TW505956B - Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site - Google Patents

Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site Download PDF

Info

Publication number
TW505956B
TW505956B TW90111553A TW90111553A TW505956B TW 505956 B TW505956 B TW 505956B TW 90111553 A TW90111553 A TW 90111553A TW 90111553 A TW90111553 A TW 90111553A TW 505956 B TW505956 B TW 505956B
Authority
TW
Taiwan
Prior art keywords
microstructures
subsystem
patent application
item
processed
Prior art date
Application number
TW90111553A
Other languages
Chinese (zh)
Inventor
Bradley L Hunter
Paul Andrei
Original Assignee
Gen Scanning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gen Scanning Inc filed Critical Gen Scanning Inc
Application granted granted Critical
Publication of TW505956B publication Critical patent/TW505956B/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

Method and subsystem are provided for determining a sequence in which microstructures are to be processed at a laser-processing site by taking into account microstructures located near travel limits of a motor-driven stage. The method includes receiving reference data which represent locations of microstructures to be processed at the site and coalescing adjacent groups of microstructures into clusters of microstructures including edge clusters which contain the microstructures located near the travel limits of the motor-driven stage which moves the microstructures relative to a laser beam at the site. The method also includes dividing a cluster fragment from each edge cluster. The cluster fragments contain the microstructures located near the travel limits. The method then includes sorting the clusters and cluster fragments to obtain data which represent a substantially optimum sequence in which the microstructures are to be processed to increase throughput at the site.

Description

五 Λ發明説明( A7 B7 本發明之範瞳 本發明是關於用以決定微構造物欲在雷射處理點處理 之順序的方法和子系統。 技術背景 記憶體修補是一種處理程序,它被使用於製造記憶體 的體電路(DRAM或者SRAM)以改進製造產量。記憶體晶 利用外加的記憶胞列與行被製造。在測試記憶體晶片時 (儘管仍然是爲晶圓形式),任何被發現的缺陷都會被紀錄 &資料庫中。具有缺陷晶片的晶圓可以利用具有脈衝雷射 之鏈路來加以修補。系統一般採用運送半導體晶圓至雷射 1越理程序機器之晶圓處理設備,並且得到相關資料庫型式 的資訊,其指示鏈路應該在何處被切斷並進行各晶圓必需 的鏈路溶損。 連續幾代的DRAM採用精緻的元件幾何以便包裝更多 的記憶體於較小的晶片。這較小元件的製造影響被安置給 「1^彳多餘量之鏈路幾何。當元件更小時,鏈路也就更小而 丨1問隙(鏈路至鏈路間隔)也縮短。較小的鏈路幾何需要較 '1、的雷射點尺寸以便順利地移除被選擇之鏈路而不影響相 初:之鏈路,最好是幾乎不(如果可能)損及產量。 鏈路以小群組被配置於共同間隙。一般的群組可以由 二()-5 0紐大約〇. 8 " Μ寬’ 6 y Μ長並且以3以Μ間隙分隔鏈 路所構成。群組可以平行於X或者y軸之間隙向量被配置。 遞常,多重群組將被發現爲共線的,而在一群組的結束以 砍接著群組的開始之間僅有2或3個”間隙"。在其他的時 505956Five Λ invention description (A7 B7) The present invention is a method and a subsystem for determining the order in which microstructures are to be processed at a laser processing point. Technical background Memory repair is a processing program that is used in manufacturing Memory body circuits (DRAM or SRAM) to improve manufacturing yield. Memory crystals are manufactured using additional memory cell rows and rows. When testing memory chips (although still in wafer form), any defects found Will be recorded in the database. Wafers with defective wafers can be repaired using pulsed laser links. The system generally uses wafer processing equipment that transports semiconductor wafers to laser 1 laser processing machines, and Get information about the type of database, which indicates where the link should be cut off and carry out the necessary link dissolution of each wafer. Successive generations of DRAM use delicate element geometries to pack more memory in a smaller size The manufacturing impact of this smaller component is assigned to "1 ^ 彳 excess amount of link geometry. When the component is smaller, the link is smaller and smaller 1 The gap (link-to-link interval) is also shortened. The smaller link geometry requires a laser point size larger than '1' in order to smoothly remove the selected link without affecting the initial phase: Fortunately, it hardly (if possible) damages the output. The links are arranged in small groups in the common gap. The general group can be from two ()-50 to about 0. 8 " Μ wide '6 y Μ long And it is composed of 3 with M gap separation links. Groups can be configured parallel to the gap vector of the X or y axis. Often, multiple groups will be found to be collinear, and the end of a group will be cut Then there are only 2 or 3 "gap" between the beginning of the group. The others are 505956

A 經濟部¾曰慧財產局員工消費合作社印製 A7 B7 發明説明(/) 候,共線的群組會被分隔幾百微米遠。一般的DRAM晶片 可以具有幾百組跨越晶片的延伸配置之鏈路群組。 上面所提到的實用性專利申請披露一種使用於安置一 組半導體晶圓於靜止的雷射光束之下的高性能x-y級台。 x-y級台被需要以達成處理晶圓之一區域所需的許多高速 移動。 通常χ-y級台受限制於位置、速率、加速度以及電壓 條件。位置限制爲級台行程之界限。速率之限制可能係由 於被使用於級台之置放感知元件的界限及/或所使用軸承型 式所加諸的界限。加速度限制通常係由於馬達、放大器或 者電源供應之考慮而可用於驅動級台之電流限制。電壓限 制通常較少發生。需要超量電壓之移動必須被避免以防止 放大器飽和。電壓限制一般會在短暫的高-加速度移動時遭 遇。 本級台能夠使用相當大數値之加速度(如3G)執行移動 並且能夠在移動結束時迅速地停止。同時級台也必須以非 常高精確性(奈米程度之精確性)操作。非常高的性能以及 極端精確度的需求之組合產生級台之另外的限制。級台易 受被消耗於馬達線圈之功率位準影響。如果被消耗之功率 導致線圈溫度上升超過攝氏2度,則將會危及級台之精確 性。同時,如果施加至級台之力量的頻譜內容包含高於系 統之第一機械模式之頻率的超出位準之能量’則將會引起 級台之機械元件的共振。這些共振將損及精確度或者在必 要之精確性位準被達成之前,在移動終止時需要額外的安 5 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29<7公釐) —批衣------、玎------0 (請先閲讀背面之注意事項再填寫本頁) 505956 A7 B7 五、發明説明(令) 汜時間。 本發明之槪要 本發明之一目的是提供一種決定微構造物在雷射處理 點處理之順序的改進方法及子系統。 爲完成本發明上面之目的及其他之目的,一種決定微 構造物在雷射處理點處理之順序的方法被提供。該方法包 Γί接收代表在該點將被處理之微構造物的位置之參考資 料該方法也包含將相鄰之微構造物群組聯合成爲包含邊 緣聚集微構造物之聚集,其包含被置放在接近馬達驅動級 ή之行程界限的微構造物,該馬達驅動級台相對於在該點 丨:的雷射光束而移動微構造物。該方法同時也包含從各邊 緣聚集分割聚集斷片,其中該聚集斷片包含被置放在接近 ir程界限之微構造物。該方法進一步地包含將聚集及聚集 斷片分類以得到代表大致最佳序列之資料,其中微構造物 丨Ιΐ以該序列被處理以增加在該點上的產量。 分類步驟是依據在反應於馬達命令之至少一組馬達之 卡:少一組線圈中之消耗能量而定。 各聚集及聚集斷片可具有多數個可能處理方向並且其 屮該分類步驟可以包含決定處理微構造物之大致最佳方向 之步驟。 該分類步驟可包含選擇在該點上初步地被處理之大致 U作聚集或聚集斷片之步驟,接著決定用以處理其餘聚集 崚聚集斷片之多數個可能序列,並且從多數個可能序列中 擇大致最佳序列。 6 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閱讀背面之注意事項再填寫本頁) ¥ 訂 經濟部智慧財產局員工消費合作社印製 ☆經濟奔智慧財產局員工消費合作社印製 505956 A7 __B7 五、發明説明(ψ ) 該微j藎造物可以被置放在晶麗晶片上。 進一步地,爲完成本發明上面之目的及其他之目的, -種用以決定微構造物在雷射處理點處理之順序的子系統 K提供。該子系統包含:接收代表在該點上被處理之微構造 物的位置之參考資料裝置。該子系統也包含將相鄰之微構 造物群組聯合成爲包含邊緣聚集微構造物之聚集的裝置, 該邊緣聚集包含被置放在接近馬達驅動級台行程界限之微 從造物,該馬達驅動級台相對在該點上的雷射束而移動微 構造物。該子系統進一步地包含從各邊緣聚集分割一聚集 斷片之裝置,其中該聚集斷片包含被置放在接近行程界限 之微構造物。進一步地,該子系統包含將聚集以及聚集斷 片分類以得到代表大致最佳序列之資料的裝置,其中微構 造物將以該序列被處理以增加在該點上的產量。 該分類裝置可以依據反應於馬達命令之至少一組馬達 的至少一組線圈中被消耗之能量而分類。 各聚集和聚集斷片可以具有多數個可能處理方向並且 丨t中該分類裝置包含決定處理微構造物之大致最佳方向之 該分類裝置可包含:選擇在該點上初始地被處理之大致 U佳聚集或者聚集斷片,決定處理其餘聚集及聚集斷片之 多數個可能的序列以及從該等多數個可能之序列中選擇大 致最佳序列之裝置。 該微構造物可以是晶片導線並且其中該導線可以是金 丨韵線° ____ 7 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 1¾衣------,玎------線- (請先閱讀背面之注意事項再填寫本頁) 505956 A7 ___ B7 五、發明説明(ζ ) 該晶片可以是半導體記憶體元件並且其中該導線在該 點被消融以修補元件的有缺陷記憶胞。 該微構造物可以是半導體元件之部份並且其中該半導 體元件可以是微電子機械元件。 該半導體元件也可以是矽半導體元件。 該半導體元件進一步地可以是半導體記億體。 該微構造物可以是微電子元件之部份。 在各群組中之微構造物可以具有大致共同的間隙。 該級台可以是一種χ-y級台並且其中之分類裝置可以 依據反應於馬達命令之多數個馬達的多數個線圈的被消耗 能量而分類。 本發明上面之目的、其他之目的、特點、及優點,可 由下面實現本發明之最佳模式的詳細說明並參考附圖而容 易且明顯地明白。 圖形之槪要說明 第1圖是依據本發明展示主要子系統之一種記憶體修 補系統之詳細分解方塊圖; 第2圖是一種具有軌線資料流程之系統結構圖; 經濟部智慧財產局員工消費合作社印製 第3圖是一組範例圖示,其展示包含許多晶片、晶片 位置、鏈路群組以及參考區域被定位以形成一參考表面之 相關區域的一種晶圓處理位置; 第4圖是一種在晶片位置之內將被處理之倂排晶片鏈 路列之分解圖: 第5圖是各種移動片段型式之分解圖; ___8 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 經濟部,智慧財產局員工消費合作社印製 A7 B7 五、發明説明(G) 第6圖展示相對於時間之振幅以及展示移動片段之脈 波/行程曲線的圖形; 第7圖是相對於時間之振幅以及展示移動片段之脈波/ 脈波曲線的圖形;以及 第8圖是相對於時間之振幅以及展示移動片段之停止/ 跳躍/開始之曲線的圖形。 較佳實施例之詳細說明 一種雷射處理系統,一般指示爲Π0,展示於第1圖。 晶圓4被置放在雷射處理系統110之內並且來自使用者界 面11之資料庫資訊被提供以確認被消融以修補缺陷的記 憶胞之晶圓4上的鏈路(第3圖中之33)。 資料庫資訊被軌線規劃器12以及DSP爲主的控制器 15、16所使用並結合移動級台6、7,校準以定義軌線產 生器之移動片段,該軌線產生器利用雷射、聚焦光學、以 及χ-y級台6、7之操作被執行並且被定座標以消融鏈路, 如上面所示之實用性申請。這些操作包含以較佳高速精確 性級台6、7控制x-y移動並且當雷射產生脈衝時同時置放 光學元件以使處理雷射光束之中間細窄部分與鏈路33座 標同位。 所有的記憶體修補系統包含一些動態機構用以提供在 晶圓表面以及焦點的平面之間的相對移動。在某些情況 中,這可能包含利用沿著Z軸移動以控制相對於固定高度 光學通道之晶圓4的晶片高度。另外,本動作可以採用以 "逐步"方式移動聚焦鏡片以便與來自現場的晶片之聚焦資 9 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) --------—^!----1T------0 (請先閲讀背面之注意事項再填寫本頁) 505956 A 7 __B7 五、發明説明(7 ) 料所導出之深度位置同位。 藉由本系統,晶圓之全部的高度保持固定並且最後物 鏡的鏡片高度被線性伺服機構以及光學盒子18之控制器 1 4、1 7所控制。使用精確性置放系統於z-軸移動之較佳配 置的鏡片或者光學元件的定位提供大約0.1/zm之Z-軸解 析度或者更細微並在一般大約3 mm的移動最大範圍時具有 大約爲150Hz的3分貝"小信號"頻寬。 ”軌線規劃器” 1 2被採用以與移動系統6、7、1 7和相 關的DSP爲主的控制器1 6設計晶圓4之通道以及光束的 中間細窄部分位置5。軌線規劃器合倂來自使用者界面1 1 以及對齊系統(後者一般被裝設於精確性級台,例如,晶圓 級台)之資訊,該資訊係被使用於定義相對於座標系統中之 目標的雷射處理點。該資訊從資料庫被導出,產生一組" 鏈路圖"、選擇、以及其他關於記憶體修補操作相關的資 料。 經濟部智慧財產局員工消費合作社印製 熟習於移動控制以及估計之技術人員將了解高速記憶 體修補處理系統中精確的三度空間置放之容限預計需求。 在最大範圍是大約300mm或者更多之行程中,零點幾微米 相當於最新晶圓之整個面積。高於50毫米/秒的處理或者" 切割速率"是有利的。同時,美國專利No.6,144,118,茲配 合爲參考,詳細說明一種較佳晶圓置放系統。 接著參看第3圖,鏈路熔斷之系統一般將需要處理(亦 即雷射熔損)晶圓4上大量鏈路34之子集33。定義將被處 理之晶片鏈路的資訊被提供至控制程式。該程式依次將定 __ 10 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 A7 B7 五、發明説明(g) 義一些環繞將被處理之晶片35的一組參考位置32 ’亦即 一組晶片位置。該位置一般將包含足夠數量之點數以依據 移動系統控制所產生之命令’如上面所提到的實用性申請 之說明,而精確地定義晶圓以及鏡片系統循行之軌線° 產牛雷射脈波 雷射處理光束一般係由Q-切換YAG雷射所提供,該 雷射具有預定的脈波寬度、重覆速率、以及波長,如美國 專利第5,998,759號所披露。一組控制信號20被供應至雷 射以產生與晶片和鏡片之連續放置配合的一組脈波。熟習 於該技術之人員將會認識雷射之同位以及移動將很可能被 瞬間的或者累計的位置錯誤所複合。在較佳實施例中,調 整先前”安排"的雷射脈波之一組可調整放射延遲被包含以 補償此類位置錯誤。此更正之時間解析度最好是十億分之 25秒或者更少。最好是,該完全錯誤更正是被一組"軌跡 向量"所定義,其將總計位置錯誤轉換爲延遲。這軌跡向 量可以被包含於轉換矩陣中,該矩陣被操作地連接到控制 器以動態地關連座標系統。 接著參看第2圖,軌線產生是指定、表示、並且實現 連續移動通道之程序。對於此處說明之系統而言,需要同 步化移動中的級台以及雷射發射,以至於各鏈路會被射擊 於中心。軌線產生結構展示於第2圖。光束移動是利用計 算來自應用資料之片段;來自片段之設定點;以及來自設 定點之伺服命令而被達成。 這機構中最主要功能性項目爲規劃器、產生器、以及 11 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) ._批衣-- (請先閲讀背面之注意事項再填寫本頁)A Ministry of Economy ¾ Printed by the Consumer Property Cooperative of the Hui Property Bureau A7 B7 Invention Description (/) When the line group is separated by several hundred microns. A typical DRAM chip can have hundreds of link groups that extend across the chip. The above-mentioned utility patent application discloses a high-performance x-y stage for placing a group of semiconductor wafers under a stationary laser beam. The x-y stage is required to achieve the many high-speed movements required to process one area of the wafer. The χ-y stage is usually limited by position, velocity, acceleration, and voltage conditions. The position limit is the limit of the stage travel. The rate limitation may be due to the limits placed on the sensing elements used in the stage and / or the limits imposed by the type of bearing used. Acceleration limits are usually current limits that can be used to drive the stage due to considerations of the motor, amplifier, or power supply. Voltage limiting usually occurs less frequently. Movements that require excessive voltage must be avoided to prevent amplifier saturation. Voltage limits are typically encountered during brief high-acceleration movements. This stage can perform movement using a considerable number of accelerations (such as 3G) and can stop quickly at the end of the movement. The stage must also be operated with very high accuracy (nano-level accuracy). The combination of very high performance and the need for extreme accuracy creates additional constraints on the stage. The stage is susceptible to the power level consumed by the motor coil. If the power consumed causes the coil temperature to rise above 2 ° C, the accuracy of the stage will be compromised. At the same time, if the spectral content of the force applied to the stage contains energy beyond the level that is higher than the frequency of the first mechanical mode of the system, it will cause resonance of the mechanical elements of the stage. These resonances will impair accuracy or require additional security at the end of the move before the necessary level of accuracy is reached. 5 Paper sizes are in accordance with Chinese National Standard (CNS) A4 (210X29 < 7 mm)-Approved ------, 玎 ------ 0 (Please read the notes on the back before filling out this page) 505956 A7 B7 V. Description of the invention (order) 汜 Time. Summary of the Invention An object of the present invention is to provide an improved method and subsystem for determining the order in which microstructures are processed at a laser processing point. To accomplish the above and other objects of the present invention, a method for determining the order in which microstructures are processed at a laser processing point is provided. The method includes receiving reference data representing the location of the microstructures to be processed at that point. The method also includes uniting groups of adjacent microstructures into aggregates that include edge-gathered microstructures, which include being placed on A microstructure close to the travel limit of the motor-driven stage. The motor-driven stage moves the microstructure relative to the laser beam at this point. The method also includes clustering and segmenting aggregate fragments from each edge, where the aggregate fragments include microstructures that are placed near the boundaries of the ir-range. The method further includes classifying the aggregates and aggregate fragments to obtain data representing a roughly optimal sequence, wherein the microstructures are processed with the sequence to increase the yield at that point. The classification step is based on the energy consumed in at least one set of motors: at least one set of coils in response to the motor command. Each clustering and clustering fragment may have a plurality of possible processing directions, and the classification step may include a step of determining an approximately optimal direction for processing microstructures. The classification step may include the step of selecting the approximate U which is initially processed at that point as an aggregate or aggregate fragment, and then determining the majority of possible sequences for processing the remaining aggregate 崚 aggregate fragments, and selecting approximately Best sequence. 6 This paper size applies to China National Standard (CNS) A4 (210X297 mm) (Please read the notes on the back before filling out this page) ¥ Order printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs ☆ Employees of Economic Ben Intellectual Property Bureau Printed by the Consumer Cooperative 505956 A7 __B7 V. Description of the Invention (ψ) The microstructure can be placed on a crystal wafer. Further, in order to accomplish the above and other objects of the present invention, a subsystem K is provided for determining the order in which microstructures are processed at the laser processing point. The subsystem includes a reference device that receives the location of the microstructure being processed at that point. This subsystem also includes a device that unites groups of adjacent microstructures into aggregates containing edge-gathered microstructures. The edge-gathering includes microconstructions that are placed close to the stroke limit of the motor-driven stage. The motor drives The stage moves the microstructure relative to the laser beam at this point. The subsystem further includes means for clustering and segmenting an aggregated fragment from each edge, wherein the aggregated fragment includes a microstructure placed near a stroke limit. Further, the subsystem includes means for classifying aggregates and aggregate fragments to obtain information representing a roughly optimal sequence, where the microstructures will be processed with the sequence to increase the yield at that point. The classification device may be classified based on the energy consumed in at least one set of coils of at least one set of motors in response to a motor command. Each clustering and clustering fragment may have a plurality of possible processing directions, and the classification device in t includes the classification device that determines the approximate optimal direction for processing the microstructures. The classification device may include: selecting approximately U which is initially processed at this point. The aggregate or aggregate fragment determines the device that processes the majority of possible sequences of the remaining aggregate and aggregate fragments and selects the approximately optimal sequence from the plurality of possible sequences. The microstructure may be a chip wire and the wire may be a gold rhyme line ° ____ 7 This paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 1¾ clothing ------, 玎- ---- Wire-(Please read the precautions on the back before filling this page) 505956 A7 ___ B7 V. Description of the invention (ζ) The chip can be a semiconductor memory device and the wire is ablated at this point to repair the device Of defective memory cells. The microstructure may be part of a semiconductor element and wherein the semiconductor element may be a microelectromechanical element. This semiconductor element may be a silicon semiconductor element. The semiconductor element may further be a semiconductor memory. The microstructure may be part of a microelectronic element. The microstructures in each group may have approximately common gaps. The stage may be a χ-y stage and the classification device therein may be classified according to the consumed energy of the plurality of coils of the plurality of motors in response to the motor command. The above objects, other objects, features, and advantages of the present invention can be easily and clearly understood from the following detailed description of the best modes for carrying out the present invention and with reference to the drawings. Description of the figure: Figure 1 is a detailed exploded block diagram of a memory repair system showing the main subsystems according to the present invention; Figure 2 is a system structure diagram with a trajectory data flow; employee consumption of the Intellectual Property Bureau of the Ministry of Economy Figure 3 printed by a cooperative is a set of example diagrams showing a wafer processing location containing a number of wafers, wafer locations, link groups, and reference areas positioned to form a relevant area of a reference surface; Figure 4 is An exploded view of a row of wafer links to be processed within the wafer position: Figure 5 is an exploded view of various moving segment types; ___8 This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) 505956 Printed by the Ministry of Economic Affairs, Intellectual Property Bureau Employee Cooperatives A7 B7 V. Description of Invention (G) Figure 6 shows the amplitude with respect to time and the pulse / stroke curve of the moving segment; Figure 7 is relative to time The amplitude and the graph of the pulse / pulse curve showing the moving segment; and Figure 8 shows the amplitude with respect to time and the moving segment. Stop / skip / beginning of the curve pattern. Detailed description of the preferred embodiment A laser processing system, generally indicated as Π0, is shown in Figure 1. The wafer 4 is placed within the laser processing system 110 and database information from the user interface 11 is provided to confirm the link on the wafer 4 (Figure 3, which is ablated to repair the defective memory cell). 33). The database information is used by the trajectory planner 12 and the DSP-based controllers 15 and 16 and combined with the mobile stage 6 and 7 to calibrate to define the mobile segment of the trajectory generator, which uses laser, The operations of the focusing optics and the χ-y stage 6 and 7 are performed and coordinated to ablate the links, as shown in the utility application above. These operations include controlling the x-y movement with better high-speed accuracy stages 6 and 7 and simultaneously placing optical elements when the laser generates pulses so that the middle narrow portion of the processing laser beam is co-located with the 33 coordinate of the link. All memory repair systems include dynamic mechanisms to provide relative movement between the wafer surface and the plane of the focal point. In some cases, this may involve utilizing wafer Z movement to control the wafer height of the wafer 4 relative to a fixed height optical channel. In addition, this action can use the "step-by-step" method to move the focusing lens to focus on the wafer from the scene. 9 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ------- -— ^! ---- 1T ------ 0 (Please read the notes on the back before filling out this page) 505956 A 7 __B7 V. Description of the invention (7) The depth position derived from the material is in the same position. With this system, the entire height of the wafer remains fixed and the lens height of the final objective lens is controlled by the linear servo mechanism and the controllers 14 and 17 of the optical box 18. The positioning of the better configured lens or optical element using the precision placement system for z-axis movement provides a Z-axis resolution of approximately 0.1 / zm or more subtle and has approximately 3dB at 150Hz " small signal " bandwidth. The “trajectory planner” 1 2 is adopted a controller mainly based on the mobile system 6, 7, 17 and the related DSP 16 to design the channel 4 of the wafer 4 and the position 5 of the middle narrow portion of the light beam. The trajectory planner combines information from the user interface 1 1 and the alignment system (the latter is typically installed on an accuracy level stage, such as a wafer level stage). This information is used to define information relative to the coordinate system. Target's laser processing point. This information is derived from the database, generating a set of "link diagrams", selections, and other data related to memory repair operations. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economics. Technical personnel familiar with movement control and estimation will understand the estimated demand for the precise three-dimensional space placement in high-speed memory repair processing systems. With a maximum range of about 300 mm or more, a few tenths of a micrometer is equivalent to the entire area of the latest wafer. Processing above 50 mm / sec or " cutting rate " is advantageous. Meanwhile, U.S. Patent No. 6,144,118, incorporated herein by reference, describes a preferred wafer placement system in detail. Referring next to Figure 3, a system with link fusing will generally need to process (ie, laser fuse) a subset 33 of a large number of links 34 on wafer 4. Information defining the chip link to be processed is provided to the control program. The program will set __ 10 this paper size in accordance with the Chinese National Standard (CNS) A4 specifications (210X297 mm) 505956 A7 B7 V. Description of the invention (g) Define a set of reference positions around the wafer 35 to be processed 32 'Is a set of chip positions. The location will generally contain a sufficient number of points to accurately define the trajectory of the wafer and lens system according to the command generated by the mobile system control, as described in the practical application mentioned above. The pulsed-wave laser-treated beam is generally provided by a Q-switched YAG laser, which has a predetermined pulse width, repetition rate, and wavelength, as disclosed in US Patent No. 5,998,759. A set of control signals 20 are supplied to the laser to generate a set of pulse waves that cooperate with the continuous placement of the wafer and lens. Those familiar with this technology will recognize that laser parity and movement will likely be compounded by transient or cumulative position errors. In the preferred embodiment, a set of adjustable laser delays of the previously "arranged" laser pulses is included to compensate for such positional errors. The time resolution for this correction is preferably 25 parts per billion or Less. Preferably, the complete error correction is exactly defined by a set of " trajectory vectors " which converts the total position error into a delay. This trajectory vector can be contained in a transformation matrix which is operatively connected Go to the controller to dynamically connect the coordinate system. Then referring to Figure 2, the trajectory generation is a procedure that specifies, represents, and implements a continuous movement channel. For the system described here, the stages in motion and The laser is fired so that each link will be fired at the center. The trajectory generation structure is shown in Figure 2. The beam movement is calculated by calculating the segments from the application data; the set points from the segments; and the servo commands from the set points. The most important functional items in this institution are planner, generator, and 11 paper standards that apply Chinese National Standard (CNS) Α4 specifications (210 297 mm) ._ batch of clothes - (Please read the Notes on the back to fill out this page)

、1T 線 經濟部智慧財產局員工消費合作社印製 505956 A7 _B7_ 五、發明説明(巧) 插入器。規劃器利用分析特定領域資料,例如:鏈路圖以 及修補資料而構成級台之通道。這模組之輸出是一組軌 線;一組移動片段之列表,各移動片段選擇性地與控制片 段配合。 當雷射束和將被處理鏈路之三維度座標被決定時,一 組移動控制程序採用第1圖之軌線規劃器或者產生器12 以便有效地處理目標結構。 接著參看第4圖和第5圖,在較佳系統中,加速度和 速率曲線是與下面的"移動片段"型式相關: 1. PVT(位置/速率/時間)片段110。其被使用於加速 至所需的位置以及速率。行經這片段所需的時間是選擇性 的;如果不被指定,最小時間會被計算出。 2. CVD(固定-速率/距離)片段111。這型式僅具有單 一純量規定:片段之通道長度。光束在指定距離內以固定 速率移動。該速率係被先前片段的終止點所指定。程序控 制一般係在CVD片段時被執行。 3. CVT(固定-速率/時間)片段。這是與CVD片段相 同,但是係片段之持續被指定而非其長度。 經濟部智慧財產局員工消費合作社印製 4. 停止片段Π3。這片段沒有規定·其儘可能快速地 ί7?止級台。 ”消融”代表發射雷射脈波以切斷鏈路114。 再者,”停止"片段終止移動,最好是儘可能地快速。 程序控制以及鏈路熔斷通常與固定速率片段相關。 在較佳系統中,加速度以及速率曲線被與DSP爲主的 12 本紙張尺度適用中國國家標準(CNS〉Α4規格(210X297公釐) 經濟部智慧財產局員工消費合作社印製 A7 B7 i、發明説明) 伺服控制器1 6結合以產生晶片x-y移動。沿著光軸之鏡片 轉變與X,y移動配合,以至於當雷射產生脈衝時光束中 間細窄部分將被置放於晶片目標位置。光束中間細窄部分 之Z座標可以在晶圓上任何兩組結構之間動態地被調整, 包含配置在單一晶片之同一列(沿著X或者y方向)上的相 鄰結構。例如,鏈路熔斷之z-軸增量解析度(最小的高度 差量),最好大約是並具有大約0.05#m之限制。 在系統之內的通道規劃所涉及的問題如下:給予啓始 的以及最後的位置和速率(向量)規定,找到可以滿足終止 點條件以及對於位置封包、最大速率、最大加速度和最大 電壓之限制的"最佳"軌線。 該最佳軌線使軌線"成本"減到最少。對於所給予的軌 線之”成本"係指軌線時間以及馬達線圈中被消耗的能量之 加權總和。時間之加權係數永遠是一單位(1.0)。能量之加 權係數是變數。 許多軌線可以滿足所需的終止點條件並滿足系統限 制。但是,與多種解法相關的成本可具有大規模的變動性。 本發明之演算法找到最佳解(最低的"成本")並且使用該軌 線以便執行移動。 考慮一組簡單範例。在進行記億體修補時時常遭遇的 軌線之規定稱爲"合倂”。雷射處理需要沿著鄰近的兩組短 線片段。該片段是共線的並且該片段以相同固定速率被處 理。一組間隙存在於共線的片段之間。一組"CV"片段可以 被使用於越過間隙(亦即,使用與先前片段相同速率之固定 13 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) --------|批衣------’玎-------0 (請先閱讀背面之注意事項再填寫本頁) 505956 A7 ____B7_ 五、發明説明(L() 速率片段)。另外,間隙可以利用短暫的加速度/減速曲線 以稍微較少的時間被越過。CV解法之成本僅是越過間隙(距 離/速率)所需的時間,因爲CV片段中沒有能量消耗。然 而,加速度/減速曲線將會需要較少的時間但更大的能量消 耗。在這情形中,最佳選擇取決於能量消耗相對於成本函 數之時間的相對加權。 移動曲線 軌線片段包含一組或者更多的區間。一組區間被定義 爲一組軌線子集,其中加速度受限制爲兩組變數之預定函 數:APK(峰値加速度振幅)以及Tint(區間之持續期間)。加 速度曲線之型式爲擺線式或者諧波式。因爲型式被預定, 僅需要振幅以及持續期以便在軌線區間時完全地指定移 動。 軌線是由一序列之連續的(時間、位置、速率、加速度 以及搖動)區間所構成,各區間具有可變化的持續以及加速 度振幅(可能爲零)。應注意到一組CV(固定速率)軌線片段 是一組具有ΑΡΚ = 0之單一區間。 經濟部智慧財產局員工消費合作社印製 第1圖之系統達成一組連續軌線而形成一組單一移動 曲線。單一移動曲線可以持續許多秒並且包含上百的軌線 片段。一般需要多重區間以滿足軌線片段之終止點規定。 區間一般可說明爲對應至"航行"或者"脈波"之"C"或者 ” P"。一組C-片段具有APK = 0的特徵。一組P-片段具有非 零的APK。 在先前給予的合倂範例中,航行解法包含一組單一 "C” ____ 14 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 經濟部¾曰慧財產局員工消費合作社印製 A7 B7 五、發明説明(^) 區間,而加速/減速解法是一組”Ρ·Ρ”解決辦法。其他的片 段組合是處理第1圖之系統所需的多種軌線規定所需的: (C、CP、PC、ΡΡ、PCP、ΡΡΡΡ、PPCPP)。 並非所有的解法型式都可應用於所給予的軌線片段。 例如,包含不同的啓始以及最後速度(Vi<>Vf)之軌線片段 便無法以c區間被滿足。 解決策略 CVT或者CVD片段之解法是簡單的(指定時間或者距 離之零加速度)。因爲時間被指定而能量消耗爲零,所以沒 有進行最佳化。CV片段將不進一步地討論。 PVT軌線片段之解決辦法較爲複雜。解決辦法包含下 面的步驟= 1. 分解向量規定成爲X以及y軸規定。 2. 分別找到各軸之最小成本解決辦法。 3. 取得最緩慢軸之時間並且找到"迅速"軸之解決辦 法,那取決於相同"緩慢"經過時間的最小成本。 單一軸之最小成本解決辦法包含下面的步驟: 1. 找到各有關的解決辦法型式(亦即,C、P、PC、CP、 等等)之最佳解決辦法。 2. 在多重形式之間選擇最佳解決辦法(如果多重解決 辦法存在)。 ____15 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) --------|辦衣------1T------^ (請先閱讀背面之注意事項再填寫本頁) 505956 A7 B7五、發明説明(θ) 經濟部智慧財產局員工消費合作社印製 能量之相對成本被變數Κρ所控制。Κρ被使用於成本 公式,如下所示: 成本=Τ + Ε/Κρ 應注意到,Κρ具有功率的維度。這提供選擇Κρ之直 覺的準則。如果Κρ被設定爲大的,則消耗之能量的成本 便爲小的。產生之解決辦法將爲最小時間。反之,設定Κρ 爲小會使得能量"昂貴",並且因此解決辦法將往往會以時 間爲代價來使功率最小化。 因爲Κρ是變數,它可被動態地設定。第1圖之系統 利用這能力以進一步地控制功率消耗(並且因此改進精確 度)。在生產操作時,一序列必須循行之軌線片段被提供至 通道規劃演算法。通道規劃演算法決定將在各移動片段時 被消耗之能量。使用線圈之熱量反應的簡單第一階模式, 通道規劃演算法將預料由軌線之能量消耗歷史引起的溫度 上升。 在包含許多短的加速度片段之軌線片段中,估計的溫 度可能會比所需的溫度上升更多。通道規劃演算法接著將 減低Κρ値以使移動最佳化解決辦法偏向較低的功率區 間。相反地,當估計的溫度上升非常小時,通道規劃演算 法將增加Κρ。 以真正的記億體修補資料所達成之模擬揭示時間相對 ___ 16 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) 505956 經濟部智慧財產局員工消費合作社印製 A7 _B7_ 五、發明説明(^4) 於_熊量之相對成本的動態調整減小馬達溫度之變化。第1 圖系統之精確度對於溫度之改變速率相當敏感(但是並非特 別對於任何特定的溫度敏感)。級台溫度變化之主要來源係 軌線引起的馬達消耗功率之變化。以估計溫度之函數動態 地調整Κρ顯著地減低變化並且產生較高的精確性。 當執行一般的記憶體修補軌線時,馬達中功率消耗之 位準會受到Κρ強大的影響。但是,系統之全部產量是Κρ 的弱函數。因此,馬達消耗引起之級台誤差的構成要素可 以有效地以對於全部產量之較小影響的方式而被控制。因 爲χ-y級台顯著地快於競爭性提供,這形式之精確控制可 以被達成而於市場接受度不造成太大影響。 解決優點 最佳化多脈衝解決辦法提供下面的優點: 連續平穩的移動 通道規劃演算法允許以最少的停止在χ-y平面上連續 地移動。移動曲線不受限於任何位置中斷以及所有搖動引 起之導數(加速度之導數)。這因而限制施加至級台之力量 的頻譜內容,因而減低級台以及支援結構之機械共振的激 減低功率消耗 軌線爲最佳化(依據於功率消耗之相對重.,要 性)。 - 消耗之最小戀化 利用控制Κρ爲預期馬達溫度之函數,一種減低溫度 ___17 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) ---------|批衣------1Τ-------^ (請先閲讀背面之注意事項再填寫本頁) 505956 A7 B7 五、發明説明(6) 變化並且因而增加精確性之簡單裝置被實現。 鏈路最佳化 如先前所述,將被切割之指定鏈路順序很少是引導鏈 路切割程序之最佳順序。此處說明之演算法重新安排鏈路 並且因而達成減少:1)執行時間;2)馬達功率消耗;以及 3)施加至系統之力量的頻譜內含。減低執行時間導致系統 之較高生產率。減低馬達功率消耗改進系統之精確度。藉 由避免可能會導致置放錯誤之結構上共振的激勵,減低力 量的頻譜內含改進精確度以及產量。 演算法則是依據習知的”旅行銷售員"問題而被模式 化。但是,在這情況中,令人關心的是視察各鏈路群組之 成本的最小化而不是僅視察各群組之時間的最小化。分類 演算法同時也方便地處理一些限制先前記憶體修補系統之 性能的特殊情況以及條件。 經濟部智慧財產局員工消費合作社印製 第1圖之系統一般是以單一”處理點"處理多重晶片。 系統之範圍尺寸可以允許多達六個或者八個64MDRAM晶 片同時被處理。這過程稱爲多晶片對齊(MDA)。MDA之使 用利用將處理晶圓所需的對齊操作之數目從一晶片一次減 低至一處理點一次而提供了顯著的產量改進。對齊操作之 .進行可能需要如單一晶片之鏈路切割大約相同的時間。 MDA引介另一機會以利用鏈路重新安排而改進產量。 相鄰晶片之鏈路群組可以是共線性的。處理共線群組而無 介於中間的PVT移動片段(亦即,加速/減速片段)通常是最 好的解決辦法。鏈路分類演算法考慮處理點之內所有群組 18 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 29<7公釐) 505956 A7 B7 經 濟 •部 智 慧 財 產 局 員 工 •消 費 合 社 印 製 五、發明説明(Vb) 以便找到最佳序列。 演算法 演算法如下所示: 1. 聚集所有處理點之內需要被處理的鏈路群組。這 時常包含讀取具有修補資料之"修補檔案”,如展示於第2 圖,並且可能進行轉換顧客資料格式成爲將被切割鏈路之 內部表不。 2. 聯合相鄰群組。當讀取將被切割鏈路群組之列表 時,”聯合"相鄰群組成爲"聚集"。相鄰群組如果是共線的 便被聯合,群組可以在相同速率下被處理並且在一群組之 結束點和接著群組的開始點之間的間隙大於最小尺度並小 於最大尺度。 3. 確認"邊緣"群組。如果一聚集的結束點太靠近級 台封包之實際限制,則級台便無法具有足夠之加速度以全 速處理群組並且在”撞擊"級台行程之界限前停止。該聚集 利用將所有"鄰近"邊緣的鏈路排定至新的聚集並讓剩餘者 存留在原始的聚集而被切割成爲兩組聚集。新的較低的速 率被指定至邊緣聚集,以至於級台才能具有足夠空間以在 新的群組之最後鏈路以及級台行程之實際限制間的距離之 內達到新的切割速率。 4. 分類該聚集。分類的輸入是具有(任意的)方向指 定至各聚集的聚集(任意地)排序之列表。(方向指的是聚集 中之鏈路將被橫越的方向,向前或者向後)。分類處理之輸 出是一組以新的方向指定至各群組的相同鏈路群組之新的 本紙張尺度適用中國國家標準(CNS ) Α4規格U10X297公釐) 批衣_1ΤI I--^ (請先閲讀背面之注意事項再填寫本頁) 505956 A7 B7 五、發明説明(f|) 序列。該重新被排序之列表爲最佳化。 5. 處理該群組。該群組的排序列表被輸入至通道規 劃演算法。該群組以前述使用越過整組鏈路之單一連續的-移動軌線的順序被處理。 ^ 邊緣聚集 處理發生接近於行程界限之群組是任何記憶體修補系 統的一項挑戰。停止所需的距離爲速率平方的函數以及加 速度的倒數。第1圖之系統中,在設計x-y級台時採用一 種折衷辦法以限定在使用者行程範圍的終端以及行程的實 際限制之間可用的"過度行程"數量。限定被選擇爲χ-y級 台之馬達設計最佳化的一部份。 如果級台是以最大切割速率(150毫米/秒)在使用者封 包之邊緣行進,則在使用者封包之邊緣以及行程之實際限 制(大約200 μΜ)之間的限制距離並不足以讓級台停止。一 組解決辦法爲減低最大切割速率以確保級台永遠都可以停 止。這是不需要的,因爲無必要增加內部鏈路群組之處理 時間。另一解決辦法爲對於整個聚集採用較低之速率。這 同時也不必要地增加處理時間。 經濟部智慧財產局員工消費合作社印製 此處採用之解決辦法爲使最小數目之鏈路接受較低的 速率限制。原始的聚集在並未接受減低之速率限制的第一 鏈路被分割而無視於原始的群組界線發生之位置。再者, 指定至"邊緣·"鏈路之速率被選擇作爲標稱速率之整數的分 量(1/η)。一組範例將有助於解釋這機構的優點。 假設原始的群組具有4//Μ之鏈路間隙。而且,假設 20 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) 505956 ,經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明説明(以) 使用中特定雷射所允許的最大Q-速率爲每秒20,000脈波。 處理時的最大速率將是80毫米/秒。對於接受最大速率30 米/秒平方管制的簡諧加速度曲線,級台將需要-200 //M以 便停止(或從停止到達切割速率)。假設群組中的一些鏈路 充分接近於使用者封包之邊緣,則該鏈路將需要較低的切 割速率。被選擇予原始聚集斷片之實際的速率將依據最小 値η被選擇,以至於新的速率將等於原始的速率除以n。 該η値利用從2開始並且增加直至產生速率足夠小以處理 聚集斷片中之最後的鏈路(最接近邊緣)並且級台保有足夠 之停止距離而被互動地獲得。 僅以V/n處理這聚集斷片將導致雷射發射速率被減低 至Q/n(這範例中,Q = 20,000)。這·可能會對於那些接受不 同雷射Q·速率之斷片中的鏈路產生鏈路切割品質之不良變 化。這變化在介紹”消融-每-間隙"(bpp)之觀念的演算法中 被消除。一般情形下,bpp=l且雷射對各級台移動間隙發 射一次。當斷片以V/n被處理時,bpp被設定爲η。第1 圖之系統辨識這參數並且以等於n*(V/n)/p = V/p = Q之固定 速率發射雷射。系統"假想"有η-1組"幽靈"鏈路同樣分佈 在每組自然鏈路之間。這迫使雷射Q-速率與被使用於所有 其他鏈路的Q-速率相同並且確保所有的鏈路都有一致的切 割品質。 演算法進一步達成影響接近使用者封包之邊緣的鏈路 之一種最佳化。鏈路分類演算法包含一組參數(T_Settle), 它指定在群組之第一鏈路之前級台應該以切割速率持續多 21 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -------1 —辦衣--------1T------0 (請先閱讀背面之注意事項再填寫本頁) 505956 A7 B7 五、發明説明(L°| ) 久。一般而言,PVT片段(亦即,級台之加速/減速發生的 片段)將在CV片段(亦即,級台速率是固定並且雷射切割 發生的片段)之前。如果T_settle被設定爲零,則將被切割 之第一鏈路會準確地發生在PVT片段之結束點以及CV片 段的開始處。在一些情況中,級台在缺乏任何安頓時間之 下無法充份地安頓至所需的精確性位準。這可能導致群組 中最先少數的鏈路的雷射誤置。 T_settle參數可被使用以預先·擴展標稱CV片段至等 於V*T_Settle之距離。這給予級台一些安頓時間並且以少 量的產量成本改進系統精確度。該參數一般是幾毫秒。 非零値的T_settle値影響"邊緣"鏈路之處理。延伸CV 片段以容納Tjettle僅施加於片段之開始。演算法可任意 選擇切割一組鏈路群組之較佳方向。如果一組邊緣群組從 邊緣開始並且朝向封包內部移動而被處理,則容納T_settle 所需要之距離(D_settle)將進一步減低從0加速至V/n所需 要之距離。因爲第一鏈路位置被固定,這意味著將需要施 加一組更低的速率至群組,如果它是被"往內"處理。 經濟部智慧財產局員工消費合作社印製 如果群組被"往外"處理(級台正好在行程的實際限制之 前停止),D_settle距離會將鏈路朝向級台封包之內部延 伸,而不迫使進一步地降低斷片之切割速率。 明顯地,以”向外的”方向處理邊緣聚集斷片似乎是可 以使切割速率增加至最大限度。情況並非永遠如此。分類 演算法的功能是尋找最佳方向。 將聚集分類 22 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 A7 B7 經 濟 •部 智 慧 財 產 局 員 玉 消 費 合 社 印 製 五、發明説明(>o ) 分類從一開始位置(Pi)開始。這位置對應於位置對齊 操作結束時所抵達之最後位置(通常接近位置的角落)。開 始速率(Vi)被假設爲零。 分類演算法以兩組可能方向各決定處理所有"可用的” 聚集之成本。成本的計算如下所示: 成本=Tpvt + Epvt/Kp + Tcvt 其中:Line 1T Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 505956 A7 _B7_ V. Description of the Invention (Clever) Inserter. The planner uses the analysis of data in specific areas, such as link maps and patching data to form channels for the stage. The output of this module is a set of trajectories; a list of moving clips, each of which is selectively matched with the control clip. When the laser beam and the three-dimensional coordinates of the link to be processed are determined, a set of motion control programs uses the trajectory planner or generator 12 of Fig. 1 to efficiently process the target structure. Referring next to Figures 4 and 5, in the preferred system, the acceleration and velocity curves are related to the following " moving segment " pattern: 1. PVT (position / rate / time) segment 110. It is used to accelerate to the desired position and rate. The time required to travel through this segment is optional; if not specified, the minimum time is calculated. 2. CVD (fixed-rate / distance) segment 111. This type has only a single scalar specification: the channel length of the fragment. The beam moves at a fixed rate over a specified distance. This rate is specified by the end point of the previous segment. Program control is usually performed during the CVD segment. 3. CVT (fixed-rate / time) segment. This is the same as a CVD segment, but the duration of the segment is specified rather than its length. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4. Stop clip Π3. There is no stipulation in this segment that it should be as fast as possible. "Ablation" means firing a laser pulse to cut link 114. Furthermore, "stop " segment termination movement, preferably as fast as possible. Program control and link blowout are usually related to fixed rate segments. In a better system, the acceleration and rate curves are based on the DSP-based 12 books. Paper size applies Chinese national standard (CNS> A4 specification (210X297mm) Printed by A7, B7, Consumer Cooperative of Intellectual Property Bureau, Ministry of Economic Affairs, i. Description of invention) Servo controller 16 is combined to generate wafer xy movement. Along the optical axis The lens transition is coordinated with the X, y movement, so that when the laser generates a pulse, the narrow part of the beam will be placed at the wafer target position. The Z coordinate of the narrow part of the beam can be between any two sets of structures on the wafer. Dynamically adjusted, including adjacent structures arranged in the same row (along X or y direction) of a single chip. For example, the z-axis incremental resolution (minimum height difference) of the link fusing, preferably It is about and has a limit of about 0.05 # m. The problems involved in channel planning within the system are as follows: given the initial and final position and velocity (vector) regulations, find The "best" trajectory that meets the conditions of the termination point and the restrictions on the position packet, the maximum rate, the maximum acceleration, and the maximum voltage. This optimal trajectory minimizes the trajectory " cost ". For the given The "cost" of the trajectory refers to the weighted sum of the trajectory time and the energy consumed in the motor coil. The weighting factor for time is always one unit (1.0). The weighting coefficient of energy is a variable. Many trajectories can meet the required termination point conditions and meet system constraints. However, the costs associated with multiple solutions can vary widely. The algorithm of the present invention finds the best solution (the lowest " cost ") and uses the trajectory to perform the movement. Consider a simple set of examples. The trajectory that is often encountered when repairing billions of bodies is called " combined ". Laser processing needs to follow two adjacent sets of short-line segments. The segments are collinear and the segments are processed at the same fixed rate. A set of gaps exists between collinear segments. A set of "CV" segments can be used to cross the gap (that is, a fixed rate at the same rate as the previous segment is used. 13 This paper size applies Chinese National Standard (CNS) A4 Specifications (210X 297mm) -------- | batch clothes ------ '玎 ------- 0 (Please read the precautions on the back before filling this page) 505956 A7 ____B7_ V. Description of the invention (L () rate segment). In addition, the gap can be crossed in a little less time using a short acceleration / deceleration curve. The cost of the CV solution is only the time required to cross the gap (distance / rate). Because there is no energy consumption in the CV segment. However, the acceleration / deceleration curve will take less time but greater energy consumption. In this case, the best choice depends on the relative weighting of energy consumption relative to the time of the cost function. Moving curve A line segment contains one or more intervals. A set of intervals is defined as a set of trajectory subsets, where acceleration is limited to a predetermined function of two sets of variables: APK (peak-to-peak acceleration amplitude) and Tint (the duration of the interval) ). The type of acceleration curve is trochoidal or harmonic. Because the type is predetermined, only the amplitude and duration are needed to fully specify the movement during the trajectory interval. The trajectory is a sequence of continuous (time, position , Velocity, acceleration, and shaking) intervals, each interval has a variable duration and acceleration amplitude (may be zero). It should be noted that a set of CV (fixed rate) trajectory segments is a set of single intervals with APK = 0 The system printed by Figure 1 of the Employees' Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs reached a set of continuous trajectories to form a set of single moving curves. A single moving curve can last for many seconds and contain hundreds of trajectory segments. Multiple intervals are generally required In order to meet the termination point of the trajectory segment, the interval can generally be described as corresponding to "quotation" or "pulse". " C " or "P ". A set of C-fragments has the feature of APK = 0. A set of P-fragments has a non-zero APK. In the combined example given earlier, the navigation solution contains a single set of" C " ”____ 14 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 505956 Ministry of Economy ¾ Ahui B7 printed by the Consumers’ Cooperative of Consumer Property Co., Ltd. A7 B7 5. Inventory (^) interval, and the acceleration / deceleration solution is A set of "P · P" solutions. The other fragment combinations are required to handle the various trajectory requirements required by the system in Figure 1: (C, CP, PC, PP, PCP, PPPP, PPCPP). Not all solution types are applicable to the given trajectory segment. For example, trajectory segments containing different start and final velocities (Vi < > Vf) cannot be satisfied in the c interval. Solution CVT or CVD segment solution is simple (specified time or zero acceleration of distance). Because time was specified and energy consumption was zero, no optimization was performed. CV fragments will not be discussed further. The solution to the PVT trajectory segment is more complicated. The solution consists of the following steps = 1. The decomposition vector specification becomes the X and y axis specifications. 2. Find the minimum cost solution for each axis separately. 3. Get the slowest axis time and find the "quick" axis solution, which depends on the same minimum "slow" cost of elapsed time. The minimum cost solution for a single axis consists of the following steps: 1. Find the best solution for each type of solution (ie, C, P, PC, CP, etc.). 2. Choose the best solution between multiple forms (if multiple solutions exist). ____15 This paper size is applicable to Chinese National Standard (CNS) A4 (210X297 mm) -------- | Doing clothing ------ 1T ------ ^ (Please read the note on the back first Please fill in this page again for matters) 505956 A7 B7 V. Description of the invention (θ) The relative cost of energy printed by the employee's cooperative in the Intellectual Property Bureau of the Ministry of Economic Affairs is controlled by the variable κρ. Kρ is used in the cost formula as follows: Cost = T + Ε / Κρ It should be noted that Kρ has the dimension of power. This provides an intuitive guideline for choosing Kp. If Kρ is set to be large, the cost of energy consumed is small. The resulting solution will be minimal. Conversely, setting Kρ to be small will make the energy "expensive", and therefore the solution will often be to minimize power at the cost of time. Because Kρ is a variable, it can be set dynamically. The system of Figure 1 uses this capability to further control power consumption (and therefore improve accuracy). During production operations, a sequence of track segments must be provided to the channel planning algorithm. The channel planning algorithm determines the energy that will be consumed during each moving segment. Using a simple first-order model of the thermal response of the coil, the channel planning algorithm will anticipate the temperature rise caused by the energy consumption history of the trajectory. In a trajectory segment containing many short acceleration segments, the estimated temperature may rise more than required. The channel planning algorithm will then reduce Kρ 値 to bias the mobile optimization solution towards lower power regions. Conversely, when the estimated temperature rise is very small, the channel planning algorithm will increase κρ. The simulation revealing time based on the real recording data of the billionth body is relatively ___ 16 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 505956 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 _B7_ Description of the Invention (^ 4) The dynamic adjustment of the relative cost of the bear volume reduces the change in the motor temperature. The accuracy of the system in Figure 1 is quite sensitive to the rate of change of temperature (but not particularly sensitive to any particular temperature). The main source of stage temperature change is the change in motor power consumption caused by trajectory. Dynamically adjusting Kp as a function of estimated temperature significantly reduces variation and produces higher accuracy. When performing general memory repair trajectory, the power consumption level in the motor will be strongly affected by κρ. However, the overall output of the system is a weak function of Kρ. Therefore, the components of the stage error caused by the motor consumption can be effectively controlled with a small influence on the overall output. Since the χ-y stage is significantly faster than competitive provision, this form of precise control can be achieved without much impact on market acceptance. Solution Advantages The optimized multi-pulse solution provides the following advantages: Continuous and smooth movement The channel planning algorithm allows continuous movement on the χ-y plane with minimal stops. The movement curve is not limited to any position interruption and the derivative (derivative of acceleration) caused by all shaking. This therefore limits the spectral content of the forces applied to the stage, thereby reducing the mechanical resonance of the stage and supporting structure and reducing power consumption. The trajectory is optimized (based on the relative weight of power consumption, essential). -Consumption minimization and utilization control κρ as a function of the expected motor temperature, a type of temperature reduction ___17 This paper size applies the Chinese National Standard (CNS) Α4 specification (210X297 mm) --------- | batch ------ 1Τ ------- ^ (Please read the notes on the back before filling out this page) 505956 A7 B7 V. Description of the invention (6) A simple device that changes and thus increases accuracy is realized. Link Optimization As mentioned earlier, the specified link order to be cut is rarely the best order to guide the link cut procedure. The algorithm described here rearranges the links and thus achieves reductions: 1) execution time; 2) motor power consumption; and 3) the spectrum inclusion of the power applied to the system. Reduced execution time leads to higher productivity of the system. Reduce motor power consumption and improve system accuracy. By avoiding the excitation of structural resonances that may lead to incorrect placement, the reduced power spectrum contains improved accuracy and yield. The algorithm is modeled based on the conventional "travel salesman" problem. However, in this case, it is of interest to minimize the cost of inspecting each link group rather than just inspecting each group. Minimize time. The classification algorithm also conveniently handles some special situations and conditions that limited the performance of the previous memory repair system. The system printed by Figure 1 of the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs is generally a single "processing point" " Handle multiple wafers. The system's range size allows up to six or eight 64MDRAM wafers to be processed simultaneously. This process is called multi-wafer alignment (MDA). The use of MDA provides significant yield improvements by reducing the number of alignment operations required to process a wafer from one wafer at a time to one processing point at a time. Alignment operations may take approximately the same amount of time as a single-chip link cut. MDA introduces another opportunity to take advantage of link rearrangement to improve yield. Link groups of adjacent chips may be collinear. Processing collinear groups without intervening PVT moving segments (ie, acceleration / deceleration segments) is usually the best solution. The link classification algorithm considers all groups within the processing point. 18 This paper size applies the Chinese National Standard (CNS) A4 specification (210X 29 < 7 mm). 505956 A7 B7 Printed by employees of the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 5. Description of Invention (Vb) in order to find the best sequence. Algorithm The algorithm is as follows: 1. Gather the link groups that need to be processed within all processing points. This often includes reading a "repair file" with repair data, as shown in Figure 2, and may convert the customer data format into an internal representation of the link that will be cut. 2. Join adjacent groups. When reading When fetching the list of link groups to be cut, "join" adjacent groups to become " aggregate ". Adjacent groups are combined if they are collinear. Groups can be processed at the same rate and the gap between the end point of a group and the start point of a subsequent group is larger than the minimum scale and smaller than the maximum scale. 3. Identify the " edge " group. If the end point of an aggregation is too close to the actual limit of the stage packet, the stage cannot have enough acceleration to process the group at full speed and stop before the "strike" limit of the stage travel. The aggregation uses all Links adjacent to the "edge" are scheduled to the new cluster and the remainder remains in the original cluster and cut into two clusters. The new lower rate is assigned to the edge cluster so that the stage can have enough space The new cutting rate is reached within the distance between the last link of the new group and the actual limit of the stage travel. 4. Classify the aggregation. The input to the classification is an aggregation with (arbitrary) direction assigned to each aggregation. (Arbitrarily) a sorted list. (Direction refers to the direction in which aggregated links will be traversed, forward or backward.) The output of the classification process is a set of identical chains assigned to each group in a new direction. The new paper size of Lu Group is applicable to the Chinese National Standard (CNS) Α4 specification U10X297 mm. Approved clothing_1ΤI I-^ (Please read the precautions on the back before filling this page) 505956 A7 B7 V. Description of the invention (f |) sequence. The reordered list is optimized. 5. Process the group. The sorted list of the group is entered into the channel planning algorithm. The group is crossed by the aforementioned use The order of a single continuous-moving trajectory for the entire set of links is processed. ^ Edge aggregation processing occurs as a group close to the stroke limit is a challenge for any memory patching system. The distance required to stop is a function of the square of the rate And the reciprocal of acceleration. In the system of Figure 1, a compromise is used in the design of the xy stage to limit the number of " overtravel " available between the end of the user's travel range and the actual limit of the travel. The limit is Select as part of the optimization of the motor design of the χ-y stage. If the stage travels at the edge of the user packet at the maximum cutting rate (150 mm / s), then the edge of the user packet and the stroke The limit distance between practical limits (about 200 μM) is not enough to stop the stage. One set of solutions is to reduce the maximum cutting rate to ensure that the stage can always stop. This It is not necessary because there is no need to increase the processing time of the internal link group. Another solution is to use a lower rate for the entire aggregation. This also unnecessarily increases the processing time. The Intellectual Property Bureau, Ministry of Economic Affairs, Consumer Consumption Cooperative The solution adopted here is to make the minimum number of links accept the lower rate limit. The original aggregation occurs on the first link that did not accept the reduced rate limit, regardless of the original group boundary. Location. Furthermore, the rate assigned to the " edge " link is selected as an integer component (1 / η) of the nominal rate. A set of examples will help explain the advantages of this mechanism. Assume the original group The group has a link gap of 4 // M. Furthermore, assuming 20 paper standards are applicable to the Chinese National Standard (CNS) A4 specification (210 × 297 mm) 505956, printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention The maximum Q-rate allowed for a particular laser in use is 20,000 pulses per second. The maximum rate during processing will be 80 mm / s. For a simple harmonic acceleration curve that accepts a maximum rate of 30 meters per second squared, the stage will need -200 // M to stop (or reach the cutting rate from stopping). Assuming that some links in the group are sufficiently close to the edge of the user packet, the link will require a lower cut rate. The actual rate selected for the original aggregated fragment will be chosen based on the minimum 値 η, so that the new rate will be equal to the original rate divided by n. The η 値 is obtained interactively using 2 starting from 2 and increasing until the generation rate is small enough to handle the last link (closest to the edge) in the aggregated fragment and the stage maintains a sufficient stopping distance. Processing this aggregated fragment only at V / n will cause the laser emission rate to be reduced to Q / n (in this example, Q = 20,000). This may result in poor changes in link cut quality for links in segments that accept different laser Q rates. This change is eliminated in the algorithm that introduces the concept of "ablation-per-gap" (bpp). In general, bpp = 1 and the laser is fired once at each stage of the mobile gap. When the fragment is shot at V / n During processing, bpp is set to η. The system in Figure 1 recognizes this parameter and emits a laser at a fixed rate equal to n * (V / n) / p = V / p = Q. The system " imaginary " has η -1 groups of "ghost" links are also distributed between each group of natural links. This forces the laser Q-rate to be the same as the Q-rate used on all other links and ensures that all links are consistent The algorithm further achieves an optimization that affects links close to the edge of the user packet. The link classification algorithm includes a set of parameters (T_Settle), which specifies the stage before the first link in the group. Should continue to cut more than 21 This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 mm) ------- 1-clothing -------- 1T ------ 0 (Please read the notes on the back before filling out this page) 505956 A7 B7 V. The description of the invention (L ° |) is long. Generally speaking, PVT fragments (Ie, the stage where the acceleration / deceleration of the stage occurs) will be before the CV segment (ie, the stage where the stage rate is fixed and laser cutting occurs). If T_settle is set to zero, the first stage will be cut A link will occur exactly at the end of the PVT segment and at the beginning of the CV segment. In some cases, the stage cannot fully settle to the required accuracy level without any settling time. This may Causes the laser misplacement of the first few links in the group. The T_settle parameter can be used to pre-expand the nominal CV segment to a distance equal to V * T_Settle. This gives the stage some settling time and a small amount of production cost Improve system accuracy. This parameter is generally a few milliseconds. A non-zero T_settle 値 affects the processing of the "edge" link. Extends the CV segment to accommodate Tjettle only applied to the beginning of the segment. The algorithm can optionally cut a group The preferred direction of the link group. If a group of edge groups is processed starting from the edge and moving towards the inside of the packet, the distance (D_settle) required to accommodate T_settle will be increased. Steps reduce the distance required to accelerate from 0 to V / n. Because the first link position is fixed, this means that a lower set of rates will need to be applied to the group if it is " inward " processed Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. If the group is processed "outward" (the stage stops just before the actual limit of the trip), the D_settle distance will extend the link towards the inside of the stage packet, without Forcing to further reduce the cutting rate of the fragment. Obviously, processing edge-gathering fragments in an "outward" direction seems to maximize the cutting rate. This is not always the case. The function of the classification algorithm is to find the best direction. Categorize and classify 22 paper standards to Chinese National Standards (CNS) A4 specifications (210X297 mm) 505956 A7 B7 Printed by Jade Consumer Cooperative, member of the Bureau of Intellectual Property of the Ministry of Economic Affairs • Classification of inventions (> o) from the beginning (Pi) Start. This position corresponds to the last position (usually near the corner of the position) reached at the end of the alignment operation. The starting rate (Vi) is assumed to be zero. The classification algorithm decides to deal with all " available "aggregated costs in two possible directions. The cost is calculated as follows: Cost = Tpvt + Epvt / Kp + Tcvt where:

Tpvt爲自(Pi ; Vi)移動至群組開始之時間;Tpvt is the time from (Pi; Vi) to the start of the group;

Epvt爲在移動時馬達線圈中之能量消耗;Epvt is the energy consumption in the motor coil when moving;

Kp爲被施加至馬達能量之加權係數(功率單位);以及Kp is the weighting factor (power unit) applied to the motor energy; and

Tcvt爲完成C V片段所需的時間。 對於各聚集而言,移動被假設爲開始於(Pi ; Vi)。各 聚集有兩組成本數値被計算出-各方向一組。不同方向的成 本可能顯著地不同。 稱爲N_level之參數被使用於控制分類演算法。如果 NJevel被設定爲1,則展示最低成本的聚集/方向組合被 選擇爲第一處理聚集。它從"可用的"聚集列表被移除並且 被置於"程序列表"的開頭。開始位置(Pi ; Vi)被更新以便 反映處理第一聚集之終止時達到的位置以及(非零)速率。 分類演算法重新計算所有可用的聚集/方向之成本。應 注意到由於顯著不同的開始狀況,決定於第二級台之成本 與被獲得於第一級台的成本沒有任何關聯。非零開始和結 束速率對於成本之影響可能不明顯。從可用群組中選擇最 低成本聚集/方向組合的程序執行直至沒有可用聚集爲止。 23 本紙張尺度適用中國國家標準(CNS ) Α4規格(210Χ297公釐) I 批衣 I—1Τ^^ (請先閲讀背面之注意事項再填寫本頁) 505956 A7 ___B7________ 五、發明説明(yl ) 參數N_Uvel控制最佳聚集順序的捜尋範圍。在上面 所給予的範例中,N_level被設定爲1,選擇最佳聚集/方 向以便處理之結果不被考慮。選擇最佳聚集很可能導致依 序聚集之較低效率的順序。 除了找到最好的解決辦法之外,如果該選擇的所有結 果可被探測,則可以做出真正最佳選擇。那麼’考慮所有 的結果,最佳解決辦法即被選擇。 例如,假設開始時有十組(10)需要分類之聚集。二十 組(20)聚集/方向之啓始組合的成本將被考慮。我們可以從 這二十組列表中選擇最佳五組(例如)。接著,這五組列表 進一步地被檢査。對於五組中之各組而言,將考慮尙未被 處理的十八組(18 = 2 *9)聚集。從這列表,選擇最好的五絍 並且對於十六組(16 = 2 *8)聚集考慮五組中之各組。接著* 最好五組被選自這列表且其餘聚集被考慮。這程序繼續直 至沒有未被分類的聚集爲止。接著計算最先五組聚集之各 組總和成本。總和的成本是利用選自所有基本聚集選擇的 最佳解決辦法之成本的總和而被獲得。之後,一組聚集被 選擇並且可再次在剩餘組集中重複全部處理程序。 顯然地,對於大量的聚集而言,這徹底的搜尋以便找 到最佳聚集在計算上是非常昂貴。一般具有多重晶片位置 之修補資料可能在十組聚集至上百的聚集的範圍內。對於 具有許多聚集之位置而言,徹底的搜尋會過分耗時。 幸運地,真正修補資料之經驗指示詳盡徹底的捜尋在 1·位準深度(N_level=l)搜尋時的好處很小。如果NJevel 24 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) (請先閱讀背面之注意事項再本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 505956 A7 B7 五、發明説明(>y) 被設定爲3(例如),則搜尋將在3-位準被執行。 應注意到連續的搜尋位準僅於第一位準之後在最佳Μ 聚集(Μ = 5,如上所述)被達成。雖然這可能導致次佳順序 被選擇的機會,但是與"不適當的"第一選擇相關的額外成 本無法被有益的結果(在依序的搜尋位準上發現)所彌補。 有一組性質上的論據可支援在Μ或者N_level是大數 値時分類法則不獲益的試驗性觀測。對於一般的修補資 料,級台將花費總計時間的80%至90%之間在CV片段中 發射雷射。重新安排資料並未影響CV處理時間。重新安 排使PVT時間(少量)最佳化並且可對於被消耗的能董具有 顯著的影響。但是,一旦可用聚集的"適當"通道被發現 (N_level=l),設定N_level爲2或者3僅會導致少數百分 比的進一步節省時間。將分類進行至最大位準導致比在 N —level = 3時有極小己文進。 雖然NJevel之大數値僅有少量的改進,以N_level 在1至3範圍內之分類對於能量消耗以及頻譜內容具有顯 著的影響。分類法則找機會節省動量(因爲如果節省動量, 則沒有能量被消耗)。例如,當相鄰晶片之兩組聚集可被處 理而無介於中間的PVT片段時,級台動量便被節省。相鄰 鏈路群組時常出現。分類將找到一組平穩的移動曲線,它 從一組列中鏈路群組的結束點轉移至另列中鏈路群組的開 始點。這平穩的曲線一般是比傳統進行轉移於三組級台: 停止、跳躍、開始的曲線更快速,消耗較少的能量並且具 有更低的頻譜內容。 25 本紙張尺度適用中國國家標準(CNS ) A4規格(21〇X:297公釐) —IB— In mi ί I i n^i nn tn m_i n (請先閱讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 505956 A7 B7 五、發明説明(>乃) 最後,一組範例將展示爲何選擇處理邊緣鏈路群組之 方向並非永遠明顯的。考慮聚集在+X邊緣位置之末端。 假設原始的聚集必須被分爲兩組而產生聚集斷片。如果該 斷片聚集於+X方向被處理,相較於如果它由於T_Settle 的衝擊而於-X方向被處理,它可以較高的速率被處理。在 聚集分類(假設N_level=l)時,假定選擇原始的聚集以+X 方向處理。在接著的分類法則中,處理斷片之成本利用假 定+X處理以及-X處理而被決定。成本將依據方向之函數 的不同可達成速度而考慮CV片段中時間差量。但是,斷 片無法以如先前聚集之相同速率被處理。在先前聚集(原始 的聚集,現在被切割)的結束點以及斷片間時常不具有足夠 的距離以允許級台減速至+X斷片速率。試圖以循行原始 的聚集之+X橫越的+X方向處理斷片的相關成本導致迅速 的減速(從原始的聚集)至-X速率,接著增速至較低的+X 速率以越過該位置。 於-X方向越過斷片之成本時常較少,因爲級台能夠進 行較平穩的轉移(亦即較低的能量消耗)以停止於接近封包 末端並且接著增速至較低的速率(-X方向)以即時抵達聚集 斷片之最外面鏈路。加權之能量節省(E/Kp)時常比增加之 Tcv時間更顯著。 解決辦法之利益 聚集分類在與先前實施的比較中展示下列利益: 1. 演算法考慮跨越過整個位置的鏈路。這導致在分 類被以晶片接晶片準則達成時無法被實現的最佳化(節省動 26 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (請先閲讀背面之注意事項再'本頁) 訂 線_ 經濟部智慧財產局員工消費合作社印製 505956 :· Α7 . Β7 五、發明説明(>ψ) 量之機會)被實現。 2 演算法明確地考慮到接近封包邊緣之群組並且以 僅接受致動機構限制之最有效的方式處理它們。 3. 演算法考慮到啓始及最後速度以及在一組群組的 結束點和接著群組的開始點之間的距離。這使得附近群組 的合倂爲明確。先前的演算法會僅依據預置距離準則合倂 附近的群組。選擇適當的距離臨限以合倂成爲非常重要議 題。在演算法中,合併任何附近的群組之唯一動機是爲了 減低需要被分析之聚集的數目。這導致較先前的演算法更 短的合倂距離之選擇(亦即,不合倂相隔大於X之群組)。 分類將連續放置"未合倂"聚集,並可能在群組之間以PVT 片段替代CV片段。亦即,如果啓始"聚集"級台並未合併 聚集,則它們仍然可以被分類步驟所合倂。 4. 相反地,”未合倂"聚集可能在序列外較易被處理。 當所檢視之軌線是由於分類具有對應於處理點之四組角落 的四組不同的開始位置開始之相同資料所產生時,這成爲 明顯的。 5. 演算法內含地減低與處理點相關的頻譜內容以及 能量消耗。因爲功率消耗被包含於成本公式中,最佳化處 理成本導致較低的能量消耗。較不顯著的或許是相同最佳 化導致較長持續之較少加速度脈波。 片段計割 多重脈波曲線是過度受限制的-曲線的參數比邊界條件 更多。在許多情況中,可以使用多於一組脈波以及行程之 27 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇Χ297公釐) ----------^ II (請先閲讀背面之注意事項再填寫本頁) 訂 線 經濟部智慧財產局員工消費合作社印製 505956 A7 B7 五、發明説明(yi ) 組合來調適於邊界條件;對於單一組合而言’也許有無限 數之解決辦法。 簡要地參考特定的區間組合,脈波以p代表,而行程 以C代表;例如,脈波/航行/脈波片段將被稱爲PCP。當 相關時,吾人將會在最小時間將被計算("M"),以及時間 被指定("T")的情況之間區別。例如,可以具有PCP-M以 及PCP-T解決辦法,但事實上,它們是完全不同。 •裝· 許多不同的區間組合,或者結構型式,將被製作。如 果吾人不具備一般解,一些邊界條件之設定將具有無限多 之解。有時,多於一組型式會解決邊界條件。在那些情況 中,便會選擇最低成本之解法。對於各型式,-M以及-T 兩種解法皆會被製作。目前被解決之型式是: *第6圖之脈波/行程:這產生C、P、CP、以及PC片 段。 線 *第7圖之脈波/脈波:這產生PP以及PCP片段。脈 波具有相同加速度振幅但是相反的符號;脈波時間是獨立 的。如果第一脈波之結束點的速率超過最大値,則最高速 率之航行區間被使用,而形成一 PCP片段。 經濟部智慧財產局員工消費合作社印製 *第8圖之停止/跳躍/開始:這也被稱爲一種Z移動。 這產生一組PPCPP片段並且-T解法同時可產生一組 PPCPCP片段。如果沒有其他的解法合適的話*這是最後 的解法。其包含立即的停止、PCP點對點移動且停止至"級 台之點",以及接著最後脈波以增速至最後位置和速率。 這片段型式一般會比其他的型式需要更多的時間以及 _____ 28 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 經濟部智慧財產局員工消費合作社印製 A 7 B7 五、發明説明(>b) 更多的能量。但是,觀察位置限制會使之對於少數,最好 不常的邊界條件集是重要的。 解決所給予的多軸pvt片段之策略如下所示: 1 .得到各軸之最小時間移動(亦即,解決軸_M問題)^ 從這些時間挑選最大的。使用被指定的時間(軸·Τ)解法解 決其他的軸。 下面的序列被使用於解決最小時間以及指定時間兩者 之問題: 1. 試圖設計一組PC以及PP片段;保留一組各型式 之最佳可行的解法列表。 2. 如果有可行的解法,則以挑選具有最低成本的一 組。 3. 如果到目前爲止沒有可行的解法,則設計一組停 止/跳躍/開始移動。 可行性檢査包含數値的檢査,例如,區間時間是非負 數的,以及實際的檢査,例如,電壓、速率、和位置限制 不被違背。 下面的圖表是對於擺線式(cycloid)以及諧波式 (harmonic)多脈波加速度所導出公式之摘要。 ;____29 本紙張尺度適用中國國家標準(CNS ) A4規格(210X29*7公釐) ---------批衣------^------^ (請先閲讀背面之注意事項再填寫本頁) 505956 經濟部智慧財產局員工消費合作社印製 A7 __B7 五、發明説明(>1 )Tcvt is the time required to complete the C V segment. For each aggregation, the movement is assumed to start at (Pi; Vi). Each aggregation has two sets of cost figures-one for each direction. Costs in different directions can be significantly different. A parameter called N_level is used to control the classification algorithm. If NJevel is set to 1, the aggregation / direction combination that exhibits the lowest cost is selected as the first processing aggregation. It is removed from the " Available " aggregate list and placed at the beginning of the " program list ". The starting position (Pi; Vi) is updated to reflect the position reached at the end of processing the first aggregation and the (non-zero) rate. The classification algorithm recalculates the cost of all available aggregations / directions. It should be noted that due to the significantly different starting conditions, there is no correlation between the cost determined by the second stage and the cost obtained by the first stage. The impact of non-zero start and end rates on costs may not be significant. The procedure of selecting the lowest cost aggregation / direction combination from the available groups is performed until no aggregation is available. 23 This paper size applies Chinese National Standard (CNS) A4 specification (210 × 297 mm) I batch of clothing I-1T ^^ (Please read the precautions on the back before filling this page) 505956 A7 ___B7________ 5. Description of the Invention (yl) Parameters N_Uvel controls the search range for the best aggregation order. In the example given above, N_level is set to 1, and the best aggregation / direction is selected so that the processing result is not considered. Choosing the best aggregation is likely to result in a less efficient order of sequential aggregation. In addition to finding the best solution, if all the results of that choice can be detected, a truly best choice can be made. Then ’considering all the results, the best solution is chosen. For example, suppose at the beginning there are ten groups (10) of aggregates that need to be classified. The cost of the initial set of twenty (20) clusters / directions will be considered. We can select the best five groups from this list of twenty groups (for example). These five sets of lists are then examined further. For each of the five groups, eighteen groups of untreated (18 = 2 * 9) clusters will be considered. From this list, select the best five 絍 and consider each of the five groups for a group of sixteen groups (16 = 2 * 8). Then * preferably five groups are selected from this list and the remaining aggregations are considered. This process continues until there are no unclassified aggregates. Then calculate the total cost of each group of the first five groups. The sum of the costs is obtained using the sum of the costs of the best solution selected from all the basic aggregation options. After that, one set of aggregates is selected and all processing procedures can be repeated again in the remaining set. Obviously, for a large number of aggregates, this thorough search to find the best aggregate is computationally very expensive. Patch data with multiple wafer locations may range from ten clusters to hundreds of clusters. For locations with many clusters, a thorough search can be time consuming. Fortunately, the experience of truly patching data indicates that exhaustive searches have little benefit when searching at a 1-level depth (N_level = l). If the NJevel 24 paper size applies Chinese National Standard (CNS) A4 (210X 297 mm) (please read the precautions on the back before this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs Consumer Cooperatives 505956 A7 B7 5. DESCRIPTION OF THE INVENTION (> y) is set to 3 (for example), the search will be performed at the 3-level. It should be noted that the continuous search level is reached only after the first level at the optimal M-aggregation (M = 5, as described above). Although this may lead to the next best chance of being selected, the additional costs associated with " inappropriate " first choice cannot be compensated by beneficial results (found at sequential search levels). There is a set of qualitative arguments that support experimental observations where the taxonomy does not benefit when M or N_level is a large number. For general repair data, the stage will spend between 80% and 90% of the total time firing lasers in the CV segment. Rescheduling did not affect CV processing time. Rescheduling optimizes the PVT time (in small amounts) and can have a significant impact on the energy directors consumed. However, once the available aggregated " appropriate " channels are found (N_level = l), setting N_level to 2 or 3 will only lead to a small percentage of further time savings. Performing classification to the maximum level results in minimal self-advancement when N —level = 3. Although NJevel's large numbers have only a small improvement, classification with N_level in the range of 1 to 3 has a significant impact on energy consumption and spectrum content. The classification rule looks for opportunities to save momentum (because if you save momentum, no energy is consumed). For example, when two sets of clusters of adjacent wafers can be processed without intervening PVT segments, stage momentum is saved. Adjacent link groups often appear. Classification will find a set of smooth moving curves that shift from the end point of the link group in one set to the start point of the link group in the other set. This smooth curve is generally transferred to three groups of stages than the traditional one: stop, jump, start curve is faster, consumes less energy and has lower spectrum content. 25 This paper size applies the Chinese National Standard (CNS) A4 specification (21〇X: 297mm) —IB— In mi ί I in ^ i nn tn m_i n (Please read the precautions on the back before filling this page) Order Printed by the Intellectual Property Bureau's Consumer Cooperatives of the Ministry of Online Economy 505956 A7 B7 V. Description of the Invention (> Yes) Finally, a set of examples will show why the direction of choosing to deal with edge link groups is not always obvious. Consider clustering at the end of the + X edge position. Suppose that the original aggregate must be divided into two groups to produce aggregate fragments. If the fragment is processed in the + X direction, it can be processed at a higher rate than if it was processed in the -X direction due to the impact of T_Settle. In cluster classification (assume N_level = 1), it is assumed that the original cluster is selected to be processed in the + X direction. In the following classification rule, the cost of processing the fragment is determined using the assumption + X processing and -X processing. Cost will take into account the time difference in the CV segment depending on the achievable speed as a function of direction. However, fragments cannot be processed at the same rate as previously gathered. The end point of the previous gather (the original gather, now cut) and the fragments often do not have enough distance between them to allow the stage to decelerate to + X fragment rate. The associated costs of attempting to process the fragment in the + X direction of the original aggregate and the + X traverse result in a rapid deceleration (from the original aggregate) to the -X rate, and then increase to a lower + X rate to cross the position . The cost of crossing the fragment in the -X direction is often less, because the stage can make a smoother transfer (that is, lower energy consumption) to stop near the end of the packet and then increase to a lower rate (-X direction) To reach the outermost link of the aggregate segment in an instant. Weighted energy savings (E / Kp) are often more significant than increased Tcv time. Benefits of the solution Aggregation classification shows the following benefits in comparison with previous implementations: 1. The algorithm considers links that span the entire location. This resulted in optimizations that could not be achieved when the classification was achieved by the wafer-to-wafer guidelines (savings of 26 paper sizes are applicable to the Chinese National Standard (CNS) A4 specification (210X297 mm)) (Please read the precautions on the back before you go to ' (This page) Ordering line _ Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 505956: · Α7. Β7 V. The opportunity of the invention description (> ψ) was realized. 2 The algorithm explicitly considers groups near the edge of the packet and treats them in the most efficient way that only accepts the limits of the actuating mechanism. 3. The algorithm takes into account the start and end velocities and the distance between the end point of a group and the start point of a subsequent group. This makes the combination of nearby groups clear. Previous algorithms combined nearby groups based on preset distance criteria only. Choosing an appropriate distance threshold to combine them becomes a very important issue. In the algorithm, the only motivation for merging any nearby groups is to reduce the number of aggregates that need to be analyzed. This leads to the choice of shorter combined distances (i.e., groups that are not separated by more than X) than previous algorithms. The classification will be continuously placed " uncombined " aggregates, and may replace CV fragments with PVT fragments between groups. That is, if the initial " aggregation " stage has not merged the aggregates, they can still be combined by the classification step. 4. Conversely, "uncombined" aggregation may be easier to process outside the sequence. When the trajectory being viewed is due to the same data starting from a classification with four different start positions corresponding to the four sets of corners of the processing point This is obvious when it occurs. 5. The algorithm inherently reduces the spectrum content and energy consumption associated with the processing point. Because power consumption is included in the cost formula, optimizing the processing cost results in lower energy consumption. Less significant may be that the same optimization results in longer lasting pulses with less acceleration. The segmentation-cutting multiple pulse wave curve is overly restricted-the curve has more parameters than the boundary conditions. In many cases, you can use More than one set of pulses and strokes of 27 This paper size applies to the Chinese National Standard (CNS) Α4 specification (21〇 × 297 mm) ---------- ^ II (Please read the precautions on the back before (Fill in this page) Printed by the Intellectual Property Bureau Staff Consumer Cooperative of the Ministry of Economic Affairs 505956 A7 B7 V. Invention Description (yi) Combination to adjust to boundary conditions; for a single combination, 'maybe there is an unlimited number of Briefly refer to a specific interval combination, pulse waves are represented by p, and strokes are represented by C; for example, pulse wave / navigation / pulse wave segment will be called PCP. When relevant, we will The difference between being calculated (" M ") and time being specified (" T "). For example, there can be PCP-M and PCP-T solutions, but in fact, they are completely different. · Many different combinations of intervals, or structural patterns, will be made. If we do n’t have a general solution, some boundary condition settings will have an infinite number of solutions. Sometimes, more than one set of patterns will solve the boundary condition. In those cases In this case, the lowest cost solution will be selected. For each type, both -M and -T solutions will be made. The currently solved types are: * Pulse / stroke of Figure 6: This produces C, P, CP and PC segments. Line * Pulse / Pulse in Figure 7: This produces PP and PCP segments. Pulses have the same acceleration amplitude but opposite signs; pulse time is independent. If the first pulse is over Point rate super At the maximum speed, the highest speed voyage interval is used to form a PCP fragment. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs * Stop / Jump / Start of Figure 8: This is also called a Z-movement. A set of PPCPP fragments and the -T solution can simultaneously generate a set of PPCPCP fragments. If no other solution is appropriate * this is the final solution. It includes immediate stop, PCP point-to-point movement, and stop to "level-level point". , And then the last pulse to increase to the final position and velocity. This fragment type generally takes more time than other types and _____ 28 This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) 505956 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs A 7 B7 V. Description of Invention (> b) More energy. However, observing position constraints can make it important for a small, preferably infrequent set of boundary conditions. The strategy for solving the given multi-axis pvt fragments is as follows: 1. Get the minimum time movement of each axis (ie, solve the axis_M problem) ^ Pick the largest from these times. Use the specified time (axis · T) solution to solve other axes. The following sequence is used to solve the problem of both the minimum time and the specified time: 1. Try to design a set of PC and PP fragments; keep a list of the best feasible solutions of each type. 2. If a feasible solution is available, select the group with the lowest cost. 3. If no solution is available so far, design a set of stop / jump / start movements. The feasibility check includes a number of checks, for example, the interval time is non-negative, and actual checks, for example, voltage, rate, and position constraints are not violated. The following chart is a summary of the derived formulas for cycloid and harmonic multipulse acceleration. ; ____ 29 This paper size applies to China National Standard (CNS) A4 (210X29 * 7mm) --------- Batch ----- ^ ------ ^ (Please read first Note on the back, please fill out this page again) 505956 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 __B7 V. Description of Invention (> 1)

Item Cycloid Harmonic Acceleracion n A( 2-r 1 α(/)« cos~fj Velocity AT AT m v(〇 « v# + -- cos— V(f) = ν· ♦专卜芒sin宇 Position p(t) 3 ^ ^ vf + i - silty Jerk ,,Ax nt y(/)=-jrc〇s— aA . 2ge X〇*~sm~ Single Pulse A 2 AT 厶V s丨丨丨丨丨丨丨丨"丨丨丨丨丨丨丨 3C τ AT: Δρ a TV, ♦ —7" r # » Ty f m丨丨丨丨丨_丨丨丨丨丨 ’ X αρ dp * Tv, ♦ --j- -ΛΤ% * Γν/ -— Scan or Stop △ v2 άρ9Τ Point-to-Pomt Mocioa 2 AT2 厶P * 1111111111111一11 丨1111111嫌 K AT2 Δρ« j-1111111 Pulse Energy y〔f) -!(f) (請先閱讀背面之注意事項再本頁) •裝-Item Cycloid Harmonic Acceleracion n A (2-r 1 α (/) «cos ~ fj Velocity AT AT mv (〇« v # +-cos— V (f) = ν · ) 3 ^ ^ vf + i-silty Jerk ,, Ax nt y (/) =-jrc〇s— aA. 2ge X〇 * ~ sm ~ Single Pulse A 2 AT 厶 V s 丨 丨 丨 丨 丨 丨 丨 " 丨 丨 丨 丨 丨 丨 丨 3C τ AT: Δρ a TV, ♦ —7 " r # »Ty fm 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 'X αρ dp * Tv, ♦ --j- -ΛΤ % * Γν / -— Scan or Stop △ v2 άρ9Τ Point-to-Pomt Mocioa 2 AT2 厶 P * 1111111111111-1 11 丨 1111111 KAT2 Δρ «j-1111111 Pulse Energy y 〔f)-! (F) (please first (Please read the notes on the back page)

、1T 線 30_ 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) 505956 A7 B7 五、發明説明(>g)、 1T line 30_ This paper size applies to China National Standard (CNS) A4 specification (210X297 mm) 505956 A7 B7 V. Description of invention

ItemItem

CycloidCycloid

HarmooicHarmooic

Mimmum-Cosi PulseMimmum-Cosi Pulse

Puise-Oniy Solution Δν A = 一 (2v/ ^ Δ v) ΔΡPuise-Oniy Solution Δν A = one (2v / ^ Δ v) ΔΡ

Pulse/Cmisc, Time Specified ΙΓάν· Α· 4(Δ/?- TvJ rAv2 ,Cruise!Pulse A: 6v: ——,Cruise I PulseTy, 4(Γν7 - Lp) ,Pulse / Cruise IV Δν5 —-,Pulse t Cruise Γν7 - ΔρPulse / Cmisc, Time Specified ΙΓάν · Α · 4 (Δ /?-TvJ rAv2, Cruise! Pulse A: 6v: ——, Cruise I PulseTy, 4 (Γν7-Lp), Pulse / Cruise IV Δν5 —-, Pulse t Cruise Γν7-Δρ

Pulse/Cruise, Minimum CostPulse / Cruise, Minimum Cost

KpKsLv ,Cruise / Pulse A1KpKsLv, Cruise / Pulse A1

H ΚβΚΑ^ ,Cruise / Pulse [K.KAv J-, Pulse t Cruise V v/ Κ¥Κ,άι t Pulse I CruiseH ΚβΚΑ ^, Cruise / Pulse [K.KAv J-, Pulse t Cruise V v / Κ ¥ Κ, άι Pulse I Cruise

Pulse/Puise. Time SpecifiedPulse / Puise. Time Specified

Solve for A; T1 jfA V* —^♦(Γξν^ ν7)-2Δ^Μ-—— a 0 rlSolve for A; T1 jfA V * — ^ ♦ (Γξν ^ ν7) -2Δ ^ Μ -—— a 0 rl

Solve for A: ♦《Γ(κ * v,) · 2Δ/?) w · d s o 經 濟 ‘部 智 慧 財 產 局 員 X 消 費 合 作 社 印 製Solve for A: ♦ Printed by Γ (κ * v,) · 2Δ /?) W · d s o Economy 『Ministry of Intellectual Property, Bureau of Consumer Affairs, X Consumer Service Co., Ltd.

Pulsc/Pulse, Acceleration SpecifiedPulsc / Pulse, Acceleration Specified

Solve for T:Solve for T:

Solve for T: :Tl 2(ν·*νΓ)· - 厂讎一j丨丨丨丨丨丨丨__ Λ /IV Λ • 2d/>j > 31 本紙張尺度適用中國國家標準(CNS ) Α4規格(21〇χ297公釐)Solve for T: : Tl 2 (ν · * νΓ) ·-Factory 雠 丨 丨 丨 丨 丨 丨 丨 __ Λ / IV Λ • 2d / > j > 31 This paper size applies to Chinese National Standard (CNS ) Α4 size (21〇297mm)

505956 A7 B7 五、發明説明(/|) 雖然完成本發明之最佳模式已經被詳細說明’熟悉本 發明相關技術者將會知道有各種不同的設計以及實踐本發 明之實施例,如下面的申請專利範圍所定義。 經濟部智慧財產局員工消費合作社印製 2 3 本紙張尺度適用中國國家標準(CNS ) A4規格(2丨0X297公釐) 505956 A7 B7 五、發明説明(>c) 元件標號對照表 4...... 晶圓 6 > 7 ……移動級台 11···· …使用者界面 12"· …軌線規劃器 14、 17……控制器 15、 16……控制器 18“· …光學盒子 32"· …參考位置 33… …鏈路子集 34“· …鏈路 35··· …日日片 110. ••…雷射處理系 110· .·…PVT(位置/¾ 111· ·· ".CVD(固定 113· ••…停止片段 114· ••…鏈路 --------丨^丨^-----、玎----------0 (請先閱讀背面之注意事項再填寫本頁) „經濟部,智慧財產局員工消費合作社印製 33 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)505956 A7 B7 V. Description of the invention (/ |) Although the best mode for completing the present invention has been described in detail, those skilled in the art will be aware of various designs and embodiments of the present invention, such as the following application Defined by patent scope. Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 2 3 This paper size applies to the Chinese National Standard (CNS) A4 specification (2 丨 0X297 mm) 505956 A7 B7 V. Description of the invention (> c) Component reference table 4. .... Wafer 6 > 7 ... Mobile Stage 11 ... User Interface 12 " ... Track Planner 14, 17 ... Controller 15, 16 ... Controller 18 "... Optical box 32 " ... reference position 33 ... link subset 34 "... link 35 ... Japanese and Japanese film 110. · • ... laser processing system 110 ...... PVT (position / ¾ 111 ... &Quot; .CVD (Fixed 113 •••… Stop segment 114 •••… links -------- 丨 ^ 丨 ^ -----, 玎 ---------- 0 (Please read the notes on the back before filling out this page) „Printed by the Ministry of Economic Affairs and the Intellectual Property Bureau's Consumer Cooperatives 33 This paper size applies to China National Standard (CNS) A4 (210X297 mm)

Claims (1)

經濟部智慧財產局員工消費合作社印製 505956 as Β8 C8 D8 六、申請專利範圍 1. 一種,以決定微構造物欲在雷射處理點處理之順 序的友’該方法包含有: 接收代表在該處理點被處理之微構造物的位置之參考 資料; 聯合相鄰之微構造物群組成爲包含邊緣聚集微構造物 之聚集,該邊緣聚集包含被置放在接近馬達驅動級台之行 程界限的微構造物,該馬達驅動級台相對在該處理點上之 雷射光束而移動該微構造物; 從各邊緣聚集分割一聚集斷片,其中該聚集斷片包含 被置放在接近行程界限之微構造物;以及 . 將該聚集和聚集斷片分類以得到代表大致最佳序列之 資料,該微構造物將依該序列被處理以增加在該處理點上 的產量。 2 . 如申請專利範圍第1項之方法,其中該級台依據 反應於馬達命令之至少一組馬_窦之至少一組線圈中被消耗 的能量而分類。 3· 如申請專利範圍第1項之方法,其中各聚集及聚 染斷片可具有多數個可能處理方向並且其中該分類步驟包 含決定處理微構造物之大致最佳方向的步驟。 4. 如申請專利範圍第1項之方法,其中該分類步驟 包含選擇在該處理點上初始地被處理之大致最佳聚集或聚 集斷片之步驟,接著決定用以處理其餘聚集和聚集斷片之 多數個可能序列並且從該等多數個可能序列中選擇大致最 ife序列。 34 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) * ϋ I ϋ mmmmmmm KiB_i n ϋ 一 · n n I - 線I 經濟部智慧財產局員工消費合作社印製 505956 .' A8 B8 CS . D8 六、申請專利範圍 5.如申請專利範圍第1項之方法,其中該微構造物 被置放在晶圓晶片上。 6· 一種用以決定微構造物在雷射處理點上被處理之 序列的子系統,該子系統包含: 接收代表在該該處理點上被處理之微構造物的位置之 參考資料的裝置; I 聯合相鄰之微構造物群組成爲包含邊緣聚集微構造物 之聚集的裝置,該邊緣聚集包含被置放在接近馬達驅動級 台之行程界限的微構造物,該馬達驅動級台相對在該處理 點上的雷射光束而移動微構造物; . 從各邊緣聚集分割一聚集斷片之裝置,其中該聚集斷 丨t包含被置放在接近行程界限之微構造物;以及 將該等聚集和聚集斷片分類以得到代表大致最佳序列 之資料的裝置,其中該微構造物將依該序列被處理以增加 在該處理點上的產量。 ^ 7 如申請專利範圍第6項之子系統,其中該分類裝 麗依據反應於馬達命令之至少一組馬達的至少一組線圈中 被消耗的能量而分類。 8· 如申請專利範圍第6項之子系統,其中各該聚集 和聚集斷片具有多數個可能處理方向並且其中該分類裝置 包含決定處理微構造物之大致最佳方向的裝置。 9· 如申請專利範圍第6項之子系統,其中該分類裝 置包含用以選擇在該處理點上初始地被處理之大致最佳聚 集或聚集斷片,且決定處理其餘聚集和聚集斷片之多數個 35 本紙張尺度適用中國國家標準(CNS)A4規格(21〇 x 297公釐) -------------裝--------訂----------線 (請先閱讀背面之注意事項再填寫本頁) 505956 Cb 0>> 六、申請專利範圍 經濟部智慧財產局員工消費合作社印製 可能序列並且從該等多數個可能序列中選擇大致最佳序列 的裝置。 10·如申請專利範圍第6項之子系統,其中該微構造 物被置放在晶圓晶片上。 11.如申請專利範圍第10項之子系統,其中該微構造 物是晶片導線β 12·如申請專利範圍第η項之子系統,其中該導線是 金屬線。 1 3 ·如申請專利範圍第丨i項之子系統,其中該晶片是 半導體憶體兀件並且其中該導線在該處理點上被消融以 .修補元件的有缺陷記憶胞。 14.如申請專利範圍第6項之子系統,其中該微構造 物是半導體元件之部份。 15·如申請專利範圍第14項之子系統,其中半導體元 件是微電子機械元件。 16.如申請專利範圍第I4項之子系統,其中該半導體 元件是一種矽半導體元件。 17·如申請專利範圍第14項之子系統,其中該半導體 元件是一種半導體記億體。 18. 如申請專利範圍第6項之子系統,其中該微構造 物是微電子式元件之部份。 19. 如申請專利範圍第6項之子系統,其中在各群組 中之微構造物具有大致共同間隙。 20·如申請專利範圍第?項之子系統,其中該級台是 36 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公爱) ί‘、士之α意-?項再填寫本頁) 裝 505956 '/vb ARCD 六、申請專利範圍 -種χ-y級台並且其中該分類裝置依據反應於馬達命令之 多數個馬達的多數個線圈之被消耗的能量而分類。 i-----—裝·— 面之;1-急事項再填寫本頁) 訂: -線. ,經濟I智慧財產局員工销費合作社印製 37 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives 505956 as Β8 C8 D8 VI. Application for Patent Scope 1. A method to determine the order in which microstructures are to be processed at the laser processing point. The method includes: References to the location of the microstructures to be processed; Unite adjacent groups of microstructures to form a cluster of microstructures that contain edge clusters that contain microchips that are placed close to the travel limits of the motor-driven stage The structure, the motor-driven stage moves the microstructure relative to the laser beam at the processing point; gathers and divides an aggregate fragment from each edge, wherein the aggregate fragment contains the microstructure placed near the stroke limit ; And. Classify the aggregates and aggregate fragments to obtain information representing a roughly optimal sequence, the microstructures will be processed according to the sequence to increase the yield at the processing point. 2. The method of claim 1 in which the stage is classified according to the energy consumed in at least one set of coils of at least one set of horses and sinuses in response to a motor command. 3. The method according to item 1 of the scope of the patent application, in which each of the aggregated and polymerized fragments can have a plurality of possible processing directions, and wherein the classification step includes a step of determining an approximately optimal direction for processing microstructures. 4. The method according to item 1 of the patent application scope, wherein the classification step includes a step of selecting a roughly optimal aggregate or aggregate fragment that is initially processed at the processing point, and then determining a majority to process the remaining aggregate and aggregate fragments Possible sequences and select approximately the most ife sequence from the plurality of possible sequences. 34 This paper size is in accordance with China National Standard (CNS) A4 (210 X 297 mm) (Please read the notes on the back before filling this page) * ϋ I ϋ mmmmmmm KiB_i n ϋ I · nn I-Line I Ministry of Economy Printed by the Intellectual Property Bureau's Consumer Cooperative 505956. 'A8 B8 CS. D8 VI. Application for patent scope 5. The method according to item 1 of the patent scope, where the microstructure is placed on a wafer. 6. A subsystem for determining a sequence of microstructures to be processed at a laser processing point, the subsystem comprising: means for receiving reference data representing the position of the microstructures to be processed at the processing point; I unites adjacent groups of microstructures to become a device containing aggregates of edge-gathered microstructures that contain microstructures that are placed close to the travel limit of a motor-driven stage, which is relatively The microstructure is moved by the laser beam at the processing point; a device that gathers and divides an aggregated fragment from each edge, wherein the aggregated fragment includes a microstructure that is placed near the stroke limit; and the aggregated A device that sorts and aggregates fragments to obtain information representing a roughly optimal sequence, wherein the microstructures will be processed according to the sequence to increase the yield at the processing point. ^ 7 The subsystem according to item 6 of the patent application scope, wherein the classification device is classified according to the energy consumed in at least one set of coils of at least one set of motors in response to a motor command. 8. The subsystem of item 6 of the scope of the patent application, wherein each of the clustering and clustering segments has a plurality of possible processing directions and wherein the classification device includes a device that determines the approximate optimal direction for processing microstructures. 9 · If the subsystem of the scope of patent application No. 6, wherein the classification device includes a selection of the approximately optimal aggregate or aggregate fragment that is initially processed at the processing point, and decides to process the majority of the remaining aggregate and aggregate fragments 35 This paper size applies to China National Standard (CNS) A4 specification (21 × 297 mm) ------------- Installation -------- Order ------- --- line (please read the notes on the back before filling this page) 505956 Cb 0 > > VI. Application for Patent Scope Intellectual Property Bureau, Ministry of Economic Affairs, Employee Consumption Cooperatives prints possible sequences and chooses from these many possible sequences Roughly optimal sequence of devices. 10. The subsystem of claim 6 in which the microstructure is placed on a wafer. 11. The subsystem according to item 10 of the patent application, wherein the microstructure is a chip wire β 12. The subsystem according to item n of the patent application, wherein the wire is a metal wire. 1 3 · The subsystem of item i of the patent application scope, wherein the wafer is a semiconductor memory element and wherein the wire is ablated at the processing point to repair the defective memory cell of the element. 14. The subsystem of claim 6 in which the microstructure is part of a semiconductor element. 15. The subsystem according to item 14 of the patent application scope, wherein the semiconductor element is a microelectromechanical element. 16. The subsystem according to item I4 of the patent application scope, wherein the semiconductor element is a silicon semiconductor element. 17. The subsystem according to item 14 of the patent application scope, wherein the semiconductor element is a semiconductor memory. 18. The subsystem of item 6 of the patent application, wherein the microstructure is part of a microelectronic component. 19. The subsystem of item 6 as claimed in the patent application, wherein the microstructures in each group have approximately a common gap. 20 · If the scope of patent application is the highest? Subsystem of item, in which the grade is 36 paper standards, applicable to China National Standard (CNS) A4 specification (210 X 297 public love) ί ', the meaning of α-? Please fill in this page) 505956' / vb ARCD Sixth, the scope of patent application-a kind of x-y stage and wherein the classification device is classified according to the energy consumed by the majority of the coils of the majority of motors in response to the motor command. i -----— Installation · —None of the above; 1-Please fill in this page urgently) Order: -line., printed by the Economic I Intellectual Property Bureau employee sales cooperatives 37 This paper size applies to Chinese National Standards (CNS) A4 size (210 X 297 mm)
TW90111553A 2000-05-16 2001-05-15 Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site TW505956B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20427500P 2000-05-16 2000-05-16

Publications (1)

Publication Number Publication Date
TW505956B true TW505956B (en) 2002-10-11

Family

ID=22757294

Family Applications (2)

Application Number Title Priority Date Filing Date
TW90111549A TW507120B (en) 2000-05-16 2001-05-15 Method and subsystem for generating a trajectory to be followed by a motor-driven stage when processing microstructures at a laser-processing site
TW90111553A TW505956B (en) 2000-05-16 2001-05-15 Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW90111549A TW507120B (en) 2000-05-16 2001-05-15 Method and subsystem for generating a trajectory to be followed by a motor-driven stage when processing microstructures at a laser-processing site

Country Status (3)

Country Link
AU (2) AU2001261577A1 (en)
TW (2) TW507120B (en)
WO (2) WO2001088639A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1452920A3 (en) * 2003-02-25 2006-06-21 ASML Netherlands B.V. Device manufacturing method,device manufactured thereby,computer program for performing the method,lithographic apparatus, and robotics system
US7341822B2 (en) 2003-02-25 2008-03-11 Asml Netherlands B.V. Time-optimal setpoint generator in a lithographic apparatus
AT505245B1 (en) 2007-05-25 2011-02-15 Krieger Martin Mag ELECTRONICALLY CONTROLLED CLOCK
GB2498943A (en) * 2012-01-31 2013-08-07 Ibm Evaluating and optimizing a trajectory function
US9678499B2 (en) 2012-06-27 2017-06-13 Mitsubishi Electric Research Laboratories, Inc. Method for controlling redundantly actuated machines for cutting a pattern of disconnected contours
US9104192B2 (en) * 2012-06-27 2015-08-11 Mitsubishi Electric Research Laboratories, Inc. System and method for controlling machines according to pattern of contours
TWI511820B (en) * 2013-12-02 2015-12-11 Ardentec Corp Parameter loading method of laser process machine
CN112787551A (en) * 2019-11-02 2021-05-11 天津职业技术师范大学(中国职业培训指导教师进修中心) Method for improving robustness and contour performance of double-shaft or three-shaft feed driving system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808887A (en) * 1987-11-20 1998-09-15 Philips Electronics North America Corporation Animation of path planning
EP0523270A1 (en) * 1991-07-18 1993-01-20 International Business Machines Corporation Method to control a positioning system
US5871805A (en) * 1996-04-08 1999-02-16 Lemelson; Jerome Computer controlled vapor deposition processes
JPH10312961A (en) * 1997-03-11 1998-11-24 Nikon Corp Method for determining motion sequence and position aligner
EP0862089A3 (en) * 1997-02-28 2000-05-10 Nikon Corporation Method of determining movement sequence and apparatus for realizing it
US6294755B1 (en) * 1997-12-02 2001-09-25 Lacent Technologies, Inc. Gantry-mounted laser nozzle and method for controlling laser positioning
US6144118A (en) * 1998-09-18 2000-11-07 General Scanning, Inc. High-speed precision positioning apparatus

Also Published As

Publication number Publication date
WO2001088638A3 (en) 2002-06-13
WO2001088638A2 (en) 2001-11-22
TW507120B (en) 2002-10-21
AU2001261577A1 (en) 2001-11-26
WO2001088639A2 (en) 2001-11-22
AU2001261578A1 (en) 2001-11-26
WO2001088639A3 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
US6662063B2 (en) Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site
US6483071B1 (en) Method and system for precisely positioning a waist of a material-processing laser beam to process microstructures within a laser-processing site
TW505956B (en) Method and subsystem for determining a sequence in which microstructures are to be processed at a laser-processing site
US8319143B2 (en) Laser processing apparatus
US20090277889A1 (en) Laser beam machining apparatus with detection laser beam oscillator
US9076337B2 (en) Method for determining trajectory of multi-motor control system avoiding obstacle
TW200900187A (en) Systems and methods for adapting parameters to increase throughput during laser-based wafer processing
CN105397281A (en) Laser processing apparatus
JP4800873B2 (en) Approximate curve generation program and method from approximate point cloud data
Bloomstein et al. Stereo laser micromachining of silicon
JP7018973B2 (en) Real-time controller switching
Greis et al. Physics-guided machine learning for self-aware machining
Ruppel et al. Model-based feedforward control of large deformable mirrors
CN107945159A (en) A kind of automation control system of optical fiber geometric parameter and attenuation coefficient integration testing
JP4253610B2 (en) Electron beam inspection equipment
US11331755B2 (en) Additive manufacturing apparatus and numerical control device
CN110142407B (en) Additive manufacturing control method, device and system and storage medium
US11249460B2 (en) Numerical control device and method for controlling additive manufacturing apparatus
JP7334324B2 (en) Mark measurement sequence determination method, stage apparatus, and lithographic apparatus
CN113210843B (en) Part machining control method, controller, system and equipment
JPWO2021111511A1 (en) Search device, search program and plasma processing device
Zhang et al. Fast fiber-laser alignment: beam spot-size method
Buls A Smart Machine for Selective Laser Melting-A Controlled & Synchronized System Approach
Dai et al. An improved hybrid algorithm for minimizing energy consumption and cycle time in flexible process planning
JP2007283345A (en) Laser beam machining controller and laser beam machining control method

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees