TW483157B - Formation method of buried capacitor of embedded memory - Google Patents

Formation method of buried capacitor of embedded memory Download PDF

Info

Publication number
TW483157B
TW483157B TW090110534A TW90110534A TW483157B TW 483157 B TW483157 B TW 483157B TW 090110534 A TW090110534 A TW 090110534A TW 90110534 A TW90110534 A TW 90110534A TW 483157 B TW483157 B TW 483157B
Authority
TW
Taiwan
Prior art keywords
layer
capacitor
polycrystalline silicon
shallow trench
oxide layer
Prior art date
Application number
TW090110534A
Other languages
Chinese (zh)
Inventor
Guo-Chiuan Tzeng
Chiuan-Jung Wang
Jung-Wei Jang
Original Assignee
Taiwan Semiconductor Mfg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiwan Semiconductor Mfg filed Critical Taiwan Semiconductor Mfg
Priority to TW090110534A priority Critical patent/TW483157B/en
Application granted granted Critical
Publication of TW483157B publication Critical patent/TW483157B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

This invention provides a formation method of capacitor for the application in single transistor dynamic random access memory (DRAM). The bottom electrode of capacitor is buried in the recess area of etched oxide layer of shallow trench isolation region through lithography and etching steps. The spacer between the top electrode and the bottom electrode can be used to prevent short circuit between the mutually connected polysilicon and source/drain region. The method of the present invention also utilizes anti-reflection coating effect and insulation characteristics of oxynitride layer as the cap layer of the top electrode formed by mutually connected polysilicon, which can further reduce the area of unit memory cell.

Description

483157 五、發明說明 發明領域 本發 關於一種: 法。 發明背景 電腦: 也在乎製: 疑地,配> 憶體單價 的關鍵要· 電容的製/ (refresh 可愈長,/ 件聚集度 都是業界> 同一晶片! 慮的關鍵 如圖 之頂部電; 複晶矽閘: 尺寸縮小- —— ⑴483157 V. Description of the Invention Field of the Invention The present invention relates to a method. BACKGROUND OF THE INVENTION Computers: They also care about the system: doubt, the key to the unit price of memory is the capacity of the capacitor / (refresh can be longer, / the degree of aggregation is the industry's same chip! The key to consider is shown at the top Electricity; Compound silicon gate: Reduced size-—— ⑴

係有關於一種半導體記憶體 疊型電容使用於丨1靜態隨機 之製程,特別是有 存取記憶胞之方 hi 考 害 素 ί1 電子工業不僅要求增加 整體積體電路之成本的 之記憶體大小,不但將 低,也影響電腦之售價 通常不是主動元件中的 方法,因為電容的大小 •time)等習習相關,愈大 相對地將會佔用愈多的 因此,如何以最小單位 追求的目標。此外,將 甘欠入式§己憶胞製程的相 因為它關係著製程的複 其整體之性能表現並且 降低。就電腦而言,無 會影響電腦的表現,^ 。而關係著記憶體成本 電日日體,而是被動元件 與資料保存及再新時間 的電容,1afresh time 石夕基板面積,而降低元 面積產生最大電容一直 記憶胞和邏輯電路做在 容性也是不能不加以考 雜度度’即成本。It relates to a semiconductor memory stacked capacitor used in a static and random process, especially a method for accessing memory cells. Hi Corinthin 1 The electronics industry not only requires an increase in the memory size of the integrated circuit, Not only will it be low, but it will also affect the price of the computer. Usually it is not a method in active components, because the size of the capacitor and time) are related to it. The larger it is, the more it will occupy more. Therefore, how to pursue the goal with the smallest unit. In addition, the phase of the self-reporting § self-memory process is related to the overall performance of the process and decreases. As far as computers are concerned, none will affect the performance of the computer, ^. And it is related to the cost of memory, electricity and time, but the capacitance of passive components and data storage and renewal time, 1afresh time, and the area of the substrate, and reducing the maximum area to generate the maximum capacitance has always been the memory cell and logic circuit. Can not fail to consider the degree of complexity 'that is, cost.

所示的矽基板平面電容1〇(pUnar capacit〇r) (top plate與電容器介電層可以和邏輯製程中 2 0及閘極氧化層完全相容,不過欲將記憶胞的 很困難。原因是平面電容丨〇本身就是一種佔用The shown silicon substrate planar capacitor 10 (pUnar capacitor) (top plate and capacitor dielectric layer can be completely compatible with 20 and gate oxide layers in the logic process, but it is difficult to make the memory cell. The reason is Planar capacitance 丨 〇 itself is an occupation

483157 五、發明說明(2) 、大面積的元件。若欲以降低電容器介電層的厚度來縮小平 面電容的面積,將受到電容器介電層最小厚度的限制。因 為厚度低於30埃的電容器介電層容易遭致漏電流的問題。 因此,傳統另一常用以解決上述問題的手段便是利用 溝渠式電容,取代純降低電容器介電層。不過傳統方法中 形成溝渠式電容(trench capacitor)也有步驟複雜的問 題。此外傳統堆疊式電容(stack capacitor)則需要許多 額外的熱預算。並且和邏輯製程不能完全相容。 有鑑於如上述,本發明將提出一種電容埋入淺溝渠隔 離區(ST I)的氧化層之中,可以形成大約每單位記憶胞3 . 5 至5.0fF的電容大小,如此大小的電容可以適用於it SRAM’單一電晶體靜態隨機存取記憶體。1T SRM電容可 以不需很大,因為它的再新時間(r e f r e s h t i m e )甚短,約 為lms至O.lms的refresh time。此外做為字線(w〇rd line)與交互連接(interc〇nnect)導線互換功能的交互連 接複晶石夕層可利用跨電容器頂部電極的方式,充分利用每 一單位矽面積而達到在不降低電容器的電容值下減少使用 每一單位矽基板面積之目標。 發明目的及概述: 本發明之一目的係提供一種電容埋入淺溝渠隔離區(s τ I ) 五、發明說明(3) ^ 的氧化層之中的概念。 本發明之另一目的係提供一猶刺田执 _ 攸贤種〜用跨越電容器的方式形成 =互連接,晶矽層(以氮矽氧化層隔離)。用以縮小傳統為 ,開交互連接複晶梦所造成的短路問冑,而浪f較多的半 導體基板。本發明利用氮化矽間隙壁 六π、击址%曰〜 · Η眾雙U降低pass_gate與 乂互連接複晶石夕stringer的問題。 本發明提供了一種嵌入式記憶 法,特別是應用於單一電晶體靜^ 里式電容之製程方 的形成方法。包含以下體/先輯:存取記憶體之電容 千导體基板已形成淺溝渠隔離區 ^ 體基板形成η-井。賴,形成:其中。接者,於丰導 -光阻圖案於電容節點氧化層上,::乳化層。再形成第 於淺溝渠隔離區的左右兩侧, ^中光阻圖案之開口位 &義皇冠形電容器位置。 之後,利用光阻圖幸為罝墓 隔離區之左及右形成凹陷區,夂:二以钱刻以使得淺溝渠 相鄰之半導體基板。隨後,&面、、::並包含淺溝渠隔離區 以Ρ型導電性雜質離子佈植"^積第一複晶矽層。再= 程,以電容節點氧化層為研磨\後止\以化學/㈣式研磨製 側壁之第一複晶石夕層以產生兩二移除高出該凹=區 極。 田1固相隔離電容器之底部電 隨後 以濕式蝕刻將裸露之電 以 容節點氧化層移除483157 V. Description of the invention (2) Large-area components. To reduce the area of the planar capacitor by reducing the thickness of the capacitor dielectric layer will be limited by the minimum thickness of the capacitor dielectric layer. This is because capacitor dielectric layers having a thickness of less than 30 angstroms are susceptible to the problem of leakage current. Therefore, another traditional method to solve the above problems is to use trench capacitors instead of purely reducing the dielectric layer of the capacitor. However, the conventional method of forming a trench capacitor has a problem of complicated steps. In addition, traditional stack capacitors require many additional thermal budgets. And it is not completely compatible with the logic process. In view of the above, the present invention will propose a capacitor buried in the oxide layer of the shallow trench isolation region (ST I), which can form a capacitance of about 3.5 to 5.0 fF per unit of memory cell. Such a capacitor can be applied. In it SRAM 'single transistor static random access memory. The 1T SRM capacitor does not need to be very large, because its renewal time (r e f r e s h t i m e) is very short, about the refresh time of lms to O.lms. In addition, as an interchangeable function of the word line and interconductor wire, the polycrystalline spar layer can use the way of the top electrode of the capacitor to make full use of each unit of silicon area to achieve The goal of reducing the capacitance of the capacitor is to reduce the area of each silicon substrate. Object and Summary of the Invention: One object of the present invention is to provide a concept that a capacitor is buried in a shallow trench isolation area (s τ I). 5. The concept of the invention (3) ^. Another object of the present invention is to provide a stabbed field _ You Xianxian ~ formed by means of a capacitor across the = interconnection, crystalline silicon layer (isolated by nitrogen silicon oxide layer). It is used to reduce the traditional problem, and open the inter-connected short circuit caused by the compound crystal dream, and the semiconductor substrate with more waves f. The present invention utilizes a silicon nitride spacer wall of six π, addressing% ~ ~ Η 双 double U to reduce the problem of passergate and 乂 interconnected polycrystalline stone stringer. The invention provides an embedded memory method, particularly a method for forming a process method for a single transistor static capacitor. Contains the following bulk / precursor: Capacitors for accessing memory. A shallow trench isolation area has been formed on a thousand-conductor substrate. ^ The bulk substrate forms an n-well. Lai, formed: among them. In turn, Yu Fengdao-a photoresist pattern on the capacitor node oxide layer:: emulsion layer. Then, the left and right sides of the shallow trench isolation area are formed, and the opening position of the photoresist pattern is defined as the position of the crown-shaped capacitor. After that, a photoresist is used to form recessed areas for the left and right of the tomb isolation area. Second, the semiconductor substrate is engraved with money to make the shallow trench adjacent. Then, the & plane, ::, and the shallow trench isolation region are implanted with a P-type conductive impurity ion and the first polycrystalline silicon layer is deposited. In the process, the capacitor node oxide layer is polished, and the back stop is chemically / polished, and the first polycrystalline stone layer on the sidewall is removed to produce two or two removals higher than the concave region. The bottom of the solid-phase isolation capacitor in Tian 1 was then wet-etched to remove the exposed electricity to remove the oxide layer on the node.

483157 五、發明說明(4) 裸露該半導體 電容器介電層 上。緊接著, 後,施以p-型 層。隨後以微 器頂部電極。 別形成間隙壁 後,依序全面 及蝕刻定義第 閘極及交互連 在頂部電 形成一氮化石夕 的側壁及氮化 離子佈植,以 形成金屬矽化 及該源/汲極 發明詳細說明 有鑑於傳 問題。不是太 不完全相容, 如傳統堆疊式 基板表面。接著,再形成電容器介電層N〇。 形成後再沉積第二複晶矽層於電容器介電層 沉積一抗反射塗層於第二複晶矽層上。之9 導電性雜質離子佈植,以摻雜第二複晶石夕 影及蝕刻技術定義第二複晶矽層以做為電容 再去除裸露之電容器介電層。緊接著,再= 於上述之頂部電極及底部電極的側壁上,^ 形成閘極,氧化層、第三複晶矽層,再以微$483157 V. Description of the invention (4) Exposing the semiconductor capacitor dielectric layer. Immediately after, a p-type layer was applied. Then use the top electrode of the microcomputer. After forming the gap wall, sequentially and etch define the gate and the side walls that are electrically connected to form a nitride stone and the implantation of nitride ions in order to form metal silicide and the source / drain invention. Problem. Not too incompatible, such as the surface of a traditional stacked substrate. Next, a capacitor dielectric layer No is formed. After the formation, a second polycrystalline silicon layer is deposited on the capacitor dielectric layer. An anti-reflection coating is deposited on the second polycrystalline silicon layer. No. 9 Conductive impurity ions are implanted, and the second polycrystalline silicon layer is defined by doping the second polycrystalline silicon lithography and etching technology as a capacitor, and then the exposed capacitor dielectric layer is removed. Immediately, on the sidewalls of the top electrode and the bottom electrode, a gate electrode, an oxide layer, and a third polycrystalline silicon layer are formed again.

二複晶矽層及閘極氧化層,以形成電晶體之 接複晶矽連接導線。 M 極定義後,即施以ldd離子佈植,然後,再 間隙壁於電晶體閘極及該複晶矽連接導線層 石夕間隙壁的側壁上’隨之,施以源/沒極區a 植入p-型導電性雜質。最後,以自對準製程 物層於該電晶體閘極及該複晶矽連接導^ i上。 曰 統方法製造之與記憶體搭配之電容有甚多的 佔面積,例如平面式電容,就是與邏輯製程 如溝渠式電容,或者是需要甚多之熱預算, 電容。本發明的方法,可以解決上述的問 483157 五、發明說明(5) 題。 請參考圖二A,首先以光阻圖案(未圖示)於一以習知 技術所形成的淺溝渠隔離區1 0 5之半導體基板上定義η型井 1 1 0區以做為電容及邏輯電晶體所在區域,再以該光阻圖 案(未圖示)為罩幕,施以η型導電性雜質的離子佈植,而 形成圖示的η型井1 1 0區。 接著,全面以熱氧化製程,或化學氣相沉積法形成一 電容節點氧化層1 2 0。電容節點氧化層1 2 0的厚度約為 5 0 0 -8 0 0埃,而淺溝渠隔離區105的深度約3 0 0 0 - 5 0 0 0埃。 當然,若以熱氧化製程,則淺溝渠隔離内之氧化層之高度 增加將遠小於η型井1 1 0上表面的氧化層。而若以化學氣相 沉積法,則淺溝渠隔離區1 0 5和η型井1 1 0上表面的沉積的 電容節點氧化層1 2 0厚度則約若相同。 隨後,如圖二Β所示,形成一光阻圖案1 2 5於該電容節 點氧化層1 2 0上,以定義皇冠形電容器範圍。如圖示,光 阻圖案區塊1 2 5形成於淺溝渠隔離區1 0 5中央(約佔淺溝渠 隔離區1 0 5寬度之三分之一弱),及電容節點氧化層1 2 0 m 上,使得淺溝渠隔離區1 0 5之較外圍區域的氧化層1 0 5 (左 右各約為淺溝渠隔離區1 0 5寬度之三分之一)是裸露的,同 時部分相鄰之η型井11 0上表面上的電容節點氧化層1 2 0也 是裸露的。 483157 五、發明說明(6) 仍請參考圖二B,接著,以光阻圖案125為罩幕,施以 蝕刻,以移除未被光阻圖案125所罩幕之淺溝渠隔離區之 I 氧化層及電容節點氧化層丨20,直至露出電容節點氧化層 1 2 0下的半導體基板丨丨〇為止。由於淺溝渠隔離區内之氧化 層與電谷節點氧化層1 2 0同屬氧化層材質,因此蝕刻後將 形成凹陷區127,如圖示。凹陷區127除了存在於淺溝渠隔 離區12 7兩側尚包含相鄰之半導體基板。這一部分裸露之 半導體基板係用以使電容器之底部電極可以和邏輯區的源 /汲極區相連接。以一較佳的實施例而言,凹陷區的深度 ^ 約為淺溝渠隔離區1 〇 5之總深度的一半即可。例如若淺溝 渠隔離區105之深度為3 5 0nm,則凹陷區的深度約為18〇ηπι 附近。如圖所示,淺溝渠隔離區中央有如一高原。 #緊接著,在光阻圖案125移除後,請參考圖二c所示的| 検截面不意圖,再以低壓化學氣相沉積法(LpcvD法)沉積 複晶矽層13 0於蝕刻後之淺溝渠隔離區ι〇5及半導體基板 110及電容節點氧化層12〇上。複晶矽層130的厚度約i為 2 0 0 -4/0埃。隨之,施以p型導電性雜質離子佈植' 用以摻 ^ 雜該複晶矽層1 3 0。植入P型導電性雜質而不是植入n变導 , 電性雜質的優點是:降低電子遷移率,及減少發生軟體錯 | 誤(soft error)的機會。 請參考圖二D所示的橫截面示意圖。再施以化學/機械Two polycrystalline silicon layers and a gate oxide layer to form a transistor-connected polycrystalline silicon connecting wire. After the M pole is defined, ldd ion implantation is applied, and then the gap wall is on the side of the transistor gate and the side wall of the polycrystalline silicon connecting wire layer. The source / inverted area a is then applied. Implant p-type conductive impurities. Finally, a self-aligned process layer is formed on the transistor gate and the polycrystalline silicon connection conductor. Capacitors made with traditional methods have a lot of area, such as planar capacitors, which are related to logic processes such as trench capacitors, or capacitors that require a lot of thermal budget. The method of the present invention can solve the above-mentioned problem 483157 V. Description of the invention (5). Please refer to FIG. 2A. First, a photoresist pattern (not shown) is used to define a n-type well 1 10 region on a semiconductor substrate of a shallow trench isolation region 105 formed by conventional techniques as a capacitor and logic. In the area where the transistor is located, the photoresist pattern (not shown) is used as a mask, and ions of n-type conductive impurities are implanted to form the n-type well 110 area shown in the figure. Then, a capacitor node oxide layer 120 is formed by a thermal oxidation process or a chemical vapor deposition method. The thickness of the oxide layer 12 of the capacitor node is about 5 0-8 0 0 angstroms, and the depth of the shallow trench isolation region 105 is about 3 0 0 0-5 0 0 angstroms. Of course, if the thermal oxidation process is used, the increase in the height of the oxide layer in the shallow trench isolation will be much smaller than the oxide layer on the upper surface of the n-type well 110. If the chemical vapor deposition method is used, the thickness of the capacitor node oxide layer 120 deposited on the upper surface of the shallow trench isolation zone 105 and the n-type well 110 is about the same. Subsequently, as shown in FIG. 2B, a photoresist pattern 125 is formed on the capacitor node oxide layer 120 to define a crown-shaped capacitor range. As shown in the figure, the photoresist pattern block 1 25 is formed in the center of the shallow trench isolation area 105 (about one third of the width of the shallow trench isolation area 105 is weak), and the capacitor node oxide layer 120 m In this way, the oxide layer 105 of the shallow trench isolation area 105 (the left and right sides each is about one-third of the width of the shallow trench isolation area 105) is exposed, and some adjacent η-types are exposed at the same time. The capacitor node oxide layer 120 on the top surface of the well 110 is also exposed. 483157 V. Description of the invention (6) Still refer to FIG. 2B. Next, the photoresist pattern 125 is used as a mask, and etching is performed to remove the I oxidation of the shallow trench isolation area not covered by the photoresist pattern 125. Layer and the capacitor node oxide layer 20 until the semiconductor substrate under the capacitor node oxide layer 120 is exposed. Since the oxide layer in the shallow trench isolation region and the valley electrode node layer 120 are both of the same oxide layer material, a recessed region 127 will be formed after etching, as shown in the figure. The recessed area 127 includes adjacent semiconductor substrates on both sides of the shallow trench isolation area 12 7. The exposed semiconductor substrate is used to connect the bottom electrode of the capacitor to the source / drain region of the logic region. In a preferred embodiment, the depth of the recessed region ^ can be about half of the total depth of the shallow trench isolation region 105. For example, if the depth of the shallow trench isolation region 105 is 350 nm, the depth of the recessed region is about 180 nm. As shown in the figure, the center of the shallow trench isolation zone is like a plateau. #Next, after the photoresist pattern 125 is removed, please refer to FIG. 2c | 検 The cross section is not intended, and then a low-pressure chemical vapor deposition method (LpcvD method) is used to deposit a polycrystalline silicon layer 13 0 after etching. The shallow trench isolation area ι5 is on the semiconductor substrate 110 and the capacitor node oxide layer 120. The thickness of the polycrystalline silicon layer 130 is about 200 to 4/0 angstroms. Subsequently, a p-type conductive impurity ion implantation is applied to dope the polycrystalline silicon layer 130. The implantation of P-type conductive impurities instead of n-type transconductance has the advantages of reducing electron mobility and reducing the chance of soft errors. Please refer to the schematic cross-sectional view shown in FIG. Chemical / mechanical

第9頁 483157 五、發明說明(7) 式研磨製程(CMP ),以移除高出凹陷區側壁之複晶矽層。 以電容節點氧化層1 2 0為蝕刻終止層。經過本步驟後,將 留下複晶矽層1 3 0於凹陷區1 2 7側壁及底部。同時,使兩個 凹陷區1 2 7的複晶矽層1 3 0彼此隔離,而形成了二底部電極 1 3 Ο A板塊。利用這一 C Μ P步驟回#,有一優點,可以省去 一次光罩。 接著,請參考圖二Ε所示的橫截面示意圖。再以濕式 蝕刻法,移除電容節點氧化層1 2 0。經此步驟後,未被第 一複晶矽層1 3 0所覆蓋的η型井1 1 〇上表面將裸露出來。繼 而,再以L P C V D法形成一氮化石夕層1 4 〇於底部電極1 3 Ο Α及裸 露之半導體基板1 1 0上。接著再施以高溫的熱氧化製程以 形成N / 0的電容器介層1 4 〇結構。當然也可以使用〇 n 〇做為 電容器介電層。電容器介電層14〇的厚度約為4-6 nm。 仍請參考圖二E,再以低壓化學氣相沉積法,沉積一 厚度較底部電極130A#的第二複晶石夕層150於電容器介電 層1 4 0上,以做為電容器之頂部電極。隨之,再以化學氣 相沉積法形成一氮矽氧化層(S i NO X) 1 6 0於第-藉曰石々風 i5〇^ 2>0 0-40 0埃》氮矽氧化層16〇可用以做為頂部電極圖案化的 抗反射塗層以提高微影解析度。隨後,再施以p型導 雜質離子佈植,用以摻雜該複晶矽層丨5 〇。如圖所示。— 義頂部電極再蝕刻去除不被複晶矽層15〇覆蓋之電容=Page 9 483157 V. Description of the invention (7) A type polishing process (CMP) to remove the polycrystalline silicon layer above the sidewall of the recessed area. The capacitor node oxide layer 120 is used as an etch stop layer. After this step, the polycrystalline silicon layer 130 will be left on the sidewall and bottom of the recessed region 1 2 7. At the same time, the two polycrystalline silicon layers 1 30 of the two recessed regions 1 2 7 are isolated from each other, and a two bottom electrode 1 3 0 A plate is formed. With this CMP step back #, there is an advantage that a photomask can be omitted. Next, please refer to the schematic cross-sectional view shown in FIG. Then, the capacitor node oxide layer 120 is removed by a wet etching method. After this step, the upper surface of the n-type well 1 10 that is not covered by the first polycrystalline silicon layer 130 will be exposed. Then, a nitrided layer 14 is formed on the bottom electrode 13 A and the exposed semiconductor substrate 110 by the LPCCVD method. Then, a high-temperature thermal oxidation process is performed to form a N / 0 capacitor interlayer 140 structure. Of course, it is also possible to use 0 n 0 as the capacitor dielectric layer. The thickness of the capacitor dielectric layer 14 is about 4-6 nm. Still referring to FIG. 2E, a low-pressure chemical vapor deposition method is used to deposit a second polycrystalline stone layer 150 thicker than the bottom electrode 130A # on the capacitor dielectric layer 140, as the top electrode of the capacitor. . Subsequently, a silicon nitride oxide layer (S i NO X) 1 6 0 was formed by a chemical vapor deposition method in the first-borrowed stone shovel i5〇 ^ 2 > 0 0-40 0 Angstrom} silicon nitride oxide layer 16 〇 Can be used as the top electrode patterned anti-reflection coating to improve lithographic resolution. Subsequently, a p-type impurity ion implantation is applied to dope the polycrystalline silicon layer. as the picture shows. — The top electrode is etched again to remove the capacitance that is not covered by the polycrystalline silicon layer 150. =

第10頁 483157 五、發明說明(8) 電層140,以裸露出半導體基板。Page 10 483157 V. Description of the invention (8) The electrical layer 140 exposes the semiconductor substrate.

接著’請參考圖二F所示的橫截面示意圖。以光阻圖 案(未圖示)形成於氮矽氧化層1 6 〇上,用以定義頂部電 極。其中如圖所示之左側的電容器,由於緊臨邏輯區,因 此’第二複晶矽層1 5 0截斷截斷於凹陷區丨2 7側壁之内,且 相鄰於側壁之長度L約5 0 0 - 1 〇 〇 〇埃。而圖示右側電容器因 I接電容區其他電容,.因此圖示右的複晶矽層15〇並未被 。去^阻圖案後,再姓刻去除未被第二複晶石夕層15〇 *盍之電谷益介電層i 40,以裸露出_ 〇及 電極130A之上表面。 -1 仍請參考圖二F,隨後,再形成電容器之氣化石夕層側 間隙壁170B及170A分別形成於頂部電極15〇之側壁及底部 電極之外側壁上。形成方法為:先形成一氮化矽層,再以 ^非等向性蝕刻方法在頂部電極1 5 〇側壁上形成氮化矽間 隙壁1 7 0 底部電極1 3 0 A之側壁上形成氮化矽間隙壁 170B。 請參考圖二G所示的橫截面示意圖。再以熱氧化製程 籲 形成閘極氧化層1 8 0於裸露之η型井1 1 〇上表面上。緊接 著’再开> 成第二複晶石夕層於所有的表面上。接著再以光阻 圖案及钱刻技術定義内連線複晶矽層i 9 〇人於及邏輯區複晶 石夕問極層1 9 0 B於η型井11 〇上表面。裸露之閘極氧化層丨8 〇Next, please refer to the schematic cross-sectional view shown in FIG. A photoresist pattern (not shown) is formed on the silicon nitride oxide layer 160 to define the top electrode. The capacitor on the left as shown in the figure, because it is close to the logic area, the second polycrystalline silicon layer 15 is truncated and cut off within the sidewall of the recessed area, and the length L adjacent to the sidewall is about 50. 0-100 Angstroms. The capacitor on the right side of the figure is connected to other capacitors in the capacitor area. Therefore, the polycrystalline silicon layer 15 on the right side of the figure is not. After removing the resist pattern, the dielectric layer i 40 which is not the second polycrystalline stone layer 15 o * 电 is removed to expose _ o and the upper surface of the electrode 130A. -1 Still refer to FIG. 2F, and then, the gasification stone layer side of the capacitor is formed. The spacers 170B and 170A are formed on the side wall of the top electrode 150 and the outer side wall of the bottom electrode, respectively. The forming method is as follows: a silicon nitride layer is formed first, and then a silicon nitride spacer is formed on the side wall of the top electrode 150 by anisotropic etching, and the nitride is formed on the side wall of the bottom electrode 130 A. Silicon spacer 170B. Please refer to the schematic cross-sectional view shown in FIG. Then, a thermal oxidation process is called to form a gate oxide layer 180 on the upper surface of the exposed n-type well 110. Immediately after the 'reopening', a second polycrystalite layer is formed on all surfaces. Then use the photoresist pattern and the money engraving technique to define the interconnected polycrystalline silicon layer i 9 0 and the logic region complex crystal Shi Xiwen electrode layer 19 0 B on the upper surface of the n-type well 11 10. Exposed gate oxide layer 8

第11頁 483157 五、發明說明(9) -- 再以濕式蝕刻方式去除。請注意内連線複晶矽層19〇A就位 於淺溝渠隔離區1 05左右兩電容器之頂部電極板氮矽氧化 層160之上。接著,再施以pLDD離子佈植以植入p—型導電 i 性雜質於裸露之n型井11〇形成pLDD摻雜區195。 P近之,如圖二Η再以傳統方法形成氮化石夕間隙壁或氧 化矽間隙壁2 0 0Α於内連線複晶矽層190Α及複晶閘極19〇 Β 之間隙壁2 0 0Β上。此外,,間隙壁170Α的側壁也將形成一小 間隙壁2 0 0C。接著,再施以Ρ-型導電性雜質的源/沒極區| 離子佈植,以形成源/汲極區210。 ! 之後,缚 i準製程形成金 i區1 9 0 B及内連 包含先形成_ i屬矽化物,餘 以形成低卩且值 質離子,此外 來而形成摻雜 一步提高。 化過程而活化 參考圖二I所示的橫截面示意圖,再以自對 屬矽化物層2 2 0於源/汲極區2 1 0、複晶閘極 線複晶石夕層1 9 0 A上。金屬石夕化物自對準製程 金屬層’再施以退火製成以形成較低溫的金 刻間隙壁上未反應的金屬層及高溫退火製程 的金屬矽化物,同時同化源/汲極區内之雜 ’底部電極内的離子亦將自複晶矽層擴散出 區2 3 0以連接至^1)1)區195,而使得導電性進 火過程中,雜質也將因退火過程及前述熱氧 本發明具有以下的優澤 <1>本發Page 11 483157 V. Description of the invention (9)-Removal by wet etching. Please note that the interconnect polycrystalline silicon layer 19A is located above the silicon nitride oxide layer 160 on the top electrode plates of the two capacitors around the shallow trench isolation zone 105. Next, pLDD ion implantation is applied to implant p-type conductive i impurities into the exposed n-type well 11 to form a pLDD doped region 195. Recently, as shown in Fig. 2A, a nitrided nitride spacer or a silicon oxide spacer 2 0 0A is formed by a conventional method on the inter-connected polycrystalline silicon layer 190A and the spacer 2 0 0B of the polycrystalline gate 19B. . In addition, the side wall of the partition wall 170A will also form a small partition wall 200C. Next, a source / electrode region of P-type conductive impurities is implanted to form a source / drain region 210. After that, the quasi-process of forming a gold i region 190 B and interconnects includes the first formation of _i metal silicide, and the remaining low-value and high-value ions are formed. In addition, the doping is further improved. Refer to the cross-sectional schematic diagram shown in FIG. 2I for the activation process, and then use the self-pairing silicide layer 2 2 0 in the source / drain region 2 1 0, the polycrystalline gate line polycrystalline stone layer 1 9 0 A on. The metal layer of the metallization self-alignment process is then annealed to form an unreacted metal layer on the lower-temperature gold-engraved barrier wall and a metal silicide in the high-temperature annealing process. The ions in the hetero bottom electrode will also diffuse out of the polycrystalline silicon layer out of the region 230 to connect to the ^ 1) 1) region 195, so that during the process of conductive flame, impurities will also be caused by the annealing process and the aforementioned hot oxygen The present invention has the following advantages: < 1 > The present invention

明的電容由於可達3.5至5.0fF,因此可適用於Bright capacitors are suitable for applications from 3.5 to 5.0fF

第12頁 483157 五、發明說明(ίο) 〜 、 1電晶體的SRAM ,且由於下埋式底部電極板係應用淺溝渠 隔離區域,因此,可以節省可觀之面積。例如,以〇.丨3以 m製程為例,6電晶體的SRAM ’ 一記憶胞需要2· 2/z m的面 積,而傳統1電晶體的SRAM ,一記憶胞需要1. 1至! . 2以m2 的面積,而應用本發明將更減少至〇 · 6至〇 · 7/z m的面積。 〈2 &gt;由於底部電極有P裂導電性雜質佈植,因此當進行 金屬矽化物退火時,這f些雜質更能向外擴散而有利於電容 節點與PLDD的連接。Page 12 483157 V. Description of the Invention (1) ~ 1 transistor SRAM, and because the bottom-embedded bottom electrode plate is applied with shallow trench isolation area, it can save considerable area. For example, taking the process of m. 丨 3 as an example, a SRAM of a 6-transistor cell requires an area of 2.2 / z m, while a SRAM of a conventional 1-transistor cell requires 1.1 to 1! 2 with an area of m2, and the application of the present invention will further reduce the area to 0.6 to 0.7 m. <2 &gt; Because the bottom electrode has P-split conductive impurities implanted, these impurities can diffuse outward when the metal silicide is annealed, which is beneficial to the connection between the capacitor node and PLDD.

&lt; 3 &gt;由於使用小的節點面積(相對於平面式電容),因 I 此,節點接面漏電流將可相對減少。 | &lt; 4 &gt;電容交互連接線係直接做在電容上,因此,可進 一步減少矽基板平面面積之浪費。 &lt; 5 &gt;由於在頂部電極定義後,多了額外的氮化石夕間隙 壁形成於頂部電極側壁,因此可防止發生pass-gate和交 丨 互連接線之間複晶矽s t r i n g e r而造成短路的機會。 ( 本發明以較佳實施例說明如上,而熟悉此領域技藝 者,在不脫離本發明之精神範圍内,當可作些許更動潤 飾,其專利保護範圍更當視後附之申請專利範圍及其等同 領域而定。&lt; 3 &gt; Since a small node area is used (relative to a planar capacitor), I, the node junction leakage current can be relatively reduced. | &lt; 4 &gt; The capacitor interactive connection line is directly made on the capacitor, so the waste of the planar area of the silicon substrate can be further reduced. &lt; 5 &gt; After the top electrode is defined, an additional nitride stone spacer is formed on the top electrode sidewall, so it can prevent the short circuit caused by the polycrystalline silicon stringer between the pass-gate and the interconnect wiring. opportunity. (The present invention is described above with reference to the preferred embodiment. Those skilled in the art can make some modifications without departing from the spirit of the present invention. Equivalent field depends.

第13頁 483157 圖式簡單說明 本發明的較佳實施例將於往後之說明文字中輔以下列 圖形做更詳細的闡述: 圖一顯示一以傳統之電晶體及平面電容器的示意圖。 圖二A顯示依據本發明之方法依序定義η型井及形成 電谷節點氧化層於一已完成淺溝渠隔離區製程的半導體基 板的橫截面示意圖。 圖二Β顯示依據本發明之方法以光阻圖案為罩幕進行 蝕刻以形成兩凹陷區的橫截面示意圖。 圖二C顯示依據本發明之方法全面沉積第一複晶石夕層 及施以ρ-型導電性雜質離子佈植的橫截面示意圖。 圖二D顯示依據本發明之方法施以CMP研磨製程以隔離 兩相鄰之電容器底部電極之橫截面示意圖。 圖二Ε顯示依據本發明之方法,先後形成電容器介電 層及第二複晶石夕層、氮石夕氧化層及再施以ρ_型導電性雜質 離子佈植之橫截面示意圖。 圖二F顯示依據本發明之方法先後定義頂部電極、去 除裸露之電容器介電層,再形成氮化矽間隙壁之橫截面示 意圖。 圖二G顯示依據本發明之方法形成閘極氧化層、複晶 石夕層、定義内連線複晶矽層1 9 〇及複晶矽閘極層並施以 PLDD離子佈植的橫截面示意圖。 圖二Η顯示依據本發明之方法形成氮化矽間隙壁再施 以Ρ-型導電性雜質的源/汲極區離子佈植的橫截面示意 圖。 483157 圖式簡單說明 圖二I顯示依據本發明之方法形成以自對準製程形成 金屬矽化物層於源/汲極區、複晶閘極區及内連線複晶矽 層上的橫截面示意圖。 圖號對照說明: 淺 溝渠 隔 離 區 105 摻 雜 區 230 η型井 110 電 容 節 點 氧 化 層 120 光 阻圖 案 125 凹 陷 區 127 第 一複 晶 層 130 底 部 電 極 130Α 電 容器 介 電 層 140 第 二 複 晶 矽 層 150 頂 部電 極 150Α 氮 矽 氧 化 層 170 氮 化矽 間 隙 壁 170Α及 170Β 閘 極 氧 化 層 180 第 三複 晶 矽 層 180 内 連 線 複 晶 矽 層 190Α 氮 化矽 間 隙 壁或 氧化矽間隙壁 2 0 0 Α、 .200Β、 200C PLDD 摻 雜 區 195 源 /&gt;及極區 210 金 屬 矽 化 物 層 220Page 13 483157 Brief description of the drawings The preferred embodiment of the present invention will be described in more detail in the following explanatory text with the following figures: Figure 1 shows a schematic diagram of a conventional transistor and a planar capacitor. FIG. 2A is a schematic cross-sectional view of a semiconductor substrate that sequentially defines an n-type well and forms an oxide valley node oxide layer in a shallow trench isolation region process according to the method of the present invention. FIG. 2B is a schematic cross-sectional view of a photoresist pattern as a mask for etching to form two recessed regions according to the method of the present invention. Fig. 2C shows a schematic cross-sectional view of the first polycrystalline spar layer and the implantation of p-type conductive impurity ions according to the method of the present invention. FIG. 2D is a schematic cross-sectional view of a bottom electrode of two adjacent capacitors subjected to a CMP polishing process according to the method of the present invention. Fig. 2E shows a schematic cross-section of a capacitor dielectric layer, a second polycrystalline stone layer, a nitrogen stone oxide layer, and a p-type conductive impurity ion implantation according to the method of the present invention. Fig. 2F shows a schematic cross-sectional view of the method according to the present invention for defining the top electrode, removing the exposed capacitor dielectric layer, and then forming a silicon nitride spacer. FIG. 2G is a schematic cross-sectional view of forming a gate oxide layer, a polycrystalline stone layer, defining an interconnected polycrystalline silicon layer 190 and a polycrystalline silicon gate layer and applying PLDD ion implantation according to the method of the present invention. . Fig. 2 is a schematic cross-sectional view showing the formation of a silicon nitride spacer according to the method of the present invention and the implantation of ion implantation in the source / drain region of a P-type conductive impurity. 483157 Schematic illustration Figure 2I shows a schematic cross-sectional view of a metal silicide layer formed on a source / drain region, a complex gate region, and an interconnect polysilicon layer formed by a self-aligned process according to the method of the present invention. . Comparative description of drawing numbers: Shallow trench isolation region 105 Doped region 230 η-type well 110 Capacitance node oxide layer 120 Photoresist pattern 125 Recessed region 127 First polycrystalline layer 130 Bottom electrode 130A Capacitor dielectric layer 140 Second polycrystalline silicon layer 150 top electrode 150A silicon nitride oxide layer 170 silicon nitride spacer 170A and 170B gate oxide layer 180 third polycrystalline silicon layer 180 interconnect polycrystalline silicon layer 190A silicon nitride spacer or silicon oxide spacer 2 0 0 A, .200B, 200C PLDD doped region 195 source / &gt; and electrode region 210 metal silicide layer 220

第15頁Page 15

Claims (1)

483157 六、申請專利範圍 1. 一種嵌入式記憶體下埋式電容之製程方法,該方法至 _ 少包含下列步驟: \ 提供一半導體基板,該半導體基板已形成淺溝渠隔離 區於其中; 形成η -井於該半導體基板; 形成電容節點氧化層於該半導體基板所有表面,其中 該第一光阻圖案之開口分別位於該淺溝渠隔離區的左右兩 側,並相鄰部分之半導,體基板上的η井表面,以定義皇冠 形電容器位置; 以該第一光阻圖案為罩幕,施以蝕刻技術以蝕刻裸露 _ 之電容節點氧化層及該淺溝渠隔離區之氧化層,而形成左 及右凹陷區於該淺溝渠隔離區之兩側,該凹陷區並包含該 淺溝渠隔離區相鄰之的η井表面; 去除該第一光阻圖案; i 沉積第一複晶矽層於該淺溝渠隔離區、該半導體基板及該 I 電容節點氧化層上; | 施以導電性雜質離子佈植以摻雜該第一複晶矽層; j 施以化學/機械式研磨製程,以移除高出該凹陷區側 丨 i 壁之第一複晶矽層,以產生兩個相隔離之電容器底部電 極,以該電容節點氧化層為研磨終止層; 修 濕式蝕刻該裸露之該電容節點氧化層,以裸露該半導 體基板; 形成電容器介電層於該半導體基板、該電容器底部電 極及裸露之淺溝渠隔離内的氧化層上;483157 VI. Application for patent scope 1. A method for manufacturing embedded capacitors in embedded memory, the method includes at least the following steps: \ Provide a semiconductor substrate, the semiconductor substrate has formed a shallow trench isolation region therein; forming η -Well in the semiconductor substrate; forming a capacitor node oxide layer on all surfaces of the semiconductor substrate, wherein the openings of the first photoresist pattern are respectively located on the left and right sides of the shallow trench isolation area, and the semiconductors of the adjacent portions and the body substrate On the surface of the η well, the position of the crown-shaped capacitor is defined; using the first photoresist pattern as a mask, an etching technique is applied to etch the exposed oxide layer of the capacitor node and the oxide layer of the shallow trench isolation area to form a left And a right depression area on both sides of the shallow trench isolation area, the depression area including the surface of the η well adjacent to the shallow trench isolation area; removing the first photoresist pattern; i depositing a first polycrystalline silicon layer on the A shallow trench isolation region, the semiconductor substrate, and the I capacitor node oxide layer; applying conductive impurity ion implantation to dope the first polycrystalline silicon layer; A chemical / mechanical polishing process to remove the first polycrystalline silicon layer above the i-side of the recessed area to generate two isolated capacitor bottom electrodes, and use the capacitor node oxide layer as a polishing termination layer; Wet-etching the exposed oxide layer of the capacitor node to expose the semiconductor substrate; forming a capacitor dielectric layer on the semiconductor substrate, the capacitor bottom electrode, and the oxide layer in the exposed shallow trench isolation; 第16頁 483157 六、申請專利範圍 沉積第二複晶矽層於該電容器介電層上; 沉積一介電層於該第二複晶矽層上; 施以導電性雜質離子佈植,以摻雜該第二複晶矽層; I 定義該第二複晶矽層及該介電層以做為電容器頂部電 極; 去除裸露之電容器介電層; 形成間隙壁於上述之頂部電極、電容器介電層、底部 i電極的側壁上; ! 依序形成閘極氧化層、第三複晶矽層於該半導體基板 I及該電容器頂部電極上之介電層上; i ! 微影及蝕刻以定義該第三複晶矽層、該閘極氧化層, | 以形成電晶體之閘極及交互連接複晶矽連接導線; 施以LDD離子佈植,用於形成LDD區於該半導體基板; 形成一氮化矽間隙壁於該電晶體閘極及該複晶矽連接 導線層的側壁及氮化矽間隙壁的側壁上; | 施以源/汲極區離子佈植,以植入導電性雜質於該半 |導體基板内;及 以自對準製程形成金屬矽化物層於該電晶體閘極及該 複晶矽連接導線層及該源/汲極區上。Page 16 483157 6. Application scope Deposition of a second polycrystalline silicon layer on the capacitor dielectric layer; deposition of a dielectric layer on the second polycrystalline silicon layer; implantation of conductive impurity ions for doping Hybrid the second polycrystalline silicon layer; I define the second polycrystalline silicon layer and the dielectric layer as the top electrode of the capacitor; remove the exposed capacitor dielectric layer; form a barrier wall on the top electrode and the capacitor dielectric Layer, the sidewall of the bottom i electrode;! Gate oxide layer, a third polycrystalline silicon layer are sequentially formed on the semiconductor substrate I and the dielectric layer on the top electrode of the capacitor; i! Lithography and etching to define the The third polycrystalline silicon layer and the gate oxide layer are used to form the gate of the transistor and connect the polycrystalline silicon connecting wire in an interactive manner; applying LDD ion implantation to form an LDD region on the semiconductor substrate; forming a nitrogen Silicon spacers are placed on the side of the transistor gate and the polycrystalline silicon connection lead layer and the sidewalls of the silicon nitride spacer; | Source / drain region ion implantation is applied to implant conductive impurities in the Semi | conductor substrate; and from An alignment process is performed to form a metal silicide layer on the transistor gate and the polycrystalline silicon connecting wire layer and the source / drain region. 第17頁 483157 六、申請專利範圍 該凹陷區並包含該淺溝渠隔離區相鄰之部分半導體基板, “ 係用以使電容器之底部電極可以和邏輯區的源/汲極區相 \ 連接。 4 ·如申請專利範圍第1項之方法,其中上述之電容器介電 層係選自N/0或0/N/0其中之一,厚度約4 0- 6 0埃。 ί 5. 如申請專利範圍第1項之方法,其中上述之電容器頂部 電極上之介電層係氮矽氧化層,厚度約200-40 0埃。 6. 如申請專利範圍第1項之方法,其中上述之凹陷區的深 度約為該淺溝渠隔離區深度之1 / 3至2 / 3之間。 7. 如申請專利範圍第1項之方法,其中上述之定義該第二 i : 複晶矽層以做為電容器頂部電極步驟至少包含以下步驟: 形成一光阻圖案層於該介電層上,其中接近邏輯區之 一側,光阻區塊,更比該底部電極短,以使該定義後之頂 部電極比該底部電極运離邏輯區,短小的長度約為 500-1000 埃;及 以該光阻圖案層為罩幕,蝕刻該介電層、該第二複晶 _ 矽層,而形成上述之頂部電極;及去除該光阻圖案。 8. —種嵌入式記憶體下埋式電容之製程方法,該方法至 丨 少包含下列步驟:Page 17 483157 VI. Scope of patent application The recessed area contains a part of the semiconductor substrate adjacent to the shallow trench isolation area, "" so that the bottom electrode of the capacitor can be connected to the source / drain area of the logic area. 4 The method according to item 1 of the scope of patent application, wherein the capacitor dielectric layer is selected from one of N / 0 or 0 / N / 0, and the thickness is about 40-60 Angstroms. Ί 5. If the scope of patent application is The method of item 1, wherein the dielectric layer on the top electrode of the capacitor is a silicon nitride oxide layer with a thickness of about 200 to 40 angstroms. 6. The method of item 1 in the scope of patent application, wherein the depth of the above-mentioned recessed area Approximately between one third and two thirds of the depth of the shallow trench isolation area. 7. The method of item 1 in the scope of the patent application, wherein the second definition i: the compound silicon layer is used as the top electrode of the capacitor The steps include at least the following steps: forming a photoresist pattern layer on the dielectric layer, where the photoresist block is closer to one side of the logic region than the bottom electrode, so that the defined top electrode is shorter than the bottom electrode The electrodes are transported away from the logic area and the short length is about 500-1000 angstroms; and using the photoresist pattern layer as a mask, etching the dielectric layer and the second polycrystalline silicon layer to form the above top electrode; and removing the photoresist pattern. 8.-Embedding A method for manufacturing a buried capacitor in an embedded memory. The method includes at least the following steps: 第18頁 483157 六、申請專利範圍 提供一半導體基板’該半導體基板已形成淺溝渠隔離 區於其中; ·· 形成η -井於該半導體基板; 形成電容節點氧化層於該半導體基板所有表面; 形成第一光阻圖案於該電容節點氧化層上,其中該第 一光阻圖案之開口分別位於該淺溝渠隔離區的左右兩側, 並相鄰部分之半導體基板上的η井表面,以定義皇冠形電 容器位置; , 以該第一光阻圖案為罩幕,施以蝕刻技術以蝕刻裸露 之電容節點氧化層及該淺溝渠隔離區之氧化層,而形成左 0 及右凹陷區於該淺溝渠隔離區之兩側’該凹陷區並包含該 淺溝渠隔離區相鄰之的η井表面; 去除該第一光阻圖案; 沉積第一複晶矽層於該淺溝渠隔離區、該淺溝渠隔離 區相鄰之的η井表面及該電容節點氧化層上; 施以Ρ-型導電性雜質離子佈植,以摻雜該第一複晶矽 層; 施以化學/機械式研磨製程,以移除高出該凹陷區側 | 壁之第一複晶矽層,以產生兩個相隔離之電容器底部電 極,以該電容節點氧化層為研磨終止層; Ρ 濕式蝕刻該裸露之該電容節點氧化層,以裸露該半導 丨 體基板; 丨 形成電容器介電層於該半導體基板、該電容器底部電 極及裸露之淺溝渠隔離内的氧化層上;Page 18 483157 6. The scope of the patent application provides a semiconductor substrate 'the semiconductor substrate has formed a shallow trench isolation region therein; ·· formation of η -well in the semiconductor substrate; formation of a capacitor node oxide layer on all surfaces of the semiconductor substrate; A first photoresist pattern is on the capacitor node oxide layer, wherein the openings of the first photoresist pattern are respectively located on the left and right sides of the shallow trench isolation area, and the η well surface on the adjacent semiconductor substrate to define the crown The shape of the capacitor; using the first photoresist pattern as a mask and applying an etching technique to etch the exposed capacitor node oxide layer and the shallow trench isolation region oxide layer to form left 0 and right recessed areas in the shallow trench The recessed area on both sides of the isolation area includes the surface of the η well adjacent to the shallow trench isolation area; removing the first photoresist pattern; depositing a first polycrystalline silicon layer on the shallow trench isolation area and the shallow trench isolation The surface of the n-well adjacent to the region and the oxide layer of the capacitor node; implanted with P-type conductive impurity ions to dope the first polycrystalline silicon layer; Chemical / mechanical polishing process to remove the first polycrystalline silicon layer above the side of the recessed area | wall to produce two isolated capacitor bottom electrodes, with the capacitor node oxide layer as the polishing termination layer; Etching the exposed oxide layer of the capacitor node to expose the semiconductor substrate; forming a capacitor dielectric layer on the semiconductor substrate, the bottom electrode of the capacitor, and the oxide layer in the exposed shallow trench isolation; 第19頁 483157 六、申請專利範圍 沉積第二複晶矽層於該電容器介電展 沉積一氮矽氧化層於該第二複晶石夕^上: 施以P-型導電性雜質離子佈植,:上·’ 層·, 从摻雜該第二複晶矽 疋義該第一複晶石夕層以做為電容器 A 其中接近邏輯區一側之該第二複晶矽屛=電極,以使得 更遠離該邏輯區; 9匕該底部電極短且 去除裸露之電容器,介電層; 電容器介電層、 分別形成間隙壁於上述之頂部電極 底部電極的側壁上;Page 19, 483157 VI. Application scope Deposition of a second polycrystalline silicon layer on the capacitor dielectric layer A nitrogen silicon oxide layer is deposited on the second polycrystalline stone ^: P-type conductive impurity ion implantation is applied ,: The upper layer, from the doping of the second polycrystalline silicon, the first polycrystalline silicon layer is defined as the capacitor A, wherein the second polycrystalline silicon near the logic region side is an electrode, and So that it is farther away from the logic region; the bottom electrode is short and the exposed capacitor and dielectric layer are removed; the capacitor dielectric layer forms a gap on the side wall of the bottom electrode of the top electrode; 依序形成閘極氧化層、第二複晶矽層於該半 及該電容器頂部電極上之介電層上; 體基相 、/微影及蝕刻以定義該第三複晶矽層、該閘極氧化層, 以形成電晶體之閘極及交互連接複晶矽連接導線;曰 知以p—型離子佈植,用於形成pLDD區於該半導體美 板; &amp; 、 形成一氮化矽間隙壁於該電晶體閘極及該複晶矽連接 導線層的側壁及氮化矽間隙壁的側壁上; 施以源/汲極區離子佈植,以植入導電性雜質於該半 導體基板内;及 ^ 以自對準製程形成金屬矽化物層於該電晶體閘極及該 後a曰石夕連接導線層及該源/汲極區上。 9 如* •如甲請專利範圍第8項之方法,其中上述之步驟中所述A gate oxide layer and a second polycrystalline silicon layer are sequentially formed on the half and a dielectric layer on the top electrode of the capacitor; a bulk phase, lithography, and etching to define the third polycrystalline silicon layer, the gate An oxide layer to form the gate of the transistor and to interconnect the polycrystalline silicon connection wires; it is known that it is implanted with p-type ions for forming a pLDD region on the semiconductor beauty board; &amp; forming a silicon nitride gap Wall on the transistor gate and the side wall of the polycrystalline silicon connection wire layer and the side wall of the silicon nitride spacer; applying source / drain region ion implantation to implant conductive impurities in the semiconductor substrate; And ^ using a self-aligned process to form a metal silicide layer on the transistor gate and the subsequent Shi Xi connection wire layer and the source / drain region. 9 If * • As described in A, the method of item 8 of the patent, which is described in the above steps 第20頁 483157 六、申請專利範圍 該凹陷區並包含該淺溝渠隔離區相鄰之部分半導體基板, 係用以使電容器之底部電極可以和邏輯區的源/汲極區相 連接。 10.如申請專利範圍第8項之方法,其中上述之電容器介 電層係選自N/0或0/N/0其中之一,厚度約40- 6 0埃。 1 1.如申請專利範圍第,8項之方法,其中上述之電容器頂 部電極上之介電層係氮矽氧化層,厚度約200-40 0埃。 1 2.如申請專利範圍第8項之方法,其中上述之凹陷區的 深度約為該淺溝渠隔離區深度之1 / 3至2 / 3之間。Page 20 483157 6. Scope of patent application The recessed area includes a part of the semiconductor substrate adjacent to the shallow trench isolation area, which is used to connect the bottom electrode of the capacitor to the source / drain area of the logic area. 10. The method according to item 8 of the patent application range, wherein the capacitor dielectric layer is selected from one of N / 0 or 0 / N / 0 and has a thickness of about 40-60 angstroms. 1 1. The method according to item 8 of the scope of patent application, wherein the dielectric layer on the top electrode of the capacitor is a silicon nitride oxide layer with a thickness of about 200 to 40 angstroms. 1 2. The method according to item 8 of the scope of patent application, wherein the depth of the above-mentioned recessed area is about 1/3 to 2/3 of the depth of the shallow trench isolation area. 第21頁Page 21
TW090110534A 2001-05-02 2001-05-02 Formation method of buried capacitor of embedded memory TW483157B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW090110534A TW483157B (en) 2001-05-02 2001-05-02 Formation method of buried capacitor of embedded memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW090110534A TW483157B (en) 2001-05-02 2001-05-02 Formation method of buried capacitor of embedded memory

Publications (1)

Publication Number Publication Date
TW483157B true TW483157B (en) 2002-04-11

Family

ID=21678128

Family Applications (1)

Application Number Title Priority Date Filing Date
TW090110534A TW483157B (en) 2001-05-02 2001-05-02 Formation method of buried capacitor of embedded memory

Country Status (1)

Country Link
TW (1) TW483157B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808980B2 (en) 2002-12-05 2004-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of process simplification and eliminating topography concerns for the creation of advanced 1T-RAM devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808980B2 (en) 2002-12-05 2004-10-26 Taiwan Semiconductor Manufacturing Co., Ltd. Method of process simplification and eliminating topography concerns for the creation of advanced 1T-RAM devices

Similar Documents

Publication Publication Date Title
US9385130B2 (en) Semiconductor device and method for manufacturing the same
JP2002184958A (en) Semiconductor device and manufacturing method thereof
US6249017B1 (en) Highly reliable trench capacitor type memory cell
JP2002289703A (en) Semiconductor memory and its manufacturing method
JPH0210867A (en) Semiconductor memory
WO2022188309A1 (en) Semiconductor structure and manufacturing method therefor
KR0135067B1 (en) Device &amp; cell manufacturing of semiconductor device
TW461047B (en) Manufacturing method of embedded DRAM
JPS63281457A (en) Semiconductor memory
JPH06232365A (en) Manufacture of capacitor for semiconductor storage device
WO2022213691A1 (en) Semiconductor structure and forming method therefor
TW483157B (en) Formation method of buried capacitor of embedded memory
JPH03268462A (en) Formation of memory cell
US6001674A (en) Method of eliminating buried contact trench in SRAM devices
US6127706A (en) Trench-free buried contact for SRAM devices
US6696351B1 (en) Semiconductor device having a selectively deposited conductive layer
US6117754A (en) Trench free process for SRAM with buried contact structure
TWI833235B (en) Method for preparing memory device having word line
JPS62213273A (en) Dynamic random access memory
US6211556B1 (en) Eliminating buried contact trench in MOSFET devices having self-aligned silicide
KR20000013402A (en) Fabrication method of memory capacitor
JP3234010B2 (en) Semiconductor memory device and method of manufacturing the same
JPH06302778A (en) Semiconductor device and manufacture thereof
JP2000323480A (en) Semiconductor integrated circuit device and manufacture thereof
JP4399934B2 (en) Manufacturing method of semiconductor integrated circuit device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent