JP2001053255A - Manufacture of capacitor of semiconductor memory element - Google Patents

Manufacture of capacitor of semiconductor memory element

Info

Publication number
JP2001053255A
JP2001053255A JP2000199534A JP2000199534A JP2001053255A JP 2001053255 A JP2001053255 A JP 2001053255A JP 2000199534 A JP2000199534 A JP 2000199534A JP 2000199534 A JP2000199534 A JP 2000199534A JP 2001053255 A JP2001053255 A JP 2001053255A
Authority
JP
Japan
Prior art keywords
film
gas
forming
taon
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000199534A
Other languages
Japanese (ja)
Inventor
Toshu Boku
東 洙 朴
Semin Ri
世 民 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of JP2001053255A publication Critical patent/JP2001053255A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/0214Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being a silicon oxynitride, e.g. SiON or SiON:H
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02249Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by combined oxidation and nitridation performed simultaneously
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/02252Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by plasma treatment, e.g. plasma oxidation of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/75Electrodes comprising two or more layers, e.g. comprising a barrier layer and a metal layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Memories (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a manufacturing method of the capacitor of a semiconductor memory element, which eliminates a high-temperature heat-treating process for eliminating a natural oxide film to prevent deterioration of a lower transistor. SOLUTION: This manufacturing method of a capacitor of a semiconductor memory element comprises a stage to form a lower electrode 40, using a doped silicon material on a semiconductor substrate 30, a stage to form a silicon oxinitride film 42 on the surface of the electrode 40, a stage to form a TaON film on the film 42 by the reaction of Ta chemical vapor to O3 gas and NH3 gas and a stage to form an upper electrode 50 on the TaON film. The film 42 is formed in a temperature range of 200 to 600 deg.C.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体メモリ素子の
キャパシタの製造方法に関し、より詳しくは、TaON
膜をキャパシタの誘電体膜とする半導体メモリ素子のキ
ャパシタの形成方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a method for manufacturing a capacitor of a semiconductor memory device, and more particularly, to a TaON method.
The present invention relates to a method for forming a capacitor of a semiconductor memory device using the film as a dielectric film of the capacitor.

【0002】[0002]

【従来の技術】最近、DRAM半導体素子を構成するメ
モリセルの数の増加に伴い、各メモリセルの占有面積は
益々低減しつつある。一方、各メモリセル内に形成され
るキャパシタは、正確な貯蔵データを読み出す為に充分
な容量が必要である。これにより、現在のDRAM半導
体素子は、小面積ながら大容量を有するキャパシタが形
成されたメモリセルを要求とする。キャパシタの静電容
量(capacitance)は、高誘電率を持つ絶縁体を用いる
か、或いは下部電極の表面積を拡大させることにより増
大する。現在の高集積化したDRAM半導体素子には、
NO(nitride-oxide)膜よりも高誘電率のタンタル酸
化膜(Ta25 )が誘電体として用いられることで、
下部電極が3次的に形成される。
2. Description of the Related Art Recently, with the increase in the number of memory cells constituting a DRAM semiconductor device, the area occupied by each memory cell has been increasingly reduced. On the other hand, a capacitor formed in each memory cell needs a sufficient capacity to read out stored data accurately. Accordingly, the current DRAM semiconductor device requires a memory cell in which a capacitor having a large area but a large capacity is formed. The capacitance of a capacitor is increased by using an insulator having a high dielectric constant or by increasing the surface area of the lower electrode. Current highly integrated DRAM semiconductor devices include:
By using a tantalum oxide film (Ta 2 O 5 ) having a higher dielectric constant than a NO (nitride-oxide) film as a dielectric,
A lower electrode is tertiarily formed.

【0003】しかし、誘電体膜として用いるタンタル酸
化膜は、不安な化学量論比(stoichiometry)を持つの
で、蒸着後に安定化するための酸化工程を必ず行うべき
である。このとき、タンタル酸化膜は、下部電極と容易
に反応して誘電体膜の厚さを増加させることで、むしろ
キャパシタンスを減少させる。合わせて、タンタル酸化
膜は、有機タンタル金属物質を前駆体として用いて形成
されるため、膜内に多量の炭素及び炭素化合物を残留さ
せて、リーク電流が発生しやすい。
However, since a tantalum oxide film used as a dielectric film has an unstable stoichiometry, an oxidation step for stabilization after deposition must be performed. At this time, the tantalum oxide film easily reacts with the lower electrode to increase the thickness of the dielectric film, thereby decreasing the capacitance. In addition, since the tantalum oxide film is formed using an organic tantalum metal substance as a precursor, a large amount of carbon and carbon compounds remain in the film, and a leak current is likely to occur.

【0004】これに対して本出願人は、タンタル酸化膜
の問題点を解決する為に、TaON膜を誘電体として用
いるキャパシタの技術を、99−24218号として出
願、開示している。この様なTaON膜を誘電体とする
キャパシタは、図1に示している。
On the other hand, in order to solve the problem of the tantalum oxide film, the present applicant has filed and disclosed a technology of a capacitor using a TaON film as a dielectric material as Japanese Patent Application No. 99-24218. Such a capacitor using a TaON film as a dielectric is shown in FIG.

【0005】図1を参照して、下部にゲート絶縁膜12
を含むゲート電極13は、フィールド酸化膜11が所定
部分に形成された半導体基板10上に公知の方式によっ
て形成される。接合領域14はゲート電極13の両側の
半導体基板10に形成されてMOSトランジスタが形成
される。第1層間絶縁膜16及び第2層間絶縁膜18
は、MOSトランジスタが形成された半導体基板10上
に形成される。ストレージノードコンタクトホールh
は、接合領域14が露出するように、第1及び第2層間
絶縁膜16、18内に形成される。シリンダー形態の下
部電極20が公知の方式により、露出した接合領域14
とコンタクトされるように、ストレージノードコンタク
トホールh内に形成される。HSG(HemiSpherical G
rain)膜21は、下部電極20の表面積を一層増大させ
る為に、下部電極20の表面に形成される。HSG膜2
1を含む下部電極20の表面は自然酸化膜の発生を防止
する為に、NH3プラズマ雰囲気及び850乃至950
の範囲で前処理工程が行われる。この様な前処理工程に
より、HSG膜21を含む下部電極20上及び第2層間
絶縁膜18上に酸化反応を抑制させるシリコン窒酸化膜
SixNy22が形成される。TaON膜23はシリコ
ン窒酸化膜22上にタンタル化学蒸気、NH3ガス及び
2 ガスの表面化学反応によって形成される。続いて、
TaON膜23は、熱処理工程により結晶化した後、上
部電極25が結晶化したTaON膜23上に形成され
る。この様なTaON膜23は、非常に高誘電率(ε=
20-25)を持ち、Ta-O-Nの安定した結合から構
成されるので、蒸着後に安定化するための酸化工程が不
要となり、酸化反応性が非常に低くて誘電体膜の厚さが
増大しない。
Referring to FIG. 1, a gate insulating film 12 is
Is formed by a known method on the semiconductor substrate 10 on which the field oxide film 11 is formed at a predetermined portion. The junction region 14 is formed on the semiconductor substrate 10 on both sides of the gate electrode 13 to form a MOS transistor. First interlayer insulating film 16 and second interlayer insulating film 18
Are formed on a semiconductor substrate 10 on which MOS transistors are formed. Storage node contact hole h
Is formed in the first and second interlayer insulating films 16 and 18 such that the bonding region 14 is exposed. The lower electrode 20 in the form of a cylinder is exposed to the exposed bonding region 14 in a known manner.
Is formed in the storage node contact hole h so as to be in contact with the storage node. HSG (HemiSpherical G
rain) The film 21 is formed on the surface of the lower electrode 20 in order to further increase the surface area of the lower electrode 20. HSG film 2
For the surface of the lower electrode 20 to prevent the occurrence of a natural oxide film containing 1, NH 3 plasma atmosphere and 850 to 950
The pre-processing step is performed within the range. By such a pretreatment process, a silicon oxynitride film SixNy22 for suppressing an oxidation reaction is formed on the lower electrode 20 including the HSG film 21 and on the second interlayer insulating film 18. The TaON film 23 is formed on the silicon oxynitride film 22 by a surface chemical reaction of tantalum chemical vapor, NH 3 gas and O 2 gas. continue,
The TaON film 23 is formed on the crystallized TaON film 23 of the upper electrode 25 after being crystallized by the heat treatment step. Such a TaON film 23 has a very high dielectric constant (ε =
20-25) and consists of a stable bond of Ta-ON, so that an oxidation step for stabilization after vapor deposition is not required, the oxidation reactivity is extremely low, and the thickness of the dielectric film is reduced. Does not increase.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、TaO
N膜の蒸着前、自然酸化膜の発生を防止する前処理工程
が800℃以上で行われることで、融点が800℃以下
の物質で構成される下部電極及びその他の電極が溶融さ
れる。このため、800℃以上で熱処理工程を行なうこ
とは実際的には不可能である。
SUMMARY OF THE INVENTION However, TaO
Before the N film is deposited, a lower electrode and other electrodes made of a substance having a melting point of 800 ° C. or less are melted by performing a pretreatment process at 800 ° C. or more for preventing generation of a natural oxide film. Therefore, it is practically impossible to perform the heat treatment at 800 ° C. or higher.

【0007】また、前処理工程によって形成されたシリ
コン窒酸化膜22は、低誘電率を有するという長所はあ
るが、下部電極の材料として用いられるポリシリコン膜
と仕事関数の差が小さいため、リーク電流が発生する。
The silicon oxynitride film 22 formed by the pretreatment process has the advantage of having a low dielectric constant, but has a small difference in work function from the polysilicon film used as the material of the lower electrode, so that the leakage current is low. An electric current is generated.

【0008】従って、本発明の目的は、自然酸化膜の排
除のための高温の熱処理工程を排除して、下部トランジ
スタの劣化を防止できる半導体メモリ素子のキャパシタ
の製造方法を提供することにある。
Accordingly, it is an object of the present invention to provide a method of manufacturing a capacitor of a semiconductor memory device, which can prevent a lower transistor from being deteriorated by eliminating a high-temperature heat treatment step for eliminating a native oxide film.

【0009】また、本発明の他の目的は、キャパシタの
リーク電流を防止できる半導体メモリ素子のキャパシタ
の製造方法を提供することにある。
It is another object of the present invention to provide a method of manufacturing a capacitor of a semiconductor memory device, which can prevent a leakage current of the capacitor.

【0010】[0010]

【課題を解決するための手段】前記目的を達成する為
に、本発明は、半導体基板上にドープトシリコン物質で
下部電極を形成する段階;前記下部電極表面にシリコン
窒酸化膜を形成する段階;前記シリコン窒酸化膜上にT
a化学蒸気、O3ガス及びNH3 ガスの反応によりTa
ON膜を形成する段階;及び前記TaON膜上に上部電
極を形成する段階を含み、前記シリコン窒酸化膜は20
0乃至600℃の温度範囲で形成することを特徴とす
る。
To achieve the above object, the present invention provides a method for forming a lower electrode on a semiconductor substrate using a doped silicon material; and forming a silicon oxynitride film on a surface of the lower electrode. T on the silicon oxynitride film
aTa by reaction of chemical vapor, O 3 gas and NH 3 gas
Forming an ON film; and forming an upper electrode on the TaON film.
It is characterized by being formed in a temperature range of 0 to 600 ° C.

【0011】また、本発明は、半導体基板上にドープト
シリコン物質で下部電極を形成する段階;前記下部電極
表面にシリコン窒酸化膜をin-situにて形成する段階;
前記シリコン窒酸化膜上にTa化学蒸気、O3ガス及び
NH3 ガスの反応によりTaON膜を形成する段階;前
記TaON膜を熱処理する段階;及び前記TaON膜上
に上部電極を形成する段階を含み、前記シリコン窒酸化
膜の形成段階はTaON膜の形成段階とin-situにて行
われ、前記シリコン窒酸化膜は、200乃至600℃及
びプラズマ雰囲気で、NH3ガス供給後にO2 ガスまた
はN2 Oガスを供給して形成することを特徴とする。
The present invention also provides a step of forming a lower electrode of a doped silicon material on a semiconductor substrate; a step of forming a silicon oxynitride film on the surface of the lower electrode in-situ;
Forming a TaON film on the silicon oxynitride film by a reaction of Ta chemical vapor, O 3 gas and NH 3 gas; heat treating the TaON film; and forming an upper electrode on the TaON film. The step of forming the silicon oxynitride film is performed in-situ with the step of forming the TaON film. The silicon oxynitride film is formed at 200 to 600 ° C. and in a plasma atmosphere after supplying NH 3 gas and O 2 gas or N 2 gas. It is characterized by being formed by supplying 2 O gas.

【0012】さらにまた、本発明は、半導体基板上にド
ープトシリコン物質で下部電極を形成する段階;前記下
部電極表面にシリコン窒酸化膜をin-situにて形成する
段階;前記シリコン窒酸化膜上にTa化学蒸気、O3
ス及びNH3 ガスの反応によりTaON膜を形成する段
階;前記TaON膜を熱処理する段階;及び前記TaO
N膜上に上部電極を形成する段階を含み、前記シリコン
窒酸化膜の形成段階はTaON膜の形成段階とin-situ
にて行われ、前記シリコン窒酸化膜は200乃至600
℃で形成され、前記シリコン窒酸化膜の形成段階は、N
3プラズマガス雰囲気で下部電極の表面を窒化させる
段階と、前記下部電極の表面を高真空酸化させる段階と
を含むことを特徴とする。
Further, the present invention provides a method of forming a lower electrode of a doped silicon material on a semiconductor substrate; forming an in-situ silicon oxynitride film on the surface of the lower electrode; Forming a TaON film thereon by a reaction of Ta chemical vapor, O 3 gas, and NH 3 gas; heat treating the TaON film; and the TaO film
Forming an upper electrode on the N film; forming the silicon oxynitride film includes forming a TaON film and forming the silicon nitride oxide film in-situ;
And the silicon oxynitride film has a thickness of 200 to 600
C., and the step of forming the silicon oxynitride film comprises N
The method includes nitriding the surface of the lower electrode in an H 3 plasma gas atmosphere, and oxidizing the surface of the lower electrode with high vacuum.

【0013】[0013]

【発明の実施の形態】以下、添付図面に基づき、本発明
の好適実施例を詳細に説明する。 (実施例1)図2を参照して、フィールド酸化膜31は
公知の方式にて所定の電導性を持つ半導体基板30の所
定部分に形成される。底部にゲート絶縁膜32を含むゲ
ート電極33が半導体基板30上の所定部分に形成さ
れ、スペーサ34はゲート電極33の両側壁に公知の方
式にて形成される。接合領域35はゲート電極33の両
側の半導体基板30に形成されてMOSトランジスタが
形成される。第1層間絶縁膜36及び第2層間絶縁膜3
8はMOSトランジスタの形成された半導体基板30に
形成される。その後、接合領域35のうちの何れかが露
出するように第2及び第1層間絶縁膜38、36がパタ
ーニングされ、ストリージノードコンタクトホールHが
形成される。露出した接合領域35とコンタクトされる
ように下部電極40が形成される。このとき、下部電極
はスタック、シリンダー、ピン、スタック−シリンダー
形態の何れかで形成される。本実施例での下部電極40
は、例えばシリンダー形態で形成される。このとき、下
部電極40はドープトポリシリコン膜またはドープト非
晶質シリコン膜で形成されることができる。また、HS
G膜(不図示)は、下部電極40の表面的を増大させる
為に、下部電極40の表面に形成されることができ、H
SG膜が形成される場合、下部電極40は非晶質シリコ
ン膜で形成されることが望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. (Embodiment 1) Referring to FIG. 2, field oxide film 31 is formed on a predetermined portion of semiconductor substrate 30 having a predetermined conductivity by a known method. A gate electrode 33 including a gate insulating film 32 at the bottom is formed at a predetermined portion on the semiconductor substrate 30, and spacers 34 are formed on both side walls of the gate electrode 33 by a known method. The junction region 35 is formed on the semiconductor substrate 30 on both sides of the gate electrode 33 to form a MOS transistor. First interlayer insulating film 36 and second interlayer insulating film 3
8 is formed on a semiconductor substrate 30 on which MOS transistors are formed. After that, the second and first interlayer insulating films 38 and 36 are patterned so that one of the bonding regions 35 is exposed, and a storage node contact hole H is formed. Lower electrode 40 is formed so as to be in contact with exposed bonding region 35. At this time, the lower electrode may be formed in a stack, cylinder, pin, or stack-cylinder configuration. Lower electrode 40 in this embodiment
Is formed, for example, in the form of a cylinder. At this time, the lower electrode 40 may be formed of a doped polysilicon film or a doped amorphous silicon film. Also, HS
A G film (not shown) can be formed on the surface of the lower electrode 40 in order to increase the surface of the lower electrode 40.
When the SG film is formed, it is preferable that the lower electrode 40 be formed of an amorphous silicon film.

【0014】その後、下部電極40と以後形成される誘
電体膜(不図示)との間の界面に、低誘電自然酸化膜の
発生を阻止する為に、シリコン窒酸化膜SiON42が
下部電極表面に形成される。このようなシリコン窒酸化
膜42は下部トランジスタの劣化を最小化する為に、2
00乃至600℃の範囲で形成される。このとき、シリ
コン窒酸化膜42は、下部電極40がプラズマ雰囲気で
窒酸化処理によって形成される。窒酸化処理は、LPC
VDチャンバ内にNH3ガスとO2 ガスまたはN2 Oガ
スが各々10乃至1000sccmだけ供給されて行われ
る。この様な窒酸化処理時、NH3ガスがO2 ガスまた
はN2 Oガスより先に注入されて、O2ガスまたはN2
Oガスと下部電極40との間の追加的な反応が抑制され
る。
Thereafter, at the interface between the lower electrode 40 and a dielectric film (not shown) formed thereafter, a silicon oxynitride film SiON 42 is formed on the surface of the lower electrode in order to prevent the formation of a low dielectric natural oxide film. It is formed. Such a silicon oxynitride film 42 is used to minimize the deterioration of the lower transistor.
It is formed in the range of 00 to 600 ° C. At this time, the silicon oxynitride film 42 is formed by performing a nitridation process on the lower electrode 40 in a plasma atmosphere. Nitrogen oxidation treatment is LPC
The VD chamber is supplied with NH 3 gas and O 2 gas or N 2 O gas at 10 to 1000 sccm each. During such a nitridation treatment, NH 3 gas is injected before O 2 gas or N 2 O gas, and O 2 gas or N 2 O
An additional reaction between the O gas and the lower electrode 40 is suppressed.

【0015】この様なシリコン窒酸化膜42は、下部電
極40との仕事関数差が顕著なので、リーク電流の発生
危険が少なく、200乃至600℃で蒸着されるため、
既に形成されているトランジスタの素子の電気的特性に
影響を及ぼさない。
Since such a silicon nitride oxide film 42 has a remarkable work function difference from the lower electrode 40, there is little danger of generating a leak current, and it is deposited at 200 to 600 ° C.
It does not affect the electrical characteristics of the already formed transistor elements.

【0016】図3を参照して、誘電体としてのTaON
膜44は、Ta(OC25 )5(tantalum ethylate)
の様なタンタル有機金属物質の前駆体から得られたTa
化学蒸気、O2ガス及びNH3 ガスの反応によってシリ
コン窒酸化膜42上に形成される。望ましくはTa化学
蒸気、O2ガス及びNH3 ガスは、気相反応が抑制され
た状態でウェーハ表面のみで反応するようにする。合わ
せて、80乃至200Å厚さで蒸着されるのが望まし
い。このとき、TaON膜44は、化学気相蒸着法、例
えば、LPCVD方式にて形成されのが望ましく、約3
00乃至600℃及び0.1乃至1.2Torrの条件で形成
される。ここで、Ta(OC255 の様な前駆体は
液状であるから、蒸気状態に変換させた後、LPCVD
チャンバ内に供給すべきである。このとき、前駆体は次
の様な方法によりTa化学蒸気に変換される。すなわ
ち、前駆体は、MFC(Mass Flow Controller)の様
な流量調節器で流量を調節した後、蒸発管または蒸発器
に供給される。その後、蒸発管または蒸発器に供給され
た前駆体は、150乃至200℃の温度で蒸発されてT
a化学蒸気状態となる。その後、Ta化学蒸気はLPC
VDチャンバ内に供給され、Ta化学蒸気、O 3ガス及
びNH3 ガスはチャンバ内で互いに表面反応されて、非
晶質状態のTaON膜44が形成される。ここで、O2
ガス及びNH3 ガスは、10乃至1000sccmだけ供
給される。また、TaON膜44はシリコン窒酸化膜4
2を形成する工程とin-situにて行われる。
Referring to FIG. 3, TaON as a dielectric material
The film 44 is made of Ta (OCTwoHFive ) 5 (tantalum ethylate)
Obtained from a precursor of a tantalum organometallic substance such as
Chemical vapor, OTwoGas and NHThree Gas reaction
It is formed on the oxynitride film 42. Preferably Ta chemistry
Steam, OTwoGas and NHThree Gas is suppressed gas phase reaction
In this state, the reaction occurs only on the wafer surface. Match
Therefore, it is desirable that the film be deposited at a thickness of 80 to 200 mm.
No. At this time, the TaON film 44 is formed by a chemical vapor deposition method, for example,
For example, it is desirable to form by the LPCVD method.
Formed under conditions of 00 to 600 ° C and 0.1 to 1.2 Torr
Is done. Here, Ta (OCTwo HFive )Five Precursors like
After being converted to a vapor state because it is liquid, LPCVD
Should be fed into the chamber. At this time, the precursor is
Is converted into Ta chemical vapor by a method such as Sand
The precursor is like MFC (Mass Flow Controller)
After adjusting the flow rate with a suitable flow controller,
Supplied to Then it is supplied to the evaporator tube or evaporator
The precursor is evaporated at a temperature of 150 to 200 ° C.
a) It becomes a chemical vapor state. After that, Ta chemical vapor is LPC
Supplied into the VD chamber, Ta chemical vapor, O ThreeGas
And NHThree The gases are surface reacted with each other in the chamber,
A TaON film 44 in a crystalline state is formed. Where OTwo
Gas and NHThree The gas is supplied only for 10 to 1000 sccm.
Paid. The TaON film 44 is formed of the silicon oxynitride film 4.
2 and in-situ.

【0017】次に、図4に示す様に、非晶質状態のTa
ON膜44は、窒素または酸素を含むガス雰囲気、例え
ばNH3ガス、N2 /H2 ガス、N2 OまたはO2雰囲気
及び650乃至800℃の温度で、30秒乃至30分間
急速熱処理または電気炉熱処理される。この様な熱処理
工程により、非晶質状態のTaON膜43は結合構造が
一層緻密な結晶質状態44aとなる。
Next, as shown in FIG.
The ON film 44 is formed by a rapid thermal process or an electrical process in a gas atmosphere containing nitrogen or oxygen, for example, NH 3 gas, N 2 / H 2 gas, N 2 O or O 2 atmosphere and a temperature of 650 to 800 ° C. for 30 seconds to 30 minutes. Furnace heat treatment. By such a heat treatment step, the TaON film 43 in an amorphous state becomes a crystalline state 44a having a more dense bonding structure.

【0018】このとき、図には示さないが、非晶質状態
のTaON膜44は、結晶化させるための高温工程なし
に界面特性を確保する為に、in-situまたはex-situに
て、NH3ガス雰囲気及び200乃至600℃でプラズ
マ熱処理するか、あるいはN2Oガス雰囲気で窒酸化処
理する。これにより、TaON膜43界面のマイクロク
ラック及びピンホールなどの様な構造欠陥が最善され、
均質度(homogeneity)も改善される。ここで、誘電体
としてのTaON膜は非晶質状態でも結晶質状態でも高
誘電率を確保できるため、どの状態でも本発明のキャパ
シタに適用可能である。尚、本実施例では結晶質状態の
TaON膜44aが誘電体膜として用いられる。
At this time, although not shown in the figure, the TaON film 44 in an amorphous state is formed in-situ or ex-situ in order to secure interface characteristics without a high temperature process for crystallization. Plasma heat treatment is performed in an NH 3 gas atmosphere at 200 to 600 ° C., or nitridation is performed in an N 2 O gas atmosphere. Thereby, structural defects such as microcracks and pinholes at the interface of the TaON film 43 are optimized,
The homogeneity is also improved. Here, since the TaON film as a dielectric can secure a high dielectric constant in an amorphous state or a crystalline state, the TaON film can be applied to the capacitor of the present invention in any state. In this embodiment, the crystalline TaON film 44a is used as a dielectric film.

【0019】次に、図5に示す様に、上部電極50は、
TaON膜44a上に形成される。上部電極50は、ド
ープトポリシリコン膜またはTiN、TaN、W、W
N、WSi、Ru、RuO2、Ir、IrO2 またはP
tの様な金属層で形成される。ドープトポリシリコン膜
が上部電極50で用いる場合、ドープトポリシリコン膜
は約1000乃至1500Å厚さで蒸着されるのが望ま
しい。また、金属層が上部電極50で用いる場合、金属
層は約100乃至600Å厚さで形成されるのが望まし
い。合わせて、ポリシリコン膜はCVD方式にて形成さ
れることができ、金属層はLPCVD、PECVD、R
Fマグネチックスパッダリング法の何れかの一方法にて
形成されることができる。
Next, as shown in FIG. 5, the upper electrode 50
It is formed on the TaON film 44a. The upper electrode 50 is made of a doped polysilicon film or TiN, TaN, W, W
N, WSi, Ru, RuO 2 , Ir, IrO 2 or P
It is formed of a metal layer such as t. When a doped polysilicon film is used for the upper electrode 50, the doped polysilicon film is preferably deposited to a thickness of about 1000 to 1500 degrees. When a metal layer is used for the upper electrode 50, the metal layer is preferably formed to a thickness of about 100 to 600 degrees. In addition, the polysilicon film can be formed by the CVD method, and the metal layer can be formed by LPCVD, PECVD, R
It can be formed by any one of the F magnetic padding method.

【0020】(実施例2)また、本実施例は別のSiO
N膜の形成方法に関するもので、SiON膜の形成方法
の以外は実施例1と同様である。
(Embodiment 2) In this embodiment, another SiO 2
The present embodiment relates to a method for forming an N film, and is the same as Example 1 except for the method for forming an SiON film.

【0021】本実施例におけるSiON膜は、次の様な
方法にて形成される。まず、下部電極の表面はNH3
ラズマガス雰囲気で窒化処理される。その後、窒化処理
された下部電極の表面は高真空状態で酸化される。そう
すると、窒化処理された表面は酸化と結合して、下部電
極表面にSiON膜が形成される。ここで、高真空状態
で酸化工程はチャンバで行われる酸化速度よりも遅いた
め、SiON膜の酸素含量が少なくなる。これにより、
SiON膜の誘電特性が改善されて、キャパシタンスが
増加する。
The SiON film in this embodiment is formed by the following method. First, the surface of the lower electrode is nitrided in an NH 3 plasma gas atmosphere. Thereafter, the surface of the lower electrode subjected to the nitriding treatment is oxidized in a high vacuum state. Then, the nitrified surface is combined with the oxidation, and a SiON film is formed on the lower electrode surface. Here, in the high vacuum state, the oxidation process is slower than the oxidation speed performed in the chamber, so that the oxygen content of the SiON film is reduced. This allows
The dielectric characteristics of the SiON film are improved, and the capacitance is increased.

【0022】[0022]

【発明の効果】本実施例によれば、下部電極の形成段階
と、TaON誘電体膜の形成段階との間に、TaON膜
と下部電極との間の酸化反応を抑制する為に、シリコン
窒酸化膜が形成される。このようなシリコン窒酸化膜
は、下部電極との仕事関数差がシリコン窒酸化膜に比べ
て顕著に大きいため、リーク電流を効果的に防止でき
る。合わせて、低温で形成されるため、既に形成されて
いるトランジスタの電気的特性に影響を及ぼさない。
According to the present embodiment, between the step of forming the lower electrode and the step of forming the TaON dielectric film, silicon nitride is used to suppress an oxidation reaction between the TaON film and the lower electrode. An oxide film is formed. Such a silicon oxynitride film has a significantly larger work function difference from the lower electrode than the silicon oxynitride film, so that a leak current can be effectively prevented. In addition, since the transistor is formed at a low temperature, it does not affect the electrical characteristics of the transistor which is already formed.

【0023】また、シリコン窒酸化膜の形成工程は、下
部電極の形成工程とin-situにて形成されるため、製造
工程が単純になる。
Further, the step of forming the silicon oxynitride film is performed in-situ with the step of forming the lower electrode, so that the manufacturing process is simplified.

【0024】さらに、TaON膜は安定したTa-O-N
膜で構成され、構造的に安定した状態を維持して、上部
及び下部電極と酸化反応性が小さいため、誘電体膜の厚
さが増加するのを防止できる。
Further, the TaON film has a stable Ta—O—N
Since it is composed of a film and maintains a structurally stable state and has low oxidation reactivity with the upper and lower electrodes, an increase in the thickness of the dielectric film can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

【図1】従来の半導体素子のキャパシタを示す断面図で
ある。
FIG. 1 is a sectional view showing a capacitor of a conventional semiconductor device.

【図2】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 2 is a cross-sectional view illustrating a capacitor of a semiconductor device according to a first embodiment of the present invention.

【図3】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 3 is a cross-sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【図4】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 4 is a sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【図5】本発明の実施例1による半導体素子のキャパシ
タを説明するための断面図である。
FIG. 5 is a sectional view illustrating a capacitor of the semiconductor device according to the first embodiment of the present invention.

【符号の説明】[Explanation of symbols]

30 半導体基板 33 ゲート電極 35 接合領域 40 下部電極 42 シリコン窒酸化膜 44 非晶質状態のTaON膜 44a 結晶質状態のTaON膜 50 上部電極 Reference Signs List 30 semiconductor substrate 33 gate electrode 35 bonding region 40 lower electrode 42 silicon oxynitride film 44 amorphous TaON film 44a crystalline TaON film 50 upper electrode

Claims (23)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上にドープトシリコン物質で
下部電極を形成する段階;前記下部電極表面にシリコン
窒酸化膜を形成する段階;前記シリコン窒酸化膜上にT
a化学蒸気、O2 ガス及びNH3ガスの反応によりTa
ON膜を形成する段階;及び、 前記TaON膜上に上部電極を形成する段階を含み、 前記シリコン窒酸化膜は200乃至600℃の温度範囲
で形成することを特徴とする、半導体メモリ素子のキャ
パシタの製造方法。
Forming a lower electrode of a doped silicon material on a semiconductor substrate; forming a silicon oxynitride film on the surface of the lower electrode;
aTa by reaction of chemical vapor, O 2 gas and NH 3 gas
Forming an ON film; and forming an upper electrode on the TaON film, wherein the silicon oxynitride film is formed in a temperature range of 200 to 600 ° C. Manufacturing method.
【請求項2】 前記シリコン窒酸化膜は、NH3 ガス及
びO2ガスまたはN2Oガスを供給してプラズマ処理によ
って形成されることを特徴とする、請求項1記載の半導
体メモリ素子のキャパシタの製造方法。
2. The capacitor of claim 1, wherein the silicon oxynitride film is formed by plasma processing by supplying NH 3 gas, O 2 gas, or N 2 O gas. Manufacturing method.
【請求項3】 前記シリコン窒酸化膜の形成段階におい
て、NH3ガスを先に注入し、その後、O2 ガスまたは
2 Oガスを注入することを特徴とする、請求項2記載
の半導体メモリ素子のキャパシタの製造方法。
3. The semiconductor memory according to claim 2, wherein in the step of forming the silicon oxynitride film, NH 3 gas is injected first, and then O 2 gas or N 2 O gas is injected. A method for manufacturing an element capacitor.
【請求項4】 前記シリコン窒酸化膜の形成段階は、N
3プラズマガス雰囲気で下部電極の表面を窒化させる
段階と、前記下部電極の表面を高真空酸化させる段階と
を含むことを特徴とする、請求項1記載の半導体メモリ
素子のキャパシタの製造方法。
4. The method according to claim 1, wherein the step of forming the silicon oxynitride film comprises:
A step of nitriding the surface of the lower electrode in H 3 plasma gas atmosphere, characterized in that the surface of the lower electrode and a step of high vacuum oxide, method for manufacturing a capacitor of a semiconductor memory device according to claim 1, wherein.
【請求項5】 前記シリコン窒酸化膜の形成段階と前記
TaON膜の形成段階は、in-situにて行われることを
特徴とする、請求項1記載の半導体メモリ素子のキャパ
シタの製造方法。
5. The method of claim 1, wherein the step of forming the silicon oxynitride film and the step of forming the TaON film are performed in-situ.
【請求項6】 前記TaON膜は、300乃至600℃
及び0.1乃至1.2Torrを維持するLPCVDチャンバ
内で形成されることを特徴とする、請求項1記載の半導
体メモリ素子のキャパシタの製造方法。
6. The TaON film has a temperature of 300 to 600 ° C.
2. The method as claimed in claim 1, wherein the capacitor is formed in an LPCVD chamber maintaining 0.1 to 1.2 Torr.
【請求項7】 前記Ta化学蒸気は、タンタルを含む前
駆体が150乃至200℃で蒸発されて得られることを
特徴とする、請求項1記載の半導体メモリ素子のキャパ
シタの製造方法。
7. The method of claim 1, wherein the Ta chemical vapor is obtained by evaporating a precursor containing tantalum at 150 to 200 ° C.
【請求項8】 前記シリコン窒酸化膜及びTaON膜の
形成段階時に注入されるO2ガス及びNH3 ガスは、各
々10乃至1000sccmだけであることを特徴とする、
請求項2記載の半導体メモリ素子のキャパシタの製造方
法。
8. The O 2 gas and the NH 3 gas injected during the step of forming the silicon oxynitride film and the TaON film are only 10 to 1000 sccm, respectively.
A method for manufacturing a capacitor of a semiconductor memory device according to claim 2.
【請求項9】 前記TaON膜の形成段階と、前記上部
電極の形成段階との間に、前記TaON膜の熱処理段階
をさらに行うことを特徴とする、請求項1記載の半導体
メモリ素子のキャパシタの製造方法。
9. The method according to claim 1, further comprising performing a heat treatment step on the TaON film between the step of forming the TaON film and the step of forming the upper electrode. Production method.
【請求項10】 前記TaON膜の熱処理段階は、NH
3 ガスまたはN2/H 2 プラズマガス雰囲気のLPCVD
チャンバ内で、200乃至600℃で熱処理されること
を特徴とする、請求項9記載の半導体メモリ素子のキャ
パシタの製造方法。
10. The heat treatment of the TaON film is performed using NH3.
Three Gas or NTwo/ H Two LPCVD in plasma gas atmosphere
Heat treatment at 200 to 600 ° C. in a chamber
The semiconductor memory device according to claim 9, wherein:
Manufacturing method of pasita.
【請求項11】 前記TaON膜の熱処理段階は、NH
3 、N2/H2 、N2O、O2 ガスの何れかのガス雰囲気
及び650乃至800℃を維持するRTPチャンバまた
は電気炉内で、30秒乃至30分間熱処理されることを
特徴とする、請求項9記載の半導体メモリ素子のキャパ
シタの製造方法。
11. The heat treatment step of the TaON film is performed by NH 3
3 , heat-treated for 30 seconds to 30 minutes in an RTP chamber or an electric furnace maintaining a gas atmosphere of any of N 2 / H 2 , N 2 O and O 2 gas and 650 to 800 ° C. 10. A method for manufacturing a capacitor of a semiconductor memory device according to claim 9.
【請求項12】 半導体基板上にドープトシリコン物質
で下部電極を形成する段階;前記下部電極表面にシリコ
ン窒酸化膜をin-situにて形成する段階;前記シリコン
窒酸化膜上にTa化学蒸気、O3 ガス及びNH3ガスの
反応によりTaON膜を形成する段階;前記TaON膜
を熱処理する段階;及び、 前記TaON膜上に上部電極を形成する段階を含み、 前記シリコン窒酸化膜の形成段階はTaON膜の形成段
階とin-situにて行われ、 前記シリコン窒酸化膜は、200乃至600℃及びプラ
ズマ雰囲気で、NH3ガス供給後にO2 ガスまたはN2
Oガスを供給して形成することを特徴とする、半導体メ
モリ素子のキャパシタの製造方法。
12. A step of forming a lower electrode using a doped silicon material on a semiconductor substrate; a step of forming a silicon oxynitride film on the lower electrode surface in-situ; and a step of forming a Ta chemical vapor on the silicon oxynitride film. Forming a TaON film by a reaction of O 3 gas and NH 3 gas; heat treating the TaON film; and forming an upper electrode on the TaON film, forming the silicon nitride oxide film. Is performed in-situ with the step of forming a TaON film. The silicon oxynitride film is formed at 200 to 600 ° C. and in a plasma atmosphere after supplying NH 3 gas and O 2 gas or N 2 gas.
A method for manufacturing a capacitor of a semiconductor memory device, characterized by forming by supplying O gas.
【請求項13】 前記TaON膜は、300乃至600
℃及び0.1乃至1.2Torrを維持するLPCVDチャン
バ内で形成されることを特徴とする、請求項12記載の
半導体メモリ素子のキャパシタの製造方法。
13. The TaON film may have a thickness of 300 to 600.
13. The method of claim 12, wherein the capacitor is formed in an LPCVD chamber maintained at a temperature of 0.1 to 1.2 Torr.
【請求項14】 前記Ta化学蒸気は、タンタルを含む
前駆体が150乃至200℃で蒸発されて得られること
を特徴とする、請求項13記載の半導体メモリ素子のキ
ャパシタの製造方法。
14. The method of claim 13, wherein the Ta chemical vapor is obtained by evaporating a precursor containing tantalum at 150 to 200 ° C.
【請求項15】 前記シリコン窒酸化膜及びTaON膜
の形成段階時に注入されるO2ガス及びNH3 ガスは、
各々10乃至1000sccmだけであることを特徴とす
る、請求項14記載の半導体メモリ素子のキャパシタの
製造方法。
15. The O 2 gas and the NH 3 gas injected during the step of forming the silicon oxynitride film and the TaON film,
15. The method according to claim 14, wherein each of the capacitors is only 10 to 1000 sccm.
【請求項16】 前記TaON膜の熱処理段階は、NH
3 ガスまたはN2/H 2 プラズマガス雰囲気のLPCVD
チャンバ内で、200乃至600℃で熱処理されること
を特徴とする、請求項15記載の半導体メモリ素子のキ
ャパシタの製造方法。
16. The heat treatment of the TaON film may include NH 3
Three Gas or NTwo/ H Two LPCVD in plasma gas atmosphere
Heat treatment at 200 to 600 ° C. in a chamber
16. The key of the semiconductor memory device according to claim 15, wherein
Manufacturing method of Japan.
【請求項17】 前記TaON膜の熱処理段階は、NH
3 、N2/H2 、N2O、O2 ガスの何れかのガス雰囲気
及び650乃至800℃を維持するRTPチャンバまた
は電気炉内で、30秒乃至30分間熱処理されることを
特徴とする、請求項15記載の半導体メモリ素子のキャ
パシタの製造方法。
17. The heat treatment of the TaON film may include NH 3
3 , heat-treated for 30 seconds to 30 minutes in an RTP chamber or an electric furnace maintaining a gas atmosphere of any of N 2 / H 2 , N 2 O and O 2 gas and 650 to 800 ° C. A method for manufacturing a capacitor of a semiconductor memory device according to claim 15.
【請求項18】 半導体基板上にドープトシリコン物質
で下部電極を形成する段階;前記下部電極表面にシリコ
ン窒酸化膜をin-situにて形成する段階;前記シリコン
窒酸化膜上にTa化学蒸気、O3 ガス及びNH2ガスの
反応によりTaON膜を形成する段階;前記TaON膜
を熱処理する段階;及び、 前記TaON膜上に上部電極を形成する段階を含み、 前記シリコン窒酸化膜の形成段階はTaON膜の形成段
階とin-situにて行われ、 前記シリコン窒酸化膜は200乃至600℃で形成さ
れ、 前記シリコン窒酸化膜の形成段階は、NH3 プラズマガ
ス雰囲気で下部電極の表面を窒化させる段階と、前記下
部電極の表面を高真空酸化させる段階とを含むことを特
徴とする、半導体メモリ素子のキャパシタの製造方法。
18. A step of forming a lower electrode using a doped silicon material on a semiconductor substrate; a step of forming a silicon oxynitride film on the surface of the lower electrode in-situ; and a step of forming a Ta chemical vapor on the silicon oxynitride film. Forming a TaON film by a reaction of O 3 gas and NH 2 gas; heat treating the TaON film; and forming an upper electrode on the TaON film, forming the silicon nitride oxide film. Is performed in-situ with a step of forming a TaON film, the silicon oxynitride film is formed at a temperature of 200 to 600 ° C., and the step of forming the silicon oxynitride film is performed in a NH 3 plasma gas atmosphere. A method of manufacturing a capacitor of a semiconductor memory device, comprising a step of nitriding and a step of oxidizing a surface of the lower electrode with high vacuum.
【請求項19】 前記TaON膜は、300乃至600
℃及び0.1乃至1.2Torrを維持するLPCVDチャン
バ内で形成されることを特徴とする、請求項18記載の
半導体メモリ素子のキャパシタの製造方法。
19. The TaON film may have a thickness of 300 to 600.
20. The method according to claim 18, wherein the capacitor is formed in an LPCVD chamber maintained at a temperature of 0.1 to 1.2 Torr.
【請求項20】 前記Ta化学蒸気は、タンタルを含む
前駆体が150乃至200℃で蒸発されて得られること
を特徴とする、請求項19記載の半導体メモリ素子のキ
ャパシタの製造方法。
20. The method of claim 19, wherein the Ta chemical vapor is obtained by evaporating a precursor containing tantalum at 150 to 200 ° C.
【請求項21】 前記TaON膜の形成段階時に注入さ
れるO2ガス及びNH3 ガスは、各々10乃至1000s
ccmだけであることを特徴とする、請求項18記載の半
導体メモリ素子のキャパシタの製造方法。
21. The O 2 gas and the NH 3 gas injected during the step of forming the TaON film are each 10 to 1000 seconds.
19. The method of claim 18, wherein the capacitance is only ccm.
【請求項22】 前記TaON膜の熱処理段階は、NH
3 ガスまたはN2/H 2 プラズマガス雰囲気のLPCVD
チャンバ内で、200乃至600℃で熱処理されること
を特徴とする、請求項18記載の半導体メモリ素子のキ
ャパシタの製造方法。
22. The heat treatment step of the TaON film is performed by NH 3
Three Gas or NTwo/ H Two LPCVD in plasma gas atmosphere
Heat treatment at 200 to 600 ° C. in a chamber
The key of the semiconductor memory device according to claim 18, characterized in that:
Manufacturing method of Japan.
【請求項23】 前記TaON膜の熱処理段階は、NH
3 、N2/H2 、N2O、O2 ガスの何れかのガス雰囲気
及び650乃至800℃を維持するRTPチャンバまた
は電気炉内で、30秒乃至30分間熱処理されることを
特徴とする、請求項18記載の半導体メモリ素子のキャ
パシタの製造方法。
23. The heat treatment of the TaON film is performed using NH 3
3 , heat-treated for 30 seconds to 30 minutes in an RTP chamber or an electric furnace maintaining a gas atmosphere of any of N 2 / H 2 , N 2 O and O 2 gas and 650 to 800 ° C. The method for manufacturing a capacitor of a semiconductor memory device according to claim 18, wherein:
JP2000199534A 1999-07-02 2000-06-30 Manufacture of capacitor of semiconductor memory element Pending JP2001053255A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-1999-0026503A KR100519514B1 (en) 1999-07-02 1999-07-02 Method of forming capacitor provied with TaON dielectric layer
KR1999/P26503 1999-07-02

Publications (1)

Publication Number Publication Date
JP2001053255A true JP2001053255A (en) 2001-02-23

Family

ID=19598833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000199534A Pending JP2001053255A (en) 1999-07-02 2000-06-30 Manufacture of capacitor of semiconductor memory element

Country Status (3)

Country Link
JP (1) JP2001053255A (en)
KR (1) KR100519514B1 (en)
TW (1) TW474000B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257208A (en) * 1999-12-29 2001-09-21 Hynix Semiconductor Inc Method for forming gate insulating film of semiconductor device
CN112086441A (en) * 2020-08-26 2020-12-15 中国电子科技集团公司第十三研究所 Passive device preparation method and passive device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100388466B1 (en) * 2001-06-30 2003-06-25 주식회사 하이닉스반도체 Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof
KR100388465B1 (en) * 2001-06-30 2003-06-25 주식회사 하이닉스반도체 Ferroelectric capacitor having ruthenium bottom electrode and forming method thereof
CN108140555B (en) * 2015-10-22 2024-03-15 应用材料公司 Method for depositing flowable films comprising SiO and SiN
KR102312824B1 (en) 2016-03-17 2021-10-13 어플라이드 머티어리얼스, 인코포레이티드 Methods for Gap Filling in High Aspect Ratio Structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2786071B2 (en) * 1993-02-17 1998-08-13 日本電気株式会社 Method for manufacturing semiconductor device
KR0155879B1 (en) * 1995-09-13 1998-12-01 김광호 Method of manufacturing ta2o5 dielectric film capacity
KR970054106A (en) * 1995-12-29 1997-07-31 김광호 Semiconductor manufacturing method
KR100207485B1 (en) * 1996-07-23 1999-07-15 윤종용 Manufacturing method of capacitors for semiconductor devices
KR100505611B1 (en) * 1998-07-09 2006-04-21 삼성전자주식회사 Capacitor of semiconductor device and fabrication method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001257208A (en) * 1999-12-29 2001-09-21 Hynix Semiconductor Inc Method for forming gate insulating film of semiconductor device
CN112086441A (en) * 2020-08-26 2020-12-15 中国电子科技集团公司第十三研究所 Passive device preparation method and passive device

Also Published As

Publication number Publication date
KR20010008586A (en) 2001-02-05
KR100519514B1 (en) 2005-10-07
TW474000B (en) 2002-01-21

Similar Documents

Publication Publication Date Title
KR100415538B1 (en) Capacitor with double dielectric layer and method for fabricating the same
JP2001257208A (en) Method for forming gate insulating film of semiconductor device
JP4441099B2 (en) Method for manufacturing capacitor of semiconductor element
US6355519B1 (en) Method for fabricating capacitor of semiconductor device
KR100417855B1 (en) capacitor of semiconductor device and method for fabricating the same
JP4486735B2 (en) Manufacturing method of capacitor of semiconductor memory device
US6740553B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
JP2001053253A (en) Capacitor of semiconductor memory element and its manufacture
US7371670B2 (en) Method for forming a (TaO)1-x(TiO)xN dielectric layer in a semiconductor device
JP2001203339A (en) Method of manufacturing capacitor of semiconductor element
JP2001057414A (en) Capacitor for semiconductor memory element and its manufacture
KR100431740B1 (en) Semiconductor with High-k dielectric layer and Method for fabricating the same
JP2001036046A (en) Capacitor of semiconductor memory device and its manufacture
JP2001053254A (en) Capacitor of semiconductor memory element and manufacture thereof
JP2001053255A (en) Manufacture of capacitor of semiconductor memory element
JP2001237398A (en) Method of manufacturing capacitor of semiconductor device
US6337291B1 (en) Method of forming capacitor for semiconductor memory device
KR100618684B1 (en) CAPACITOR HAVING TaON DIELECTRIC LAYER IN SEMICONDUCTOR DEVICE AND METHOD FOR MANUFACTURING THE SAME
JP4063570B2 (en) Capacitor forming method for semiconductor device
JP4088913B2 (en) Capacitor manufacturing method for semiconductor device
JP4531935B2 (en) Capacitor forming method for semiconductor memory device
KR100327587B1 (en) Method of forming capacitor provided with TaON dielectric layer
JP2001053256A (en) Formation method of capacitor of semiconductor memory element
KR100540476B1 (en) Method for fabricating capacitor in semiconductor device
KR100351253B1 (en) Method of manufacturing a capacitor in a semiconductor device