TW474000B - Method of manufacturing capacitor for semiconductor device - Google Patents
Method of manufacturing capacitor for semiconductor device Download PDFInfo
- Publication number
- TW474000B TW474000B TW089113015A TW89113015A TW474000B TW 474000 B TW474000 B TW 474000B TW 089113015 A TW089113015 A TW 089113015A TW 89113015 A TW89113015 A TW 89113015A TW 474000 B TW474000 B TW 474000B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- oxynitride
- gas
- oxygen
- patent application
- Prior art date
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 24
- 239000003990 capacitor Substances 0.000 title claims abstract description 14
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 51
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 34
- 239000010703 silicon Substances 0.000 claims abstract description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 32
- 239000001301 oxygen Substances 0.000 claims abstract description 32
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 30
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims abstract description 24
- 229910052715 tantalum Inorganic materials 0.000 claims abstract description 23
- 239000000126 substance Substances 0.000 claims abstract description 22
- 239000000758 substrate Substances 0.000 claims abstract description 18
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 23
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 15
- 229910021529 ammonia Inorganic materials 0.000 claims description 11
- 229910052757 nitrogen Inorganic materials 0.000 claims description 11
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 239000001272 nitrous oxide Substances 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 6
- 239000001257 hydrogen Substances 0.000 claims description 6
- 229910052739 hydrogen Inorganic materials 0.000 claims description 6
- 238000005121 nitriding Methods 0.000 claims description 6
- 229910001882 dioxygen Inorganic materials 0.000 claims description 5
- 238000001704 evaporation Methods 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000002243 precursor Substances 0.000 claims description 4
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 3
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 230000003993 interaction Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 230000001590 oxidative effect Effects 0.000 claims description 2
- 229910001873 dinitrogen Inorganic materials 0.000 claims 2
- 241001494479 Pecora Species 0.000 claims 1
- 238000005520 cutting process Methods 0.000 claims 1
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 238000011065 in-situ storage Methods 0.000 claims 1
- 238000012423 maintenance Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 238000009832 plasma treatment Methods 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 claims 1
- 238000007740 vapor deposition Methods 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 abstract 1
- 239000002210 silicon-based material Substances 0.000 abstract 1
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000009413 insulation Methods 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- HTXDPTMKBJXEOW-UHFFFAOYSA-N dioxoiridium Chemical compound O=[Ir]=O HTXDPTMKBJXEOW-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 3
- 229910003071 TaON Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910021419 crystalline silicon Inorganic materials 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 150000003376 silicon Chemical class 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 1
- ODUCDPQEXGNKDN-UHFFFAOYSA-N Nitrogen oxide(NO) Natural products O=N ODUCDPQEXGNKDN-UHFFFAOYSA-N 0.000 description 1
- 229910020776 SixNy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- IVHJCRXBQPGLOV-UHFFFAOYSA-N azanylidynetungsten Chemical compound [W]#N IVHJCRXBQPGLOV-UHFFFAOYSA-N 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052704 radon Inorganic materials 0.000 description 1
- SYUHGPGVQRZVTB-UHFFFAOYSA-N radon atom Chemical compound [Rn] SYUHGPGVQRZVTB-UHFFFAOYSA-N 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 150000003481 tantalum Chemical class 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- HSXKFDGTKKAEHL-UHFFFAOYSA-N tantalum(v) ethoxide Chemical compound [Ta+5].CC[O-].CC[O-].CC[O-].CC[O-].CC[O-] HSXKFDGTKKAEHL-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
- H01L21/0214—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02249—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by combined oxidation and nitridation performed simultaneously
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02252—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L28/00—Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
- H01L28/40—Capacitors
- H01L28/60—Electrodes
- H01L28/75—Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02172—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
- H01L21/02175—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
- H01L21/02183—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Plasma & Fusion (AREA)
- Semiconductor Memories (AREA)
- Formation Of Insulating Films (AREA)
Abstract
Description
474nnn474nnn
五、發明說明(1) <發明之領域> 本發明係有關一種在半 方法’而且更特別的是_種 氮化钽(TaON )層當作其介 <發明之背景> ' 導體記憶體元件中電容之製造 在半導體記憶體元件中使用氧 電層的電容之製造方法。 近 體元件 有的面 料,構 此,目 大的電 所以可 是擴大 容的電 元件中 五氧化 構的下 取記憶體(DRAM )半導 單一個記憶體細胞所伯 準的讀出所儲存的資 要足夠大的電容值。g 導體元件需要由擁有輕 所構成的記憶體核心。 的絕緣體當作介電層遠 e)的表面積來增加電 ^,存取記憶體半導骨 較高於氧化氮(NO ) & 並在附近形成立體矣V. Description of the invention (1) < Field of invention > The present invention relates to a semi-method 'and more particularly _ a kind of tantalum nitride (TaON) layer as its intermediary < Background of the invention > Manufacturing of Capacitor in Memory Element A manufacturing method of a capacitor using an oxygen electric layer in a semiconductor memory element. There are fabrics for near-body components. For this reason, the large-capacity electricity can expand the capacity of the pentoxide structure of the electrical component. The DRAM semi-conductor reads the stored information in a single memory cell. Be sufficiently large. g The conductive element requires a memory core made up of light. The insulator is used as a dielectric layer far away from the surface area of e) to increase electricity, access to memory semiconducting bone is higher than nitrogen oxide (NO) & and forms a three-dimensional
的記憶體細胞數目的增加, 積逐漸減小。此外,為了精 成這些記憶體細胞的電容需 前的動態隨機存取記憶體$ 容值同時佔有小面積的Ϊ容 以藉由使用具有高介電係數 下端電極(L〇Wer EUct'r〇d 容值。而在高度整合的動能 ,目前是使用呈有八+〆心 /、虿介電係數 二钽(Ta205 )層做為介 端電極。 貝As the number of memory cells increases, the volume decreases. In addition, in order to refine the capacitance of these memory cells, the value of the dynamic random access memory (SDRAM) is required while occupying a small area of capacitance, by using a low-end electrode with a high dielectric constant (L0Wer EUct'r〇d). Capacitance value. At the time of highly integrated kinetic energy, a layer of tantalum (Ta205) with a dielectric constant of 〆 + 〆 // 虿 is used as the terminal electrode.
然而,因為使用五氧化二紐層人 計量學(Stoichioine1;ry )上為〗丨電層具有在化學 穩定的狀態,必須在沈積完五^不德—定性,所以為了達到 過程。同時,五氧化二鉅層彳艮^ :,層之後再進行氧化 學作用而增加了介電層的厚声^ 口為與下端電極產生化 外,因為五氧化二起層是使=減少了電容值。此 (precursor)所形成的, ♦金屬物質為前導物 所以仍然會有大量的碳及破化However, because the use of pentoxide pentoxide measurement (Stoichioine1; ry) is as follows: the electrical layer is in a chemically stable state, and it must be completed in five years. It is not qualitative, so in order to achieve the process. At the same time, the giant pentoxide layer is thickened. After the layer is oxidized, the thick sound of the dielectric layer is increased. ^ This is to reduce the capacitance with the lower electrode, because the pentoxide layer is used to reduce the capacitance. value. This (precursor) is formed. The metal substance is the lead, so there will still be a lot of carbon and decomposition.
第4頁 4740(1() 五、發明說明(2) m,因而很容易產生漏電流 口此,為了解决五氧化二鈕層這些 經在韓國專利申請案第99_2421 8號中提出::,前我們已 (TaON )層做為介電材料的電容。在乳虱化鈕 氧氮化钽層為介電質的電容的橫剖面圖/所顯示是以 請參照们圖,一個 絕緣層12的間極電極1 3根據已知的方法(如e ) (substrate) 1()上,而場氧化===體基板 f在被選擇的部分裡。☆半導體基扪。上,_ = ” regl0n ) 14形成在閘極電極接面區域 SI一固金屬氧化半導體(廳)電晶體,而第一= 緣層18亦形成在半導體基板1〇上二及 开接觸洞(St〇rage — node contact hole) h則是 露ii:;層絕緣層16和第二層絕緣層18之間,因此:顯 術护点^域U。一個圓柱狀的下端電極20根據已知的技 祕=成在儲存點接觸洞h内,以接觸到顯露於外的接面區 " 為了增加下端電極2 〇的表面積,在其上面形成一個 乂為了避免在下端電極2〇及半球面顆粒狀層21的表面上 ^成天然的氧化層,必須在溫度範圍由8 5 0到9 5 0 °C的氨 王NH3)電漿氣體中進行一些前置處理。由於這個前置處 理’形成了第二層絕緣層18,而其中一個氮化矽(SixNy ) a 2 2則松演著阻止下端電極2 0及半球面顆粒狀層2 1產生氧 化反應的角色。一個氧氮化鈕層2 3經由钽化學蒸汽、氨氣 m 第5頁 474 η η η 五、發明說明(3) ' " '一· 及氧氣的表面化學作用形成在氮化矽層22之上,緊接著此 氧氮化鈕層2 3在經由熱處理後於其上形成結晶化,而上端 電極(upper electrode) 25亦結晶化在此。這個氧氮化 钽層23具有非常高的介電係數(£ = 2〇〜25 )和穩定的 钽-氧-氮鍵結結構。因此,氧氮化鈒層23在沈積完不需要 額外的處理就可以達到穩定的狀態,而且其很低的氧化反 應’使得不會增加介電層的厚度。 然而,在沈積氧氮化鈕層23之前,為了避免形成天然 的氧化層,必須先在溫度超過80(rCT進行一些處理。因 此,由於這樣會熔化掉下端電極及其他由熔點低於8〇Qt 的物質所構成的電極,所以在實、西^ 過8〇(TC的熱處理。 π小“執仃/皿度起 數的ΐ:置f?:所形成的氮化石夕層22雖然具由低介電係 罢功函數上跟以多晶石夕層為材料的下端電 才。㈢的爰異部偏低,因此會產生漏電流。 <發明之總論> ,因此,本發明之目的是提供一 中能藉由不使用高溫熱處理來排記憶體元件 處電晶體劣化的電容製造方丨。除天然乳化層以避免較低 此外,本發明之另一目的是提供一 元件中能避免漏電流的電容製造方法。 體纪憶體 依據為了達到本發明目的的一 在半導體記憶體元件中電容的製造方法;^ =實施例,一種 驟:以摻雜(doped )的矽為材~料形成^含了下列的步 风低而电極於半導體 474nrm 五、發明說明(4) 低端電極的表面上形成氧氮化矽(Si0N)層; 廿开彡占气> 崧汽、氧氣和氨氣產生化學反瘅 ΠϊΓ) 上;最後在氧氮化鈕層形成上端i 而其中氧氮化石夕層是形成在溫度範圍由2。。到6 0 0 γ 材料nf他具體實施例的方法步驟如下:以掺雜的石夕為 m、r形成氧氮化石夕層;藉由氧氮化石夕層與叙 其::u::: m匕學反應並形成氧氮化组層於 上端恭搞ii 處理;最後在氧氮化鈕層形成 的形:步驟;一:成)步驟包含了氧氮化㈣ -^ II ® ^2〇〇 ,J6〇〇 〇c τ ;; ^ ^ 氣後再通入氧氣或一氧化二氮所形成…精由先通入氮 步驟的電d:提供:種在半導體記憶體中包含下列Page 4740 (1 () V. Description of the invention (2) m, so it is easy to generate leakage current. Therefore, in order to solve the second pentoxide layer, these problems have been proposed in Korean Patent Application No. 99_2421 8 :, before We have (TaON) layer as the capacitor of the dielectric material. The cross section of the capacitor with tantalum oxynitride layer on the papillae button as a dielectric / shown is shown in the figure. The electrode 1 3 is on a known method (such as e) (substrate) 1 (), and the field oxidation === the body substrate f is in the selected part. ☆ Semiconductor substrate. On, _ = ”regl0n) 14 A solid metal oxide semiconductor (hall) transistor is formed in the gate electrode contact area SI, and the first = edge layer 18 is also formed on the semiconductor substrate 10 and the contact hole (St〇rage — node contact hole) h is formed. Then it is exposed ii: between the layer of insulating layer 16 and the second layer of insulating layer 18, so: the apparent protection point ^ field U. A cylindrical lower electrode 20 according to known techniques = into contact holes at the storage point Within h, in order to contact the exposed interface area " In order to increase the surface area of the lower electrode 20, a乂 In order to avoid the formation of a natural oxide layer on the surface of the lower electrode 20 and the hemispherical granular layer 21, it is necessary to perform some in the plasma gas of ammonia king NH3) in the temperature range from 850 to 950 ° C. Pre-treatment. Due to this pre-treatment, a second insulating layer 18 is formed, and one of the silicon nitride (SixNy) a 2 2 loosely prevents the lower electrode 20 and the hemispherical granular layer 21 from oxidizing. The role of an oxynitride button layer 2 3 is formed by tantalum chemical vapor and ammonia m Page 5 474 η η η 5. Description of the invention (3) '"' One and the surface chemical action of oxygen is formed on silicon nitride Above the layer 22, the oxynitride button layer 23 is crystallized immediately after the heat treatment, and the upper electrode 25 is also crystallized there. This tantalum oxynitride layer 23 has a very high Dielectric constant (£ = 20 ~ 25) and stable tantalum-oxygen-nitrogen bonding structure. Therefore, the hafnium oxynitride layer 23 can reach a stable state without additional treatment after deposition, and it is very stable. The low oxidation reaction 'does not increase the thickness of the dielectric layer. However, in Before depositing the oxynitride button layer 23, in order to avoid the formation of a natural oxide layer, some treatment must be performed at a temperature exceeding 80 ° C. Therefore, this will melt off the lower electrode and other materials with a melting point lower than 80Qt. The electrode is formed, so the heat treatment is performed at a temperature of 80 ° C. The π is smaller than the minimum value of 起 / 皿 degree: set f ?: Although the nitrided layer 22 is formed by a low dielectric system The work function is followed by the lower end of the polycrystalline stone layer as the material. The difference of is low, so leakage current is generated. < Summary of the invention > Therefore, an object of the present invention is to provide a capacitor manufacturing method capable of eliminating transistor deterioration at a memory element by not using high temperature heat treatment. In addition to the natural emulsified layer to avoid lowering, another object of the present invention is to provide a capacitor manufacturing method capable of avoiding leakage current in a device. In order to achieve the purpose of the present invention, the body is based on a method for manufacturing a capacitor in a semiconductor memory device; ^ = embodiment, a step: doped silicon is used as a material to form the material ^ contains the following steps The wind is low and the electrode is on the semiconductor 474nrm. 5. Description of the invention (4) A silicon oxynitride (Si0N) layer is formed on the surface of the low-end electrode; ) Above; finally, the upper end i is formed on the oxynitride button layer, and the oxynitride layer is formed in the temperature range from 2. . The method steps from 6 to 0 0 γ material nf in his specific embodiment are as follows: the doped stone is used as m and r to form an oxynitride layer; and the oxynitride layer is used to describe the u ::: m The reaction and the formation of the oxynitride group layer are performed on the upper end of the ii treatment; the final shape formed on the oxynitride button layer: steps; one: into) the step includes rhenium oxynitride-^ II ® ^ 2〇〇, J6〇〇〇c τ ;; ^ ^ gas and then pass oxygen or nitrous oxide formed ... refined by the first nitrogen pass electricity d: provided: a semiconductor memory contains the following
:導體基板上;在低端電極的表面夕=:开“:低端電極於 虱化矽層;藉由氧氮化,U), 氧產生化學反應並形成氧氮化 盆η、氧乳和I 化”;ΐ氣:紐層形成上端電極,其中氧氮 化石夕層是形i在、ϋ^(ιη situ)形成的。而氧氮 含了下列:到6 0 0 °CT,其形成步驟包 吉… 在乱甩聚乳體下氮化下端電極的主 、^ /、二狀態下氧化下端電極的表面。 、、面;並在南 第7頁 474nnn 五、發明說明(5) <較佳具體實施例之詳細描述> [具體實施例1 ] 請參照第2A圖,場氧化層31根據已知的方法形 有經挑選過的電導性的半導體基板3〇中經挑選過的 /、 i已含著閘極絕緣層32的閘極输 據已知的方法形成在半導體基板3〇上,而間隔 i3酋4:據已知的方法形成在閘極電極33的兩端邊壁上。Τ 而口此形成了 一個金屬氧化半導體(MOS )電f雕。望 一層絕緣層3 6和第二層絕緣声3 8亦开彡成/ 曰月且 上。之後,*篡制策: +導體基板30 t. 山再摹衣弟—層絕緣層36和第二層絕緣層38,因 妾著ΪΓΓ分的接面區域35形成了储存點接觸洞Η。 ΐί 端電極4〇並接觸顯露出的接面區域35。 此特,下端電極40是以堆疊狀(stack)、 (cylinder)、韓狀(fin)或堆疊_圓柱 狀 :二式形成。以本具體實 時,下端恭柱狀的形式形成的。此 晶矽層形】ϋ =由經摻雜的多晶矽層或是經摻雜的非 曰/成。而且為了增加下端電極4〇 . ^ ^ 個半球面顆粒㈣(沒有顯示:匕在= 粒狀層'’下端電極4°通常由經換雜的非晶- (沒ΪΪ亍ί 2免在下端電極40和稍後形成的介電層 有,‘.、員不在圖中)之間的介面上形成低介電值的天然氧: On the conductor substrate; on the surface of the low-end electrode =: on ": the low-end electrode on the silicon layer; by oxynitriding, U), oxygen produces a chemical reaction and forms an oxynitride basin η, oxygen milk, and Ionization "; radon gas: the button layer forms the upper electrode, where the oxynitride layer is formed in the shape of i, situ. Oxygen and nitrogen contain the following: to 600 ° CT, its formation steps include ... Nitriding the surface of the lower electrode in the main, ^ /, and two states of the lower electrode under random polyemulsion. , 面; and page 474nnn on the south page 5. Explanation of the invention (5) < Detailed description of the preferred embodiment > [Detailed embodiment 1] Please refer to FIG. 2A, the field oxide layer 31 according to the known Methods A gate electrode selected from a selected conductive semiconductor substrate 30, i, which has a gate insulating layer 32 formed thereon is formed on the semiconductor substrate 30 by a known method, and an interval i3 is formed. Emirates 4: It is formed on the both side walls of the gate electrode 33 according to a known method. As a result, a metal oxide semiconductor (MOS) electrode is formed. It is expected that one layer of insulation 36 and the second layer of insulation sound 3 8 will be opened and closed. After that, the * tampering policy: + Conductor substrate 30 t. Yamazaki Yoshiki-layer insulation layer 36 and second layer insulation layer 38, the storage point contact hole 因 is formed due to the contact area 35 of ΪΓΓ points. The terminal electrode 40 is in contact with the exposed interface area 35. Here, the lower electrode 40 is formed in a stack, a cylinder, a fin, or a stack-cylindrical shape. It is formed in a columnar form at the lower end in this concrete case. This crystalline silicon layer shape] ϋ = consists of a doped polycrystalline silicon layer or a doped non-crystalline silicon layer. And in order to increase the lower end electrode 40. ^ ^ hemispherical particles 没有 (not shown: dagger at = granular layer `` lower end electrode 4 ° is usually made of amorphous by replacement-(无 ΪΪ 亍 ί 2 free at the lower end electrode 40 and the dielectric layer to be formed later, a low dielectric value of natural oxygen is formed on the interface between the '., The member is not shown in the figure)
第8頁 474ηηηPage 8 474ηηη
化層’必須在低端電極的表面上形成氧氮化矽層42,而為 了使低端電極的劣化情形降到最小,此氧氮化矽層42必須 在服度範圍由2 〇 〇到6 〇 〇 °C下形成。此時,氧氮化;5夕層4 2是 將低端電極4〇在電漿氣體下經由氮化處理所形成的。而氮 化處理過程是在低壓化學汽相沈積(LPCVD )的腔體 (C^hamber )裡通入1〇到lOOOsccm的氨氣和氧氣或一氧化 二氮氣體進行。在此氮化處理中,氨氣是在氧氣或一氧化 二氮氣體之前通入,因此可以阻止氧氣或一氧化二氮氣體 與下端電極4 0額外的化學反應。 此氧氮化矽層4 2在功函數上與下端電極4 〇差異很大, 所以八g產生很小的漏電流,而且是形成在溫度範圍由 2 0 0到6 0 Q °C下。因此,此氧氮化矽層42對於之前形成的電 晶體在電性上沒有任何影響。 如第2B圖所示,做為介電層的氧氮化鈕層44是藉由以 鈕有機金屬物質如Ta(0C2H5)5 (乙醇化鈕)為前導物再與 鈕化學洛汽、氧氣和氨氣產生化學作用形成在氧氮化矽層 42上。而组化學蒸汽、氧氣和氨氣最好跟晶圓片(㈣卜厂 ^,在氣相反應的限制狀態下產生化學反應。此外,沈積 氧氮化钽層4 4的厚度最好在8 〇到2 〇 〇 a之間。此時,氧氮 化組層44最好使用化學汽相沈積方法如在溫度大約由3 〇 〇 到60(TC及壓力由0.1到ι·2陶爾(Torr)下的低壓化學汽 相沈積方法來形成。其中,前導物例如乙醇化钽是液態 的,因此在轉換成氣態後才通入低壓化學汽相沈積的腔體 中。此前導物是根據已知的方法轉換成鈕化學蒸汽,此方The siliconization layer must form a silicon oxynitride layer 42 on the surface of the low-end electrode, and in order to minimize the degradation of the low-end electrode, the silicon oxynitride layer 42 must be in a range of 2000 to 6 Formed at 00 ° C. At this time, the oxynitriding layer 52 is formed by subjecting the low-end electrode 40 to a nitriding process under a plasma gas. The nitriding process is carried out by passing in a low pressure chemical vapor deposition (LPCVD) chamber (C ^ hamber) with ammonia gas and oxygen gas or nitrous oxide gas at 10 to 1000 sccm. In this nitriding treatment, ammonia gas is introduced before the oxygen or nitrous oxide gas, so it can prevent the oxygen or the nitrous oxide gas from additional chemical reaction with the lower electrode 40. This silicon oxynitride layer 42 has a large difference in work function from the lower electrode 4 0, so a small leakage current of 8 g is generated, and it is formed at a temperature range from 200 to 60 Q ° C. Therefore, the silicon oxynitride layer 42 has no influence on the electrical properties of the previously formed transistor. As shown in FIG. 2B, the oxynitride button layer 44 as a dielectric layer is prepared by using a button organometallic material such as Ta (0C2H5) 5 (ethanolated button) as a precursor, and then combined with button chemical vapor, oxygen, and Ammonia is chemically formed on the silicon oxynitride layer 42. The chemical vapor, oxygen, and ammonia gas are preferably reacted with the wafer (the factory), and the chemical reaction is limited under the gas-phase reaction. In addition, the thickness of the deposited tantalum oxynitride layer 4 is preferably 80. Between 2000a. At this time, the oxynitride group layer 44 is preferably formed by a chemical vapor deposition method such as at a temperature of from about 300 to 60 (TC and pressure from 0.1 to ι · 2 Torr). It is formed by the low-pressure chemical vapor deposition method. Among them, the lead such as tantalum ethanolate is liquid, so it only passes into the cavity of the low-pressure chemical vapor deposition after being converted into a gaseous state. The previous guide is based on known Method to convert button chemical vapor to this side
第9頁 474ηηη 五、發明說明(7) 法是將適量的前導物流經流量控制器如全部流量控制器 (Mass Flow Controller,簡稱MFC)再通入蒸發器 (Evaporizeir)或是蒸發管(Evap〇rati on tube )中。之 後’通入蒸發器或是蒸發管中前導物會在溫度範圍由1 5 〇 到2 0 0 °C下被蒸發形成鈕的化學蒸汽狀態。接著,通入低 壓化學汽相沈積腔體中鈕化學蒸汽和氧氣及氨氣互相產生 表面化學作用,因此形成了非晶狀態的氧氮化鈕層44。其 中’通入的氧氣及氣氣為1Q到lQQQsccm,而氧I化叙層Μ 是事中(in si tu )和藉由氧氮化矽層42的形成過程所形 成的。 之後,如第2C圖所示 ^ 將非晶狀態下的氧氮化钽層44 進行快速的熱處理或是置於溫度範圍由6 5 〇到8 〇 〇 ^下包含 著氮或氧的氣體如氨氣、氮和氫的混和氣體、一氧化二氮 或氧氣的爐管中30秒至30分鐘。由於此熱處理使得氧氮^ 钽層44變成具有較密鍵結結構的單晶狀氧氮化鈕層44^。 雖然在圖中沒有顯示,& 了得到在不使用高溫處理下 結晶化的介面特性,會對氧氮化鈕層44在溫度範圍由 到60(TC的氨氣下藉由電漿進行事中(in sUu)或事前 j ex situ )熱處理,或是在一氧化二氮氣體下進行氮化 处理。因此,修補了在氧氮化鈕層44介面上一歧結構上Page 9 474ηηη 5. Description of the invention (7) The method is to pass an appropriate amount of the lead stream through a flow controller, such as all flow controllers (Mass Flow Controller, MFC), and then into the evaporator (Evaporizeir) or the evaporation tube (Evap). rati on tube). After that, the lead is introduced into the evaporator or the evaporation tube, and the lead will be evaporated to form a chemical vapor state of the button at a temperature ranging from 150 to 200 ° C. Next, the chemical vapor of the button, oxygen and ammonia gas are introduced into the low pressure chemical vapor deposition chamber to cause surface chemical interaction with each other, so that an oxynitride button layer 44 in an amorphous state is formed. The oxygen and gas that are passed through are 1Q to 1QQQsccm, and the oxygen ionization layer M is formed in the process and formed by the formation process of the silicon oxynitride layer 42. Afterwards, as shown in FIG. 2C ^, the tantalum oxynitride layer 44 in an amorphous state is subjected to rapid heat treatment or placed in a temperature range from 650 to 800, such as a gas containing nitrogen or oxygen such as ammonia Gas, nitrogen and hydrogen mixed gas, nitrous oxide or oxygen in the furnace tube for 30 seconds to 30 minutes. Due to this heat treatment, the oxynitride tantalum layer 44 becomes a single crystal oxynitride button layer 44 ^ having a denser bonding structure. Although it is not shown in the figure, & obtained the interface characteristics of crystallization without using high temperature treatment, the oxynitride button layer 44 in the temperature range from 60 to 60 (TC ammonia in the plasma to do the work (In sUu) or prior j ex situ) heat treatment, or nitriding treatment under a nitrous oxide gas. Therefore, a heterogeneous structure is repaired on the interface of the oxynitride button layer 44
Ulcro cracks) (pin h〇-s)#^ 且,:了其同貝性(hom〇geneity )。其中,做為介電質 的虱II化钽層不論是在非晶狀態或、 高的介電係數,因此其任何狀態也許都可以使用Ulcro cracks) (pin h〇-s) # ^ And, its homogeneity (homomogeneity). Among them, the tantalum II tantalum layer as a dielectric is in an amorphous state or a high dielectric constant, so any state may be used.
五、發明說明(8) ^的電纟。此夕卜,在本具體實施例中,是以單晶狀態的氧 氮化组層44a做為介電層。5. Description of the invention (8) ^ 's electricity. Furthermore, in this embodiment, a single crystal oxynitride group layer 44a is used as the dielectric layer.
之後,士口第2D圖所示,在氧氮化纽層…上形成上端 電極50,而此上端電極可以藉由摻雜的多晶矽層或是金屬 層如氮化欽(TiN )、氮化叙(TaN )、鎢(w )、氮化鎢 (WN)、石夕化鶴(WSl)、舒(Ru)、二氧化釕(Ru〇2 )、銥(Ir)、二氧化銥(Ir〇2)或是鉑(pt )所構成。 如果是使用摻雜的多晶矽層做為上端電極5〇時,最好沈積 在厚度大約由1 0 0 0到1 50 0人之間,而如果是使用金屬潘做 為上知屯極50時,最好沈積在厚度大約由1〇〇到6〇〇人之 間、。此外,摻雜的多晶矽層可以根據已知的化學汽相沈積 方法形成,而金屬層可以根據低壓化學汽相沈積、電漿增 強化學汽相沈積(PECVD)或是射頻磁性濺鍍(RF magnetlc sputtering)其中之_的方法形成。 [具體貫施例2 ] 本具體實施例係有關一種形成另一個氧氣化石夕層的方 /二而且除了形成氧象化石夕層的方法之外,#餘的部分皆 契弟一項具體實施例相同。 在本具體貫施例中的氧氮化矽層是根據下列的方法所 形成的。 理Ιί,在氨電漿氣體下對下端電極的表面進行氮化處 於接者將氮化的表面在高真空狀態下氧化。氮化的表面 由於、、Ό合了氧化過程,因而在下端電極的表面上形 化矽層。其中,因為氧化過程是在高真空狀態下進行的二Then, as shown in Figure 2D of Shikou, an upper electrode 50 is formed on the oxynitride layer ... The upper electrode can be doped with a polycrystalline silicon layer or a metal layer such as Nitride (TiN) or Nitride. (TaN), tungsten (w), tungsten nitride (WN), Shixi Chemical Crane (WS1), Shu (Ru), ruthenium dioxide (Ru〇2), iridium (Ir), iridium dioxide (Ir〇2 ) Or platinum (pt). If a doped polycrystalline silicon layer is used as the upper electrode 50, it is better to deposit it in a thickness of about 100 to 1500 people, and if a metal pan is used as the upper electrode 50, It is best to deposit between about 100 and 600 people in thickness. In addition, the doped polycrystalline silicon layer may be formed according to a known chemical vapor deposition method, and the metal layer may be formed according to a low pressure chemical vapor deposition, a plasma enhanced chemical vapor deposition (PECVD), or a radio frequency magnetic sputtering. ) One of the methods formed. [Specific Implementation Example 2] This specific embodiment is related to a method of forming another oxygen fossil layer and in addition to the method of forming an oxygen-like fossil layer, the remaining parts are all specific examples. the same. The silicon oxynitride layer in this embodiment is formed by the following method. The reason is that the surface of the lower electrode is nitrided under an ammonia plasma gas. The nitrided surface is oxidized under a high vacuum state. Nitrided surface A silicon layer is formed on the surface of the lower electrode due to the oxidation process. Among them, because the oxidation process is performed under high vacuum
474Π〇η 五、發明說明(9) 所以比起在 使氧氮化矽 介電性質, 根據本 氧氮化鈕介 组層和低端 化石夕層在功 避免漏電流 因此對於之 而且氧氮化 的,因此簡 另外, 在匕具有穩定 電極產生化 藉由熟 且可以立即 及精神時,474Π〇η V. Description of the invention (9) Therefore, compared with the dielectric properties of silicon oxynitride, according to the present oxynitride button dielectric layer and the low-end fossil layer, the leakage current is avoided in the work. Therefore, in addition, when the dagger has a stable electrode that can be transformed and cooked immediately and mentally,
腔體中的氧化過程 層的氧含量較少。 即增加了電容量。 層是形成在低端電極與 主要是為了限制氧氮化 相對於氮化矽層,氧氮 报大,因此可以有效的 是在低溫之下形成的, 特性上沒有任何影響。 中(in situ )形成 ’其氧化速率較低,而且也 因此,增加了氧氮化矽層的 具體實施例,氧氮化矽 電層的形成步驟之間, 電極之間的氧化反應。 函數上與低端電極差異 。此外,此氧氮化矽層 前形成的電晶體在介電 矽層和下端電極皆是事 化了製造過程。 年L 化姐層是以 — 一 的結構。而且氧氮化鈕層不容易:::下: 學作用,因此可以避免增加介電層的厚产 練的技巧’其他各式各樣的修正形:明 被實現出來,但是此種修正若未本發明的範; 摩在本發明的申請專利範圍之内,謹先陳明。 474nrm 圖式簡單說明 弟1圖為傳統半導體記憶體元件中電容的橫剖面圖。 第2Α到2D圖是為了描述依據本發明第一項具體實施例 的半導體記憶體電容的橫剖面圖。 圖式中元件名稱與符號 1 0 :半導體基板 11 :場氧化層 12 :絕緣層 13 :閘極電極 14 :接面區域 16 :第一層絕緣層 18 :第二層絕緣層 2 0 :下端電極 2 1 :半球面顆粒狀層 2 2 :氮化矽層 2 3 :氧氮化钽層 2 5 :上端電極 3 0 :半導體基板 31 ··場氧化層 3 2 :間極絕緣 3 3 ·閘極電緣 3 4 :間隔物 3 5 :接面區域 3 6 :第一層絕緣層 3 8 _·第二層絕緣層The oxidation process layer in the cavity has less oxygen content. That is, the capacitance is increased. The layer is formed on the low-end electrode and is mainly used to limit the oxynitride. Compared with the silicon nitride layer, the oxynitride is large, so it can be effectively formed at low temperatures without any impact on the characteristics. In-situ formation has a lower oxidation rate, and therefore, a specific embodiment of a silicon oxynitride layer is added, and an oxidation reaction between electrodes is formed between steps of forming a silicon oxynitride electrical layer. Functionally different from the low-end electrode. In addition, the transistor formed before this silicon oxynitride layer is a manufacturing process for both the dielectric silicon layer and the lower electrode. The L-level sister layer is a one-year structure. And the oxynitride button layer is not easy ::: Next: Learn the function, so you can avoid the thick production skills of increasing the dielectric layer. 'Other various modifications: Apparently implemented, but this kind of correction The scope of the present invention is within the scope of the patent application of the present invention. 474nrm diagram brief description Di Figure 1 is a cross-sectional view of a capacitor in a conventional semiconductor memory device. 2A to 2D are cross-sectional views for describing a semiconductor memory capacitor according to a first embodiment of the present invention. Element names and symbols in the drawing 1 0: semiconductor substrate 11: field oxide layer 12: insulating layer 13: gate electrode 14: junction area 16: first insulating layer 18: second insulating layer 2 0: lower electrode 2 1: Hemispherical granular layer 2 2: Silicon nitride layer 2 3: Tantalum oxynitride layer 2 5: Upper electrode 3 0: Semiconductor substrate 31 · Field oxide layer 3 2: Inter-electrode insulation 3 3 · Gate Electric edge 3 4: Spacer 3 5: Junction area 3 6: First insulating layer 3 8 _ · Second insulating layer
第13頁 474nnnPage 13 474nnn
第14頁Page 14
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-1999-0026503A KR100519514B1 (en) | 1999-07-02 | 1999-07-02 | Method of forming capacitor provied with TaON dielectric layer |
Publications (1)
Publication Number | Publication Date |
---|---|
TW474000B true TW474000B (en) | 2002-01-21 |
Family
ID=19598833
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW089113015A TW474000B (en) | 1999-07-02 | 2000-06-30 | Method of manufacturing capacitor for semiconductor device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2001053255A (en) |
KR (1) | KR100519514B1 (en) |
TW (1) | TW474000B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100313091B1 (en) * | 1999-12-29 | 2001-11-07 | 박종섭 | Method of forming gate dielectric layer with TaON |
KR100388465B1 (en) * | 2001-06-30 | 2003-06-25 | 주식회사 하이닉스반도체 | Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof |
KR100388466B1 (en) * | 2001-06-30 | 2003-06-25 | 주식회사 하이닉스반도체 | Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof |
JP6929279B2 (en) * | 2015-10-22 | 2021-09-01 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method of depositing a fluid film containing SiO and SiN |
KR102312824B1 (en) | 2016-03-17 | 2021-10-13 | 어플라이드 머티어리얼스, 인코포레이티드 | Methods for Gap Filling in High Aspect Ratio Structures |
CN112086441A (en) * | 2020-08-26 | 2020-12-15 | 中国电子科技集团公司第十三研究所 | Passive device preparation method and passive device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2786071B2 (en) * | 1993-02-17 | 1998-08-13 | 日本電気株式会社 | Method for manufacturing semiconductor device |
KR0155879B1 (en) * | 1995-09-13 | 1998-12-01 | 김광호 | Method of manufacturing ta2o5 dielectric film capacity |
KR970054106A (en) * | 1995-12-29 | 1997-07-31 | 김광호 | Semiconductor manufacturing method |
KR100207485B1 (en) * | 1996-07-23 | 1999-07-15 | 윤종용 | Manufacturing method of capacitors for semiconductor devices |
KR100505611B1 (en) * | 1998-07-09 | 2006-04-21 | 삼성전자주식회사 | Capacitor of semiconductor device and fabrication method thereof |
-
1999
- 1999-07-02 KR KR10-1999-0026503A patent/KR100519514B1/en not_active IP Right Cessation
-
2000
- 2000-06-30 JP JP2000199534A patent/JP2001053255A/en active Pending
- 2000-06-30 TW TW089113015A patent/TW474000B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
JP2001053255A (en) | 2001-02-23 |
KR20010008586A (en) | 2001-02-05 |
KR100519514B1 (en) | 2005-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6204203B1 (en) | Post deposition treatment of dielectric films for interface control | |
TW466677B (en) | Method for fabricating capacitors of semiconductor device | |
TW449912B (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
US6486022B2 (en) | Method of fabricating capacitors | |
US6656788B2 (en) | Method for manufacturing a capacitor for semiconductor devices | |
US6740553B1 (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
TW200407454A (en) | Method of manufacturing a tantalum pentaoxide-aluminum oxide film and semiconductor device using the film | |
KR20020051062A (en) | Method for manufacturing Tantalium Oxy Nitride capacitor | |
TW474000B (en) | Method of manufacturing capacitor for semiconductor device | |
US6319765B1 (en) | Method for fabricating a memory device with a high dielectric capacitor | |
US7371670B2 (en) | Method for forming a (TaO)1-x(TiO)xN dielectric layer in a semiconductor device | |
TW479326B (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
US6576528B1 (en) | Capacitor for semiconductor memory device and method of manufacturing the same | |
TW471161B (en) | Method of manufacturing capacitor of semiconductor device | |
US6337291B1 (en) | Method of forming capacitor for semiconductor memory device | |
TWI222697B (en) | A capacitor having a TaON dielectric film in a semiconductor device and a method for manufacturing the same | |
KR100618683B1 (en) | Method for manufacturing capacitor in semiconductor memory divice | |
US6329237B1 (en) | Method of manufacturing a capacitor in a semiconductor device using a high dielectric tantalum oxide or barium strontium titanate material that is treated in an ozone plasma | |
US6316307B1 (en) | Method of forming a capacitor for a semiconductor memory device | |
KR100882090B1 (en) | Method for fabricating capacitor of semiconductor device | |
KR100231604B1 (en) | Manufacturing method of capacitor of semiconductor device | |
JPH0480928A (en) | Formation of nitride insulating film | |
JP2006054382A (en) | Metallic silicate film, manufacturing method thereof, semiconductor device, and manufacturing method thereof | |
KR100618682B1 (en) | Method for manufacturing capacitor in semiconductor memory divice | |
JP2001053256A (en) | Formation method of capacitor of semiconductor memory element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |