TW484272B - Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques - Google Patents

Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques Download PDF

Info

Publication number
TW484272B
TW484272B TW089110860A TW89110860A TW484272B TW 484272 B TW484272 B TW 484272B TW 089110860 A TW089110860 A TW 089110860A TW 89110860 A TW89110860 A TW 89110860A TW 484272 B TW484272 B TW 484272B
Authority
TW
Taiwan
Prior art keywords
algorithm
channel
complexity
rsse
taps
Prior art date
Application number
TW089110860A
Other languages
English (en)
Inventor
Erich Franz Haratsch
Harish Viswanathan
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Application granted granted Critical
Publication of TW484272B publication Critical patent/TW484272B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03203Trellis search techniques
    • H04L25/03235Trellis search techniques with state-reduction using feedback filtering
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • H03M13/41Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes using the Viterbi algorithm or Viterbi processors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03184Details concerning the metric
    • H04L25/03197Details concerning the metric methods of calculation involving metrics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03248Arrangements for operating in conjunction with other apparatus
    • H04L25/03299Arrangements for operating in conjunction with other apparatus with noise-whitening circuitry

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Error Detection And Correction (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Description

484272 五、發明說明(i) 發明簸# _ -4- , * ,更特 又 ° 本發明係關於通道的等化及解碼技術 別關於降低複雜疮#广 叹潍度的序列估計技術。 發明背景
傳輸速率對於採用雙絞線導體的區域網路(LANs),逐步 地由10Mbps(每秒百萬位元)擴大到1Gbps(每秒十億位 兀)°十億位元乙太網路採用1〇〇〇 Base_T標準,例如在時 脈速率1 25 MHz下運作,並使用四組銅線對來傳輸1 Gbps。傳送器採用格架編碼調變(TrelHs_c〇ded modulation,TCM),以一已知的方式得到漸進式編碼增 益。到達接收器的信號基本上會被符號間干擾(I S I ),串 音’迴音,及雜音所破壞。在此通道環境中對接收器的主 要挑戰是在共同地等化通道,並在如此高的時脈速率下對 破壞的格架編碼信號進行解碼。因為高處理速度需要一平 行處理,而沒有資源分享,因此要管理硬體複雜度變得困 難。另一個問題是如何符合速度的要求,其由於共同等化 及解瑪的演算法需要使用非線性回授迴圈,並不能使用管 道(pipelined)。
資料偵測經常使用最大可能性序列估計(MLSE)來進行, 而產生輪出符號或位元。一最大可能性序列估計器(MLSE) 考慮所有可能的序列,並決定那一個序列是以已知的方式 實際在傳送。1二最大可能性序列估計器(MLSE)是最佳化解 碼器,應用熟知的Vi terbi演算法來結合碼及通道格架。 對於完成一最大可能性序列估計器(MLSE)的Viterbi方
第7頁 484272 五、發明說明(2) 〜 法’清參見Gerhard Fettweis 及 He inrich Me yr 所提出,, n高速平行Vi terbi解碼演算法及VLSI架構"(High-Speed Parallel Viterbi Decoding Algorithm and : ¥1^1-八1:(;1^七6(^11]:6),1£££通訊雜誌(1991年5月),在此 引用做為參考。 對於Viterbi演算法的計算及儲存需求,是與狀態的數 目成比例。結合格架的狀態數目為S X 2mL,其中S為編石馬 狀態的數目,m是每一個資訊符號的位元數目,及通道記 憶體的長度L。舉例而言,對於G i g a b i t乙太網標準,S = 8, m = 8,及L =10,導出一過於昂貴的Vi terbi演算法,具有約 鲁 1 025個狀態。 , 為了管理使用V i t e r b i演算法的最大可能性序列估計器 (MLSE)的硬體複雜度,有一些次最佳化的方法曾被提出或 建議,例如”降低狀態序列估計”(r e d u c e d s t a t e sequence estimation, RSSE)演算法。有關降低狀態序列 估計技術的討論,例如可參見,P. R. Chevi 1 lat 及E. E 1 e f t h er i ou所提出,n具有符號間干擾及雜訊的格架編碼 信號的解碼n(n Decoding of Trellis-Encoded Signals in the Presence of Intersymbol Interference and Noise”) , IEEE Trans· Commun·,卷37, 669-76 頁, 鲁 (1989 年7月),及Μ· V. Eyuboglu及S· U· H. Qureshi 所 提出,”在符號撋干擾通道上編碼調變的降低狀態序號估一 計,’(’’Reduced-State Sequence Estimation For Coded Modulation On In tersymbo 1 Interference
第8頁 484272 五、發明說明(3)
Channels”),IEEE JSAC,卷7,989—95 頁(1989 年8 月), 在此皆引用來做為參考。 一般而言,降低狀態序列估計(RSSE)技術可藉由合併完 ·· 全結合的通道/編碼格架的多種狀態而降低最大可能性序 · 列估計器(MLSE)的複雜度。雖然RSSE技術會降低Viterbi 解碼的狀態數目,關於G i ga b i t乙太網標準在高時脈速率 下所需要的計算仍然太過於複雜,係由於高處理速率需要 一平行的處理,而沒有資源共享;此外,RSSE技術使用非 線性回授迴圈’而不能使用管道。與這些回授迴圈結合的 關鍵路徑為實施向速傳輸的限制因素,利用更進一步降低 鲁 狀態的數目或使用決策回授等化器(DFE )進行分開的等 化,可以簡化RSSE技術,以及TCM碼的解碼,其信號雜訊 比(S N R )效能通常很差。由上述很明顯可以看出習用降低 狀態序列估計(RSSE)演算法的缺點,因此有需要一種降低 rt大態序列估計(R S s E )演算法,能夠對一給定的狀態數目來 降低RSSE技術的硬體複雜度,同時解決關鍵路徑的問題。 發明總結 一般而言,本發明揭示一種對於一給定狀態數目之下用 以降低狀態序列估計(RSSE)技術的複雜度,同時也減少關 鍵路徑的問題。一通訊通道採用一離散時間模型來代表,鲁 其中通道脈衝響應具有一記憶體長度,L,表示為,沿\=〇 ’式中fk為通、道搭線k的係數。對於已經經過一最小相位_ 通道之脈衝的信號能量會集中在初始的搭線。在此處,由 的搭線即稱為初始的搭線,而ϋ +1到L的搭線則稱之為
第9頁 484272 五、發明說明(4) 後部的搭線,其中U為一規定的數字。在一種實施方法, 中i搭線編號U,係選用來保證初始搭線能夠在整體信號 能篁中佔有一預定比例的貢獻。 根據本發明中的一方面,較小有效的後部搭線(U +1到 L)’是以一較低複雜度的消除演算法來處理,例如一決策 回授等化器(decision - feedback equalizer, DFE)技術, 其採用嘗試性的決策來消除後部的搭線。之後,尸有最大 有效的初始搭線(1到U)是以一降低的狀態序列估計(RSSE) 技術來處理。此DFE技術起初是消除與後部搭線結合的符 號間干擾,然後,RSSE技術(或M-演算法,MA)僅°是°使用在 更為重要的後部搭線。因此,僅有由1到U的搭線是利用 R S S E技術處理,而U + 1到L的搭線則採用較低複雜度決策回 授等化器(DFE)。本發明並不另外降低RSSE電路所1理的 狀態數目,因此可保證對於一經過良好選擇的U值能夠提 供較佳的位元錯誤率(BER)對信號雜訊比(SNR)的效能。同 時,RSSE電路中決策回授計算的複雜度及處理時間更可有 效地降低。RSSE電路中的存活記憶體單元(SMU)的硬體複 雜度也可降低。 另揭示一種接收器,其包含一嘗試決策/後部處理電 路,用以處理較小有效的後部搭線,以及一 RS S E電路,用 以處理初始的搭線。此嘗試決策/後部處理電路可利用較 低複雜度的DFE演算法來處理較小有效的後部搭線,而用 嘗試性決策冬消除後部搭線。此RSSE電路僅利用RSSE技_術 來處理初始搭線。
〇;\64\64473.ptd 第10頁 484272 五、發明說明(5) 圖式簡箪說曰卩: 圖1所:為一習用接收器的架構方塊圖; 圖2 =不為一根據本發明之接收器的架構方塊圖; 圖3說明經過一最小相位通道散佈的脈衝信號能量; 圖4所示為圖2的嘗試性決策/後部處理電路的實施; 圖5所不為圖2的降低狀態序列估計(RSSE)電路的實施 詳細說明 : 圖1所示為在一通道環境中關於像是Gigabit乙太網1〇〇〇 Base-T標準的習用接收器丨〇 〇的方塊圖。對於這種接收器 1〇〇的主要挑戰是要能夠同時在Gigabit乙太網1000 Base-T標準下的高時脈速率來進行通道等化及破壞的格架 編碼#號的解碼。在圖1中,接收器1 〇 〇包含一類比到數位 (A/D)轉換器100,用以將接收到的類比信號轉換為數位信 號。此數位化的資料接著由一向前供給等化器(f e e d forward equalizer, 音取消器1 4 0進行處理 FFE)120, 一回音取消器130及一串 。一般而言,向前供給等化器(FFE) 1 20 <使通道脈衝響應成為鬆散及最小相位,並可使雜訊 純淨化。此外,再以已知的方法,由回音取消器1 3 〇移除 接收信號中的回音,而串音取消器丨4〇則移除串音部份。 等化器/解碼器1 5 0進行資料偵測,例如使用最大可能性序 列估計(MLSE)來產生輸出符號或位元。 圖2所示為根據本發明的一接收器2 〇 〇,能夠降低一給定 數目的降低狀態序列估計(RESS)的硬體複雜度,同時也解 決關鍵路徑的問題。一通訊通道採用一離散時間模型來代
484272 五、發明說明(6) 表,其中通道脈衝響應具有一記憶體長度,L,表示為>
Ok}Lk=0 ,式中f k為通道搭線1ί的係數。在最小相位通道 中,經過通道散佈後的脈衝信號能量會集中在初始的搭 線。如圖3所示,初始搭線對於通道輸出的信號能量提供 了最大的貢獻,而當搭線接近無限大時,對應的能量則降 為0。在此處,由1到U的搭線即稱為初始的搭線,而U + 1到 L的搭線則稱之為後部的搭線,其中U為一規定的數字。舉 例而言,搭線編號U,可用模擬或試驗結果建立,並用來 保證初始搭線能夠在整體信號能量中佔有一預定比例的貢 獻。 根據本發明的一項特徵,較小有效的後部搭線(U +1到 L ),是以一較低複雜度的消除演算法來處理,例如一決策 回授等化器(decision-feedback equalizer, DFE)技術, 其採用嘗試性的決策來消除後部的搭線。之後,只有最大 有效的初始搭線(1到U )是以一降低的狀態序列估計(R S S E ) 技術來處理。因此,此D F E技術起初是消除與後部搭線結 合的符號間干擾,然後,RSSE技術僅是使用在更為重要的 後部搭線。由此,對於具有記憶體L長度的通道,由1到U 的搭線是利用RSSE技術處理,而U+ 1到L的搭線則採用較低 複雜度決策回授等化器(DFE)來處理。 圖2為根據本發明的一接收器2 0 0的架構方塊圖。接收器 2 0 0包含一切分器2 1 0,用以將數位資料切分為符號值。此 外,接收器2 0 0具有嘗試性決策/後部處理電路4 0 0,會在 下述的圖4說~明&中一併討論,其利用較低複雜度消除演#
O:\64\64473.ptd 第12頁 484272 五、發明說明(7) 法來處理較小有效的後部搭線,例如一決策回授等化器』 (DFE)技術,採用嘗試性決策來消除後部搭線。接收器200 也包含RSSE電路500 ’會在下述的圖5說明中一併討論’其 利用降低狀態序列估計(R s s E)技術(圖5 )而僅處理初始搭 線。 圖4所示為圖2的嘗試性決策/後部處理電路4〇〇的一決策 回授等化器(D F E )的實施。如圖4所示’ 一回授濾波器 (FBF2)41〇採取由一DFE結構(FBF) 40 0所得到的嘗試性決 策,而移除由後部通道搭線 {/JViw ,所引入的較小有效 的符號間干擾(ISI),其中K〈U<L。其餘僅由初始通道搭線 所引入的嚴重的符號間干擾(ISI)則接著由RSSE電路 5 0 0來處理。 當U = L時,回授濾波器(FBF2)410的輸出並不影響RSSE電 路5 0 0的輸入,所以此結構的運作就像是一完整的降低狀 態序列估計器(1^3£)。如果]^為^^3£電路5 0 0内負責結合碼 及通道狀態的搭線的數目,那麼選擇U = K所產生的結構, 會使回授渡波器(F B F 2 ) 4 1 0消除所有不負責結合碼及通道 次態的符號間干擾。在此再次提醒,設計參數U可以用來 調整效能及硬體複雜度之間的平衡。 臨限值1)愈低,1?33£電路5 0 0中的決策回授單元(])1?1〇則 較不複雜,如下述的,也減少了在每一個決策回授胞 (DFf)中負責、时符號間干擾搭線。然而,此將因為回授濾 波器(FBF2)410中的錯誤傳遞效應,而付出信號雜訊比 (SNR)的代彳貝。車父低的u值,也可解決Μα電路中回授
HI 第13頁 484272 五、發明說明(8)
迴圈的關鍵路徑問題,其係由於需要加入決策回授胞 (DFC)的項次數目是與u成比例。在RSSE電路中的^鍵路 徑,具有決策回授胞(decision feedback cell,DFC), 分支度量胞(branch metric cell,BMC),加法-比較—選 擇胞(add-compare-select cell,ACSC),及存活記憶胞 (survivor memory cell,SMC),如圖5 所示,形成了 RSSE 技術中高速傳輸的瓶頸。根據圖2,嘗試性決策/後部處理 電路4 0 0並不為關鍵路徑的一部份。
在許多實際狀況中,當通道是最小相位,並能夠由一向 剷供給專化器(F F E )達成時,一較低的u值即足可大致達到 像習用RSSE電路中,相同的位元錯誤率(βΜ)對信號雜訊 比(SNR )的效能,而可藉由引用所有l通道搭線來消除符號 間干擾。但是,本發明也降低了決策回授單元(DFU) L/u 倍數的計算複雜度。此外,通過決策回授胞(DFC)(圖5)的 計算延遲也會降低L/U的倍數,所以也可有效地解決關鍵 路徑的問題。本發明也允許存活記憶體單元(SMU)的存活 深度D ’其可小於l。在一習用的rsSE電路中,存活深度D 必須至少為L,因為L會在決策回授單元(DFU)中傳送計算 所需要的存活符號。因此,本發明也允許減少存活記憶體 單元(SMU)(圖5)中的硬體。 在決策回授序列估計(DFSE)的情況中,其為RSSE技術的 特殊型式’ U =1,及決策回授單元(DFU),因此可移除回授 迴圈’而決策回授序列估計(DFSE)成為〆單純的Viterbi 解碼器。由此,當U等於K時的決策回授序列估計(DFSE)的
第14頁 484272 五、發明說明(9) 特殊情形,本發明可讓所有處理方塊中的管道皆位在加法 -比較-選擇單元(A C S U )之外,而關鍵路徑則降到單一的加 法-比較-選擇單元(ACSC)。 在圖4中,當採用一決策回授等化器(DFE)來建構嘗試性 /後部處理電路4 0 0時,嘗試性決策/後部處理電路4 〇 〇可能 可以使用一軟體的DFE方法來建構。對於軟體的DFE方法的 討論,例如可參考S.L. Ariyavisitakul及Y· Li所提出,,
寬頻無線通道的共同編碼及決策回授等化” Γ Joint Coding and Decision Feedback Equalization for Broadband Wireless Channels") j IEEE Journal on selected Areas in Communications,卷16,第9 期,1998 年12月,在此引用做為參考。
如前所述,圖5所示為圖2的降低狀態序列估計(R S S E )電 路,而僅處理通道脈衝響應的初始搭線。如前所述,降低 狀態序列估計(R SS E )技術會藉由合併完整結合通道/編碼 格架的多重狀態來降低最大可能性序列估計器(MLSE)的複 雜度。對於習用的降低狀態序列估計(RSSE)技術來處理通 道脈衝響應的所有搭線的討論,例如可參考 P.R.Chevillat及E.Eleftheriou所提出,"在符號間干擾 及雜訊環境下的格架編碼信號的解碼”(” Decoding of Tre11is-Encoded Signals in the Presence of Intersymbol -Interference and Noise”)^ IEEE Trans·, Commun·,卷37, 669-76 頁,(1989年7 月),以及 M.V.Eyuboglu及S.U.H· Qureshi所提出,”在符號間干擾
第15頁 484272 五、發明說明(ίο) 通道上對於編碼調變的降低狀態序列估計” ^ (丨丨 Reduced-State Sequence Estimation For Coded Modulation On Intersymbol Interference Channels”) ^ IEEE JSAC ,卷7, 989-95 頁(1989 年8 月), 以上皆引用做為參考。 降低狀態序列估計(RSSE )僅考慮降低結合格架中有關資 訊符號的部份資訊。所得到的降低結合狀態可以表示為 p ii = ( ση_κ ; XnVK,· · ·,XU,其中炉η-ι包含資訊符號Xn i的化 位元,而用於減少的格架。其中需要 m1 < πικ < <. . . <πΐ! < m »而m ’為送至TCM編碼器的迴旋編碼器 的資訊位元數目,所得到的格架具有S,= Sx2nl+. ..+mK個狀 態。 圖5所示為降低狀態序列估計(RSSE)的方塊圖,其特殊 型式,決策回授序列估計(DFSE)及PDFE皆是有效的。s,軟 體輸出值係根據存活記憶單元(SMU)中的存活器而由決策 回授單元(DFU)中S,決策回授胞(DFC)進行計算,並送到分 支度量單元(BMU),其中每一個分支度量胞(BMC)計算由對 應狀所發射的b = 21"’轉換的度量值。每一個決策回授胞 (DFC)取用自相對應存活記憶胞(SMC)的l個傳送符號。 決策回授序列估計(D F SE )為降低狀態序列估計(rSS E )特 殊型式,並利用僅考慮L通道係數{ fk}中前κ個的格架, 0 < K < L。編碼狀態及截短的通道狀態的結合定義了降低結 合狀態//η = ( σ rK ; χη__κ,· · ·,χη-1),其中σ n為時間η的編碼狀 態’而Χη_κ,· · ·,χη ΐ為k個之前所傳送的資訊符號。在結谷
O:\64\64473.ptd 第16頁 484272 五、發明説明(Η) 狀態中不存在的符號間干擾項次,是使用每一個狀態的路 徑歷史而在度量計算中進行估計及刪減。當κ = ο時會產生 一特別的情形,其中減少的格架成為TCM編碼格架,決策 回授等化係根據該路徑的存活器歷史而對每一個編碼狀態 來進行,此方法稱之為平行決策回授等化(PDFE)。決策回 授序列估計(D F S Ε )係依循叫==···= mK = m時的降低狀態序列估 計(RSSE)。
在另一實施例中,RSSE電路5 0 0可由一M-演算法(MA)來 取代。M-演算法(MA)技術處理完全的結合格架,但利用最 佳的度量值在每一個處理步驟中僅保持Μ個路徑。有關μ -演算法(ΜΑ)的討論,例如可參考ν· Seshadri及J. Β· Anderson所提出,”使用(M,L)演算法進行嚴格濾波調變碼 進行解瑪’’(’’Decoding of Severely Filtered Modulation Codes Using the (M,L) Algorithm”) , IEEE JSAC,卷7, 1 0 0 6- 1 0 1 6頁(1 98 9年8月),在此引用做為參 考。 一般而言,Μ -演算法(Μ A)採用M D F E s來對於Μ個最佳路 徑消除付號間干擾。在每一個處理循環中,這些μ路徑中 每一個皆由其b = 2m’延伸值而延伸,然後,所得到的bM路 徑由重複路徑做測試且尋找Μ最佳路徑。μ -演算法(Μ A )本 質上並不像圖5所示的降低狀態序列估計(RsSE )實施例一 樣的平行,或Vi terbi演算法本身,對於所有的bM路徑廷 伸值在加法-測試-排序單元(A T S 〇 U )中進行測試及排序的 運异。每一個決策回授胞(D F C )由相對應的存活記憶胞
第17頁 484272 五、發明說明(12) (SMC)申取用L個傳送的符號。 , 在另一具體實施例中,M-演算法(MA)可以處理由TCM連 續編碼所得到的結合格架,及具有通道脈衝響應的前U個 搭線的一通道。通道脈衝響應的後部可由上述的較低複雜 度消除演算法來處理。 其可以瞭解到,上面所述的具體實施例及其變化形式, 只是在此處用於說明本發明的原理,而對於本技藝的專業 人士而言,可以在不背離本發明的範圍和精神之下,進行 不同的修正。
第18頁

Claims (1)

  1. 484272 、申請專利範圍 一種處理接收 記憶體 該方 利用 有 自一散佈通道的信號之方法,該通道/具 長度L而可用一具有L搭線的濾波器做為其模 型,該方法包含步騍如下: 較低複雜度消除演算法來處理較小有效的搭 線,用以藉由嘗試性決策來消除較小有效的搭線;及 利用一降低狀態序列估計(RSSE )技術處理較大有效的 搭線。 專利範園第1項之方法’其中該較低複雜度消 一決策回授等化器(DFE)技術。 專利範圍第1項之方法,其中該較低複雜度消 一軟體決策回授等化器(DFE)技術。 專利範圍第1項之方法,其中該較低複雜度消 降低關於該較小有效搭線的符號間干擾。 專利範圍第1項之方法,其中該較大有效搭線 線編號U之下的搭線,而U為一比L小的規定的 2 ·如申請 除演算法為 3 ·如申請 除演算法為 4 ·如申請 除演算法可 5.如申請 具有在一搭 數字。 6 ·如申請專利範圍第1項之方法,另可包含對該信號取 樣的步驟。 7 ·如申請專利範圍第1項之方法,另可包含將該信號數 位化的步驟。 8. 如申請專利範圍第1項之方法,其中該降低狀態序列 估計(RSSE)技術為一決策回授序列估計(DFSE)技術。- 9. 如申請專利範圍第1項之方法,其中該降低狀態序列 估計(RSSE)技術為一平行決策回授等化(PDFE)技術。
    第19頁 484272 六、申請專利範圍 ίο· —種接收來自一散佈通道的信號之接收器,該通道 具有一記憶體長度L,娘以一具有L搭線的濾波器做為其模 型,其包含: 一嘗試性決策/後部處理電路,用以藉由一較低複雜 度消除演算法來處理較小有效的搭線;及 一降低狀態序列估計(R SSE )電路,僅用於處理較大有 效的搭線。 1 1 ·如申請專利範圍第1 0項之接收器,其中該嘗試性決 策/後部處理電路利用〆決策回授等化器(D F E)技術來消除 使用嘗試性決策的較小有效的搭線。 1 2 ·如申請專利範圍第1 0項之接收器,其中該較低複雜 度消除演算法為一軟體決策回授等化器(DF E)技術。 1 3 ·如申請專利範圍第1 0項之接收器,其中該較低複雜 度消除演算法可降低關於該較小有效搭線的符號間干擾。 1 4 ·如申請專利範圍第1 0項之接收器,其中該較大有效 搭線包含低於一預定搭線編號u以下的备線’叫U是小於 L。 ’ 1 5 ·如申請專利範圍第1 〇項之接收器,其中該降低狀態 序列估計(RSSE)電路使用一決策回授序列估計(DFSE)技 術。 1 6 ·如申請專利範圍第1 〇項之接收器,其中該降低狀態 序列估計(RSSE)電路使用一平行決策回授等化(PDFE)技- 術。 17· —種處理接收自一散佈通道的信號之方法,該通道
    484272 六、申請專利ί巳圍 具有一記憶體長度L,並以一具有L搭線的濾波器做為其,模 型,該方法包含下列步驟: 利用一較低複雜度消除演算法來處理較小有效的搭 線,用以藉由嘗試性決策來消除較小有效的搭線;及 利用一 Μ -演算法(Μ A )技術處理較大有效的搭線。 18. —種接收來自一散佈通道的信號之接收器,該通道 具有一記憶體長度L,並以一具有L搭線的濾波器做為其模 型,包含: 一嘗試性決策/後部處理電路,用以藉由一較低複雜 度消除演算法來處理較小有效的搭線;及 一序列估計電路,用以實施M-演算法(MA)而僅用於處 理較大有效的搭線。 19. 一種處理接收自一散佈通道的信號之方法,該通道 具有一記憶體長度L,並以一具有L搭線的濾波器做為其模 型,該方法包含下列步驟: 利用一第一複雜度的第一演算法來處理較小有效的搭 線;及 利用一大於該第一複雜度的第二複雜度的第二演算法 來處理較大有效的搭線。 20. —種接收自一散佈通道的信號之接收器,該通道具 有一記憶體長度L,並以一具有L搭線的濾波器做為其模 型,其包含^ 一 一利用一第一複雜度的第一演算法來處理較小有效的 搭線的處理電路;及
    第21頁 484272 申請專利範圍 一利用一大於該第一複雜度的第二複雜度的第二演,算 法來處理較大有效的搭線的處理電路。 該通道具 做為其模 該通道具 做為其模 有效的裝 線,及 較大有效的 21· —種接收自一散佈通道的信號之接收器: 有一記憶體長度L,並以一具有L搭線的濾波器 型,其包含: 、 利用一第一複雜度的第一演算法來處理較小有效的搭 第二演算法 及 線的裝置 利用一大於該第一複雜度的第二複雜度的 來處理較大有效的搭線的裝置。 22. —種接收自一散佈通道的信號之接收器 有一記憶體長度L,並以一具有L搭線的濾波器 型,其包含: 利用一較低複雜度消除演算法來處理較小 置,用以藉由嘗試性決策來消除較小有效的搭 利用一降低狀態序列估計(RSSE )技術處理 搭線的裝置。
    苐22頁
TW089110860A 1999-06-04 2000-06-27 Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques TW484272B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/326,785 US6690754B1 (en) 1999-06-04 1999-06-04 Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques

Publications (1)

Publication Number Publication Date
TW484272B true TW484272B (en) 2002-04-21

Family

ID=23273713

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089110860A TW484272B (en) 1999-06-04 2000-06-27 Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques

Country Status (6)

Country Link
US (1) US6690754B1 (zh)
EP (1) EP1058406A3 (zh)
JP (1) JP2001036437A (zh)
KR (1) KR100913926B1 (zh)
CA (1) CA2310178C (zh)
TW (1) TW484272B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125961B2 (en) 2005-10-25 2012-02-28 Qualcomm Incorporated Four way handshake for robust channel estimation and rate prediction

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477200B1 (en) * 1998-11-09 2002-11-05 Broadcom Corporation Multi-pair gigabit ethernet transceiver
AU2001272093A1 (en) * 2000-02-28 2001-09-12 Broadcom Corporation System and method for high speed communications using digital signal processing
US7010029B1 (en) * 2000-04-13 2006-03-07 At&T Corp. Equalization of transmit diversity space-time coded signals
US7000175B2 (en) * 2000-11-03 2006-02-14 Agere Systems Inc. Method and apparatus for pipelined joint equalization and decoding for gigabit communications
US7151796B2 (en) 2001-02-01 2006-12-19 Broadcom Corporation High performance equalizer with enhanced DFE having reduced complexity
EP1229699B1 (en) * 2001-02-01 2010-03-17 Broadcom Corporation Equalisation with impulse-response shortening
US6823027B2 (en) * 2001-03-05 2004-11-23 Telefonaktiebolaget Lm Ericsson (Publ) Method for enhancing soft-value information
DE60234888D1 (de) * 2001-03-29 2010-02-11 Broadcom Corp Hybrider Entzerrer mit Rückkopplung und Folgeschätzung
US7656959B2 (en) * 2001-04-13 2010-02-02 Agere Systems Inc. Pipelined decision-feedback unit in a reduced-state viterbi detector with local feedback
US7170947B2 (en) * 2001-07-18 2007-01-30 Massana Research Limited Data receiver
US8095857B2 (en) * 2001-12-18 2012-01-10 Agere Systems Inc. Method and apparatus for joint equalization and decoding of multidimensional codes transmitted over multiple symbol durations
US7502418B2 (en) * 2001-12-18 2009-03-10 Agere Systems Inc. Method and apparatus for joint equalization and decoding of multilevel codes
BRPI0416673A (pt) 2003-11-20 2007-02-13 Korea Electronics Telecomm aparelho e método de equalização de realimentação de decisão em receptor de difusão digital terrestre
KR100724561B1 (ko) * 2005-12-20 2007-06-04 삼성전자주식회사 단일측벽 핀 전계효과트랜지스터를 갖는 반도체소자 및 그형성방법
US20080013648A1 (en) * 2006-07-17 2008-01-17 Rdc Semiconductor Co., Ltd. Decoding system and method for deciding a compensated signal
US7831892B2 (en) * 2007-01-20 2010-11-09 Harris Corporation Generic, reduced state, maximum likelihood decoder
US7831893B2 (en) * 2007-01-20 2010-11-09 Harris Corporation Reduced state trellis decoder using programmable trellis parameters
US8433004B2 (en) 2010-02-26 2013-04-30 Research In Motion Limited Low-latency viterbi survivor memory architecture and method using register exchange, trace-back, and trace-forward
US8402342B2 (en) * 2010-02-26 2013-03-19 Research In Motion Limited Method and system for cyclic redundancy check
US8572458B1 (en) 2012-06-20 2013-10-29 MagnaCom Ltd. Forward error correction with parity check encoding for use in low complexity highly-spectrally efficient communications
WO2014016677A2 (en) 2012-06-20 2014-01-30 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US8781008B2 (en) 2012-06-20 2014-07-15 MagnaCom Ltd. Highly-spectrally-efficient transmission using orthogonal frequency division multiplexing
US9088400B2 (en) 2012-11-14 2015-07-21 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9118519B2 (en) 2013-11-01 2015-08-25 MagnaCom Ltd. Reception of inter-symbol-correlated signals using symbol-by-symbol soft-output demodulator
US8804879B1 (en) 2013-11-13 2014-08-12 MagnaCom Ltd. Hypotheses generation based on multidimensional slicing
US9130637B2 (en) 2014-01-21 2015-09-08 MagnaCom Ltd. Communication methods and systems for nonlinear multi-user environments
US9496900B2 (en) 2014-05-06 2016-11-15 MagnaCom Ltd. Signal acquisition in a multimode environment
US8891701B1 (en) 2014-06-06 2014-11-18 MagnaCom Ltd. Nonlinearity compensation for reception of OFDM signals
US9246523B1 (en) 2014-08-27 2016-01-26 MagnaCom Ltd. Transmitter signal shaping
US9276619B1 (en) 2014-12-08 2016-03-01 MagnaCom Ltd. Dynamic configuration of modulation and demodulation
US9191247B1 (en) 2014-12-09 2015-11-17 MagnaCom Ltd. High-performance sequence estimation system and method of operation
CN106941389B (zh) * 2016-01-05 2019-06-25 中国移动通信集团公司 一种干扰消除方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0543568A2 (en) * 1991-11-22 1993-05-26 AT&T Corp. High resolution filtering using low resolution processors
JPH07123027A (ja) * 1993-10-26 1995-05-12 Fujitsu Ltd ディジタル加入者線伝送装置
JP2669350B2 (ja) * 1994-07-07 1997-10-27 日本電気株式会社 状態数可変最尤系列推定器
US6081566A (en) * 1994-08-02 2000-06-27 Ericsson, Inc. Method and apparatus for interference rejection with different beams, polarizations, and phase references
DE19545473C2 (de) 1995-12-06 1998-03-12 Kommunikations Elektronik Verfahren zur digitalen Nachrichtenübertragung über ein elektrisches Kabel
US6437932B1 (en) * 1996-05-16 2002-08-20 Lsi Logic Corporation Decision based time-varying equalizers
JP3293742B2 (ja) 1996-06-28 2002-06-17 日本電気株式会社 判定帰還型信号推定器
US5742642A (en) * 1996-10-29 1998-04-21 Telefonaktiebolaget Lm Ericsson Signal processing method and apparatus for reducing equalizer error
US6151370A (en) * 1998-02-12 2000-11-21 Lucent Technologies Inc. Path-oriented decoder for signal-dependent noise
US6426972B1 (en) * 1998-06-19 2002-07-30 Nxtwave Communications Reduced complexity equalizer for multi mode signaling
US6201831B1 (en) 1998-11-13 2001-03-13 Broadcom Corporation Demodulator for a multi-pair gigabit transceiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8125961B2 (en) 2005-10-25 2012-02-28 Qualcomm Incorporated Four way handshake for robust channel estimation and rate prediction

Also Published As

Publication number Publication date
KR100913926B1 (ko) 2009-08-27
EP1058406A3 (en) 2003-06-25
EP1058406A2 (en) 2000-12-06
US6690754B1 (en) 2004-02-10
JP2001036437A (ja) 2001-02-09
CA2310178C (en) 2005-08-30
KR20010014993A (ko) 2001-02-26
CA2310178A1 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
TW484272B (en) Method and apparatus for reducing the computational complexity and relaxing the critical path of reduced state sequence estimation (RSSE) techniques
Chevillat et al. Decoding of trellis-encoded signals in the presence of intersymbol interference and noise
KR100785410B1 (ko) 하이브리드 서바이버 메모리 구조체
US7913154B2 (en) Method and apparatus for pipelined joint equalization and decoding for gigabit communications
US8949700B2 (en) Method and apparatus for joint equalization and decoding of multidimensional codes transmitted over multiple symbol durations
EP1365534B1 (en) Viterbi decoder for gigabit ethernet
US8189705B2 (en) Method and apparatus to perform equalization and decoding for a communication system
EP1797689A1 (en) Pipelined decision-feedback unit in a reduced-state viterbi detector with local feedback
US8189704B2 (en) Method and apparatus for joint equalization and decoding of multilevel codes
Haratsch High-speed VLSI implementation of reduced complexity sequence estimation algorithms with application to Gigabit Ethernet 1000Base-T
US20130028312A1 (en) Joint decision feedback equalizer and trellis decoder
JP2002537688A (ja) 経路指向復号器による符号化または非符号化変調の終了
Yueksel et al. Design considerations on sliding-block viterbi detectors for high-speed data transmission
Haratsch et al. A pipelined 14-tap parallel decision-feedback decoder for 1000BASE-T Gigabit Ethernet
TW201308917A (zh) 可調適乙太網路收發機
TW201308949A (zh) 聯合決策迴授等化器暨格狀編碼調變解碼器
Haratsch et al. A low complexity joint equalizer and decoder for 1000Base-T Gigabit Ethernet

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees