TW468209B - Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof - Google Patents
Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof Download PDFInfo
- Publication number
- TW468209B TW468209B TW087113920A TW87113920A TW468209B TW 468209 B TW468209 B TW 468209B TW 087113920 A TW087113920 A TW 087113920A TW 87113920 A TW87113920 A TW 87113920A TW 468209 B TW468209 B TW 468209B
- Authority
- TW
- Taiwan
- Prior art keywords
- patent application
- layer
- item
- scope
- system structure
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/027—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
- H01L21/0271—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
- H01L21/0273—Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
- H01L21/0274—Photolithographic processes
- H01L21/0276—Photolithographic processes using an anti-reflective coating
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Carbon And Carbon Compounds (AREA)
- Physical Vapour Deposition (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
經濟部中央標準局員工消費合作社印製 Λ6 B2〇9 Α7 , ' 1. —- Β7 五、發明説明(,y "~〜 r~ 璧L明範園 ,人本發明有關於可用〃製造積體電路⑽之結構,尤其有關 於具有根據非晶碳膜之可調厚雇層塗你以用於雙層光阻系 統及其用以製造之製造方法。 發明背景 ^著邏輯及記憶體晶片的元件尺寸減縮至〇25 μπι及更 卜’目岫使用的單層光阻不能在習用暴露工具中使用。紫 外線(UV)與深紫外線(DUV)波長下的底材反射不利於駐波 效應與光阻凹口的產生’而嚴格限制臨界尺寸(CD)的容忍 度。凹口導因於底材外形與不平均的底材反射度,其在光 阻上導致暴露能量的區域變化。駐波是薄的干擾或通過光 阻厚度時光強的周期性變化。這些光變化的引入是因為光 阻的平面化於通過下面外形時顯示不同的厚度。薄的干擾 在單層光阻過程的CD控制中佔有決定性角色,因此光學相 位中的極小改變即會在有效暴露劑量中導致大的改變。 線寬控制是有用的微影過程中最重要的規定之一,—典 型標準是列印線寬必須在目標值的1 〇 %之中。有多個過程 變數可以改變線寬,圖12的模擬在顯示光阻線寬如何隨著 暴露能量而變化,一線約列印1 OmJ/cm2的暴露能量即足以 接近0.25微米的目標尺寸,8.5mJ/cm2時的欠暴露情況會列 印0.14微米線,而12.5mJ/cm2時的過暴露情況會列印〇.14 微米線β列印期望的0.25微米線至10%標準之中的唯— 方式是小心控制暴露能量。 可惜有許多過程因素能影響光阻中的暴露能量’這種暴 -4- 本紙張尺度通用中國國家標準(CNS } Α4規格(210Χ297公釐) (諸先閲讀背面之注意事項再填荇本頁) 裝. -1Τ 82 〇9 Α7 Β7 經濟部中央標準局員工消費合作社印製 五、發明説明(2 -) 露變化的最重要特電是導因於薄膜干擾效應,如 "Optimization of optical properties of resist processes"(T. Brunner,SPIE Proceedings Vol. 1466,p.297,1991)所述 者》半導體製造中使用的薄膜如矽氮化物或矽氧化物一直 在其厚度中有一些變化,而使得進入光阻中的暴露能量中 產生變化。讓我們考慮當光阻在矽氧化物的可變厚度之上 時事情如何變化如模擬所示者。圖13顯示晶圓的總反射度 其為氧化物(層# 1)厚度的函數。可看到明顯的正弦波變化, 其辛值反射為50確而極小反射約為2〇%。圖1 4顯示計算 出的光阻線寬’其為氧化物的函數,並說明線寬因厚度的 小變化而大幅受到影響。圖13與14的比較顯示當光阻反 射很小時線寬也很小(過暴露),而當光阻反射很大時線寬也 很大(欠暴露)。下面的機構是指薄膜干擾而導致光阻中的暴 露能量會隨著氧化物厚度而改變。 已使用反反射塗佈或arc來減少這種效應,而我們要用 我們的碳ARC來考慮一個例子,圖I 5顯示薄膜堆疊,光阻 在上面’ ARC層#1,氧化層#2,與矽底材。圖16顯示光阻 反射作為氧化物厚度的函數。ARC的出現已產生約8%的反 射*幾乎與氧化物厚度無關,以表示暴露能量不會改變許 多變化中的氧化物厚度^如期望的,圖1 7中線寬相對於氧 化物厚度曲線幾乎是平的,資料的整個範圍很容易符合 + -1 0%線寬控制標準中。 現代的半導體過程有時有許多具厚度變化的薄膜,而光 阻膜本身可具有變化的厚度。ARC層大致可用以減少對於 5- 泰紙張尺度適用中国H家標準(CNS ) Μ規格(21〇χ2?7公疫) ^---1J---7--',装-- (请先53讀背面之注意事項再填寫本頁)Printed by the Consumers 'Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs Λ6 B2〇9 Α7,' 1. —- Β7 V. Description of the invention (, y " ~~ r ~ 明 L Ming Fan Yuan, the invention of this invention is about The structure of the body circuit is particularly related to the use of an amorphous carbon film with an adjustable thickness to coat you for a two-layer photoresist system and a manufacturing method therefor. BACKGROUND OF THE INVENTION Logic and memory chips Reduced element size to 0.25 μm and more. The single-layer photoresist used cannot be used in conventional exposure tools. Ultraviolet (UV) and deep ultraviolet (DUV) wavelength substrate reflection is not conducive to standing wave effect and light The generation of resistance notches strictly limits the tolerance of the critical dimension (CD). The notches are caused by the shape of the substrate and the uneven reflectance of the substrate, which results in a change in the area of the exposed energy on the photoresist. The standing wave is Thin interference or periodic changes in light intensity when passing through the thickness of the photoresist. These light changes are introduced because the photoresist is flattened to show different thicknesses when passing through the shape below. Thin interference is in the CD control of the single-layer photoresist process. Decisive angle Therefore, a small change in the optical phase will cause a large change in the effective exposure dose. Line width control is one of the most important provisions in useful lithography processes-the typical standard is that the print line width must be at the target value 10%. There are multiple process variables that can change the line width. The simulation in Figure 12 shows how the photoresistance line width changes with the exposure energy. The line prints about 1 OmJ / cm2 of exposure energy, which is close to 0.25 microns. Target size, underexposure at 8.5mJ / cm2 will print 0.14 micron lines, and overexposure at 12.5mJ / cm2 will print 0.14 micron lines. Β prints the desired 0.25 micron line to 10% standard The only way among them is to carefully control the exposure energy. Unfortunately, there are many process factors that can affect the exposure energy in photoresistors. This kind of storm -4- This paper is in accordance with the Chinese National Standard (CNS) Α4 specification (210 × 297 mm) ( (Please read the notes on the back before filling this page) Packing. -1Τ 82 〇9 Α7 Β7 Printed by the Employees' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. The Invention Note (2-) The most important special electric power that changes is due to Film interference effect In accordance with "Optimization of optical properties of resist processes" (T. Brunner, SPIE Proceedings Vol. 1466, p.297, 1991), thin films such as silicon nitride or silicon oxide have been used in semiconductor manufacturing. There are some changes in its thickness that cause changes in the exposure energy into the photoresist. Let us consider how things change when the photoresist is above the variable thickness of silicon oxide as shown in the simulation. Figure 13 shows the crystal The total reflectance of the circle is a function of the thickness of the oxide (layer # 1). Obvious sine wave changes can be seen, with a Sinus reflection of 50 and a minimum reflection of about 20%. Figure 14 shows the calculated photoresistor line width 'as a function of oxide and illustrates that the line width is greatly affected by small changes in thickness. The comparison of Figures 13 and 14 shows that the line width is small (overexposed) when the photoresist reflection is small, and the line width is large (underexposed) when the photoresist reflection is large. The following mechanism means that the exposure energy in the photoresist caused by the interference of the thin film changes with the thickness of the oxide. Retroreflective coating or arc has been used to reduce this effect, and we are going to consider an example with our carbon ARC. Figure 15 shows a thin film stack with photoresist on top of 'ARC layer # 1, oxide layer # 2, and Silicon substrate. Figure 16 shows photoresist reflection as a function of oxide thickness. The appearance of ARC has produced approximately 8% reflection * almost independent of the oxide thickness to indicate that the exposure energy does not change the oxide thickness in many changes. ^ As expected, the line width vs. oxide thickness curve in Figure 17 is almost It is flat, and the entire range of data can easily meet the + -10% line width control standard. Modern semiconductor processes sometimes have many thin films with varying thicknesses, and photoresist films themselves can have varying thicknesses. The ARC layer can be roughly used to reduce the application of the Chinese Standard (CNS) M specification for the 5-Thai paper scale (21 × 2 ~ 7 public epidemic disease) ^ --- 1J --- 7-- ', installed-(please first (Read the notes on the back of the 53 and then fill out this page)
‘ST ,%0 b 3修正/更正/補充 4 6 8 Z旁8〒113920號申請專利案 A7 中文說明書修正頁(9〇年7月)B7 五、發明説明(3 ) 過程堆登中έ午多層厚度上的線寬依賴。在此申請專利案中 的C ARC是一種具有許多優點的方法,詳情如以.下所述。 為了克服這些問題在此揭露多層系統,在此設計中,具 UV-DUV吸收的第一厚底部聚合物層旋塗在底材上。此層 具有二種效應即平面化結構底層以使TFI極小,以及使底 材皮射溼潤(凹口)。第二薄矽包含旋塗在上面的光阻層。使 用此薄層作為高解析度的影像層,以及於光阻顯影後當成 傳輸圖樣層使用供氧反應離子截刻用。因為在其梦本質的 保護下底層不會受到顯影劑的浸蚀,而光阻上層不會受到 氧電漿的蚀刻。此過程的詳情可參考例5,可由以下文獻中 找到有關多層光阻技術的廣泛討論:”p〇lymerie silicon-containing resist materials",R. D. Miller 與 G. Μ. 經濟部中央樣準局員工消費合作社印製 (請先聞讀背面之注意事項再填寫本頁)'ST,% 0 b 3 Amendment / Correction / Supplement 4 6 8 Next to Z 8〒113920 Application Patent A7 Chinese Manual Correction Page (July 90) B7 V. Description of the Invention (3) Process Noon Line width is dependent on the thickness of multiple layers. The CARC in this patent application is a method with many advantages, as detailed below. In order to overcome these problems, a multilayer system is disclosed. In this design, a first thick bottom polymer layer with UV-DUV absorption is spin-coated on the substrate. This layer has two effects: the planarization of the bottom layer of the structure to minimize TFI and the wetness of the substrate skin (notch). The second thin silicon contains a photoresist layer spin-coated on it. This thin layer is used as a high-resolution image layer, and as a transmission pattern layer after photoresist development, it is used for cutting with oxygen-supplying reactive ions. Because under the protection of its dream essence, the bottom layer will not be attacked by the developer, and the photoresist upper layer will not be etched by the oxygen plasma. Details of this process can be found in Example 5. An extensive discussion of multilayer photoresist technology can be found in the following literature: "pollyerie silicon-containing resist materials", RD Miller and G. M. Consumer Promoters, Central Prototype Bureau, Ministry of Economic Affairs Printed (Please read the notes on the back before filling in this page)
Wallraff, Advanced Materials for Optics and Electronics, Vol. 4, 95-127 (1994)。目前使用的底層是酚醛清漆光阻, 可在以下文獻中找到:"Bilayer resist approach for 193 nm lithography", Schaedely et al.s Proc. SPIE-Int. Soc. Opt. Eng. (USA) Vol_2724 1996, p334-54。與此旋塗聚合物材料 相關的主要問題是次微米結構上的示良一致,不良的光學 可調性,與具影像光阻的介面處的化學相互作用,其會產 生臨界尺寸(CD)的變化。 若使用厚的單層光阻而不是使用雙層,則會發生光阻圖 樣的機械崩潰,如以下文獻所述"Characterization of the resist pattern collapse in a chemically amplified resist", Cha-Won Koh, Cheoul-Kyu Bok, Ki-Ho Baik, Interface 1996 -6- 本紙張尺度適用中國國家標準(CNS) A4規格(210X297公釐) d682〇9 A? B7 經濟部中央橾準局員工消費合作社印製 五、發明説明(4 ) 、 Proc, p295-302,S.Diego Ca. 1996。 本發明之目的是提供一種改良光阻。 本發明之另一目的是提供一種從許多層中形成之改良光 阻。 本發明之另一目的是提供一種具有許多層之光阻,其中 底層係一厚的可調層。 本發明之目的是提議藉由氣相沈積而形成一底部平面化 層,當用於雙層與三層光阻系統中時,與旋塗聚合物相比 氣相沈積膜具有極大增加之光學純度與可調性。 本發明之另一目的是提供一種藉由氣相沈積—C:H膜之 沈積方法,該膜具有所需之光學性質以便於雙層/三層系統 中形成一 DUV(365, 248, 193 nm)底層。這些膜具有宽的光 學可調性,即藉由改變過程條件即可改變n與k。這些膜可 以容易反向異性地定圖樣且由氧電漿去除。可將此方法容 易地延伸至目前半導體工業中使用的製造工具。 本發明之另一目的是藉由器應用沈積在Ar/碳氳化合物/ 氦/竣氟化合物/氮/氧混合物中而執行沈積,較佳的是碳氫 化合物為環已烷或乙炔,而碳氟化合物為六氟化苯d藉由 限制或去除電漿室中的六氟化苯(HFB)流即可得到較高的 折射指數,而藉由增加HFB流以及限制或去除碳氫化合物 氣流即可得到較低的折射指數。藉由使用高陰極偏電壓而 沈積膜即可得到高消失係數k,而藉由減少偏電壓即可得到 低k值。使用適當的氮與/或氧流量即可達成更微細的光學 可調性,使用氫以調整光學性質以及膜持久 (____+ 本紙張尺度適用申國國家標準(CNS ) A4^格(210X297公釐) I---J---^---'·,> 裝丨- (請先閲讀背面之注意事項再填寫本頁) -訂 II ·: I · • I I - 46 8209 經濟部中央標準局貝工消費合作社印製 A7 __________B7 五、發明説明(5 ) ' 本發明之另一目的是提供一種藉由將氣相沈積當雙層光 阻系統中之底層使用而沈積非晶碳膜之方法,其中光學性 質已調為最佳以使發生在底材以及在光阻/底層介面之反射 減至極小。此底層接著當成厚的平面化防反射塗佈(arc) 使用,其也會使薄膜干擾減至極小。通常獨特地將過程氣 化學與過程參數調整為最佳以達成所需之光學性質。 本發明之另一目的是提供一種氣相沈積一厚的arc層之 沈積方法,其中折射指數η與消失係數k可以因膜深而改 變,以形成一種改良之防反射器》將顯示一例子其中ARC 層分成具不同光學性質的三個不同層。我們顯示此層具有 極低的反射’而且對於過程變化有高的容忍。我們的沈積 技術也適用於一種層,其中光學性質隨著膜深度之變化而 分級’這可以參考以下所述:Tanaka et a丨.in SPIE Vol. 2726, P. 573(1 996)。更重要的是,若薄的ARC層的n及k與相鄰 層於技術上是完全匹配,則無反射會大幅改善CD控制》 本文所述所有參考前案的教示皆在此供參考。 發明之te诚 本發明之一廣泛特徵是一種多層光阻系統及其製造方法β 本發明之一更特定特徵是一種多層光阻系統及藉由氣相 沈積一具可調光學性質的a-C:X:H膜之製造方法,其中χ 是氟,氮氧與碎。 根據本發明方法及結構之另一更特定特徵是藉由從碳< 化合物/碳氟化合物/氫電漿而氣相沈積以沈積—氫化碳,兮 電漿具有光學上少量之氮與/或氧如每一沈積有約〜 本紙張尺度適用中國國家榡準(CNS ) Α4規格(210X 297公釐) (請先閲讀背面之注意事項再填寫本頁) 裝· :tr i d6B2〇9 A7 B7 經濟部t央榇準局舅工消費合作社印製 五、發明説明(s > seem。在此產生的膜具有折射指數打與消失^係數,其可 單獨調整至365,248, 193 nm,使其特別適用於厚的平面 化防反射塗怖。此外本發明形成的膜可以—致的沈積在外 形上,以及在多層光阻系統中當成底層使用時,可易於定 圖樣及從氧與/或氟反應離子蚀刻過程中去除,因此利於作 圖樣供晶片製造用》 根據本發明万法及結構之另—更特定特徵是藉由氣相沈 積而沈積一非晶碳膜,其包含以下步驟:混合碳氫化合物, 碳氟化合物,氫氣,亦可加上少量之氧與/或氮氣;提供一 反應器室,其包含陰極與底材;以及將上述氣體混合物導 入室中;以及施以一rf偏電壓至陰極以啟始一電漿及藉由 氣相沈積而沈積一 a-C :Χ Ή膜在底材上。 根據本發明方法及結構之另—更特定特徵是使用一氣體 混合物而沈積一非晶碳膜,該混合物包含:六氟化苯,氫, 環已娱;,乙炔,其可以或者不必在He或Ar中稀釋以藉由 氣相沈積而反應地沈積一膜。藉由使用此方法,折射指數n 與消失係數k即可以在UV或DUV波長單獨的光學調整。 尤其是,折射η的UV與DUV指數及消失係數k可以分別 在365,248,與193 nm處從約1,40調至約2.1,以及從約 〇 I調至約0·6。因此這些膜符合在雙層光阻系統中當成厚 的平面化底層使用所需的規定。 附圖之簡簞說明 圖1是實施本發明所使用的氣相沈積裝置的示意圖。 圖2的圖形在顯示擺動比定義a 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) (諳先閱讀背面之注意事項再镇寫本頁)Wallraff, Advanced Materials for Optics and Electronics, Vol. 4, 95-127 (1994). The bottom layer currently used is novolac photoresist, which can be found in the following documents: " Bilayer resist approach for 193 nm lithography ", Schaedely et al.s Proc. SPIE-Int. Soc. Opt. Eng. (USA) Vol_2724 1996 , p334-54. The main problems associated with this spin-coated polymer material are good submicron structure consistency, poor optical tunability, and chemical interactions at the interface with image photoresist, which can produce a critical dimension (CD). Variety. If a thick single-layer photoresist is used instead of a double layer, a mechanical breakdown of the photoresist pattern will occur, as described in the following document "Characterization of the resist pattern collapse in a chemically amplified resist", Cha-Won Koh, Cheoul -Kyu Bok, Ki-Ho Baik, Interface 1996 -6- This paper size applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) d682〇9 A? B7 Description of the Invention (4), Proc, p295-302, S. Diego Ca. 1996. An object of the present invention is to provide an improved photoresist. Another object of the present invention is to provide an improved photoresist formed from a plurality of layers. Another object of the present invention is to provide a photoresist having a plurality of layers, wherein the bottom layer is a thick adjustable layer. The purpose of the present invention is to propose the formation of a bottom planarization layer by vapor deposition. When used in a two-layer and three-layer photoresist system, the vapor-deposited film has greatly increased optical purity compared to a spin-coated polymer. With adjustability. Another object of the present invention is to provide a method for depositing a C: H film by vapor deposition, which has the required optical properties to facilitate the formation of a DUV (365, 248, 193 nm in a two-layer / three-layer system). ) The bottom layer. These films have wide optical tunability, that is, n and k can be changed by changing the process conditions. These films can be easily patterned in the opposite direction and removed by an oxygen plasma. This method can be easily extended to the manufacturing tools currently used in the semiconductor industry. Another object of the present invention is to perform deposition by depositing in an Ar / Carbonium compound / Helium / Fluorine compound / Nitrogen / Oxygen mixture, preferably the hydrocarbon is cyclohexane or acetylene, and the carbon The fluorine compound is benzene hexafluoride. A higher refractive index can be obtained by restricting or removing the hexafluorobenzene (HFB) flow in the plasma chamber. By increasing the HFB flow and restricting or removing the hydrocarbon gas flow, A lower refractive index can be obtained. A high extinction coefficient k can be obtained by depositing a film by using a high cathode bias voltage, and a low k value can be obtained by reducing the bias voltage. Use appropriate nitrogen and / or oxygen flow to achieve finer optical tunability, use hydrogen to adjust optical properties and film durability (____ + This paper size applies to China National Standard (CNS) A4 ^ grid (210X297 mm) ) I --- J --- ^ --- '·, > Equipment 丨-(Please read the notes on the back before filling this page) -Order II ·: I · • II-46 8209 Central Standard of the Ministry of Economic Affairs A7 printed by the Bureau Cooperative Consumer Cooperative __________ B7 V. Description of the Invention (5) Another object of the present invention is to provide a method for depositing an amorphous carbon film by using vapor deposition as a bottom layer in a double-layer photoresist system. Among them, the optical properties have been optimized to minimize the reflections that occur on the substrate and the photoresist / bottom interface. This substrate is then used as a thick planar anti-reflection coating (arc), which will also make the film Interference is minimized. Process gas chemistry and process parameters are usually uniquely adjusted to achieve the desired optical properties. Another object of the present invention is to provide a method for vapor deposition of a thick arc layer, in which refraction Index η and disappearance coefficient k Changing to form an improved anti-reflector "will show an example where the ARC layer is divided into three different layers with different optical properties. We show that this layer has very low reflections and has a high tolerance for process changes. Our The deposition technique is also applicable to a layer in which the optical properties are graded as the film depth changes. This can be referred to as follows: Tanaka et a. In SPIE Vol. 2726, P. 573 (1 996). More importantly If n and k of the thin ARC layer are technically perfectly matched with the adjacent layers, non-reflection will greatly improve CD control. All the teachings of the previous case mentioned in this article are here for reference. One of the broad features of the invention is a multilayer photoresist system and its manufacturing method. [Beta] One of the more specific features of the present invention is the manufacture of a multilayer photoresist system and aC: X: H film with adjustable optical properties by vapor deposition Method, where χ is fluorine, nitrogen and oxygen. Another more specific feature of the method and structure according to the present invention is to deposit-hydrogenated carbon by vapor deposition from a carbon < compound / fluorocarbon / hydrogen plasma, Xi plasma has Optically small amount of nitrogen and / or oxygen, if each is deposited ~ This paper size applies to China National Standard (CNS) Α4 size (210X 297 mm) (Please read the precautions on the back before filling this page) : tr i d6B2〇9 A7 B7 Printed by the Ministry of Economic Affairs and the Central Bureau of Standards, printed by the Masonry Consumer Cooperative, V. Description of the invention (s > seem. The film produced here has a refractive index hit and disappear ^ coefficient, which can be individually adjusted to 365,248, 193 nm, making it particularly suitable for thick flat anti-reflective coatings. In addition, the film formed by the present invention can be uniformly deposited on the shape and used as a bottom layer in a multilayer photoresist system, and can be easily patterned and removed from the oxygen and / or fluorine reactive ion etching process, so it is convenient for pattern supply. For wafer manufacturing "Another and more specific feature of the method and structure according to the present invention is to deposit an amorphous carbon film by vapor deposition, which includes the following steps: mixing hydrocarbons, fluorocarbons, hydrogen, and also adding Providing a small amount of oxygen and / or nitrogen; providing a reactor chamber including a cathode and a substrate; and introducing the above-mentioned gas mixture into the chamber; and applying an rf bias voltage to the cathode to initiate a plasma and passing gas Phase deposition to deposit an aC: × Ή film on the substrate. Another and more specific feature of the method and structure according to the present invention is the deposition of an amorphous carbon film using a gaseous mixture comprising: benzene hexafluoride, hydrogen, cyclohexylene; and acetylene, which may or need not be in He or Dilute in Ar to deposit a film reactively by vapor deposition. By using this method, the refractive index n and the disappearance coefficient k can be optically adjusted separately at UV or DUV wavelengths. In particular, the UV and DUV indices and the extinction coefficient k of the refraction η can be adjusted from about 1,40 to about 2.1, and from about 0.1 to about 0.6 at 365, 248, and 193 nm, respectively. These films therefore meet the requirements for use as a thick, planar substrate in a two-layer photoresist system. Brief Description of the Drawings Fig. 1 is a schematic view of a vapor deposition apparatus used for carrying out the present invention. The graph in Figure 2 shows the definition of the swing ratioa. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) (谙 Read the precautions on the back before writing this page)
468209 經濟部中央標準扃貞工消費合作社印製 A7 B7 五、發明説明(7) 一 圖3A,3B顯示3 00 nm底層的η與k(上方)及k與Si02 厚度函數中的反射輪廓(常數反射r2的輪廓 圖4A ’ 4B顯示500 nm底層的n與k(上方)及k與Si02 厚度函數中的反射輪廓(常數反射r2的輪廓 圖5A’ 5B顯示700 nm底層的n與k(上方)及k與Si02 厚度函數中的反射輪廓(常數反射R2的輪廓 圖6Α顯示500 nm可調底層的η與k(上方)函數中的反射 輪廓(常數反射R2的輪廓),而圖6B是多層光阻結構的示意 圖。 圖7A(上方)例4所述約500 nm厚的碳層的測量反射與計 算透射比’而7B(下方)則顯示對應的計算n與k值。 圖8A(上方)例4所述約1 00 nm厚的碳層的測量反射與計 算透射比,而8B(下方)則顯示對應的計算η與k值。 圖9顯示光阻雙層系統的過程流程。 圖10A,1 0B顯示使用雙層光阻過程而製造的光阻線的 SEM影像。 圖Π是根據本發明的樣本的光學性質表。 圖12在模擬光阻線寬如何隨著暴露能量而變。 圖13顯示晶圓的總反射度,其為氧化物(層#1)厚度的函 數。 圖14顯示計.算出的光阻線寬,其為氧化物厚度的函數, 並說明厚度的小量變化會大幅影響線宽。 圖15表示薄膜堆疊,其上下排列順序是光阻,ARC層# 1, 氧化層#2,梦底村。 -10- 本紙張^度適用中國國家標準(CNS ) A4規格(210X297公釐) ^---^ J---^--Λ/裝-- (請先閱讀背面之注意事項再填寫本頁)468209 Printed by A7 B7, Central Standard of the Ministry of Economic Affairs, Bianzhengong Cooperative Co., Ltd. 5. Description of the invention (7)-Figure 3A, 3B shows the reflection contours (constants) in the thickness functions of η and k (above) and k and Si02 at 3 00 nm. The profile of reflection r2 Figure 4A '4B shows the n and k (top) and k and SiO2 thickness functions at 500 nm bottom (the profile of constant reflection r2) Figure 5A' 5B shows the n and k (top) at 700 nm bottom And the reflection profile in the thickness function of k and SiO2 (the profile of constant reflection R2) Figure 6A shows the reflection profile (the profile of constant reflection R2) in the η and k (upper) function of the 500 nm tunable bottom layer, while Figure 6B is a multilayer Schematic diagram of the resistive structure. Figure 7A (above), the measured reflection and calculated transmittance of a carbon layer of approximately 500 nm thick as described in Example 4, and 7B (below) shows the corresponding calculated n and k values. Figure 8A (above) Example The measured reflection and calculated transmittance of the carbon layer with a thickness of about 100 nm described in 4, and 8B (below) show the corresponding calculated η and k values. Figure 9 shows the process flow of a photoresist double-layer system. Figure 10A, 1 0B shows a SEM image of a photoresist line manufactured using a double-layer photoresist process. Table of optical properties of a sample according to the present invention. Figure 12 simulates how the photoresistor line width changes with exposure energy. Figure 13 shows the total reflectance of the wafer as a function of oxide (layer # 1) thickness. Figure 14 display meter. Calculated photoresistor line width as a function of oxide thickness, and shows that small changes in thickness can greatly affect line width. Figure 15 shows a thin film stack, which is arranged in the order of photoresistors, ARC layer # 1 , Oxidation layer # 2, Mengdi Village. -10- The paper ^ degree applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) ^ --- ^ J --- ^-Λ / pack-(Please (Read the notes on the back before filling out this page)
*1T _ 經濟部中央標準局員工消费合作社印製 λ ^ 82 Ο 9 Α7 _____Β7_ ___ 五、發明説明(8 > 一 圖16顯示光阻反射,其為氧化物厚度的函數。 圖17顯示線寬與氧化物厚度曲線。 詳細說明 本發明有關於結構及其製造方法,從膜氫化合物與/或氟 化碳氫(碳氟化合物)電漿以氣相沈積方法產生結構,將高品 質氫化碳膜當成多層中的厚平面化光學可調底部arc使 用’最好是雙層/三層光阻系統。本發明產生的膜具有可調 的折射指數與消失係數,其可以沿著膜厚而選擇性的漸變 以匹配底材與影像光阻的光學性質。UV與DUV的光學性 質及本發明產生的膜的微影特徵遠優於其他聚合物膜如重 氮胺奈昆績酸酚醛清漆型光阻得到的,這可以參考”R D.* 1T _ Printed by the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs ^ 82 Ο 9 Α7 _____ Β7_ ___ V. Description of the invention (8 > Figure 16 shows photoresistance reflection as a function of oxide thickness. Figure 17 shows line width And oxide thickness curve. Detailed description The present invention relates to a structure and a method for manufacturing the same. The structure is produced from a membrane hydrogen compound and / or a fluorocarbon (fluorocarbon) plasma by a vapor deposition method, and a high-quality hydrogenated carbon film is formed. When used as a thick planarized optically adjustable bottom arc in multiple layers, it is best to use a two-layer / three-layer photoresist system. The film produced by the present invention has an adjustable refractive index and extinction coefficient, which can be selectively selected along the film thickness. The gradient is matched to the optical properties of the substrate and the photoresist. The optical properties of UV and DUV and the lithographic characteristics of the film produced by the present invention are far superior to other polymer films such as diazoamine nequinic acid novolac type photoresist. Obtained, this can be referred to "R D.
Miller 與 G.M. Wallraff,Advnaced Materials for Optics and Electronics,Vol. 4,95-127(1994)"。因此塗有本發明的厚平 面化非晶碳膜的矽底材可以大量減少UV與DUV波長的膜 干擾與底材反射度,其接著可以改善CD控制。 圖1是PECVD(電漿強化化學氣相沈積)沈積裝置8的圖 形’其可用以沈積本發明的非晶碳膜。該裝置包括一反應 室1〇’具有節流閥11其可將反應室1〇與真空泵(未示)分 開°陰極19裝在反應室1〇之上而且用介電隔離層分離。 陰極19中設置有一光阻性加熱器17,底材15則固定在陰 極19的内端。在此意欲將陰極與射頻源14作電的連接, 其可以調節,而且使用一匹配箱13可以將陰極19與射頻 源14之間的光阻匹配。藉由設置接到反應室1〇的板極 而作電路接地。 -11 - 本紙張尺纽财目国家標準(CNS ) Α4規格(210X297公瘦) (請先閔讀背面之注意事¥?再填寫本頁) 裝. 訂 46 82 〇9 A7 B7 經濟部中夬標準局員工消費合作社印製 五、發明説明(9 ) 反應器10也包含導管20,21,22,23,24,25用以將 各種氣體材料經由噴灑頭12而導入室10,例如碳氫化合物 氣體與預混合碳氫化合物氣體混合物會分別經由導管25, 26而導入反應器室1〇β氟化碳氣體與氫氣體分別經由導管 21,20而導入宣1〇β反應氣體氧與氮分別經由導管23 ’ 22 而導入室10 ’而用以清洗底材的Ar則經由導管24導入。 本發明使用的碳氫氣體可以是任一種碳氫化合物’其首 先能氣化而且接著能形成在本發明使用的反應條件下的電 漿。名詞%i氫化合物是指一些分子其组成的化合物僅包含 碳與氫原子。根據本發明的實施例’本過程可使用飽和或 不飽和化合物。將飽和碳氫化合物定義為一種化合物,其 原子僅包含單键,而不飽和化合物是一種化合物其原子包 含雙鍵或三鍵的碳.。 它是本發明的特別較佳實施例,即用以形成非晶碳膜的 較佳反應碳氫化合物與碳氟化合物是為環已烷與為六氟化 苯(HFB),其較佳的在隋性氣體中稀釋。應該了解的是碳氫 化合物氣體的混合物如環已烷/乙炔/甲烷在此皆意欲當成 本發明的反應碳氫化合物氣體來使用。 本發明使用的氣體具有的純度大於約95·5%。在較佳實施 例中’氣體具有的純度範圍從約98.5到大约99.99%,最佳 的是,氣體具有大於9 9.9 9 %的純度。 在足夠流動下先經由不同的流動控制器而使其通過以便 將碳氫化合物’碳氟化合物,氫,氦與氬氣導入反應室以 提供從約1 mTorr到1〇〇〇 Mtorr的Ar,氫,碳氫化合物, -12- 本紙張尺度適用中國國家標準(CN’S M4規格(2!0χ 297公釐> I---^--;------71政-- (%先閑讀背面之注意事項#嗔寫本耳j -丁 . •-0 46 82 〇9 A7 B7 五、發明説明(10) ' (請先閱讀背面之注意事項再填寫本頁) 碳氟化合物與氦的總壓力,為了提供最有效的非晶碳膜, Ar,氣’碳氫化合物,氦混合物的壓力最好在約ι_5〇〇 Mton·。上述條件也可藉由將Ar,氫,六氟化苯,碳氫化合 物,氦預混合在一或二或三種氣體柱缸並且以任一種可能 的万式合併而得到以提供期望的氣體濃度。更好的是’經 由不同的流動控制器而將Ar,氫,碳氟化合物與碳氫化合 物氣體導入反應室中。 本發明的非晶碳膜上可以塗佈的適當底材包括以下材料 如塑膠,金屬,各種玻璃,磁頭,電子晶片,電子電路板, 半導體裝置等。底材可以塗佈成任何形狀或大小,在此假 設底材可以置入反應室裝置中。因此具有任意大小的規則 或不規則形狀物體本發明都可以使用。較佳的,底材是製 造半導體裝置中使用的矽底材β底材裝在反應器裝置的反 應賤擊室中的陰極支架上。接著將反應室固定並抽成真空 直到達到約1x10至約lxl〇.7 T〇rr的壓力讀數範圍。如上 所述當反應室抽成真空到達期望壓力範圍時,即接著將底 材加熱到達從2 5至4 0 0 °C的溫度,最佳的,在整個沈積過 程中以約5 0至約200°C的一定溫度將底材加熱。 經濟部中央標华局員工消費合作社印製 使用的底材材料於沈積非晶碳膜之前,可以也可以不受 使用在反應室上的rf陰極的rf濺擊清洗的影響,本發明使 用的適當清洗技術包括具氫,氬,氧,氮或其混合物的rf 電漿,其可單獨執行或以適當的循序合併方式執行。 完成期望的泵塾力下降後,預混合氣體即以約1至1 〇 〇 seem的流率導入反應宣中。較佳的,反應氣體的流率是從 本紙乐尺度適财關家辟(CNS…規格{ 21GX297公楚)~~ ' 46 8209 經濟部中央標孪局貝工消費合作社印製 A7 B7 五、發明説明(η) — 1至100 seem’而氣氣體的流率是從1到1〇〇 seem。最佳的, 環已烷氣體的流率約為5 seem。以大約5到200 mTorr的塵 力將氣體導入反應室中。本發明的另一較佳特點是以大約 100 mTorr的壓力將預混合物導入。 沈積時將一 rf偏壓施加到裝在陰極上的底材,陰極d C 自偏壓在整個碳沈積過程中的範圍從-1 〇到_ I 〇 〇 〇伏。藉由 在陰極上施以rf功率即可得到自偏壓壓力,使用一 匹配 箱即可得到射頻光阻匹配。最佳的,在整個實驗中將底材 rf偏壓壓力維持在_3〇〇伏。更較佳的,施在底材的功率密 度從0.005到5 W/cm2。最好的是,本發明使用的功率密度 在整個沈積過程中都維持在約0.62 W/cm2。 沈積到底材之中的非晶碳膜的速率是要可以在底材上得 到大致連續的膜塗佈,尤其是,藉由使用上述的操作參數, 非晶碳膜可以以約20到4000 A/分的速率沈積到底材中。 最佳的,非晶碳膜的沈積到底材中的速率是大約1 6〇〇 A/分 的速率》 根據本發明,沈積在底材上的非晶碳膜厚度是從1 〇〇〇到 5000 A。較佳的,非晶碳膜塗佈的厚度是從3〇〇〇到7〇〇〇 a(a 疋埃)。該注意的是藉由改變過程參數如偏壓壓力,氣體流 動與壓力即可改變光學常數.在此,將膜光學常數定義為 折射指數η與消失係數k。因此極可能藉由由僅在αγ或He 中稀釋環已烷或乙炔,或者藉由以HFB/氫的混合物(表 來改變環已烷,即可製造出一種具定義的光學常數的底 材。本發明製備的雙層光阻系統應用中底層的非晶碳膜的 14- 木紙钱·尺度適用中國國家標準(CNS ) A4規格(210X297公瘦 ----- J-------裝-- (祷先閱讀背面之注意事項再填寫本頁) ,ιτ JJ. 468209 Α7 Β7 經濟部中央標準局—工消费合作.社印製 五、發明説明(12) 較佳光學常數是在約k=G.l到k=G.6以及n=i.4G到m 的範圓’其波長是365,248與193 nm。 ,主要的,本發明形成的非晶碳膜可當成厚的平面化理想 底邵防反射塗佈使用以用於雙層光阻系統中的UV(365 nm) 與DUV(248,193 nm)應用。礙ARC與旋塗聚合物相比其 ,為灭可以致的沈積而大幅改善光學純度與可調性與 整合度,因而強化積體電路的線寬控制與性能。 已知光學微影中的有效暴露劑量因為薄膜干擾而隨著光 阻厚度周期性的變化。擺動比s定義為干擾極大厚度與干 擾極小厚度之間的部分暴露變化e s是特殊光阻過程的品質 的基本測量。藉由將擺動比減至近乎〇,光阻過程即能容忍 因光阻與沈積膜厚度不均勻而導致的光學相位變化。可= 用以下公式來計算出擺動比: S=4(R1R2)°-5e-aD ⑴ 其中K是光阻空氣介面的反射度,h是上光阻/ARc介面 的反射度,《是光阻吸收係數位D是光阻厚度。在本發明 中我們主要疋时淪藉由使用具最佳底層的雙層光阻過 程而減少&以減少擺動比D圖2在解釋以上參數的顯著 性,大致上可以將雙層.光阻系統模型化以找出底層光學參 數(η與k)以及最佳厚度。為了達成此目的,需要了解整個 膜結構的光學常數以計算出擺動比減少量。 通常ARC厚d是依膜吸收而在3000到7〇〇〇 A之間變 化,消失係數k可以在〇.U到〇·5之間變化,更普遍的是二 -15- 本紙張尺度適用中國國家標準飞CNS ) Μ規格(210X 297公楚)" ------ [ ---τ--— (請先閲讀背面之注意事項再填寫本頁)Miller and G.M.Wallraff, Advanced Materials for Optics and Electronics, Vol. 4,95-127 (1994) ". Therefore, the silicon substrate coated with the thick planarized amorphous carbon film of the present invention can greatly reduce film interference of UV and DUV wavelengths and substrate reflectivity, which can then improve CD control. Fig. 1 is a pattern of a PECVD (plasma enhanced chemical vapor deposition) deposition apparatus 8 which can be used to deposit the amorphous carbon film of the present invention. The device includes a reaction chamber 10 'having a throttle valve 11 which can separate the reaction chamber 10 from a vacuum pump (not shown). A cathode 19 is mounted on the reaction chamber 10 and separated by a dielectric isolation layer. The cathode 19 is provided with a photoresistive heater 17, and the substrate 15 is fixed to the inner end of the cathode 19. It is intended that the cathode be electrically connected to the RF source 14, which can be adjusted, and that a matching box 13 can be used to match the photoresistance between the cathode 19 and the RF source 14. The circuit is grounded by providing a plate electrode connected to the reaction chamber 10. -11-This paper rule New Zealand national standard (CNS) Α4 size (210X297 male thin) (Please read the note on the back ¥? Then fill out this page) Binding. Order 46 82 〇9 A7 B7 Ministry of Economic Affairs Printed by the Consumer Bureau of the Standards Bureau. 5. Description of the invention (9) The reactor 10 also contains ducts 20, 21, 22, 23, 24, 25 for introducing various gas materials into the chamber 10 through the spray head 12, such as hydrocarbons. The gas and pre-mixed hydrocarbon gas mixture will be introduced into the reactor chamber via conduits 25 and 26, respectively. 10β carbon fluoride gas and hydrogen gas will be introduced through conduits 21 and 20, respectively. The duct 23 ′ 22 is introduced into the chamber 10 ′ and the Ar for cleaning the substrate is introduced through the duct 24. The hydrocarbon gas used in the present invention may be any kind of hydrocarbon 'which first vaporizes and then forms a plasma under the reaction conditions used in the present invention. The term% i hydrogen compound refers to some compounds whose composition contains only carbon and hydrogen atoms. According to an embodiment of the present invention, the process may use saturated or unsaturated compounds. A saturated hydrocarbon is defined as a compound whose atoms contain only single bonds, and an unsaturated compound is a compound whose atoms contain carbons with double or triple bonds. It is a particularly preferred embodiment of the present invention, that is, the preferred reaction hydrocarbons and fluorocarbons for forming an amorphous carbon film are cyclohexane and hexafluorobenzene (HFB). Dilute in inert gas. It should be understood that a mixture of hydrocarbon gases such as cyclohexane / acetylene / methane is intended to be used herein as a reactive hydrocarbon gas of the present invention. The gas used in the present invention has a purity of greater than about 95.5%. In the preferred embodiment, the 'gas has a purity ranging from about 98.5 to about 99.99%, and most preferably, the gas has a purity of greater than 99.9%. Pass under different flow controllers with sufficient flow to introduce hydrocarbons' fluorocarbons, hydrogen, helium, and argon into the reaction chamber to provide Ar, hydrogen from about 1 mTorr to 1000 Mtorr , Hydrocarbons, -12- This paper size applies to the Chinese national standard (CN'S M4 specification (2! 0χ 297 mm > I --- ^-; ---- 71 government-- (% 先 闲Read the notes on the back # 嗔 写 本 耳 j-丁. • -0 46 82 〇9 A7 B7 V. Description of the invention (10) '(Please read the notes on the back before filling this page) Total of fluorocarbons and helium Pressure, in order to provide the most effective amorphous carbon film, the pressure of Ar, gas' hydrocarbons, and helium mixture is preferably about ˜500 Mton. The above conditions can also be achieved by combining Ar, hydrogen, benzene hexafluoride, Hydrocarbon and helium are premixed in one or two or three gas cylinders and combined in any of the possible ways to provide the desired gas concentration. It is better to 'Ar, hydrogen' via different flow controllers The fluorocarbon and hydrocarbon gas are introduced into the reaction chamber. The amorphous carbon film of the present invention can be coated with Suitable substrates for cloth include the following materials such as plastic, metal, various glasses, magnetic heads, electronic wafers, electronic circuit boards, semiconductor devices, etc. The substrate can be coated in any shape or size, and it is assumed that the substrate can be placed in the reaction chamber. Device. Therefore, the present invention can be used with objects of any size, regular or irregular shapes. Preferably, the substrate is a silicon substrate used in the manufacture of semiconductor devices. The β substrate is installed in the reaction chamber of the reactor device. The reaction chamber is then fixed and evacuated until a pressure reading range of about 1x10 to about 1x10. 7 Torr is reached. As described above, when the reaction chamber is evacuated to reach the desired pressure range, then the The substrate is heated to a temperature of from 25 to 400 ° C. Optimally, the substrate is heated at a certain temperature of about 50 to about 200 ° C during the entire deposition process. Consumption by employees of the Central Standardization Bureau of the Ministry of Economic Affairs The substrate material used for printing by the cooperative before the deposition of the amorphous carbon film may or may not be affected by the rf splash cleaning of the rf cathode used in the reaction chamber, and the appropriate cleaning technique used in the present invention Including rf plasmas with hydrogen, argon, oxygen, nitrogen, or mixtures of these, which can be performed individually or in an appropriate sequential combination. After completing the desired pumping force reduction, the premixed gas is about 1 to 100. The flow rate of seem is introduced into the reaction declaration. Preferably, the flow rate of the reaction gas is from the paper scale of the financial institution (CNS… Specifications {21GX297 公 楚) ~~ '46 8209 Central Ministry of Economic Affairs Printed by the Consumer Cooperative A7 B7 V. Description of the Invention (η) — 1 to 100 seem 'and the gas flow rate is from 1 to 100 seem. Optimally, the cyclohexane gas flow rate is about 5 seem. The gas was introduced into the reaction chamber with a dust force of about 5 to 200 mTorr. Another preferred feature of the invention is the introduction of the premix at a pressure of about 100 mTorr. An rf bias voltage is applied to the substrate mounted on the cathode during deposition, and the cathode d C self-bias voltage ranges from −10 to −100 volts throughout the carbon deposition process. Self-bias pressure can be obtained by applying rf power to the cathode, and RF matching can be obtained by using a matching box. Optimally, the substrate rf bias pressure was maintained at -300 volts throughout the experiment. More preferably, the power density applied to the substrate is from 0.005 to 5 W / cm2. Most preferably, the power density used in the present invention is maintained at about 0.62 W / cm2 throughout the deposition process. The rate of the amorphous carbon film deposited on the substrate is such that a substantially continuous film coating can be obtained on the substrate. In particular, by using the above-mentioned operating parameters, the amorphous carbon film can be applied at about 20 to 4000 A / The rate of separation is deposited in the substrate. Optimally, the deposition rate of the amorphous carbon film in the substrate is a rate of about 160 A / min. According to the present invention, the thickness of the amorphous carbon film deposited on the substrate is from 1000 to 5000. A. Preferably, the thickness of the amorphous carbon film is from 3,000 to 7000 a (a Angstrom). It should be noted that the optical constant can be changed by changing the process parameters such as bias pressure, gas flow and pressure. Here, the optical constant of the film is defined as the refractive index η and the disappearance coefficient k. It is therefore possible to produce a substrate with a defined optical constant by diluting cyclohexane or acetylene only in αγ or He, or by changing cyclohexane with a mixture of HFB / hydrogen (Table). In the application of the double-layer photoresist system prepared by the present invention, the 14-wood paper money · size of the underlying amorphous carbon film is applicable to the Chinese National Standard (CNS) A4 specification (210X297 male thin ----- J ------ -Equipment-(Please read the notes on the back before filling in this page), ιτ JJ. 468209 Α7 Β7 Central Standards Bureau of the Ministry of Economic Affairs-Industrial and Consumer Cooperation. Fan circles of approximately k = Gl to k = G.6 and n = i.4G to m have wavelengths of 365, 248, and 193 nm. Mainly, the amorphous carbon film formed by the present invention can be regarded as a thick planarization Ideal anti-reflective coating for UV (365 nm) and DUV (248, 193 nm) applications in two-layer photoresist systems. Compared to spin-coated polymers, ARC is a deposition that can be caused by quenching. And greatly improve the optical purity and tunability and integration, thus strengthening the line width control and performance of integrated circuits. Known effective exposure dose in optical lithography The film changes periodically with the thickness of the photoresist. The swing ratio s is defined as the partial exposure change between the maximum interference thickness and the minimum interference thickness. Es is a basic measurement of the quality of a special photoresist process. By reducing the swing ratio, Nearly 0, the photoresistance process can tolerate optical phase changes caused by the uneven thickness of the photoresist and the deposited film. The swing ratio can be calculated using the following formula: S = 4 (R1R2) ° -5e-aD ⑴ where K is the reflectivity of the photoresist air interface, h is the reflectance of the upper photoresistance / ARc interface, "is the absorption coefficient of the photoresistance D is the thickness of the photoresist. In the present invention, we mainly use the best time to use The two-layer photoresist process at the bottom layer is reduced & to reduce the swing ratio D. Figure 2 explains the significance of the above parameters. Generally, the two-layer photoresist system can be modeled to find the bottom layer optical parameters (η and k) and Optimal thickness. In order to achieve this, the optical constants of the entire film structure need to be known to calculate the reduction in wobble ratio. Usually the ARC thickness d varies between 3000 and 7000 A depending on the film absorption, and the disappearance coefficient k can be Between 〇.U to 0.5 The change is more general. 2-15- This paper size is applicable to the Chinese National Standard Flying CNS) M specification (210X 297 Gongchu) " ------ [--- τ --— (Please read the (Please fill in this page again)
.1T 經濟部中央標準局貝工消费合作社印製 4 6 _継正號糊| 中文說明書修正頁(9〇年7月)37 五、發明説明(13) k值於1 0X擺動比減少量時在DUV處是在〇. 1 1到0.3之間。 折射指數η在1.4到2.1之間變化,更普遍的是,η值在DUV 處是在1.65到1 _9〇之間β 以下的例子在說明步驟的範園,因為這些例子僅用於說 明目的,因而不該以此來限制本發明。 例1 以下例子在說明得到雙層系統的最佳底層參數所需的計 算’參數已最佳化以減少光阻/底層介面的反射,計算是根 據以下演算法其使用富斯勒係數,其可以在一般教科書中 找到如"Optics"作著 E, Hecht 與 A. Zajac 於 1979 由 Wiley 出版,312至313頁。這些模擬可延伸到許多不同結構而不 僅限於以下例子,此例子模擬的結構如圖3所示。 底材33是矽,具有一最佳的Si02層34成長在上面(圖3 的下方即圖3B),接著是厚的底層與影像光阻31。要討論 的參數是氧化物厚度與底層光學常數!!,]<;與膜厚d。影像光 阻指數η,折射消失係數k與膜厚d是固定的如η=1.78, k=0_018 ’ d=2000 Α。在此例中模擬3種不同的底層ARC厚 度,即 d=3000,5000,7000 A。 雙層系統的性能是以低(R2)底材反射度來定義,其在擺動 比振幅減少時轉移如公式1所定義》圖3A.顯示3000 A厚 底層(ARC)中以n(ARC層)與k(ARC層)為函數的模擬底材 反射度輪廓圖形(常數R·2的輪廓)。例如水平線k=〇 24與數 個反射度輪廓0.007相交處是最差情況。因為珍反射度在248 nra大約是0.7,因此可得到擺動減少<^75^75^57= 圖3也 -16- 本紙張尺度適用中國國家樣準(CNS> A4说格(2丨〇〆297公4 ) ---;-.--^---r-^-- {請先閲讀背面之注意事項再填寫本頁) 訂 經濟部中央標準局貞工消费合作社印製 4 6 月4 R修义/更正,補充 第87113920號申請專利案 Δ γ 中文說明書修正頁(9〇年7月)B7 五、發明説明(14) 顯示10x擺動比減少時可允許從〜丨,65至〜196的較大範圍 的折射指數值,若需要較高的擺動比減少則可期望指數值 在大約1.85。通常由這些模擬可得到最佳值附近的k(ARC) 值範圍’而擺動比的減少與大小指數有關。圖3B顯示氧化 物厚度的反射比輪廓圖形,其以k的函數(ARC)表示。如上 所述1 Ox擺動減少時k=0.24,R <?= 0.7%。.1T Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 4 6 _ 継 正 号 贴 | Chinese Manual Correction Page (July 90) 37 V. Description of the Invention (13) When the value of k is reduced by 10X swing ratio At DUV it is between 0.1 and 0.3. The refractive index η varies between 1.4 and 2.1, and more generally, the value of η at DUV is between 1.65 and 1 _90. The following examples are in the scope of the steps, because these examples are for illustration purposes only. Therefore, the invention should not be limited by this. Example 1 The following example illustrates the calculations required to obtain the optimal bottom layer parameters of a two-layer system. The parameters have been optimized to reduce reflections from the photoresist / bottom interface. The calculation is based on the following algorithm, which uses the Fissler coefficient, which can Found in general textbooks such as " Optics " by E, Hecht and A. Zajac, published by Wiley in 1979, pages 312-313. These simulations can be extended to many different structures and are not limited to the following example. The structure simulated in this example is shown in Figure 3. The substrate 33 is silicon, and an optimal SiO2 layer 34 is grown on the top (the bottom of FIG. 3 is shown in FIG. 3B), followed by a thick bottom layer and an image photoresist 31. The parameters to be discussed are oxide thickness and underlying optical constants! !,] ≪; and film thickness d. The photoresistance index η, the refractive index k and the film thickness d are fixed, such as η = 1.78, k = 0_018 ′ d = 2000 Α. In this example, three different underlying ARC thicknesses are simulated, namely d = 3000, 5000, 7000 A. The performance of a two-layer system is defined by the low (R2) substrate reflectance, which shifts when the swing ratio amplitude is reduced as defined in Equation 1. "Figure 3A. Shows n (ARC layer) in a 3000 A thick bottom layer (ARC). An analog substrate reflectance profile (a profile of constant R · 2) as a function of k (ARC layer). For example, the horizontal line k = 〇 24 intersects with several reflectance profiles 0.007 is the worst case. Because the reflectance of Jane is about 0.7 at 248 nra, we can get the reduction of swings <^ 75 ^ 75 ^ 57 = Figure 3 also -16- This paper size is applicable to Chinese national standards (CNS) A4 said grid (2 丨 〇〆 297 public 4) ---; -.-- ^ --- r-^-{Please read the notes on the back before filling out this page) Order printed by Zhengong Consumer Cooperative, Central Standards Bureau, Ministry of Economic Affairs 4 June 4 R revised / corrected, supplemented the patent application No. 87113920 Δ γ Chinese manual amendment page (July 90) B7 V. Description of the invention (14) When the 10x swing ratio is reduced, it is allowed from ~ 丨, 65 to ~ 196 For a larger range of refractive index values, if a higher swing ratio reduction is required, the index value can be expected to be about 1.85. The k (ARC) value range near the optimal value is usually obtained from these simulations, and the decrease in the swing ratio is related to the size index. Figure 3B shows the reflectance profile of the oxide thickness as a function of k (ARC). As mentioned above, when the 1 Ox swing decreases, k = 0.24 and R <? = 0.7%.
圖4(圖4A4B與5A,5B分別對應圖3A,3B)顯示5000 A 厚底層的模擬結果。在以下與上述相同的引數中,期望的 n(ARC)與k(ARC)值分別在1.70到1.90以及0.15到〇·22的 範圍’而15χ擺動比減少時R <= 0.3%。類似的,圖5顯示 7000 Α厚ARC時可得到25χ擺動比減少,而η與k值分別 大約是1.84與0.11。該注意的是這些輪廓圖指示可以選擇 較寬的η與k值範圍,以得到較大的擺動比減少ρ1〇χ),而 以上導出的數字僅供說明目的。最後為了達成較高的平面 化程度,因而極小薄膜干擾、底部ARC層32應該是5000 A 厚或更高較佳。 例2 此例在說明在較寬的過程窗之中如何藉由調整厚底層的 光學性質以便能得到極低的擺動比值,具n=l. 83及k=0,29 5 的大約150 A厚的薄黏著層是首先沈積在矽之上(參考圖^ 的表1) ^第二層,以氟化碳膜較佳,則沈積在上面。此層 大約是5000 A厚’在此情況下黏著層可防止厚的ARC層的 氟沈積浸蝕矽底材或Si〇2。通常氟化碳膜的低折射指數有 助於匹配珍與Si〇2的指數。第三層,具約n=l .78的折射指 -17- 本紙張尺度適用中國國家標準(CNS > A4ii格(210X297公釐) I:------^---..ΛI— (諸先聞讀背面之注意寧項再填寫本頁) ,ιτ_ 炎、發明説明( 15 A7 B7 經濟部t央槔#扃男工消費合作社印裝 數與約k=〇.21的消失係數,則沈積在上面以較佳匹配影像 光阻的光學常數。圖6顯示此結構的模擬反射比輪廓。藉 由比較此可調結構與圖4的單層結構即可大幅改善過程 窗。包圍可調結構的反射比輪廓的面積大約是高於圖4單 層結構的一倍。因此用例i的相同引數可以計算出大約27 的擺動比減少。表1顯示藉由使用氟化碳膜而可以達成的 低指數與高消失係數的較寬範圍。 例3 以下的例子在說明沈積一氫化與氟化非晶碳膜(當成厚底 層ARC使用)在底材(矽較佳)中的過程,這是藉由環已烷氣 體或HFB中的電漿強化化學氣相沈積(Pecvd)其具有類似 例一,二所模擬的光學特性。 執行這些實驗以沈積非晶碳膜在5或8英对的圓形矽底 材上。孩等底材,其已預清洗,會用(過濾)氮氣體吹乾以便 於載入圖1的陰極之前去除殘留顆粒。因此將系統抽成真 空至大約1ΧΗΓ5 Torr或更低的底層壓讀數。在1〇〇 mT〇rr Ar壓力下以0.4 W/cm2的功率密度將底材濺擊清洗一分鐘 以確保良好的碳膜黏著在在矽底材上。以25 sccm的流率從 環已燒氣體中沈積非晶碳膜。0.62 w/cm2的陰極功率密度 會導致-317伏的負自偏壓,而壓力是1〇〇 mT〇rr。在整個沈 積過程期間,底材都維持在59它。若必須沈積一氟化膜’ 則可以用為;氟化苯/氫混合物來取代環已烷。表〗是使用 的過程參數的摘要(圖11},本過程使用的氣體具有大於約 99.99%的純度。以大約2ί5 A/分的速率將非晶碳膜沈積在 -18 - 本紙張尺度適用中國國家插準(CNS ) A4現格(2I0X297公釐)Figure 4 (Figures 4A4B and 5A and 5B correspond to Figures 3A and 3B respectively) show the simulation results of a 5000 A thick bottom layer. In the following arguments that are the same as above, the desired values of n (ARC) and k (ARC) are in the ranges of 1.70 to 1.90 and 0.15 to 0.22 ', respectively, and R < = 0.3% when the 15χ swing ratio decreases. Similarly, Figure 5 shows that a reduction of the 25χ swing ratio is obtained at 7000 A thick ARC, while the values of η and k are approximately 1.84 and 0.11, respectively. It should be noted that these contour maps indicate that a wider range of values of η and k can be selected to obtain a larger swing ratio reduction (ρ1〇χ), and the figures derived above are for illustration purposes only. Finally, in order to achieve a high level of planarization, the minimum film interference should be 5000 A thick or higher. Example 2 This example shows how to adjust the optical properties of the thick bottom layer to obtain a very low swing ratio in a wider process window, with a thickness of about 150 A with n = 1.83 and k = 0,29 5 The thin adhesive layer is first deposited on silicon (refer to Table 1 in Figure ^). The second layer, preferably a fluorocarbon film, is deposited on it. This layer is about 5000 A thick. In this case, the adhesive layer prevents the fluorine deposition of the thick ARC layer from attacking the silicon substrate or Si02. The low refractive index of fluorinated carbon films usually helps to match the indices of Jane and SiO2. The third layer has a refractive index of about n = l.78. -17- This paper size applies to Chinese national standards (CNS > A4ii grid (210X297 mm) I: ------ ^ --- .. ΛI — (Please read the note on the back of the page first, and then fill out this page), ιτ_ Yan, invention description (15 A7 B7 Ministry of Economic Affairs tYoung 槔 # 扃 The number of printed men ’s consumer cooperatives and the disappearance coefficient of about k = 0.21 , Then deposited on top to better match the optical constant of the photoresist. Figure 6 shows the simulated reflectance profile of this structure. By comparing this tunable structure with the single-layer structure of Figure 4, the process window can be greatly improved. The area of the reflectance profile of the tuned structure is approximately double that of the single-layer structure in Figure 4. Therefore, the same argument of use case i can be calculated to reduce the swing ratio by about 27. Table 1 shows that by using a fluorocarbon film, the A wide range of low index and high disappearance coefficient achieved. Example 3 The following example illustrates the process of depositing a hydrogenated and fluorinated amorphous carbon film (used as a thick underlying ARC) in a substrate (silicon is preferred). It is similar to plasma enhanced chemical vapor deposition (Pecvd) by cyclohexane gas or HFB. The simulated optical characteristics were performed. These experiments were performed to deposit an amorphous carbon film on a 5 or 8 inch pair of circular silicon substrate. The substrate, which was pre-cleaned, was blown dry with (filtered) nitrogen gas. In order to remove the residual particles before loading the cathode of Figure 1. Therefore, the system was evacuated to a bottom pressure reading of approximately 1 × 5 Torr or lower. The power density was 0.4 W / cm2 at a pressure of 100 mTorr Ar. The substrate was sputter cleaned for one minute to ensure good carbon film adhesion to the silicon substrate. An amorphous carbon film was deposited from the ring-burned gas at a flow rate of 25 sccm. A cathode power density of 0.62 w / cm2 would result in- Negative self-bias voltage of 317 volts, and the pressure is 100mTrr. The substrate is maintained at 59 during the entire deposition process. If a fluorinated film must be deposited, it can be used as; fluorinated benzene / hydrogen Mixture to replace cyclohexane. Table is a summary of the process parameters used (Figure 11). The gas used in this process has a purity of greater than about 99.99%. An amorphous carbon film is deposited at a rate of about 2 liters A / min at- 18-This paper size is applicable to China National Standards (CNS) A4 (2I0X297) %)
----^裝— : - (諳先閱讀背面之注意事項再填寫本頁J 打 - I I I -二·---- ^ 装 —:-(谙 Please read the notes on the back before filling in this page. J Type-I I I-二 ·
1 I * I · 經濟部中央標準局貝工消費合作社印敦 d6B2〇9 A7 _____B7 五、發明説明(16> ' 底材中。 例4 以下的例子在說明如何測量沈積的非晶碳膜的光學常數 n(ARC)與k(ARC),其係藉由從—環已烷氣體而氣相沈積。 此測量技術可適用於多種不同的過程,而不僅限於上述的 兩個例子。 使用 n&k Technology,S. Clara,Ca.,製造的 n&k 分分儀來 測量光學常數。有關此儀器及其操作的說明可參考美國專 利4,905,170號,1990。其使用一種根據廣帶分光光度與公 式的方法以導出Forouhi與Bloomer的光學常數(Phys. Rev. B,28,pp. 1 865-1 874,1988)。其分析是根據一種折射指數 η,消失係數k的物理模型,其適用廣泛的半導體與介電膜 範圍,而JL在深紫外線接近紅外線波長範圍處有效。不能 直接測量任一種材料的η( λ )與k( λ )( λ是波長)光譜,但是 可以由反射比測量R( λ )的解迴繞來決定。此可測量量是依 膜厚’膜與底材的光學常數而定。"n&k方法"提供一種正 確’快速’且非破壞性的方式將反射比測量中斷。可產生 演算法以便將理論反射比與測量出的反射比比較,由此比 較可決定膜厚,η(λ )與k(;l )光譜。 圖7,8(上方)顯示用.非晶碳膜的n&k分析儀所測量的反 射比光譜(從900到190 nm),以便當成例三方法沈積的厚 ARC來使用。分析出的膜大約是5000與10000 A厚。圖7 與8(下方)顯示對應的n與k值,在這些特別例子中,n是 在〜1.80至〜1.82之間變化,而且在248 nm時k是在〜0.22 -19- 本紙張尺度通用中国國家標準(CNS ) A4規格(210X 297公釐) (諳先閱讀背面之注意事項再填寫本頁} 裝'1 I * I · Indun d6B209 A7 _____B7, Central Industry Bureau of the Ministry of Economic Affairs, Consumers Cooperative V. Description of the invention (16> 'in the substrate. Example 4 The following example shows how to measure the optical properties of the deposited amorphous carbon film The constants n (ARC) and k (ARC) are vapor-deposited from a cyclohexane gas. This measurement technique can be applied to many different processes, and is not limited to the above two examples. Use n & k Technology, S. Clara, Ca., n & k spectrometer to measure optical constants. For a description of this instrument and its operation, refer to US Patent No. 4,905,170, 1990. It uses a Method to derive the optical constants of Forouhi and Bloomer (Phys. Rev. B, 28, pp. 1 865-1 874, 1988). The analysis is based on a physical model of the refractive index η and the disappearance coefficient k, which is applicable to a wide range of semiconductors And dielectric film range, and JL is effective in the deep ultraviolet near infrared wavelength range. The η (λ) and k (λ) (λ is the wavelength) spectrum of any material cannot be directly measured, but R (λ can be measured by the reflectance ) To determine. This measurable quantity depends on the film thickness' optical constants of the film and substrate. &Quot; n & k method " provides a correct 'fast' and non-destructive way to interrupt reflectance measurements. Can produce Algorithm to compare the theoretical reflectance with the measured reflectance, from which the film thickness, η (λ) and k (; l) spectra can be determined. Figures 7, 8 (above) are shown for the amorphous carbon film. The reflectance spectrum (from 900 to 190 nm) measured by the n & k analyzer is used as the thick ARC deposited by the third method. The analyzed film is about 5000 and 10000 A thick. Figures 7 and 8 (bottom) The corresponding values of n and k are displayed. In these particular examples, n is varied from ~ 1.80 to ~ 1.82, and k is ~ 0.22 at 248 nm. This paper is a common Chinese national standard (CNS) A4. Specifications (210X 297mm) (谙 Please read the notes on the back before filling this page} 装 '
.1T Α7 Β7 4 6 絮界1Π92〇號申請專利案 中文說明書修正頁(90年7月) 五、發明説明(17 ) (請先閱讀背面之注意事項再填寫本頁) 至〜0.25之間變化,其與例—的反射比分析相容。圖7,8 的n&k光譜也指示可接受的n與k值,其如例一所述是在 193與365 nm中得到。最後’計算出的傳送曲線(圖7與8(上 方))顯示從500至700 nm,透射比於1〇〇〇〇 a厚膜時是從 20變化到70%,而於1〇〇〇 A厚膜時是從32變化到8〇%。 這些透射比值在多層半導體晶片製造中對於正確的記號對 齊是可以接受的。 例5 經濟部中央樣準局員工消費合作社印裝 此例子在說明如何使用上述的雙層光阻系統而形成0.25 μπι以下的裝置特性》圖9顯示該製造過程。首先,如例三所 述的厚非晶碳膜92,其大約或大於3〇〇〇 a,沈積在矽底材 93上’其分別具有約1.8與〇,3的光學常數n與k。薄的〜2000 A最好是矽化光阻91可旋塗在上面並以90。(:烘焙90秒(圖 9.1)如盼駿清漆’聚氫氧苯乙烯,替代性聚氫氧苯乙烯聚硅 燒’聚娃氧烷,聚苯氧烷等,其特定例子是聚氫苯氧烷), 聚(環六甲基氧烷,2,1,5-亞甲基)其包含聚甲基氧烷等。矽化 光阻91使用Nikon EXX步進器而暴露在大約38mJ劑量的 248 nm輻射下,並且以i20°C作後烘焙90秒。接著在CD26 Ship丨ey顯影器(圖9.2)中將光阻顯影30秒》最後非晶碳膜92 在25 Mtorr壓力下以50W於氧電漿中作反應離子蝕刻達15 分鐘》在此矽化光阻91的功能是蝕刻罩幕因為它不會在包含 電漿的氧中蝕刻(圖9_3)。蝕刻雙層結構的SEM影像如圖1〇 所示。矽化光阻輿厚底部孤曲之間的界限是清晰可見。注意, 底部碳弧曲是反向異性蝕刻,因此可維持壁垂直性。 -20- 本紙张尺度適用中國國家標準(CNS ) A4規格(210X297公釐) V - ’711392〇號申請專利案 中文說明書修正頁(9〇年7月) Α7 Β7 五、發明説明( 18 tlOa顯示250 nm的光阻線。在此印出的較小線大約是175 nm具有2:3的縱横比(圖〗〇b)。底材上的可見"草狀物"來自 氧電漿蝕刻期間包含光阻的矽污染,而且可以藉由極短的 暴露到包含電漿的極低密度氟而去除,或者於氧RIE之前 使用較長的顯影時間。 雖然已參考其較佳實施例來特別顯示與說明本發明,但 熟於此技術者要了解的是上述與其他形式上的詳細變化^ 可以在不偏離本發明的精神與範園下實施的。 又疋 因此已說明了本發明》 I 丨^ ^---装-- (諳先閔讀背面之?1意事項再填寫本頁) 經濟部中央標準局員工消費合作社印裝 元件符號說明 10 反應室 11 節流閥 12 喷灑頭 13 匹配箱 14 射頻源 15 底材 16 板極 17 光阻性加熱器 19 陰極 20-26 導管 27 光阻層 28 聚合物 29 底材 31 阻抗 >1Τ ·> -21- 本紙浪尺度it财ϋϋ家轉(CNS ) ( 210X297公釐) ~~~-- —I I I i 啪夺夕厶v:. -: 一 m兔 Α7 Β7 5 82 0參87113920號申請專利案 中文說明書修正頁(90年7月) 五、發明説明(18a) 經濟部中央標準局貝工消費合作社印装 32 ARC底層 321 ARC 上層 25nm 322 ARC 上層 500nm 323 ARC黏著層1 5nm 33 Si02 34 Si底材 91 光阻層 92 DLC 93 底材 151 阻抗:正厚度= 850nm 152 第一層:使用者定義厚度 153 第二層:Si二氧化物厚度 154 底材:矽 300nm lOOnm HI— til· fltt ttl·— It 1 tut - 1 In- 」- . λ (請先閱讀背面之注意事項再填寫本頁) ;>· -21a- 本紙張尺度適用中國國家標準(CNS ) A4規格(2[0X297公釐).1T Α7 Β7 4 6 Revised page of Chinese Manual for Patent Application No. 1Π920 (July 1990) V. Description of Invention (17) (Please read the notes on the back before filling this page) Change to ~ 0.25 , Which is compatible with the reflectance analysis of the example. The n & k spectra of Figures 7 and 8 also indicate acceptable values of n and k, which were obtained at 193 and 365 nm as described in Example 1. Finally, the calculated transmission curves (Figures 7 and 8 (above)) show that from 500 to 700 nm, the transmittance varies from 20 to 70% for a 1000a thick film, while at 1000A The change from 32 to 80% for thick films. These transmittance values are acceptable for correct mark alignment in multilayer semiconductor wafer manufacturing. Example 5: Printed by the Consumer Cooperatives of the Central Procurement Bureau of the Ministry of Economic Affairs This example shows how to use the above-mentioned double-layer photoresist system to form device characteristics below 0.25 μm. Figure 9 shows the manufacturing process. First, a thick amorphous carbon film 92 as described in Example 3, which is about or larger than 3,000 a, is deposited on a silicon substrate 93 'which has optical constants n and k of about 1.8 and 0.3, respectively. A thin ~ 2000 A is preferably a silicided photoresist 91 which can be spin-coated on top and 90 °. (: Bake for 90 seconds (Figure 9.1) such as Panjun varnish 'Polyhydrogen styrene, alternative polyoxy styrene polysilicone', polysiloxane, polyphenoxane, etc., a specific example is polyhydrophenoxy Alkanes), poly (cyclohexamethyloxane, 2,1,5-methylene) which includes polymethyloxane and the like. The silicided photoresist 91 was exposed to 248 nm radiation at a dose of approximately 38mJ using a Nikon EXX stepper, and baked at i20 ° C for 90 seconds. Then develop the photoresist in a CD26 Ship Developer (Fig. 9.2) for 30 seconds. Finally, the amorphous carbon film 92 was etched by reactive ion in an oxygen plasma at 50W under a pressure of 25 Mtorr for 15 minutes. The function of the resistor 91 is to etch the mask because it does not etch in the oxygen containing plasma (Figure 9_3). The SEM image of the etched double-layer structure is shown in Figure 10. The boundaries between silicified photoresist and thick bottom orbit are clearly visible. Note that the bottom carbon arc is an anisotropic etch, so wall verticality can be maintained. -20- This paper size applies Chinese National Standard (CNS) A4 specification (210X297mm) V-'711392〇 Chinese patent application manual amendment page (July 90) Α7 Β7 V. Description of invention (18 tlOa display 250 nm photoresistance line. The smaller line printed here is about 175 nm with an aspect ratio of 2: 3 (figure 〇b). The visible "grass" on the substrate comes from oxygen plasma etching Silicon contamination that contains photoresistors during this period can be removed by extremely short exposure to very low density fluorine containing plasma, or use longer development time before oxygen RIE. Although it has been specifically referred to its preferred embodiment The present invention is shown and explained, but those skilled in the art should understand that the detailed changes in the above and other forms can be implemented without departing from the spirit and scope of the present invention. Therefore, the present invention has been explained.丨 ^ ^ --- Installation-(I first read the note on the back of the? 1, and then fill out this page) Symbol description for printed components of the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs 10 Reaction chamber 11 Throttle valve 12 Spray head 13 Matching box 14 RF source 15 Substrate 16 Plate 17 Photoresistive heater 19 Cathode 20-26 Conduit 27 Photoresist layer 28 Polymer 29 Substrate 31 Impedance > 1T · > -21- This paper is scaled by CNS (210X297mm) ~ ~~-—III i 夺得 厶 厶 v :.-: One m rabbit Α7 Β7 5 82 0 ref. 87114920 Patent Application Chinese Manual Correction Page (July 1990) V. Description of Invention (18a) Central Ministry of Economic Affairs Printed by Standard Bureau of Shellfish Consumer Cooperative 32 ARC bottom layer 321 ARC upper layer 25nm 322 ARC upper layer 500nm 323 ARC adhesive layer 1 5nm 33 Si02 34 Si substrate 91 photoresist layer 92 DLC 93 substrate 151 Impedance: positive thickness = 850nm 152 first Layer: User-defined thickness 153 Second layer: Si dioxide thickness 154 Substrate: Silicon 300nm lOOnm HI— til · fltt ttl · — It 1 tut-1 In- ”-. Λ (Please read the precautions on the back first (Fill in this page again); > · -21a- This paper size applies to China National Standard (CNS) A4 (2 [0X297mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92447697A | 1997-08-25 | 1997-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
TW468209B true TW468209B (en) | 2001-12-11 |
Family
ID=25450251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW087113920A TW468209B (en) | 1997-08-25 | 1998-08-24 | Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP3117429B2 (en) |
KR (1) | KR100301272B1 (en) |
MY (1) | MY132894A (en) |
SG (1) | SG74649A1 (en) |
TW (1) | TW468209B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI426545B (en) * | 2006-06-28 | 2014-02-11 | Applied Materials Inc | Method for depositing an amorphous carbon film with improved density and step coverage |
CN111954921A (en) * | 2018-04-09 | 2020-11-17 | 应用材料公司 | Carbon hardmask for patterning applications and associated methods |
US11043372B2 (en) | 2017-06-08 | 2021-06-22 | Applied Materials, Inc. | High-density low temperature carbon films for hardmask and other patterning applications |
US11158507B2 (en) | 2018-06-22 | 2021-10-26 | Applied Materials, Inc. | In-situ high power implant to relieve stress of a thin film |
US11270905B2 (en) | 2019-07-01 | 2022-03-08 | Applied Materials, Inc. | Modulating film properties by optimizing plasma coupling materials |
US11421324B2 (en) | 2020-10-21 | 2022-08-23 | Applied Materials, Inc. | Hardmasks and processes for forming hardmasks by plasma-enhanced chemical vapor deposition |
US11560626B2 (en) | 2019-05-24 | 2023-01-24 | Applied Materials, Inc. | Substrate processing chamber |
US11603591B2 (en) | 2018-05-03 | 2023-03-14 | Applied Materials Inc. | Pulsed plasma (DC/RF) deposition of high quality C films for patterning |
US11664214B2 (en) | 2020-06-29 | 2023-05-30 | Applied Materials, Inc. | Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications |
US11664226B2 (en) | 2020-06-29 | 2023-05-30 | Applied Materials, Inc. | Methods for producing high-density carbon films for hardmasks and other patterning applications |
US11842897B2 (en) | 2018-10-26 | 2023-12-12 | Applied Materials, Inc. | High density carbon films for patterning applications |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6316167B1 (en) * | 2000-01-10 | 2001-11-13 | International Business Machines Corporation | Tunabale vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and application thereof |
US6573030B1 (en) * | 2000-02-17 | 2003-06-03 | Applied Materials, Inc. | Method for depositing an amorphous carbon layer |
JP2002194547A (en) | 2000-06-08 | 2002-07-10 | Applied Materials Inc | Method of depositing amorphous carbon layer |
JP4542678B2 (en) * | 2000-07-19 | 2010-09-15 | 株式会社ユーテック | Fine processing method, antireflection film and film formation method thereof, and hard disk head manufacturing method |
DE10156865A1 (en) * | 2001-11-20 | 2003-05-28 | Infineon Technologies Ag | Process for forming a structure in a semiconductor substrate comprises transferring a photolithographic structure on a photoresist layer into an anti-reflective layer |
US7070914B2 (en) * | 2002-01-09 | 2006-07-04 | Az Electronic Materials Usa Corp. | Process for producing an image using a first minimum bottom antireflective coating composition |
US20040157430A1 (en) * | 2003-02-07 | 2004-08-12 | Asml Netherlands B.V. | Methods and apparatus for processing semiconductor wafers with plasma processing chambers in a wafer track environment |
US7132201B2 (en) * | 2003-09-12 | 2006-11-07 | Micron Technology, Inc. | Transparent amorphous carbon structure in semiconductor devices |
DE10356668B4 (en) * | 2003-12-04 | 2005-11-03 | Infineon Technologies Ag | Manufacturing method for a hard mask on a semiconductor structure |
US7785753B2 (en) * | 2006-05-17 | 2010-08-31 | Lam Research Corporation | Method and apparatus for providing mask in semiconductor processing |
US7514125B2 (en) | 2006-06-23 | 2009-04-07 | Applied Materials, Inc. | Methods to improve the in-film defectivity of PECVD amorphous carbon films |
KR100728993B1 (en) | 2006-06-30 | 2007-06-15 | 주식회사 하이닉스반도체 | Method of manufacturing semiconductor device |
US7776516B2 (en) | 2006-07-18 | 2010-08-17 | Applied Materials, Inc. | Graded ARC for high NA and immersion lithography |
JP5275085B2 (en) * | 2009-02-27 | 2013-08-28 | 株式会社東芝 | Manufacturing method of semiconductor device |
US8105465B2 (en) * | 2008-10-14 | 2012-01-31 | Applied Materials, Inc. | Method for depositing conformal amorphous carbon film by plasma-enhanced chemical vapor deposition (PECVD) |
US8153351B2 (en) * | 2008-10-21 | 2012-04-10 | Advanced Micro Devices, Inc. | Methods for performing photolithography using BARCs having graded optical properties |
KR101711424B1 (en) * | 2009-01-16 | 2017-03-02 | 후지필름 일렉트로닉 머티리얼스 유.에스.에이., 아이엔씨. | Nonpolymeric binders for semiconductor substrate coatings |
WO2014179694A1 (en) * | 2013-05-03 | 2014-11-06 | Applied Materials, Inc. | Optically tuned hardmask for multi-patterning applications |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100323442B1 (en) * | 1994-06-17 | 2002-05-13 | 박종섭 | Method for fabricating semiconductor device |
-
1998
- 1998-07-24 MY MYPI98003399A patent/MY132894A/en unknown
- 1998-08-08 SG SG1998002939A patent/SG74649A1/en unknown
- 1998-08-18 JP JP10231729A patent/JP3117429B2/en not_active Expired - Fee Related
- 1998-08-24 TW TW087113920A patent/TW468209B/en not_active IP Right Cessation
- 1998-08-25 KR KR1019980034392A patent/KR100301272B1/en not_active IP Right Cessation
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI426545B (en) * | 2006-06-28 | 2014-02-11 | Applied Materials Inc | Method for depositing an amorphous carbon film with improved density and step coverage |
US11043372B2 (en) | 2017-06-08 | 2021-06-22 | Applied Materials, Inc. | High-density low temperature carbon films for hardmask and other patterning applications |
US11784042B2 (en) | 2018-04-09 | 2023-10-10 | Applied Materials, Inc. | Carbon hard masks for patterning applications and methods related thereto |
CN111954921A (en) * | 2018-04-09 | 2020-11-17 | 应用材料公司 | Carbon hardmask for patterning applications and associated methods |
CN111954921B (en) * | 2018-04-09 | 2024-05-31 | 应用材料公司 | Carbon hard mask for patterning applications and related methods |
TWI780320B (en) * | 2018-04-09 | 2022-10-11 | 美商應用材料股份有限公司 | Carbon hard masks for patterning applications and methods related thereto |
US11469097B2 (en) | 2018-04-09 | 2022-10-11 | Applied Materials, Inc. | Carbon hard masks for patterning applications and methods related thereto |
US11603591B2 (en) | 2018-05-03 | 2023-03-14 | Applied Materials Inc. | Pulsed plasma (DC/RF) deposition of high quality C films for patterning |
US11158507B2 (en) | 2018-06-22 | 2021-10-26 | Applied Materials, Inc. | In-situ high power implant to relieve stress of a thin film |
US11557478B2 (en) | 2018-06-22 | 2023-01-17 | Applied Materials, Inc. | In-situ high power implant to relieve stress of a thin film |
US11842897B2 (en) | 2018-10-26 | 2023-12-12 | Applied Materials, Inc. | High density carbon films for patterning applications |
US11560626B2 (en) | 2019-05-24 | 2023-01-24 | Applied Materials, Inc. | Substrate processing chamber |
US11270905B2 (en) | 2019-07-01 | 2022-03-08 | Applied Materials, Inc. | Modulating film properties by optimizing plasma coupling materials |
US11664226B2 (en) | 2020-06-29 | 2023-05-30 | Applied Materials, Inc. | Methods for producing high-density carbon films for hardmasks and other patterning applications |
US11664214B2 (en) | 2020-06-29 | 2023-05-30 | Applied Materials, Inc. | Methods for producing high-density, nitrogen-doped carbon films for hardmasks and other patterning applications |
US11421324B2 (en) | 2020-10-21 | 2022-08-23 | Applied Materials, Inc. | Hardmasks and processes for forming hardmasks by plasma-enhanced chemical vapor deposition |
Also Published As
Publication number | Publication date |
---|---|
SG74649A1 (en) | 2000-08-22 |
KR100301272B1 (en) | 2001-10-19 |
JPH11150115A (en) | 1999-06-02 |
KR19990023841A (en) | 1999-03-25 |
JP3117429B2 (en) | 2000-12-11 |
MY132894A (en) | 2007-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW468209B (en) | Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof | |
JP3004002B2 (en) | Antireflection coating and method for forming the same | |
TW548706B (en) | Method for forming anti-reflective coating using hydrocarbon based gas and method for applying the same | |
US6514667B2 (en) | Tunable vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and applications thereof | |
TWI225274B (en) | Method of depositing an amorphous carbon layer | |
KR100188508B1 (en) | Reduction of reflection by amorphous carbon | |
KR20230148803A (en) | Pecvd films for euv lithography | |
US10915016B2 (en) | Mask blank, method for manufacturing phase shift mask, and method for manufacturing semiconductor device | |
US20230367196A1 (en) | Mask blank, method of manufacturing imprint mold, method of manufacturing transfer mask, method of manufacturing reflective mask, and method of manufacturing semiconductor device | |
US20030040179A1 (en) | Polysilicon processing using an anti-reflective dual layer hardmask for 193 nm lithography | |
KR101055962B1 (en) | Thin film pattern formation method | |
CN101431015B (en) | Plasma surface treatment to prevent pattern collapse in immersion lithography | |
JP2004038154A (en) | Method for etching photolithographic reticle | |
US6733930B2 (en) | Photomask blank, photomask and method of manufacture | |
TW548528B (en) | Attenuated embedded phase shift photomask blanks and the method of fabricating thereof | |
US6534417B2 (en) | Method and apparatus for etching photomasks | |
TW561508B (en) | Methods and apparatus for etching metal layers on substrates | |
US6479401B1 (en) | Method of forming a dual-layer anti-reflective coating | |
KR20060062586A (en) | A manufacturing method and apparatus of semiconductor | |
Callegari et al. | Optical properties of hydrogenated amorphous‐carbon film for attenuated phase‐shift mask applications | |
WO2023037731A1 (en) | Mask blank, phase shift mask, and method for producing semiconductor device | |
JPH1131650A (en) | Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device | |
KR100463170B1 (en) | Manufacturing method of anti reflection coat in semiconductor device | |
Jun et al. | Fluorinated silicon nitride film for the bottom antireflective layer in quarter micron optical lithography | |
TW432483B (en) | Method for forming anti-reflective layer with double-layer structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |