JP2001053256A - Formation method of capacitor of semiconductor memory element - Google Patents

Formation method of capacitor of semiconductor memory element

Info

Publication number
JP2001053256A
JP2001053256A JP2000199542A JP2000199542A JP2001053256A JP 2001053256 A JP2001053256 A JP 2001053256A JP 2000199542 A JP2000199542 A JP 2000199542A JP 2000199542 A JP2000199542 A JP 2000199542A JP 2001053256 A JP2001053256 A JP 2001053256A
Authority
JP
Japan
Prior art keywords
gas
film
forming
chemical vapor
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000199542A
Other languages
Japanese (ja)
Inventor
Toshu Boku
東 洙 朴
Semin Ri
世 民 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JP2001053256A publication Critical patent/JP2001053256A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a forming method for a capacitor of a semiconductor memory element, which lessens generation of a leakage current in the capacitor and can ensure high capacitance of the capacitor. SOLUTION: A lower electrode 40 is formed on a semiconductor substrate 30. After that, a surface treatment for preventing generation of a natural oxide film is performed on the surface of the electrode 40. Subsequently, a TaON film is formed on the electrode 40 through chemical vapor reaction of Ta chemical vapor to O3 gas and NH3 gas, and the TaON film is crystallized. After that, an upper electrode 45 is formed on the TaON film 43a. At this time, the film 43a is formed in an LPCVD(low pressure chemical vapor deposition) chamber, which maintains a temperature of 300 to 600 deg.C and a pressure of 0.1 to 1.2 Torr.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体メモリ素子の
キャパシタの形成方法に関し、より詳しくは、TaON
膜を誘電体膜とする半導体メモリ素子のキャパシタの形
成方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for forming a capacitor of a semiconductor memory device, and more particularly, to a TaON method.
The present invention relates to a method for forming a capacitor of a semiconductor memory device using a film as a dielectric film.

【0002】[0002]

【従来の技術】最近、DRAM半導体素子を構成するメ
モリセルの数の増加に伴い、各メモリセルの占有面積は
益々低減しつつある。一方、各メモリセル内に形成され
るキャパシタは、正確な貯蔵データを読み出す為に充分
な容量が必要である。これにより、現在のDRAM半導
体素子は、小面積ながら大容量を持つキャパシタが形成
されたメモリセルを必要とする。キャパシタの静電容量
(capacitance)は、高誘電率を持つ絶縁体を用いる
か、或いは下部電極の表面積を拡大することにより増大
する。現在の高集積化したDRAM半導体素子には、N
O(nitride-oxide)膜よりも高誘電率のタンタル酸化
膜(Ta25)を誘電体として用いることで、下部電極
が3次的に形成される。
2. Description of the Related Art Recently, with the increase in the number of memory cells constituting a DRAM semiconductor device, the area occupied by each memory cell has been increasingly reduced. On the other hand, a capacitor formed in each memory cell needs a sufficient capacity to read out stored data accurately. As a result, the current DRAM semiconductor device requires a memory cell in which a capacitor having a large area but a large capacity is formed. The capacitance of the capacitor is increased by using an insulator having a high dielectric constant or by increasing the surface area of the lower electrode. Current highly integrated DRAM semiconductor devices include N
By using a tantalum oxide film (Ta 2 O 5 ) having a higher dielectric constant than an O (nitride-oxide) film as a dielectric, the lower electrode is formed tertiarily.

【0003】しかし、誘電体膜として用いるタンタル酸
化膜は、不安な化学量論比(stoichiometry)を持つの
で、蒸着後に安定化するための酸化工程を必ず行うべき
である。このとき、酸化工程中、タンタル酸化膜は、下
部電極と容易に反応して誘電体膜の厚さを増加させ、む
しろキャパシタンスを減少させる。合わせて、タンタル
酸化膜は、有機タンタル金属物質を前駆体として用いて
形成されるため、膜内に多量の炭素及び炭素化合物を残
留させ、リーク電流が発生しやすい。
However, since a tantalum oxide film used as a dielectric film has an unstable stoichiometry, an oxidation step for stabilization after deposition must be performed. At this time, during the oxidation process, the tantalum oxide film easily reacts with the lower electrode to increase the thickness of the dielectric film, but rather to decrease the capacitance. In addition, since the tantalum oxide film is formed using an organic tantalum metal material as a precursor, a large amount of carbon and a carbon compound remain in the film, and a leak current is likely to occur.

【0004】これに対し、本出願人は、タンタル酸化膜
の問題点を解決する為に、TaON膜を誘電体として用
いるキャパシタの技術を、99−24218号として出
願、開示している。この様なTaON膜を誘電体とする
キャパシタは、図1に示している。
On the other hand, in order to solve the problem of the tantalum oxide film, the present applicant has filed and disclosed a capacitor technology using a TaON film as a dielectric material as Japanese Patent Application No. 99-24218. Such a capacitor using a TaON film as a dielectric is shown in FIG.

【0005】図1を参照して、下部にゲート絶縁膜12
を含むゲート電極13は、フィールド酸化膜11が所定
部分に形成された半導体基板10上に、公知の方式によ
って形成される。接合領域14はゲート電極13の両側
の半導体基板10に形成されてMOSトランジスタが形
成される。第1層間絶縁膜16及び第2層間絶縁膜18
はMOSトランジスタの形成された半導体基板10上に
形成される。ストレージノードコンタクトホールhは、
接合領域14が露出するように、第1及び第2層間絶縁
膜16、18内に形成される。シリンダー形態の下部電
極20が公知の方式により、露出した接合領域14とコ
ンタクトされるように、ストレージノードコンタクトホ
ールh内に形成される。HSG(HemiSpherical Grai
n)膜21は、下部電極20の表面積を一層増大させる
為に、下部電極20の表面に形成される。HSG膜21
を含む下部電極20の表面は自然酸化膜の発生を防止す
る為に洗浄処理される。その後、TaON膜23は下部
電極20及び第2層間絶縁膜18上に蒸着される。Ta
ON23はTa(OC255の様な前駆体を蒸気化し
たタンタル化学蒸気とNH3ガス及びO2ガスの表面化学
反応によって形成される。続いて、TaON膜23が結
晶化した後、上部電極25は、結晶化したTaON膜2
3上に形成される。この様なTaON膜23は非常に高
誘電率(ε=20-25)を持ち、Ta-O-Nの安定し
た結合から構成されるので、蒸着後に安定化するための
酸化工程が不要となり、酸化反応性が非常に低くて誘電
体膜の厚さが増大しない。
Referring to FIG. 1, a gate insulating film 12 is
Is formed on the semiconductor substrate 10 on which the field oxide film 11 is formed at a predetermined portion by a known method. The junction region 14 is formed on the semiconductor substrate 10 on both sides of the gate electrode 13 to form a MOS transistor. First interlayer insulating film 16 and second interlayer insulating film 18
Is formed on a semiconductor substrate 10 on which MOS transistors are formed. The storage node contact hole h
It is formed in the first and second interlayer insulating films 16 and 18 so that the bonding region 14 is exposed. A cylindrical lower electrode 20 is formed in the storage node contact hole h by a known method so as to be in contact with the exposed bonding region 14. HSG (HemiSpherical Grai
n) The film 21 is formed on the surface of the lower electrode 20 to further increase the surface area of the lower electrode 20. HSG film 21
The surface of the lower electrode 20 including the silicon oxide is subjected to a cleaning process to prevent a natural oxide film from being generated. After that, the TaON film 23 is deposited on the lower electrode 20 and the second interlayer insulating film 18. Ta
The ON 23 is formed by a surface chemical reaction of NH 3 gas and O 2 gas with tantalum chemical vapor obtained by evaporating a precursor such as Ta (OC 2 H 5 ) 5 . Subsequently, after the TaON film 23 is crystallized, the upper electrode 25 is
3 is formed. Such a TaON film 23 has a very high dielectric constant (ε = 20-25) and is composed of a stable bond of Ta—O—N, so that an oxidation step for stabilization after vapor deposition becomes unnecessary. The oxidation reactivity is very low and the thickness of the dielectric film does not increase.

【0006】[0006]

【発明が解決しようとする課題】しかし、TaON膜の
蒸着時、反応ガスとしてO2 ガスを用いることにより、
次の様な問題点が発生する。すなわち、O2ガスはその
他の酸素を含むガスに比べて活性化速度が非常に遅い。
よって、タンタル化学蒸気との反応も遅くなり、TaO
N膜に多量の炭素及び酸素空乏が発生する。これにより
誘電体膜のリーク電流が発生する。
However, at the time of depositing a TaON film, by using O 2 gas as a reaction gas,
The following problems occur. That is, the activation rate of the O 2 gas is much lower than that of other gases containing oxygen.
Therefore, the reaction with the tantalum chemical vapor is also slow, and TaO
A large amount of carbon and oxygen depletion occurs in the N film. This causes a leakage current of the dielectric film.

【0007】従って、本発明の目的は、リーク電流の発
生が少なくて高いキャパシタンスを確保できる半導体メ
モリ素子のキャパシタの形成方法を提供することにあ
る。
Accordingly, an object of the present invention is to provide a method of forming a capacitor of a semiconductor memory device, which can generate a small amount of leakage current and ensure a high capacitance.

【0008】[0008]

【課題を解決するための手段】前記目的を達成する為に
本発明は、半導体基板上に下部電極を形成する段階;前
記下部電極上にTa化学蒸気、O3ガス及びNH3ガスの
化学気相反応によりTaON膜を形成する段階;及び前
記TaON膜上に上部電極を形成する段階を含むことを
特徴とする。
According to the present invention, there is provided a method for forming a lower electrode on a semiconductor substrate, comprising the steps of: forming a Ta chemical vapor, an O 3 gas and an NH 3 gas on the lower electrode; Forming a TaON film by a phase reaction; and forming an upper electrode on the TaON film.

【0009】また、本発明は、半導体基板上に下部電極
を形成する段階;前記下部電極表面に自然酸化膜の発生
を阻止するための表面処理を行う段階;前記下部電極上
にTa化学蒸気、03ガス及びNH3ガスの化学気相反
応によりTaON膜を形成する段階;前記TaON膜を
結晶化させる段階;及び前記TaON膜上に上部電極を
形成する段階を含み、前記TaON膜は300乃至60
0℃及び0.1乃至1.2Torrを維持するLPCVDチャ
ンバ内で形成されることを特徴とする。
The present invention also includes a step of forming a lower electrode on a semiconductor substrate; a step of performing a surface treatment for preventing the formation of a natural oxide film on the surface of the lower electrode; Forming a TaON film by a chemical vapor reaction of 03 gas and NH 3 gas; crystallizing the TaON film; and forming an upper electrode on the TaON film, wherein the TaON film is 300 to 60.
It is formed in an LPCVD chamber that maintains 0 ° C. and 0.1 to 1.2 Torr.

【0010】[0010]

【発明の実施の形態】以下、添付図面に基づき、本発明
の好適実施例を詳細に説明する。図2を参照して、フィ
ールド酸化膜31は公知の方式にて所定の電導性を持つ
半導体基板30の所定部分に形成される。底部にゲート
絶縁膜32を含むゲート電極33が半導体基板30上の
所定部分に形成され、スペーサ34はゲート電極33の
両側壁に公知の方式にて形成される。接合領域35はゲ
ート電極33の両側の半導体基板30に形成されてMO
Sトランジスタが形成される。第1層間絶縁膜36及び
第2層間絶縁膜38はMOSトランジスタの形成された
半導体基板30に形成される。その後、接合領域35の
うちの何れかが露出するように第2及び第1層間絶縁膜
38、36がパターニングされ、ストリージノードコン
タクトホールHが形成される。露出した接合領域35と
コンタクトされるように下部電極40が形成される。こ
のとき、下部電極はスタック、シリンダー、ピン、スタ
ック−シリンダー形態の何れかで形成され、本実施例で
の下部電極40は例えばシリンダー形態で形成される。
HSG膜41は下部電極40の表面積を増大させる為
に、公知の方法にて下部電極40の表面に形成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. Referring to FIG. 2, field oxide film 31 is formed on a predetermined portion of semiconductor substrate 30 having a predetermined conductivity by a known method. A gate electrode 33 including a gate insulating film 32 at the bottom is formed at a predetermined portion on the semiconductor substrate 30, and spacers 34 are formed on both side walls of the gate electrode 33 by a known method. The junction region 35 is formed on the semiconductor substrate 30 on both sides of the gate electrode 33 and
An S transistor is formed. The first interlayer insulating film 36 and the second interlayer insulating film 38 are formed on the semiconductor substrate 30 on which the MOS transistors are formed. After that, the second and first interlayer insulating films 38 and 36 are patterned so that one of the bonding regions 35 is exposed, and a storage node contact hole H is formed. Lower electrode 40 is formed so as to be in contact with exposed bonding region 35. At this time, the lower electrode is formed in any one of a stack, a cylinder, a pin, and a stack-cylinder form, and the lower electrode 40 in the present embodiment is formed in, for example, a cylinder form.
The HSG film 41 is formed on the surface of the lower electrode 40 by a known method in order to increase the surface area of the lower electrode 40.

【0011】その後、HSG膜41を含む下部電極40
と、以後形成される誘電体膜(不図示)との間の界面
に、低誘電自然酸化膜の発生を阻止する為に、HSG膜
41を含む下部電極40及び第2層間絶縁膜38が表面
処理される。ここで、表面処理は、in-situにてNH3
スまたはN2/H2ガス雰囲気を持つLPCVD(low pr
essure chemical vapor deposition)チャンバ内
で、プラズマを用いて、200乃至600℃の温度で熱
処理する方法、或いはNH3ガス雰囲気及び650乃至
950℃温度でRTN処理したり、同じ条件で電気炉で
熱処理する方法により行われる。このとき、表面処理に
より、HSG膜41を含む下部電極40及び第2層間絶
縁膜38上に自然的にシリコン窒化膜42が形成され
る。
Thereafter, the lower electrode 40 including the HSG film 41 is formed.
The lower electrode 40 including the HSG film 41 and the second interlayer insulating film 38 are provided on the interface between the lower electrode 40 and the second interlayer insulating film 38 to prevent the formation of a low dielectric natural oxide film at an interface between the lower electrode 40 and a dielectric film (not shown) formed later. It is processed. Here, the surface treatment is performed in situ by LPCVD (low pr) having an NH 3 gas or N 2 / H 2 gas atmosphere.
essure chemical vapor deposition) In a chamber, a method of performing heat treatment at a temperature of 200 to 600 ° C. using plasma, or an RTN treatment in an NH 3 gas atmosphere and a temperature of 650 to 950 ° C., or a heat treatment in an electric furnace under the same conditions Done by the method. At this time, a silicon nitride film 42 is naturally formed on the lower electrode 40 including the HSG film 41 and the second interlayer insulating film 38 by the surface treatment.

【0012】図3を参照して、誘電体としてのTaON
膜43は、Ta(OC255(tantalum ethylate)
の様な前駆体を蒸気化したTa化学蒸気、活性速度がO
2ガスより速いO3(オゾン)ガス、及びNH3ガスの反
応によってシリコン窒化膜42上に形成される。望まし
くはTaON膜の蒸着工程は、気相反応(gas phasere
action)が抑制された状態でウェーハ表面のみで反応す
るようにする。このとき、TaON膜43は化学気相蒸
着法例えば、LPCVD方式(low pressurechemical
vapordeposition)方式にて形成されのが望ましく、
約300乃至600℃及び0.1乃至1.2Torrの条件で
形成される。ここで、Ta(OC255 の様な前駆
体は液状であるから、蒸気状態に変換した後、LPCV
Dチャンバ内に供給すべきである。このとき、前駆体は
次の様な方法によりTa化学蒸気に変換される。すなわ
ち、前駆体は、MFC(MassFlow Controller)の様な
流量調節器で流量を調節した後、蒸発管または蒸発器に
供給される。その後、蒸発管または蒸発器に供給された
前駆体は、150乃至200℃の温度で蒸発されてTa
化学蒸気状態となる。次に、Ta化学蒸気は300乃至
600℃を維持するLPCVDチャンバ内に供給され
る。このように形成されたTa化学蒸気、O3ガス及び
NH3ガスはチャンバ内で互いに反応されて、非晶質状
態のTaON膜43が形成される。ここで、NH3ガス
は10乃至1000sccm程度供給され、O3ガスは10
000乃至200000ppm程度供給される。本実施例
でのO3ガスは従来のO2ガスに比べて反応性が非常に優
秀なので、Ta化学蒸気内に含まれている炭素と速く反
応される。このため、O3ガスはTa化学蒸気内の炭素
をCO2ガス状態で全部消耗させて、酸素欠乏を防止す
る。
Referring to FIG. 3, TaON as a dielectric material
The film 43 is made of Ta (OC 2 H 5 ) 5 (tantalum ethylate)
Ta chemical vapor obtained by evaporating a precursor such as
An O 3 (ozone) gas and a NH 3 gas, which are faster than the two gases, are formed on the silicon nitride film 42 by a reaction. Preferably, the TaON film is deposited by a gas phase reaction.
The action is suppressed only on the wafer surface while the action is suppressed. At this time, the TaON film 43 is formed by a chemical vapor deposition method, for example, an LPCVD method (low pressure chemical
It is desirable to be formed by a vapor deposition method.
It is formed under the conditions of about 300 to 600 ° C. and 0.1 to 1.2 Torr. Here, since the precursor such as Ta (OC 2 H 5 ) 5 is in a liquid state, it is converted into a vapor state and then converted into a LPCV.
Should be fed into the D chamber. At this time, the precursor is converted into Ta chemical vapor by the following method. That is, the precursor is supplied to an evaporator tube or an evaporator after adjusting the flow rate with a flow controller such as an MFC (MassFlow Controller). Thereafter, the precursor supplied to the evaporator tube or evaporator is evaporated at a temperature of 150 to 200 ° C.
It becomes a chemical vapor state. Next, Ta chemical vapor is supplied into an LPCVD chamber that maintains 300-600 ° C. The Ta chemical vapor, O 3 gas, and NH 3 gas thus formed react with each other in the chamber to form the TaON film 43 in an amorphous state. Here, NH 3 gas is supplied at about 10 to 1000 sccm, and O 3 gas is supplied at about 10 sccm.
2,000 to 200,000 ppm is supplied. Since the O 3 gas in this embodiment has a very high reactivity compared to the conventional O 2 gas, it reacts quickly with the carbon contained in the Ta chemical vapor. Therefore, the O 3 gas completely consumes carbon in the Ta chemical vapor in a CO 2 gas state, thereby preventing oxygen deficiency.

【0013】その後、図4に示すように、非晶質状態の
TaON膜43は、窒素または酸素を含むガス雰囲気、
例えばNH3ガス、N2/H2ガス、N2 OまたはO2雰囲
気及び700乃至950℃の温度で、30秒乃至30分
間急速熱処理または電気炉熱処理される。この様な熱処
理工程により、非晶質状態のTaON膜43は結合構造
が一層緻密な結晶質状態43aとなる。
Thereafter, as shown in FIG. 4, the TaON film 43 in the amorphous state is formed in a gas atmosphere containing nitrogen or oxygen,
For example, rapid heat treatment or electric furnace heat treatment is performed in an NH 3 gas, N 2 / H 2 gas, N 2 O or O 2 atmosphere and a temperature of 700 to 950 ° C. for 30 seconds to 30 minutes. By such a heat treatment step, the TaON film 43 in an amorphous state becomes a crystalline state 43a in which the bonding structure is more dense.

【0014】或いは、高温の熱処理工程の代わりに、in
-situまたはex-situにて、NH3ガス雰囲気またはN2
ガス雰囲気及び200乃至600℃で、プラズマ熱処理
することができる。この様な低温熱処理により、TaO
N膜43界面のマイクロクラック及びピンホールなどの
様な構造欠陥が最善され、均質度(homogeneity)も改
善される。
Alternatively, instead of the high-temperature heat treatment step, in
At -situ or ex-situ, NH 3 gas atmosphere or N 2 O
Plasma heat treatment can be performed in a gas atmosphere and at 200 to 600 ° C. By such low-temperature heat treatment, TaO
Structural defects such as microcracks and pinholes at the interface of the N film 43 are optimized, and homogeneity is also improved.

【0015】その後、図5に示す様に、上部電極45は
TaON膜43a上に形成される。上部電極45は、ド
ープトポリシリコン膜またはTiN、TaN、W、W
N、WSi、Ru、RuO2、Ir、IrO2またはPt
の様な金属層で形成される。ドープトポリシリコン膜が
上部電極45で用いる場合、ドープトポリシリコン膜は
約1000乃至1500Å厚さで蒸着されるのが望まし
い。また、金属層が上部電極45で用いる場合、金属層
は約100乃至600Å厚さで形成されるのが望まし
い。合わせて、ポリシリコン膜はCVD方式にて形成さ
れることができ、金属層はLPCVD、PECVD、R
Fマグネチックスパッダリング法の何れかの一方法にて
形成されることができる。
Thereafter, as shown in FIG. 5, the upper electrode 45 is formed on the TaON film 43a. The upper electrode 45 is made of a doped polysilicon film or TiN, TaN, W, W
N, WSi, Ru, RuO 2 , Ir, IrO 2 or Pt
Is formed of a metal layer such as When a doped polysilicon film is used for the upper electrode 45, the doped polysilicon film is preferably deposited to a thickness of about 1000 to 1500 degrees. When a metal layer is used for the upper electrode 45, the metal layer is preferably formed to a thickness of about 100 to 600 degrees. In addition, the polysilicon film can be formed by the CVD method, and the metal layer can be formed by LPCVD, PECVD, R
It can be formed by any one of the F magnetic padding method.

【0016】[0016]

【発明の効果】以上、詳細に説明した様に、本実施例で
のTaON誘電体膜は、反応ガスとして反応特性が優れ
ているO3ガスを用いる。これにより、TaON膜形成
時、O3ガスの酸素は前駆体に含まれている炭素と迅速
に反応して、炭素成分を全部CO 2状態に揮発させる。
合わせて、膜内に酸素を十分に供給して、酸素欠乏を防
止させる。これにより、リーク電流特性が改善される。
As described in detail above, in this embodiment,
TaON dielectric film has excellent reaction characteristics as a reaction gas
OThreeUse gas. Thereby, TaON film formation
Time, OThreeOxygen in the gas quickly reacts with the carbon contained in the precursor
To convert all the carbon components into CO TwoEvaporate to a state.
At the same time, supply sufficient oxygen into the membrane to prevent oxygen deficiency.
To stop. Thereby, the leakage current characteristics are improved.

【0017】また、TaON膜は、安定なTa-O-N膜
から構成され、構造的に安定な状態を維持して、上下電
極と酸化反応性が小さいため、誘電体膜の厚さの増加を
防止できる。
The TaON film is composed of a stable Ta—O—N film, maintains a structurally stable state, and has low oxidation reactivity with the upper and lower electrodes, so that the thickness of the dielectric film increases. Can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半導体素子のキャパシタを示す断面図で
ある。
FIG. 1 is a sectional view showing a capacitor of a conventional semiconductor device.

【図2】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 2 is a cross-sectional view illustrating a capacitor of a semiconductor device according to a first embodiment of the present invention.

【図3】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 3 is a cross-sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【図4】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 4 is a sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 5 is a sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30 半導体基板 31 フィールド酸化膜 33 ゲート電極 35 接合領域 36 第1層間絶縁膜 38 第2層間絶縁膜 40 下部電極 41 HSG膜 42 シリコン窒化膜 43 非晶質状態のTaON膜 43a 結晶質状態のTaON膜 45 上部電極 Reference Signs List 30 semiconductor substrate 31 field oxide film 33 gate electrode 35 bonding region 36 first interlayer insulating film 38 second interlayer insulating film 40 lower electrode 41 HSG film 42 silicon nitride film 43 amorphous TaON film 43a crystalline TaON film 45 Upper electrode

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に下部電極を形成する段
階;前記下部電極上にTa化学蒸気、O3 ガス及びNH
3ガスの化学気相反応によりTaON膜を形成する段
階;及び、 前記TaON膜上に上部電極を形成する段階を含むこと
を特徴とする、半導体メモリ素子のキャパシタ形成方
法。
A step of forming a lower electrode on the semiconductor substrate; a step of forming a Ta chemical vapor, an O 3 gas, and a NH on the lower electrode;
Forming a TaON film by a chemical vapor reaction of three gases; and forming an upper electrode on the TaON film.
【請求項2】 前記Ta化学蒸気は、タンタルを含む前
駆体が150乃至200℃の温度で蒸発されて得られる
ことを特徴とする、請求項1記載の半導体メモリ素子の
キャパシタ形成方法。
2. The method as claimed in claim 1, wherein the Ta chemical vapor is obtained by evaporating a precursor containing tantalum at a temperature of 150 to 200 ° C.
【請求項3】 前記前駆体はTa(OC255である
ことを特徴とする、請求項2記載の半導体メモリ素子の
キャパシタの形成方法。
3. The method as claimed in claim 2, wherein the precursor is Ta (OC 2 H 5 ) 5 .
【請求項4】 前記TaON膜は300乃至600℃及
び0.1乃至1.2Torrを維持するLPCVDチャンバ内
で形成されることを特徴とする、請求項1記載の半導体
メモリ素子のキャパシタ形成方法。
4. The method as claimed in claim 1, wherein the TaON film is formed in an LPCVD chamber maintained at 300 to 600 ° C. and 0.1 to 1.2 Torr.
【請求項5】 前記NH3 ガスは各々10乃至1000
sccmだけ供給されることを特徴とする、請求項1記載の
半導体メモリ素子のキャパシタ形成方法。
5. The method according to claim 1, wherein the NH 3 gas is 10 to 1000
2. The method of claim 1, wherein only the sccm is supplied.
【請求項6】 前記O3 ガスは10000乃至2000
00ppmだけ供給されることを特徴とする、請求項1記
載の半導体メモリ素子のキャパシタ形成方法。
6. The O 3 gas of 10,000 to 2,000.
2. The method according to claim 1, wherein the supply is performed by only 00 ppm.
【請求項7】 前記下部電極の形成段階と、前記TaO
N膜の形成段階との間に、前記下部電極表面に自然酸化
膜の発生を阻止するための表面処理をさらに行うことを
特徴とする、請求項1記載の半導体メモリ素子キャパシ
タ形成方法。
7. The step of forming the lower electrode, and the step of forming the TaO.
2. The method according to claim 1, further comprising performing a surface treatment for preventing a natural oxide film from being formed on the surface of the lower electrode during the step of forming the N film.
【請求項8】 前記表面処理は、NH3 ガスまたはN2/
2ガス雰囲気を持つプラズマを用いたLPCVD(low
pressure chemical vapor deposition)チャンバ
内で、200乃至600℃で熱処理されることを特徴と
する、請求項7記載の半導体メモリ素子のキャパシタ形
成方法。
8. The surface treatment is performed using NH 3 gas or N 2 /
LPCVD using plasma having H 2 gas atmosphere (low
8. The method of claim 7, wherein the heat treatment is performed at 200 to 600 [deg.] C. in a pressure chemical vapor deposition chamber.
【請求項9】 前記表面処理は、NH3 ガス雰囲気及び
650乃至950℃でRTN処理することを特徴とす
る、請求項7記載の半導体メモリ素子のキャパシタ形成
方法。
9. The method of claim 7, wherein the surface treatment is performed by performing an RTN process at 650 to 950 ° C. in an NH 3 gas atmosphere.
【請求項10】 前記表面処理は、NH3 ガス雰囲気を
持つ電気炉(furnace)内で、650乃至950℃で熱
処理されることを特徴とする、請求項7記載の半導体メ
モリ素子のキャパシタ形成方法。
10. The method according to claim 7, wherein the surface treatment is performed at 650 to 950 ° C. in an electric furnace having an NH 3 gas atmosphere. .
【請求項11】 前記TaON膜の形成段階と、上部電
極の形成段階との間に、TaON膜内を結晶化させる工
程がさらに行われることを特徴とする、請求項8記載の
半導体メモリ素子のキャパシタ形成方法。
11. The semiconductor memory device according to claim 8, wherein a step of crystallizing the inside of the TaON film is further performed between the step of forming the TaON film and the step of forming the upper electrode. Capacitor forming method.
【請求項12】 前記TaON膜を結晶化させる工程
は、700乃至950℃及びNH3、N2/H2、N2 O、
2 ガスの何れかのガス雰囲気を持つRTPチャンバま
たは電気炉内で、30秒乃至30分間熱処理されること
を特徴とする、請求項11記載の半導体メモリ素子のキ
ャパシタ形成方法。
12. The step of crystallizing the TaON film is performed at 700 to 950 ° C. and at NH 3 , N 2 / H 2 , N 2 O,
O 2 in the RTP chamber or electric furnace with any of the gas atmosphere of the gas, characterized in that it is heat-treated 30 seconds to 30 minutes, a capacitor forming method of a semiconductor memory device according to claim 11, wherein.
【請求項13】 半導体基板上に下部電極を形成する段
階;前記下部電極表面に自然酸化膜の発生を阻止するた
めの表面処理を行う段階;前記下部電極上にTa化学蒸
気、O3 ガス及びNH3ガスの化学気相反応によりTa
ON膜を形成する段階;前記TaON膜を結晶化させる
段階;及び、 前記TaON膜上に上部電極を形成する段階を含み、 前記TaON膜は300乃至600℃及び0.1乃至1.
2Torrを維持するLPCVDチャンバ内で形成されるこ
とを特徴とする、半導体メモリ素子のキャパシタ形成方
法。
13. A step of forming a lower electrode on a semiconductor substrate; a step of performing a surface treatment for preventing generation of a native oxide film on a surface of the lower electrode; a step of forming a Ta chemical vapor, an O 3 gas and a Ta gas on the lower electrode. Ta by chemical vapor reaction of NH 3 gas
Forming an ON film; crystallizing the TaON film; and forming an upper electrode on the TaON film, wherein the TaON film has a temperature of 300 to 600 ° C. and 0.1 to 1.
A method for forming a capacitor of a semiconductor memory device, wherein the capacitor is formed in an LPCVD chamber maintaining 2 Torr.
【請求項14】 前記Ta化学蒸気はタンタルを含む前
駆体が150乃至200℃の温度で蒸発されて得られる
ことを特徴とする、請求項13記載の半導体メモリ素子
のキャパシタ形成方法。
14. The method according to claim 13, wherein the Ta chemical vapor is obtained by evaporating a precursor containing tantalum at a temperature of 150 to 200 ° C.
【請求項15】 前記前駆体はTa(OC255であ
ることを特徴とする、請求項13記載の半導体メモリ素
子のキャパシタ形成方法。
15. The method as claimed in claim 13, wherein the precursor is Ta (OC 2 H 5 ) 5 .
【請求項16】 前記NH3 ガスは各々10乃至100
0sccmだけ供給され、前記O3ガスは10000乃至2
00000ppmだけ供給されることを特徴とする、請求
項13記載の半導体メモリ素子のキャパシタ形成方法。
16. The NH 3 gas may be 10 to 100 each.
0 sccm, and the O 3 gas is 10,000 to 2
14. The method as claimed in claim 13, wherein the amount is supplied at 00000 ppm.
【請求項17】 前記表面処理は、NH3 ガスまたはN
2/H2ガス雰囲気を持つプラズマを用いたLPCVD(l
ow pressure chemical vapor deposition)チャン
バ内で、200乃至600℃で熱処理されることを特徴
とする、請求項13記載の半導体メモリ素子のキャパシ
タ形成方法。
17. The surface treatment may be performed using NH 3 gas or N
LPCVD using plasma with a 2 / H 2 gas atmosphere (l
14. The method of claim 13, wherein the heat treatment is performed at 200 to 600 [deg.] C. in a chamber.
【請求項18】 前記表面処理は、NH3 ガス雰囲気及
び650乃至950℃でRTN処理することを特徴とす
る、請求項13記載の半導体メモリ素子のキャパシタ形
成方法。
18. The method according to claim 13, wherein the surface treatment is performed by performing an RTN process at 650 to 950 ° C. in an NH 3 gas atmosphere.
【請求項19】 前記表面処理は、NH3 ガス雰囲気を
持つ電気炉(furnace)内で、650乃至950℃で熱
処理されることを特徴とする、請求項13記載の半導体
メモリ素子のキャパシタ形成方法。
19. The method according to claim 13, wherein the surface treatment is performed at 650 to 950 ° C. in an electric furnace having an NH 3 gas atmosphere. .
【請求項20】 前記TaON膜を結晶化させる工程
は、700乃至950℃およびNH3、N2/H2、N2
O、O2 ガスの何れかのガス雰囲気を持つRTPチャン
バまたは電気炉内で、30秒乃至30分間熱処理される
ことを特徴とする、請求項13記載の半導体メモリ素子
のキャパシタ形成方法。
20. The step of crystallizing the TaON film is performed at 700 to 950 ° C. and NH 3 , N 2 / H 2 , N 2
O, with O 2 RTP chamber or electric furnace with any of the gas atmosphere of the gas, characterized in that it is heat-treated 30 seconds to 30 minutes, a capacitor forming method of a semiconductor memory device according to claim 13, wherein.
JP2000199542A 1999-07-01 2000-06-30 Formation method of capacitor of semiconductor memory element Pending JP2001053256A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1999/P26379 1999-07-01
KR1019990026379A KR20010008503A (en) 1999-07-01 1999-07-01 Method of forming capacitor provied with TaON dielectric layer

Publications (1)

Publication Number Publication Date
JP2001053256A true JP2001053256A (en) 2001-02-23

Family

ID=19598637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199542A Pending JP2001053256A (en) 1999-07-01 2000-06-30 Formation method of capacitor of semiconductor memory element

Country Status (3)

Country Link
JP (1) JP2001053256A (en)
KR (1) KR20010008503A (en)
TW (1) TW471097B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100908A (en) * 2001-09-14 2003-04-04 Hynix Semiconductor Inc Semiconductor element having high dielectric film and its manufacturing method
KR100403586B1 (en) * 2001-04-12 2003-10-30 삼성전자주식회사 An optical pickup apparatus and an assembling method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101675069B1 (en) * 2016-06-29 2016-11-11 주식회사 위쥬테크 Apparatus for recognizing number of license plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403586B1 (en) * 2001-04-12 2003-10-30 삼성전자주식회사 An optical pickup apparatus and an assembling method thereof
JP2003100908A (en) * 2001-09-14 2003-04-04 Hynix Semiconductor Inc Semiconductor element having high dielectric film and its manufacturing method

Also Published As

Publication number Publication date
KR20010008503A (en) 2001-02-05
TW471097B (en) 2002-01-01

Similar Documents

Publication Publication Date Title
JP4493208B2 (en) Nonvolatile memory device and manufacturing method thereof
JP4441099B2 (en) Method for manufacturing capacitor of semiconductor element
US6673668B2 (en) Method of forming capacitor of a semiconductor memory device
JP4035626B2 (en) Capacitor manufacturing method for semiconductor device
JP2001053253A (en) Capacitor of semiconductor memory element and its manufacture
US6740553B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
US6525364B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
US7531422B2 (en) Method for fabricating capacitor in semiconductor device using hafnium terbium oxide dielectric layer
KR100464650B1 (en) Capacitor of semiconductor device having dual dielectric layer structure and method for fabricating the same
US6410400B1 (en) Method of manufacturing Ta2O5capacitor using Ta2O5thin film as dielectric layer
US6777740B2 (en) Capacitor for semiconductor memory device and method of manufacturing the same
JP2001057414A (en) Capacitor for semiconductor memory element and its manufacture
JP2001036046A (en) Capacitor of semiconductor memory device and its manufacture
KR100431740B1 (en) Semiconductor with High-k dielectric layer and Method for fabricating the same
JP2001237398A (en) Method of manufacturing capacitor of semiconductor device
US6337291B1 (en) Method of forming capacitor for semiconductor memory device
JP4223248B2 (en) Dielectric film forming method for semiconductor device
US20020011620A1 (en) Capacitor having a TaON dielectric film in a semiconductor device and a method for manufacturing the same
JP2001053255A (en) Manufacture of capacitor of semiconductor memory element
JP2001053256A (en) Formation method of capacitor of semiconductor memory element
JP2001144271A (en) Method for forming capacitor of semiconductor memory
KR100353540B1 (en) Method for manufacturing capacitor in semiconductor device
KR100351253B1 (en) Method of manufacturing a capacitor in a semiconductor device
US6716717B2 (en) Method for fabricating capacitor of semiconductor device
KR20020006077A (en) Method for manufacturing capacitor in semiconductor device

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051102