and the like. However, in the following, the term "microstructure" will be used as a set of all types of structures. %) Applicable to China National Standard (CNS) M specification (2 $ 535232 A7

裝 訂Binding

44

535232 A7535232 A7

電氣連接的層浸泡在適當的電解液中,也就是 蒸汽環境,因而形成直流電電池,產生夠高的電位來姓列 或是增加陽極的姓刻。這顯示在圖4中。在本發明的特定 較佳具體實例中’使用的電解液是已知用來㈣陽極材料 的酸性溶液。 取決於所用的材料及電解液的化學特性,電極電位差異 可以變動並增加犧牲層的蚀刻率或是一般不會發生的增加 ^、/舌〖生如果疋半導體當作陽極(例如,石夕、石夕錯或碎化 鎵),電化學蝕刻可藉由半導體中電子-電洞產生的光增 強。 可以觀察到比化學濕蝕刻高好幾i 〇 〇倍的蝕刻增強,因此 可以讓數公分的連結結構成功的釋放。 當這種雙層傳導材料沈積在要釋放的微結構下的基質 上,直流電池的陽極部分(較低氧化還原電位的一層)當作 是犧牲層並從支撐快速下層蝕刻的微結構的一邊蝕刻,可 造成微結構的快速釋放,如圖1說明的。 值得注意的是薄膜可以非常的薄(大約在1 〇 nm的範圍) 並再產生非常控制良好的且快速的下層蝕刻,其同樣適用 在薄間隙形成。這在結構不預期要完全取起的情形很有 用,而部分的結構未被引導因而形成結構與基質間的間 隙。 另一個優點是基質不需要是平坦的,所以製造在預結構 基質上的裝置也可以釋放,如圖2A到2C中所展示的。 這樣的犧牲層技術也可以用在結構的轉移,從任何容易 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐)The layers of the electrical connection are immersed in a suitable electrolyte, that is, a steam environment, thus forming a DC battery, generating a sufficiently high potential to name or increase the name of the anode. This is shown in Figure 4. In a particularly preferred embodiment of the present invention, the electrolytic solution used is an acidic solution which is known to be used for the anode material. Depending on the materials used and the chemical characteristics of the electrolyte, the difference in electrode potential can change and increase the etch rate of the sacrificial layer or an increase that does not generally occur. ^, If the semiconductor is used as the anode (for example, Shi Xi, Shi Xizuo or broken gallium), electrochemical etching can be enhanced by light generated by electron-holes in semiconductors. It is observed that the etching enhancement is several times higher than that of chemical wet etching, so that the connection structure of several centimeters can be successfully released. When this double-layer conductive material is deposited on the substrate under the microstructure to be released, the anode portion of the DC battery (the lower redox potential layer) is treated as a sacrificial layer and etched from one side of the microstructure that supports rapid underlayer etching. Can cause rapid release of microstructures, as illustrated in Figure 1. It is worth noting that the film can be very thin (approximately in the range of 10 nm) and reproduce a very well-controlled and fast underlayer etch, which is also suitable for thin gap formation. This is useful in situations where the structure is not expected to be fully lifted, and a part of the structure is not guided thereby creating a gap between the structure and the matrix. Another advantage is that the matrix need not be flat, so devices made on pre-structured matrices can also be released, as shown in Figures 2A to 2C. This sacrificial layer technology can also be used in the transfer of structure, from any easy. This paper size applies the Chinese National Standard (CNS) A4 specification (210 X 297 mm).

裝 ηΗ

535232 A7535232 A7

處理的材料基質 的一部分。 其允許整個裝置的釋放或只 有任何材料 -丁 π〜N <乃凌的處理步驟。 先,提供-基質2。這個基質可以包含適當的材料例如 矽、玻璃、水晶陶瓷、塑膠及類似的。此基質不需要是 坦的而可以是任何形狀的。 尺 下一個步驟中,傳導材料的兩層4及6沈積在該基質上。 其中一層包含有高氧化還原電位的材料,例如^金屬像 金、把、麵、銀、銅等等。這個層4將,在下面當作陰極。 第二層6包含氧化還原電位比層4較低的材料,例如, 鋁、鋅、鉻、鐵、鈷及類似的◊第二層將,在下面當作陽 極。兩層的沈積必須以它們間有電氣接觸出現的方式進 行0 在本發明的較佳具體實例中,陰極首先沈積’而陽極, 其接著當作是犧牲層的’接著沈積在陽極頂上,所以陰極 不會隨著微結構的取起部分釋放。 在沈積兩電極在此基質2上後,要釋放的微結構8形成在 此結構頂上,藉由標準的沈積及組成希望結構的材料的結 構技術(圖1 Α) 〇 接下來’該第二層6將會被電化學的蝕刻,當如圖4顯示 的浸泡這個結構1 〇到適當的電解液1 2時。電解液丨2可以包 含溶液或是蒸汽環境。因此’形成一直流電的電池,產生 夠高的電氣電位以便被當作犧牲層的陽極蝕刻,可以發生 或是急劇的增強。 本紙張尺度適用中國國家標準(CNS) Α4規格(210 X 297公釐)Part of the treated material matrix. It allows the release of the entire device or only any material-D π ~ N < Na Ling processing steps. First, provide-Matrix 2. This substrate may contain suitable materials such as silicon, glass, crystal ceramics, plastics and the like. This matrix need not be smooth and can be of any shape. In the next step, two layers 4 and 6 of conductive material are deposited on the substrate. One layer contains materials with high redox potential, such as metal such as gold, handle, surface, silver, copper, and so on. This layer 4 will, in the following, serve as the cathode. The second layer 6 contains a material having a lower redox potential than the layer 4, for example, aluminum, zinc, chromium, iron, cobalt, and the like. The second layer will be referred to as an anode below. The two layers must be deposited in such a way that there is an electrical contact between them. In the preferred embodiment of the invention, the cathode is deposited first and the anode, which is then treated as a sacrificial layer, is then deposited on top of the anode, so the cathode It does not release as the microstructure is picked up. After the two electrodes are deposited on this substrate 2, the microstructures 8 to be released are formed on top of this structure, by standard deposition and structural technology of the material constituting the desired structure (Fig. 1A). Next, the second layer 6 will be electrochemically etched when the structure is soaked 10 to a suitable electrolyte 12 as shown in FIG. 4. The electrolyte 2 can contain a solution or a steam environment. Therefore, the formation of a DC battery produces an electrical potential high enough to be used as an anodic etch for the sacrificial layer, which can occur or be sharply enhanced. This paper size applies to China National Standard (CNS) Α4 (210 X 297 mm)

裝 訂Binding

535232 A7 __B7 五、發明説明(7^" 圖1 B顯示最後的產品在只有部分的微結構8已經從基質 上釋放,而圖1C顯示出完整的微結構8的釋放。 圖2 A到2C概要的描述對一不平坦基質2的相同處理步 驟。 圖1及2中顯示的處理也可以用來定義微結構下方非常薄 的腔洞或是通道,藉由蝕刻非常薄的欲結構犧牲材料,如 圖3A及3B中顯示的。犧牲材料首先結構化來定義需要釋放 的部分。因此,大小受控制的微通道丨4及縫隙1 6可以生產 出來。將可發覺到本發明的具體實例是特定的,雖然不排 除可以用在機械振盪器、微開關、懸臂樑、微流體通道、 微制動器、RF電路的懸吊線圈的類似裝置的製造。 本發明可以用在許多釋放處理,利用微電機結構 (MEMS),整合光學或是微電子領域。圖5例如,顯示1.6 X 6 mm的大型光塑膠尖端陣列的完整釋放。 當用在覆晶處理時,本發明的範例允許整合任何型態的 微製造結構或是裝置到其他微結構或微裝置上,即使它們 的技術之間不相容(MEMS、整合光學、CMOS、III-V、 Si-Ge等等)。在整合光,學中例如,來自不同基質上不同 技術之不同裝置的合併是可能的(導波管、鏡片、偏導板, 檢測器或微鏡片、雷射半導體及類似的)。 本發明的一項可能應用是整合懸臂樑在C μ 〇 S晶片上。 在C Μ 0 S晶片(後c Μ 0 S )上建構懸臂樑實際限制這個處理 可以用在MEMS部分上,也加入某些產量的議題。一個簡 單的處理會是分別的製造CMOS電路及MEMS部分。整個 -10 - 本紙張尺度適用中國國家標準(CNS) A4規格(210X29^5^----- 535232 A7 B7 五、發明説明 的懸臂樑陣列將接著釋放並在端點,,翻覆,,到CMOS晶片 上。這個實例中,希望的是控制良好的控制桿取起。因 此’本發明的較佳具體實例特別適合這個處理。 環氧基樹脂基礎的掃描接近-場光學顯微鏡學(S Ν Ο Μ)探 針已經以光敏環氧基樹脂抗蝕劑製作。先前以矽的·角錐鑄 模钱刻用來形成尖端。一旦做出環氧基樹脂探針,光纖被 引入導引結構並黏著。整個結構接著被從基質上取起。這 可以藉由蝕刻犧牲層。這種情形下,設計用Au層、鉻層、 组氧化層做的界面及1 〇〇 nm後的鋁層。鋁層用來當作 SNOM尖端的光學塗層,以避免光線向下到尖端頂點的光 學損失。此鉻金層形成以鉻作為陽極的直流電池,其將被 姓刻掉的。此鈕氧化層是一電介質薄膜,其電氣絕緣铭薄 膜以防止第二直流電池(用金薄膜及鋁薄膜做的)的形成, 其在此情形下,將不同的造成不希望的鋁蝕刻。 -11 - 本紙張尺度適用中國國家標準(CNS) A4規格(210 X 297公釐) "一^' ------—535232 A7 __B7 V. Description of the invention (7 ^ " Figure 1B shows that only a part of the microstructure 8 of the final product has been released from the matrix, and Figure 1C shows the release of the complete microstructure 8. Figure 2 A to 2C A brief description of the same processing steps for an uneven substrate 2. The processing shown in Figures 1 and 2 can also be used to define very thin cavities or channels under a microstructure, by sacrificing material with a very thin desired structure, As shown in Figures 3A and 3B. The sacrificial material is first structured to define the part that needs to be released. Therefore, microchannels 4 and gaps 16 of controlled size can be produced. It will be found that the specific examples of the present invention are specific Although it does not exclude the manufacture of similar devices that can be used in suspension coils of mechanical oscillators, micro switches, cantilever beams, micro fluidic channels, micro brakes, RF circuits. The present invention can be used in many release processes, utilizing micro-motor structures (MEMS), integrating optics or microelectronics. Figure 5 shows, for example, the complete release of a large optical plastic tip array of 1.6 X 6 mm. When used in a flip-chip process, an example of the present invention Allows integration of any type of microfabricated structure or device onto other microstructures or microdevices, even if their technologies are incompatible (MEMS, Integrated Optics, CMOS, III-V, Si-Ge, etc.). Integrating light, for example in school, it is possible to combine different devices from different technologies on different substrates (waveguides, lenses, deflectors, detectors or microlenses, laser semiconductors and the like). A possible application is to integrate cantilever beams on C μ os wafers. Constructing cantilever beams on C M 0 S wafers (post c M 0 S) actually limits this process to be used on the MEMS part and also adds some issues of production A simple process would be to separately manufacture the CMOS circuit and the MEMS part. The entire -10-this paper size applies to the Chinese National Standard (CNS) A4 specification (210X29 ^ 5 ^ ----- 535232 A7 B7 V. Description of the invention The cantilever beam array will then be released and tipped, overturned, onto the CMOS chip. In this example, it is desirable to have a well-controlled joystick pick up. Therefore 'the preferred embodiment of the present invention is particularly suitable for this process. Oxy Lipid-based Scanning Proximity-Field Optical Microscopy (SNOM) probes have been made with photosensitive epoxy-based resin resists. They were previously engraved with silicon-corner molds to form the tips. Once the epoxy group is made Resin probe, fiber is introduced into the guide structure and adhered. The entire structure is then taken from the substrate. This can be achieved by etching the sacrificial layer. In this case, the interface is designed with an Au layer, a chromium layer, and an oxide layer And an aluminum layer after 100 nm. The aluminum layer is used as an optical coating on the tip of the SNOM to avoid optical loss of light down to the apex of the tip. This chrome-gold layer forms a DC battery with chromium as the anode. Carved by last name. The oxide layer of this button is a dielectric film, which is an electrically insulating film to prevent the formation of a second DC battery (made of a gold film and an aluminum film). In this case, it will cause undesirable aluminum etching in different ways. -11-This paper size applies to China National Standard (CNS) A4 (210 X 297 mm) " 一 ^ '--------

Claims (1)

32 3232 32 ^ 090122886號專利申請案 别 中文申請專利範圍替換本(92年3月)漂 申請專利範圍 L 一種至少從基材(2)部分釋放微結構(8)之方法,其包含 步騾: " a) 提供一基材(2); b) 沈積第一層(4)及第二層(6)在該基材(2)上,此第一 層(4)及第二層(6)每一個包含電氣傳導材料且每個有 不同的氧化還原電位; c) 電氣連接第一層(4)及第二層(6); d) 在步驟(b)沈積的此第一⑷及第二(6)層上形成微結 構(8 )來產生中間結構(丨〇);以及 ^電化學㈣該第二層⑷’藉由浸泡在步驟d)中形成 的中間結構(10)在電解液(12)中。 2. 如申請專利範圍第β之方法,其中該第一⑷及第二⑷ 層在形成此微結構(8)之前依序沈積且電氣連接。 3. 2申請專利範圍第!項之方法,其中該基材⑺包含從包 。矽、玻瑀、石英 '陶瓷、塑膠等物之群組所選出的_ 材料。 4. :申請專利範圍第2項之方法,其中該基材⑺包含從包 ^ H石英、料、塑膠等物之群组所選出的一 5. 如申請專利範圍第μ」或4項 實質上是平坦的。 具中泛基材(2) A8 B8 C8 申請專利範 ____ D8 ® _ ^ -- 包含金、鉑、鈀、銀及銅選出。 8 •如申請專利範圍第丨、2、3或4項之方法,其中該第二層 (6)包含由包含鋁、鋅、鉻、鐵及鈷之群組所選出之一 或多個金屬。 •如申請專利範圍第1、2、3或4項之方法,其中該層包含 一導體或摻雜的半導體。 •如申睛專利範圍第1、2、3或4項之方法,其中該第一層 (4)較該第二層(6)具有較高的氧化還原電位。 •如申请專利範圍第1、2、3或4項之方法,其中該第一層 (4)係當作一陰極。 12·如申凊專利範圍第1、2、3或4項之方法,其中該第二層 (6)係當作是陽極。 13·如申請專利範圍前第1、2、3或4項之方法,其中該第一 (4 )及該第二(6)層集合性的形成直流電池當浸泡在電解 液(.12)中時。 14·如申請專利範圍第1、2、3或4項之方法,其包含在該微 結構下(8)形成一或多個微通道,腔洞(14)及缝隙 (16)〇 15·如申請專利範圍第1、2、3或4項之方法,其中該微結構 (8)包含一微電子裝置。 本紙張尺度適用中國國家標準(CNS) A4規格(210X 297公釐)^ Patent Application No. 090122886 Chinese Application Patent Scope Replacement (March 1992) Patent Application Scope L A method for releasing the microstructure (8) from at least the substrate (2) part, which includes the steps: " a ) Provide a substrate (2); b) deposit a first layer (4) and a second layer (6) on the substrate (2), each of the first layer (4) and the second layer (6) Contains electrically conductive materials and each has a different redox potential; c) electrically connects the first layer (4) and the second layer (6); d) the first and second (6) layers deposited in step (b) ) To form a microstructure (8) on the layer to generate an intermediate structure (丨 〇); and ㈣ electrochemical (the second layer) ′ by soaking the intermediate structure (10) formed in step d) in the electrolyte (12) in. 2. The method of claim β, wherein the first rhenium and second rhenium layers are sequentially deposited and electrically connected before forming the microstructure (8). 3.2 2nd patent application scope! The method of clause, wherein the substrate comprises a package. Silicon, glass, quartz, ceramics, plastics, etc. selected _ materials. 4 .: The method of applying for the second item of the patent scope, wherein the substrate ⑺ includes one selected from the group of quartz, material, plastic, etc. 5. If the scope of the patent application is μ or 4 Is flat. With base material (2) A8 B8 C8 Patent Application ____ D8 ® _ ^-Including gold, platinum, palladium, silver and copper. 8 • The method of claim 1, 2, 3 or 4 wherein the second layer (6) contains one or more metals selected from the group consisting of aluminum, zinc, chromium, iron and cobalt. • The method of claim 1, 2, 3 or 4 in which the layer contains a conductor or a doped semiconductor. • The method of claim 1, 2, 3, or 4 in which the first layer (4) has a higher redox potential than the second layer (6). • The method of claim 1, 2, 3 or 4 in which the first layer (4) is used as a cathode. 12. The method of claim 1, 2, 3 or 4 in which the second layer (6) is treated as an anode. 13. The method according to item 1, 2, 3 or 4 before the scope of patent application, wherein the first (4) and the second (6) layers form a collective DC battery when immersed in an electrolyte (.12) Time. 14. The method of claim 1, 2, 3, or 4, which includes forming one or more microchannels, cavities (14), and gaps (16) under the microstructure (8). The method of claim 1, 2, 3, or 4, wherein the microstructure (8) includes a microelectronic device. This paper size applies to China National Standard (CNS) A4 (210X 297 mm)
TW090122886A 2001-02-12 2001-09-14 Enhanced sacrificial layer etching technique for microstructure release TW535232B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP01810141 2001-02-12

Publications (1)

Publication Number Publication Date
TW535232B true TW535232B (en) 2003-06-01

Family

ID=8183726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090122886A TW535232B (en) 2001-02-12 2001-09-14 Enhanced sacrificial layer etching technique for microstructure release

Country Status (3)

Country Link
KR (1) KR20030086989A (en)
TW (1) TW535232B (en)
WO (1) WO2002064495A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100586675B1 (en) * 2004-09-22 2006-06-12 주식회사 파이컴 Manufacture method of vertical-type electric contactor and vertical-type electric contactor thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8921722D0 (en) * 1989-09-26 1989-11-08 British Telecomm Micromechanical switch
US5374792A (en) * 1993-01-04 1994-12-20 General Electric Company Micromechanical moving structures including multiple contact switching system
US5531018A (en) * 1993-12-20 1996-07-02 General Electric Company Method of micromachining electromagnetically actuated current switches with polyimide reinforcement seals, and switches produced thereby
US6117694A (en) * 1994-07-07 2000-09-12 Tessera, Inc. Flexible lead structures and methods of making same

Also Published As

Publication number Publication date
WO2002064495A2 (en) 2002-08-22
WO2002064495A3 (en) 2003-06-05
KR20030086989A (en) 2003-11-12

Similar Documents

Publication Publication Date Title
TW512129B (en) Method for forming microelectronic spring structures on a substrate
CN1935632B (en) Method of manufacturing a nanowire device
CN101944860B (en) Piezoelectric cantilever vibration energy harvester and preparation method thereof
TW201130731A (en) silicon nanostructures and method for producing the same and application thereof
Allongue et al. Electrochemical micromachining of p-type silicon
CN108883927A (en) Assembling process for three-dimensional microstructures
US11397382B2 (en) Method for selective delamination and transfer of thin film using liquid platform
CN109437095B (en) Method for manufacturing silicon nano-pore structure with controllable etching direction
EP3262677A1 (en) Film electrode for electrostatic chuck
JPWO2008088068A1 (en) Microstructure manufacturing method, microstructure and microdevice
TW535232B (en) Enhanced sacrificial layer etching technique for microstructure release
US6551485B1 (en) Electrodeposition of metals for forming three-dimensional microstructures
KR102264384B1 (en) Method for Selective Lift-off and Transfer of Thin Film Using Liquid Platform
US7598107B1 (en) Semi-sacrificial mold for diamond structures
KR20030033237A (en) Cantilever for atomic force microscopy and method for fabricating the same
TWI699329B (en) Structure for device with integrated microelectromechanical systems
JP4110341B2 (en) How to create a structure
CN111415901A (en) Temporary bonding process for semiconductor devices
Homma et al. Area-selective formation of macropore array by anisotropic electrochemical etching on an n-Si (100) surface in aqueous HF solution
US7240428B2 (en) Method for making probes for atomic force microscopy
WO2019090601A1 (en) Micro energy collector based on piezoelectric thick film mems process and preparation method thereof
CN109830430B (en) Silicon nanopore structure with controllable distribution area and preparation method and application thereof
TWI261890B (en) Micro contact device and fabricating method thereof
JP2005039078A (en) Wafer substrate for sheet substrate structure formation, method for manufacturing the same, and method for manufacturing mems element
CN111333054B (en) Laser etching-based vertical carbon nanotube array transfer method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees