JPH1131650A - Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device - Google Patents

Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device

Info

Publication number
JPH1131650A
JPH1131650A JP18792297A JP18792297A JPH1131650A JP H1131650 A JPH1131650 A JP H1131650A JP 18792297 A JP18792297 A JP 18792297A JP 18792297 A JP18792297 A JP 18792297A JP H1131650 A JPH1131650 A JP H1131650A
Authority
JP
Japan
Prior art keywords
film
substrate
antireflection
reflection
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18792297A
Other languages
Japanese (ja)
Inventor
Naoya Yamasumi
直也 山角
Toshio Takada
寿雄 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Electric Corp
Original Assignee
Kokusai Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Electric Corp filed Critical Kokusai Electric Corp
Priority to JP18792297A priority Critical patent/JPH1131650A/en
Publication of JPH1131650A publication Critical patent/JPH1131650A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PROBLEM TO BE SOLVED: To form a fine pattern on a substratum substrate even as a single-layer film, without the need for the strict control operation of a film thickness by a method, wherein an antireflection coating is formed to be not of a reflection-type structure, which depends on a film thickness but of an absorption-type structure which depends on a damping coefficient. SOLUTION: When an antireflection coating 3 which is composed of SiOx Ny (oxynitride silicon) is formed on a substratum substrate, the flow rate ratio of N2 O (nitrous oxide) to SiH4 (monosilane) is gradually increased from the start of a film formation operation until the end of the film formation operation. It is formed into one-time film formation process, the concentration grade for Si atoms is created in the depth direction in a formed single-layer film, and a grade in which a damping coefficient (k) becomes continuously large toward a film rear 3b as an interface to the substratum substrate from a film surface 3a. When a k-value gradient is formed in the film, incident light L is absorbed and reflected repeatedly so as to be attenuated gradually in the film, and it is absorbed before it reaches the surface of the substratum substrate.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、反射防止膜、被処
理基板、被処理基板の製造方法、微細パターンの製造方
法、および半導体装置の製造方法に係り、特に位相合せ
の必要な反射型ではなく、膜中で光を吸収する吸収型の
反射防止膜、及びこの反射防止膜を使用したものに関す
る。
The present invention relates to an antireflection film, a substrate to be processed, a method of manufacturing a substrate to be processed, a method of manufacturing a fine pattern, and a method of manufacturing a semiconductor device. In addition, the present invention relates to an absorption-type antireflection film that absorbs light in a film, and a device using the antireflection film.

【0002】[0002]

【従来の技術】半導体装置の高集積化が加速的に進行す
るに伴い、その最小加工寸法も急速に微細化している。
例えば、現在365nmのi線を用いて0.35〜0.
40μm程度のデザインルールである64MDRAMの
量産が行なわれている。しかし、それ以降のデザインル
ールに対応していくためにはさらに光源の短波長化が必
要になってくる。それゆえにKrF(248nm)、A
rF(193nm)などのエキシマレーザを光源とした
リソフグラフィーが量産に導入されつつある。
2. Description of the Related Art As the degree of integration of a semiconductor device increases, the minimum processing size of the device is rapidly reduced.
For example, 0.35-0.
Mass production of 64 MDRAM, which has a design rule of about 40 μm, has been performed. However, in order to comply with subsequent design rules, it is necessary to further shorten the wavelength of the light source. Therefore KrF (248 nm), A
Lithography using an excimer laser such as rF (193 nm) as a light source is being introduced to mass production.

【0003】しかし光源の短波長化に伴い下地基板の反
射率が増大し、単一波長を用いることにより、レジスト
膜内における多重干渉による定在波効果が無視できなく
なる。このため、0.35μm以下の微細なパターンを
形成するフォトリソグラフィにおいては、ハーレーショ
ンや定在波効果によるコントラストや解像度の低下を防
止するために、下地基板からの反射光を弱めるための反
射防止膜が必要となる。反射防止膜の原理は反射光の位
相を膜厚に応じてずらし、且つ消衰係数k値で振幅比を
合せるものであり、その反射光で入射光を打ち消すもの
である。したがって、反射防止膜にあってはk値ととも
に膜厚のコントロールが非常に重要となる。
However, as the wavelength of the light source becomes shorter, the reflectance of the underlying substrate increases, and by using a single wavelength, the standing wave effect due to multiple interference in the resist film cannot be ignored. For this reason, in photolithography for forming a fine pattern of 0.35 μm or less, antireflection for weakening light reflected from the underlying substrate in order to prevent a decrease in contrast and resolution due to the effects of harlation and standing waves. A membrane is required. The principle of the anti-reflection coating is to shift the phase of the reflected light according to the film thickness and to match the amplitude ratio with the extinction coefficient k, and to cancel the incident light by the reflected light. Therefore, in the antireflection film, the control of the film thickness together with the k value is very important.

【0004】反射防止膜材料としては、従来よりa−S
i(アモルファスシリコン)、TiON(酸化窒化チタ
ン)、TiN(窒化チタン)などが多く用いられていた
が、近年エキシマレーザリソフグラフィで用いられる遠
紫外線領域で非常に良好な光学特性を示すSiOx y
(酸化窒化シリコン)が注目されており、Al(アルミ
ニウム)、p−Si(ポリシリコン)、WSix (タン
グステンシリサイド)、などの高反射下地基板上で遠紫
外線化学増幅レジストの下層にSiOx y 膜などを堆
積させ、上記下地基板からの光の反射を抑制して最も微
細なゲート加工プロセスが実現されている(例えば、特
開平7−201825号公報)。
As an anti-reflection film material, a-S
i (amorphous silicon), TiON (titanium oxynitride), TiN (titanium nitride) and the like have been used in many cases, but SiO x exhibiting very good optical characteristics in the far ultraviolet region used in excimer laser lithography in recent years. N y
Are (silicon oxynitride) is of interest, Al (aluminum), p-Si (polysilicon), WSi x (tungsten silicide), SiO below the deep UV chemically amplified resist a highly reflective base substrate, such as x N By depositing a y film or the like and suppressing the reflection of light from the base substrate, the finest gate processing process is realized (for example, Japanese Patent Application Laid-Open No. 7-201825).

【0005】しかし上記SiOx y を用いた反射防止
膜を用いてプロセスを行う場合、SiOx y は下地基
板材料、および遠紫外線化学増幅レジストの膜厚により
変化する反射防止条件を常に満たしていなければならな
い。上記反射防止条件とは、露光による入射光がレジス
ト膜中に形成する定在波の振幅比を極小となす条件であ
る。上記定在波の振幅比を極小とする膜厚を求めるため
には、図9に示すように、レジスト膜の膜厚を横軸にと
り、レジスト膜内に吸収される光量を縦軸にとり、レジ
スト膜厚に対するレジスト膜内吸収光量のスイングカー
ブを作成し、吸収光量の値が極小となる膜厚を求める。
この吸収光量の値が極小となる条件が、すなわち定在波
効果を最小の状態とする条件である。またスイングカー
ブの位相は反射防止膜の光学定数(屈折率n、消衰係数
k、膜厚d)により変化するための反射防止膜の光学定
数の最適化が反射防止条件に大きく関与する。
However when performing the process using an antireflection film using the SiO x N y, the SiO x N y satisfies always an antireflection condition which varies by the thickness of the underlying substrate material, and deep UV chemically amplified resist Must be. The antireflection condition is a condition that minimizes the amplitude ratio of a standing wave formed in the resist film by the incident light due to the exposure. As shown in FIG. 9, the horizontal axis represents the thickness of the resist film, and the vertical axis represents the amount of light absorbed in the resist film. A swing curve of the absorbed light amount in the resist film with respect to the film thickness is created, and the film thickness at which the value of the absorbed light amount becomes minimum is obtained.
The condition under which the value of the amount of absorbed light is minimal is the condition under which the standing wave effect is minimized. The optimization of the optical constant of the antireflection film greatly affects the antireflection condition because the phase of the swing curve changes depending on the optical constants (refractive index n, extinction coefficient k, film thickness d) of the antireflection film.

【0006】[0006]

【発明が解決しようとする課題】微細パターンを実現す
るには、下地基板材料やフォトレジスト膜に対する反射
防止膜の反射条件(n、k、d)を満たす必要がある。
SiOx y (酸化窒化シリコン)膜を用いた反射防止
膜の場合、プラズマCVDなどの装置を用いて成膜が行
なわれる。その際、屈折率n、消衰係数kは、一定のプ
ラズマCVD条件(圧力、パワーなど)であれば、Si
4 (モノシラン)とN2 O(亜酸化窒素)の流量比の
みによって決まる。したがって、反射防止条件の最適化
には残る反射条件である膜厚dが重要となり、膜厚で位
相合せすることもあり、非常に厳密なコントロールが必
要となる。しかし、膜厚dを厳密にコントロールするこ
とは難しく、特に段差下地基板上での反射防止膜の膜厚
コントロールは非常に難しい。また、下地基板材料が変
ると反射防止膜の反射条件が変るので、単一のプロセス
で成膜することができず、下地基板材料に応じて成膜プ
ロセスを変更する必要もあった。
In order to realize a fine pattern, it is necessary to satisfy the reflection conditions (n, k, d) of the antireflection film with respect to the underlying substrate material and the photoresist film.
In the case of an antireflection film using a SiO x N y (silicon oxynitride) film, the film is formed using an apparatus such as plasma CVD. At this time, the refractive index n and the extinction coefficient k are set to Si under constant plasma CVD conditions (pressure, power, etc.).
It is determined only by the flow ratio between H 4 (monosilane) and N 2 O (nitrous oxide). Therefore, the film thickness d, which is the remaining reflection condition, is important for optimizing the anti-reflection conditions, and the phase may be adjusted by the film thickness, and very strict control is required. However, it is difficult to strictly control the film thickness d, and it is particularly difficult to control the film thickness of the antireflection film on the step underlying substrate. Further, when the material of the base substrate changes, the reflection conditions of the antireflection film change, so that the film cannot be formed by a single process, and the film formation process needs to be changed according to the material of the base substrate.

【0007】そこで、最近の報告に多層、すなわち消衰
係数kの異なる反射防止膜を数層、例えば3層(k=
0.24、0.45、1.00)を積み重ね、その3層
の膜中で入射光を連続的に吸収させることにより、反射
防止膜を実現する方法が提案されている(A Multilayer
inorganic antireflective system for use in 248nmde
ep ultraviolet lithography(J.Vac.Tecnol.B14(6)Nov/
Dec 1996 p4229 〜4233))。
[0007] Therefore, a recent report has stated that several layers, ie, three layers of antireflection films having different extinction coefficients k, for example, three layers (k =
0.24, 0.45, 1.00) and a method of realizing an antireflection film by continuously absorbing incident light in the three layers (A Multilayer).
inorganic antireflective system for use in 248nmde
ep ultraviolet lithography (J.Vac.Tecnol.B14 (6) Nov /
Dec 1996 p4229-4233)).

【0008】これは膜中で光を吸収させるもので、膜厚
で位相をずらして打ち消すものではないので、厳密な膜
厚コントロールを必要とせず、しかも下地基板に光が到
達する前に吸収されてしまうので、下地基板材料を選ば
ず単一のプロセスで成膜できるので、有効な方法といえ
る。しかしながら、3層ないし多層のCVD工程は、単
層と異なり、単一プロセスでは実現できないので、半導
体製造プロセスのスループットを非常に悪くするという
欠点がある。
This method absorbs light in the film and does not cancel out the phase by shifting the phase with the film thickness. Therefore, strict film thickness control is not required, and light is absorbed before reaching the underlying substrate. Therefore, it can be said that the film can be formed by a single process irrespective of the material of the base substrate, which is an effective method. However, unlike a single layer, a three-layer or multi-layer CVD process cannot be realized by a single process, and thus has a disadvantage that the throughput of a semiconductor manufacturing process is extremely deteriorated.

【0009】そこで本発明の目的は、上述した従来技術
の問題点を解消して、単層膜でありながら、厳密な膜厚
コントロールを必要とせず、高い反射防止機能をもつ反
射防止膜、これを用いた被処理基板、被処理基板の製造
方法、微細パターンの製造方法、および半導体装置の製
造方法を提供するものである。
An object of the present invention is to solve the above-mentioned problems of the prior art, and to provide an antireflection film having a high antireflection function without requiring strict film thickness control while being a single-layer film. The present invention provides a substrate to be processed, a method of manufacturing a substrate to be processed, a method of manufacturing a fine pattern, and a method of manufacturing a semiconductor device.

【0010】[0010]

【課題を解決するための手段】請求項1に記載の反射防
止膜は、単層膜から形成され、かつ単層膜の深度方向に
消衰係数が増加しているものである。反射防止膜の深度
方向に消衰係数を増加させ、膜中で光の吸収・反射を繰
り返して徐々に光を減衰させていく吸収型構造としたの
で、膜厚による位相合せを行なった反射光で入射光を打
ち消す反射型の反射防止膜と異なり、単層膜という簡単
な構造でありながら、厳密な膜厚コントロールを必要と
せす、光の反射を有効に防止できる。消衰係数の増加の
態様は、光を連続的に吸収させる点から単調増加が好ま
しい。
According to a first aspect of the present invention, there is provided an antireflection film formed of a single-layer film and having an extinction coefficient increasing in a depth direction of the single-layer film. The extinction coefficient is increased in the depth direction of the anti-reflection film, and the absorption type structure that absorbs and reflects light repeatedly in the film to attenuate light gradually is used. Unlike a reflection type anti-reflection film that cancels incident light, it is possible to effectively prevent light reflection that requires strict film thickness control while having a simple structure of a single layer film. The mode of increase of the extinction coefficient is preferably a monotonic increase from the viewpoint of continuously absorbing light.

【0011】請求項2に記載の反射防止膜は、上記反射
防止膜をSiOx y (酸化窒化シリコン)、SiNx
(窒化シリコン)、またはSiOx (酸化シリコン)で
構成し、上記消衰係数と相関する構成元素中のSi濃度
が深度方向に増加しているようにしたものである。反射
防止膜を上述した材料で構成すると、エキシマレーザな
どの短波長の遠紫外線領域で非常に良好な光学特性を示
すため、下地基板の表面層からの光の反射を一層有効に
防止できる。
According to a second aspect of the present invention, in the anti-reflection film, the anti-reflection film is made of SiO x N y (silicon oxynitride), SiN x
(Silicon nitride) or SiO x (silicon oxide), and the concentration of Si in the constituent elements correlated with the extinction coefficient increases in the depth direction. When the antireflection film is made of the above-described material, it exhibits very good optical characteristics in a short-wavelength deep ultraviolet region such as an excimer laser, so that reflection of light from the surface layer of the underlying substrate can be more effectively prevented.

【0012】請求項3に記載の被処理基板は、下地基板
上に上記反射防止膜を形成したものである。入射光は下
地基板に到達する前に吸収されるので、反射防止膜の下
層に形成される下地基板の材料に影響されず、反射防止
効果の大きな被処理基板が得られる。
The substrate to be processed according to a third aspect of the present invention is one in which the antireflection film is formed on a base substrate. Since the incident light is absorbed before reaching the base substrate, the substrate to be processed having a large antireflection effect can be obtained without being affected by the material of the base substrate formed below the antireflection film.

【0013】請求項4に記載の被処理基板は、さらに反
射防止膜上にフォトレジスト膜を形成したものである。
反射防止膜の消衰係数が変化しているため、フォトレジ
スト膜を透過した光が反射防止膜に入射すると、反射防
止膜中で光が吸収されていくため、下地基板で反射する
光はなくなり、定在波効果の少ない良好な反射防止効果
が得られる。良好な反射防止効果が得られるので、安定
した寸法および形状の微細パターンを形成できる。
According to a fourth aspect of the present invention, the substrate to be processed further comprises a photoresist film formed on the antireflection film.
Since the extinction coefficient of the anti-reflection film has changed, when light transmitted through the photoresist film is incident on the anti-reflection film, the light is absorbed in the anti-reflection film, so that there is no light reflected on the underlying substrate. A good anti-reflection effect with little standing wave effect can be obtained. Since a good antireflection effect is obtained, a fine pattern having stable dimensions and shapes can be formed.

【0014】請求項5に記載の被処理基板の製造方法
は、窒素または酸素を含む原料ガスとシリコンを含む原
料ガスを流すことにより、下地基板上に窒素または酸素
を含むシリコン系の無機膜で構成された反射防止膜を形
成する工程を有し、上記反射防止膜形成時、一回の成膜
工程で、シリコンを含む原料ガスに対する窒素または酸
素を含む原料ガスの流量比を相対的に増加してくことに
より、下地基板上に成膜される反射防止膜のSi濃度が
成膜方向に連続的に低くなるようにしたものである。
According to a fifth aspect of the present invention, in the method of manufacturing a substrate to be processed, a raw material gas containing nitrogen or oxygen and a raw material gas containing silicon are caused to flow to form a silicon-based inorganic film containing nitrogen or oxygen on the base substrate. Forming a formed anti-reflection film, and in forming the anti-reflection film, increasing the flow ratio of the source gas containing nitrogen or oxygen to the source gas containing silicon in a single film forming step. By doing so, the Si concentration of the antireflection film formed on the base substrate is continuously reduced in the film forming direction.

【0015】シリコンを含む原料ガスに対する窒素また
は酸素を含む原料ガスの流量比を変えるという簡単な流
量制御を行うだけでよく、厳密な膜厚コントロールを必
要としないので、高機能の反射防止膜をもつ被処理基板
を容易に製造できる。
It is only necessary to perform a simple flow rate control of changing the flow rate ratio of the source gas containing nitrogen or oxygen to the source gas containing silicon, and it is not necessary to strictly control the film thickness. The substrate to be processed can be easily manufactured.

【0016】請求項6に記載の微細パターンの製造方法
は、上記の被処理基板の製造方法に、さらに、上記反射
防止膜上にフォトレジスト膜を形成する工程と、このレ
ジスト膜にエキシマレーザ光などの短波長の光を用いて
露光、現像を行ないレジスト膜にマスクパターンを転写
する工程と、このマスクパターンが転写されたレジスト
膜をマスクとして、上記下地基板をエッチング加工し、
下地基板にマスクパターンを転写する工程とを備えたも
のである。
According to a sixth aspect of the present invention, there is provided a method of manufacturing a fine pattern, comprising the steps of: forming a photoresist film on the anti-reflection film; Exposure using short-wavelength light such as, a step of transferring a mask pattern to a resist film by performing development, and etching the base substrate using the resist film to which the mask pattern has been transferred as a mask,
Transferring a mask pattern to a base substrate.

【0017】反射防止膜の消衰係数が連続的に変化して
いるため、フォトレジスト膜の露光時、フォトレジスト
を透過した光が反射防止膜に入射すると、反射防止膜中
で連続的に光が吸収されていくため、下地基板から反射
してレジストに到達する光はなくなる。このため反射型
の反射防止膜プロセスのように、下地基板からの反射波
の位相を入射波と相殺するために、反射波の位相を合せ
るための非常に厳密な反射防止膜の膜厚コントロールの
必要がなくなる。光の反射を有効に防止できるので、安
定した寸法および形状の微細マスクパターンを形成でき
る。このマスクパターンが転写されたフォトレジスト膜
をマスクとして、下地基板をエッチング加工し、下地基
板にマスクパターンを転写すれば、安定した寸法および
形状の微細パターンを形成できる。また反射防止膜は一
度の成長で成膜できるため、スループットも良好であ
る。
Since the extinction coefficient of the anti-reflection film changes continuously, when light transmitted through the photoresist enters the anti-reflection film during exposure of the photoresist film, the light continuously flows through the anti-reflection film. Is absorbed, so that no light is reflected from the underlying substrate and reaches the resist. Therefore, as in the reflection type anti-reflection film process, in order to cancel the phase of the reflected wave from the underlying substrate with the incident wave, a very strict thickness control of the anti-reflection film for adjusting the phase of the reflected wave is performed. Eliminates the need. Since reflection of light can be effectively prevented, a fine mask pattern having a stable size and shape can be formed. Using the photoresist film to which the mask pattern has been transferred as a mask, the underlying substrate is etched and the mask pattern is transferred to the underlying substrate, whereby a fine pattern having stable dimensions and shapes can be formed. In addition, since the antireflection film can be formed by a single growth, the throughput is good.

【0018】請求項7に記載の半導体装置の製造方法
は、上記微細パターンの製造方法が、半導体製造過程に
用いられるものである。微細パターンが容易に製造でき
るので、集積度の高い半導体装置が容易に得られる。
According to a seventh aspect of the present invention, in the method of manufacturing a semiconductor device, the method of manufacturing a fine pattern is used in a semiconductor manufacturing process. Since a fine pattern can be easily manufactured, a highly integrated semiconductor device can be easily obtained.

【0019】上述したように本発明の反射防止膜は、一
度のCVDで成膜した単層膜でありながら、その膜の深
度方向にSi原子の濃度勾配を持ち、それにより単層膜
中で消衰係数kが深度方向に大きくなるようにしたもの
である。単層の反射防止膜であるにもかかわらず、その
膜中で連続的に入射光を吸収するため、反射光の位相合
せのための厳密な膜厚コントロールが必要なく、また下
地基板表面層の材質の影響を受けることなく、単一のプ
ロセスで良好な反射防止膜としての機能を実現できるも
のである。したがって本発明の反射防止膜を用いた場
合、安定した形状および寸法の0.25μm以下の次世
代の微細パターン加工が容易に実現できる。つぎに、こ
の反射防止膜の原理をより具体的に説明する。
As described above, the antireflection film of the present invention is a single-layer film formed by one-time CVD, but has a concentration gradient of Si atoms in the depth direction of the film, whereby the single-layer film has The extinction coefficient k is increased in the depth direction. Despite being a single-layer anti-reflection film, it continuously absorbs incident light in the film, so there is no need to strictly control the film thickness for phase adjustment of the reflected light, and the surface layer of the underlying substrate is not required. The function as a good antireflection film can be realized by a single process without being affected by the material. Therefore, when the anti-reflection film of the present invention is used, next-generation fine pattern processing with a stable shape and dimensions of 0.25 μm or less can be easily realized. Next, the principle of the antireflection film will be described more specifically.

【0020】SiOx y (酸化窒化シリコン)膜を用
いた反射防止膜の場合、平行平板型プラズマCVDなど
の装置を用いて成膜が行なわれるが、その際、屈折率
n、消衰係数kは、一定のプラズマCVD条件(圧力、
パワーなど)であれば、SiH4 (モノシラン)とN2
O(亜酸化窒素)との流量比のみによって決まる。
In the case of an anti-reflection film using a SiO x N y (silicon oxynitride) film, the film is formed by using an apparatus such as a parallel plate type plasma CVD. In this case, the refractive index n and the extinction coefficient are used. k is a constant plasma CVD condition (pressure,
Power, etc.), SiH 4 (monosilane) and N 2
It is determined only by the flow ratio with O (nitrous oxide).

【0021】したがって、反射光の位相を合せる従来の
単層反射防止膜の場合、平行平板型プラズマCVD装置
にて一定の光学定数をターゲットとして一定のCVD条
件(圧力、パワー、成膜時間、SiH4 流量、N2 O流
量)でCVDが行なわれている。
Therefore, in the case of a conventional single-layer anti-reflection film for adjusting the phase of the reflected light, a constant optical constant is used as a target and constant CVD conditions (pressure, power, film formation time, SiH CVD is performed at 4 flow rates and N 2 O flow rate).

【0022】ここで上記光学定数とはn、k、d(膜
厚)を意味し、例えば170nmの酸化膜に覆われたW
Si上の反射防止膜条件の場合にはn=2.1、k=
0.54、膜厚d=29nmであり、上記CVD条件と
はプラズマCVDの機種によりその値は異なるが、圧
力、パワー、成膜時間、SiH4 流量、N2 O流量など
各種条件を意味する。従来の単層反射防止膜を成膜する
場合、成膜中これら光学定数およびCVD条件は常に一
定であり、変えることはない。
Here, the above-mentioned optical constants mean n, k, and d (film thickness), for example, W covered with an oxide film of 170 nm.
In the case of the antireflection film condition on Si, n = 2.1 and k =
The value is 0.54 and the film thickness d = 29 nm. The value differs from the above-mentioned CVD conditions depending on the type of plasma CVD, but means various conditions such as pressure, power, film formation time, SiH 4 flow rate and N 2 O flow rate. . When a conventional single-layer antireflection film is formed, these optical constants and CVD conditions are always constant during the film formation and are not changed.

【0023】170nmの酸化膜に覆われたAl上の反
射防止膜条件の場合では、上記光学定数はn=2.1、
k=0.87、d=24nmとなる。N2 O流量でk
を、成膜時間でdを自由に変えることができから、上記
WSi上の反射防止膜記条件のうち、N2 O流量、成膜
時間のみを変えてその他の条件は変えなければ、上記光
学定数が得られる。
In the case of an antireflection film condition on Al covered with a 170 nm oxide film, the above optical constant is n = 2.1,
k = 0.87 and d = 24 nm. K at N 2 O flow rate
Can be freely changed by the film formation time. Of the above conditions for the antireflection film on the WSi, if only the N 2 O flow rate and the film formation time are changed and the other conditions are not changed, A constant is obtained.

【0024】これより消衰係数kはN2 O流量の変数で
あり、膜厚dは成膜時間の変数であることがわかる。そ
こで本発明の反射防止膜を実現するために、CVD条件
のうちN2 O流量のみを変化させ、各N2 O流量におけ
る消衰係数k(図3)、および成膜速度(図4)を実験
により求めたのち、反射防止膜の深度方向に対する消衰
係数の勾配が一定になるようにCVD中のN2 O流量と
成膜時間の関数を計算により求める(図5)。すなわ
ち、N2 O流量対kの実験データと、N2 O対成膜速度
の実験データとを近似する。その2つの近似式よりトー
タル膜厚及びk値の勾配を設定し、横軸を成膜時間(m
in)、縦軸をN2 O流量(sccm)としたタイムス
ケジュールをコンピュータで積分させて求めている。
From this, it can be seen that the extinction coefficient k is a variable of the N 2 O flow rate, and the film thickness d is a variable of the film formation time. Therefore, in order to realize the antireflection film of the present invention, only the N 2 O flow rate is changed among the CVD conditions, and the extinction coefficient k (FIG. 3) and the film formation rate (FIG. 4) at each N 2 O flow rate are changed. After an experiment, a function of the N 2 O flow rate during CVD and the film forming time is calculated by calculation so that the gradient of the extinction coefficient in the depth direction of the antireflection film is constant (FIG. 5). That is, the experimental data of N 2 O flow rate vs. k and the experimental data of N 2 O vs. deposition rate are approximated. The total film thickness and the gradient of the k value are set from the two approximate expressions, and the horizontal axis represents the film forming time (m
in), and the vertical axis is obtained by integrating a time schedule with the N 2 O flow rate (sccm) by a computer.

【0025】このタイムスケジュールにしたがってCV
D中にN2 O流量を増加させることにより、反射防止膜
表面から深度方向に一定の勾配で消衰係数kが大きくな
る反射防止膜を実現することができる。
CV according to this time schedule
By increasing the flow rate of N 2 O during D, it is possible to realize an antireflection film in which the extinction coefficient k increases with a constant gradient in the depth direction from the surface of the antireflection film.

【0026】[0026]

【発明の実施の形態】以下に本発明の微細パターンの製
造方法の実施の形態について説明する。ここでは反射防
止膜をSiOx y で構成した場合について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the method for producing a fine pattern according to the present invention will be described below. Here, the case where the antireflection film is made of SiO x N y will be described.

【0027】シリコン(Si)などの下地基板上にパタ
ーンを転写するには、次のようなフォトグラフィ技術を
用いる。図8に示すように、下地基板1上にSiOx
y 膜で構成された反射防止膜3を形成し、この反射防止
膜3上に、遠紫外線化学増幅レジスト膜4を形成する
(図8(a) )。このレジスト膜4に対しエキシマレーザ
光Lを用いて露光、現像を行ないレジスト膜4にマスク
パターン5を転写する(図8(b) )。このマスクパター
ン5が転写されたレジスト膜4をマスクとして、下地基
板1を反射防止膜3ごとエッチング加工し、下地基板1
にマスクパターン6を転写する(図8(c) )。エッチン
グ加工される下地基板1の表面層は、特にAl、p−S
i、WSix などの導電性配線材料で構成される場合、
反射率が高い。上記反射防止膜3を形成した下地基板
1、およびレジスト膜4,反射防止膜3を形成した下地
基板1で被処理基板を構成する。
To transfer a pattern onto an underlying substrate such as silicon (Si), the following photography technique is used. As shown in FIG. 8, SiO x N
An anti-reflection film 3 composed of a y film is formed, and a far ultraviolet chemically amplified resist film 4 is formed on the anti-reflection film 3 (FIG. 8A). The resist film 4 is exposed and developed using excimer laser light L, and the mask pattern 5 is transferred to the resist film 4 (FIG. 8B). Using the resist film 4 to which the mask pattern 5 has been transferred as a mask, the base substrate 1 is etched together with the antireflection film 3 to form the base substrate 1
Then, the mask pattern 6 is transferred (FIG. 8C). The surface layer of the base substrate 1 to be etched is, in particular, Al, p-S
i, when made of a conductive interconnect material such as WSi x,
High reflectivity. A substrate to be processed is constituted by the base substrate 1 on which the antireflection film 3 is formed and the base substrate 1 on which the resist film 4 and the antireflection film 3 are formed.

【0028】ここに反射防止膜であるSiOx y
は、一度のCVDで成膜される単層膜であり、平行平板
型プラズマCVD装置を使い、原料ガスとしてSiH4
(モノシラン)とN2 O(亜酸化窒素)とを流して形成
する。本実施形態は、SiOxy 膜形成時、SiH4
に対するN2 Oの流量比を増加してくことにより、下地
基板1上に成膜される反射防止膜3のSi濃度が成膜方
向に連続的に低くなるようにするものである。そこで、
このような反射防止膜を形成するための成膜条件を求め
る。
The SiO x N y film, which is an antireflection film, is a single-layer film formed by one-time CVD, using a parallel plate type plasma CVD apparatus and using SiH 4 as a source gas.
(Monosilane) and N 2 O (nitrous oxide). In the present embodiment, when forming a SiO x N y film, SiH 4
By increasing the flow ratio of N 2 O to the substrate, the Si concentration of the antireflection film 3 formed on the base substrate 1 is continuously reduced in the film forming direction. Therefore,
Film formation conditions for forming such an antireflection film are determined.

【0029】まず、平行平板型プラズマCVD装置であ
るPV−XP(国際電気社製)を用いて、SiOx y
膜の成膜を行なった時の、分光エリプソメータを用いて
測定した248nmにおける、消衰係数kのN2 O流量
に対する実験結果を求め(図3)、このときの成膜速度
を求めた(図4)。なお、N2 Oの流量制御はマスフロ
ーコントローラ(MFC)でおこなう。
First, using a parallel plate type plasma CVD apparatus PV-XP (manufactured by Kokusai Electric), SiO x N y was used.
At the time of film formation, an experimental result with respect to the N 2 O flow rate of the extinction coefficient k at 248 nm measured using a spectroscopic ellipsometer was obtained (FIG. 3), and the film formation rate at this time was obtained (FIG. 3). 4). The flow rate of N 2 O is controlled by a mass flow controller (MFC).

【0030】図3及び図4からわかるように248nm
の遠紫外光における消衰係数k及び成膜速度は、それぞ
れN2 O流量の変数であり、それぞれN2 O流量の関数
として最小二乗法により近似することができる。近似式
は図中に示す。
As can be seen from FIGS. 3 and 4, 248 nm
Far ultraviolet light in the extinction coefficient k and the deposition rate of a variable of the respective N 2 O flow rate can be approximated by the least squares method as a function of N 2 O flow rate, respectively. The approximate expression is shown in the figure.

【0031】図2に示すような消衰係数kが連続的に変
化するSiOx y 膜をモデルとしたシミュレーション
を行なった。シミュレーションは、図3と図4に示され
た式近似式を用いて、プラズマCVD中に、N2 O流量
を成膜初期から徐々に増加させることにより、成膜とと
もに厚み方向に膜中のSi原子の濃度が減少し、膜表面
で消衰係数kが0となるようにした。
A simulation was performed using a SiO x N y film whose extinction coefficient k continuously changes as shown in FIG. 2 as a model. The simulation is performed by gradually increasing the N 2 O flow rate from the initial stage of film formation during plasma CVD using the approximate expressions shown in FIGS. The concentration of atoms was reduced so that the extinction coefficient k became 0 on the film surface.

【0032】図2の反射防止膜3のモデルは、SiOx
y 膜の裏面3bから表面3aまで消衰係数kが連続的
に一定の勾配で減少するものであり、白黒の濃淡はk値
の大小(淡は低く、淡から濃へいくにしたがってk値が
高くなる)、すなわちSi原子の濃度の大小を表わして
いる。
The model of the anti-reflection film 3 of FIG. 2, SiO x
The extinction coefficient k continuously decreases at a constant gradient from the back surface 3b to the front surface 3a of the N y film. The density of black and white is the magnitude of the k value (the light value is lower, and the k value is higher as light to darker). Is higher), that is, the magnitude of the concentration of Si atoms.

【0033】図1は、上記SiOx y 膜の連続光吸収
の原理を示したものであり、入射光がSiOx y 膜中
で連続的に吸収されていく様子を表わしている。実線の
矢印は入射光を表わし、点線の矢印は反射防止膜3中で
吸収されて打ち消される光を表わしたものである。反射
防止膜3への入射光は、下層の下地基板に到達するまで
に連続的に吸収され上層のフォトレジスト膜への反射を
防止している。
FIG. 1 shows the principle of the continuous light absorption of the above-mentioned SiO x N y film, and shows how incident light is continuously absorbed in the SiO x N y film. Solid arrows indicate incident light, and dotted arrows indicate light absorbed and canceled in the anti-reflection film 3. Light incident on the anti-reflection film 3 is continuously absorbed before reaching the underlying substrate, thereby preventing reflection on the upper photoresist film.

【0034】反射防止原理は次の通りである。光の吸収
係数である消衰係数kの値が増加するに伴い光の吸収も
大きくなる反面、光の反射も大きくなる。すなわち、光
の吸収が多いと同時に光の反射も大きい。それゆえ膜中
にk値の勾配をもたせ、膜表面ではk値をゼロとして反
射をなくし、膜裏面に向かってk値を増加していく。光
は膜中で徐々に吸収、反射を繰り返し、その吸収、反射
量を増加することにより光が減衰し、もって下地基板に
光が到達する前に吸収される。
The principle of anti-reflection is as follows. As the value of the extinction coefficient k, which is the light absorption coefficient, increases, the light absorption increases, but the light reflection also increases. That is, light absorption is high at the same time as light absorption is high. Therefore, a gradient of the k value is provided in the film, the reflection is eliminated on the surface of the film with the k value being zero, and the k value increases toward the back surface of the film. Light is gradually absorbed and reflected in the film, and the light is attenuated by increasing the amount of absorption and reflection, so that the light is absorbed before reaching the underlying substrate.

【0035】つぎに、消衰係数kが連続的に変化する反
射防止膜の膜厚を求めるために、N2 O流量の成膜中の
タイムスケジュール(図5)、及びその時の成膜量(図
6)をシミュレーションにより求めた。図5は、SiO
x y 膜の膜厚を1000オングストローム(以下、オ
ングストロームを単に[A]と表わす)に規格化した時
のシミュレーションにより得られたプラズマCVDによ
る成膜時のN2 Oタイムスケジュールを示す。ここでS
iH4 流量は60sccmと一定にした。下地基板上へ
の成膜開始時、N2 O流量は、1sccmすなわちk=
2.1としてSi原子の濃度を大きくとる。N2 O流量
は徐々に増加してSi原子の濃度を減少させていき、成
膜終了時Si原子の濃度を33atm%、すなわちk=
0のSiO2 とする。なお、実施形態においては、消衰
係数kを膜表面で0、下地基板との界面部分で2.1す
なわちΔk=2.1/1000[A]の勾配に設定して
シミュレーションを行なっている。
Next, in order to determine the film thickness of the antireflection film in which the extinction coefficient k changes continuously, the time schedule during the film formation with the N 2 O flow rate (FIG. 5) and the film formation amount at that time (FIG. 5) FIG. 6) was obtained by simulation. FIG.
x N y film thickness of 1000 Å (hereinafter, simply [A] and represents Angstroms) of showing the N 2 O time schedule at the time of film formation by plasma CVD was obtained by simulation when normalized to. Where S
The iH 4 flow rate was kept constant at 60 sccm. At the start of film formation on the underlying substrate, the N 2 O flow rate is 1 sccm, that is, k =
As 2.1, increase the concentration of Si atoms. The flow rate of N 2 O gradually increases to decrease the concentration of Si atoms. At the end of film formation, the concentration of Si atoms is 33 atm%, that is, k =
0 SiO 2 . In the embodiment, the simulation is performed by setting the extinction coefficient k to 0 on the film surface and to 2.1 at the interface with the underlying substrate, that is, Δk = 2.1 / 1000 [A].

【0036】図6に示すように、図5で得られたタイム
スケジュールをn倍することにより、SiOx y 膜の
膜厚dを自由に設定することができる。したがって、レ
ジスト露光時のステッパの露光エネルギーのうちレジス
ト膜を透過して反射防止膜に入射する光のエネルギーの
面から要請される膜厚を、要請通りに設定できる。ま
た、消衰係数kの勾配は、計算により容易に変化させる
ことができる。図6は、400[A]〜4000[A]
の間でシミュレーションにより設定した膜厚で成膜した
時の測長SEMによる膜厚測定結果であるが、600
[A]〜3000[A]の間で両者は全く一致している
ことがわかる。
As shown in FIG. 6, by multiplying the time schedule obtained in FIG. 5 by n times, the thickness d of the SiO x N y film can be freely set. Therefore, the film thickness required in terms of the energy of light transmitted through the resist film and incident on the antireflection film out of the exposure energy of the stepper at the time of resist exposure can be set as required. Further, the gradient of the extinction coefficient k can be easily changed by calculation. FIG. 6 shows 400 [A] to 4000 [A].
The results of film thickness measurement by length-measuring SEM when the film was formed with the film thickness set by simulation between
It can be seen that the two values completely match between [A] and 3000 [A].

【0037】図7は、膜中のSi原子の濃度分布を調べ
るために、800[A]の厚さに成膜したSiOx y
膜のXPS(X線光電子分光分析)の結果を示したもの
である。膜表面aから深度方向にSi原子の組成比が増
加しているのがわかる。これよりシミュレーション通り
の結果が得られており、このシミュレーションに基づい
て所望の反射防止膜が成膜できることが確認できた。
FIG. 7 shows SiO x N y formed to a thickness of 800 [A] in order to examine the concentration distribution of Si atoms in the film.
3 shows the results of XPS (X-ray photoelectron spectroscopy) of the film. It can be seen that the composition ratio of Si atoms increases in the depth direction from the film surface a. As a result, a result according to the simulation was obtained, and it was confirmed that a desired antireflection film could be formed based on the simulation.

【0038】以上説明したように、実施形態の反射防止
膜によれば、レジスト膜を透過した光が下地基板に到達
するまでに連続的に光を吸収するため、光源の短波長化
に伴う定在波また段差基板上でのフォトレジスト膜厚の
違いによる定在波効果の影響を受けず、寸法精度に忠実
で形状のよい微細パターン加工が実現できる。寸法精度
に忠実で形状のよい微細パターン加工が実現できるの
で、248nmまたはそれよりも短波長の光、例えばA
rFエキシマレーザ(193nm)を用いることが可能
である。
As described above, according to the antireflection film of the embodiment, the light transmitted through the resist film continuously absorbs the light until it reaches the underlying substrate. It is not affected by the standing wave effect due to the standing wave effect due to the difference in the thickness of the photoresist on the stepped substrate due to the standing wave, and it is possible to realize a fine pattern processing which is faithful to dimensional accuracy and has a good shape. Since fine pattern processing with a good shape and faithful to dimensional accuracy can be realized, light having a wavelength of 248 nm or shorter, for example, A
An rF excimer laser (193 nm) can be used.

【0039】また、実施形態によれば、k値に勾配をも
たせるにはSiH4 とN2 Oとの流量比を単にコントロ
ールすればよく、従来のように反射波の位相を合せるタ
イプの反射防止膜のように非常に厳密な膜厚コントロー
ルを必要としない。さらに、光吸収型の反射防止膜であ
りながら単層膜で構成されるため、一度のCVDで成膜
可能であり、従来の3層の反射防止膜を用いたプロセス
と比べてスループットが高く、しかも単層反射防止膜を
用いた従来プロセスと比べてもスループットを悪くする
ことがない。
Further, according to the embodiment, in order to give a gradient to the k value, the flow rate ratio between SiH 4 and N 2 O may be simply controlled, and a conventional type of anti-reflection type in which the phases of reflected waves are matched. It does not require very strict film thickness control unlike a film. Furthermore, since it is a light absorption type anti-reflection film and is composed of a single layer film, it can be formed by a single CVD, and has a higher throughput than a conventional process using a three-layer anti-reflection film. Moreover, the throughput does not deteriorate as compared with the conventional process using a single-layer antireflection film.

【0040】[0040]

【実施例】実際に、表面層材料がAl、W、WSix
p−Siでそれぞれ構成された高反射の下地基板上に、
平行平板型プラズマCVD装置PV−XP(国際電気社
製)を用いて800[A]の膜厚のSiOx y 膜を成
膜し、さらにその上に遠紫外線化学増幅レジストXP−
8843(シプレイ社製)を成膜し、KrFエキシマレ
ーザステッパNSR−1505EX1(ニコン社製)を
用いて0.25μmのL/S(ラインアンドスペース)
パターンの加工を行なったところ、いずれの下地基板に
おいても、安定した寸法及び形状の微細パターン加工が
実現できた。また、上記4種の下地基板の段差付パター
ン上においても、同様に0.25μmのL/Sが安定し
た寸法及び形状で加工できた。
EXAMPLES In fact, the surface layer material Al, W, WSi x,
On a highly reflective base substrate composed of p-Si, respectively,
Using a parallel plate plasma CVD apparatus PV-XP (manufactured by Kokusai Electric Inc.), an SiO x N y film having a thickness of 800 [A] is formed, and a deep UV chemically amplified resist XP- is further formed thereon.
8843 (manufactured by Shipley Co., Ltd.) and a 0.25 μm L / S (line and space) using a KrF excimer laser stepper NSR-1505EX1 (manufactured by Nikon)
When the pattern was processed, a fine pattern with stable dimensions and shapes could be realized on any of the base substrates. Also, on the stepped patterns of the above four types of base substrates, L / S of 0.25 μm could be similarly processed with stable dimensions and shapes.

【0041】[0041]

【発明の効果】本発明によれば、レジスト膜を透過した
光が反射防止膜を通って下地基板に到達するまでに、反
射防止膜が連続的に光を吸収するため、光源の短波長化
に伴う定在波効果また段差下地基板上でのフォトレジス
ト膜厚の違いによる定在波効果の影響を受けず、寸法精
度に忠実で形状のよい微細パターン加工が実現できる。
According to the present invention, the antireflection film continuously absorbs light before the light transmitted through the resist film passes through the antireflection film and reaches the underlying substrate. Therefore, a fine pattern processing with good shape and faithful to the dimensional accuracy can be realized without being affected by the standing wave effect accompanying the above and the standing wave effect due to the difference in the photoresist film thickness on the step-underlying substrate.

【0042】また、反射防止膜用の原料ガスの流量比を
制御するだけでよく、従来の反射波の位相を合せるタイ
プの反射防止膜のように厳密な膜厚コントロールを必要
としないので製造が容易である。また光吸収型の反射防
止膜でありながら、多層膜ではなく単層膜であるため、
一度の成長で成膜可能であり、従来の単層の反射防止膜
を用いたプロセスと比べてもスループットを悪くするこ
とがない。さらに、下地基板材料の影響を受けないの
で、下地基板材料にかかわらず、単一のプロセスで成膜
できる。
Further, it is only necessary to control the flow rate ratio of the raw material gas for the anti-reflection film, and it is not necessary to control the film thickness strictly as in the conventional anti-reflection film of the type that matches the phase of the reflected wave. Easy. In addition, although it is a light absorption type antireflection film, it is not a multilayer film but a single layer film,
The film can be formed by a single growth, and the throughput is not deteriorated as compared with the conventional process using a single-layer antireflection film. Further, since it is not affected by the base substrate material, the film can be formed by a single process regardless of the base substrate material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施形態における反射防止膜の連続光吸収の原
理をモデル化して表わした図である。
FIG. 1 is a diagram modeling and representing the principle of continuous light absorption of an antireflection film in an embodiment.

【図2】実施形態における反射防止膜のモデル図を表わ
したものであり、色の濃淡は、深度方向に変化するk値
の大小すなわち、Si原子の濃度の大小を表わしてい
る。
FIG. 2 is a model diagram of an antireflection film according to an embodiment, in which the shade of color indicates the magnitude of the k value changing in the depth direction, that is, the magnitude of the concentration of Si atoms.

【図3】プラズマCVD装置を用いてSiOx y 膜を
成膜した時のN2 O流量に対するSiOx y 膜の24
8nmにおける消衰係数kの変化を表わした図である。
FIG. 3 shows the relationship between the flow rate of the SiO x N y film and the flow rate of N 2 O when the SiO x N y film was formed using the plasma CVD apparatus.
It is a figure showing the change of the extinction coefficient k at 8 nm.

【図4】プラズマCVD装置を用いてSiOx y 膜を
成膜した時のN2 O流量に対するSiOx y 膜の成膜
速度変化を表わした図である。
FIG. 4 is a diagram illustrating a change in the film forming speed of the SiO x N y film with respect to the N 2 O flow rate when the SiO x N y film is formed using the plasma CVD apparatus.

【図5】SiOx y 膜の膜厚を1000[A]と規格
化し、シミュレーションにより求めたプラズマCVDに
よる成膜時のN2 O流量のタイムスケジュール図であ
る。
FIG. 5 is a time schedule diagram of the N 2 O flow rate at the time of film formation by plasma CVD determined by simulation by normalizing the thickness of the SiO x N y film to 1000 [A].

【図6】シミュレーション結果による膜厚と、実際にシ
ミュレーション結果をもとに成膜したものの測長SEM
による膜厚測定結果の比較図である。
FIG. 6 shows a film thickness based on a simulation result and a length measurement SEM of a film actually formed based on the simulation result.
FIG. 7 is a comparison diagram of the results of measuring the film thickness according to FIG.

【図7】800[A]の膜厚に成膜したSiOx y
のXPS(X線光電子分光分析)の組成比結果を示す図
である。
FIG. 7 is a diagram showing a composition ratio result of XPS (X-ray photoelectron spectroscopy) of a SiO x N y film formed to a thickness of 800 [A].

【図8】半導体などの下地基板上にパターンを転写する
パターン製造方法の工程図である。
FIG. 8 is a process chart of a pattern manufacturing method for transferring a pattern onto a base substrate such as a semiconductor.

【図9】定在波効果を示すレジスト膜厚に対するレジス
ト膜内吸収光量の特性図である。
FIG. 9 is a characteristic diagram of the absorbed light amount in the resist film with respect to the resist film thickness showing the standing wave effect.

【符号の説明】[Explanation of symbols]

1 下地基板 3 反射防止膜 4 フォトレジスト膜 6 パターン Reference Signs List 1 base substrate 3 anti-reflection film 4 photoresist film 6 pattern

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】単層膜から形成され、かつ単層膜の深度方
向に消衰係数が増加している反射防止膜。
An anti-reflection film formed of a single-layer film and having an extinction coefficient increasing in a depth direction of the single-layer film.
【請求項2】上記反射防止膜は、SiOx y (酸化窒
化シリコン)、SiNx (窒化シリコン)、またはSi
x (酸化シリコン)で構成され、 上記消衰係数と相関する構成元素中のSi濃度が深度方
向に増加している請求項1に記載の反射防止膜。
2. The antireflection film is made of SiO x N y (silicon oxynitride), SiN x (silicon nitride), or Si
The antireflection film according to claim 1, wherein the antireflection film is made of O x (silicon oxide), and a Si concentration in a constituent element correlated with the extinction coefficient increases in a depth direction.
【請求項3】請求項1または2に記載の反射防止膜を下
地基板上に形成した被処理基板。
3. A substrate to be processed, wherein the antireflection film according to claim 1 is formed on a base substrate.
【請求項4】さらに上記反射防止膜上にフォトレジスト
膜を形成した請求項3に記載の被処理基板。
4. The substrate according to claim 3, further comprising a photoresist film formed on said anti-reflection film.
【請求項5】窒素または酸素を含む原料ガスとシリコン
を含む原料ガスを流すことにより、下地基板上に窒素ま
たは酸素を含むシリコン系の無機膜で構成された反射防
止膜を形成する工程を有し、 上記反射防止膜形成時、一回の成膜工程で、シリコンを
含む原料ガスに対する窒素または酸素を含む原料ガスの
流量比を相対的に増加してくことにより、下地基板上に
成膜される反射防止膜のSi濃度が成膜方向に連続的に
低くなるようにした被処理基板の製造方法。
5. A step of forming an antireflection film made of a silicon-based inorganic film containing nitrogen or oxygen on a base substrate by flowing a source gas containing nitrogen or oxygen and a source gas containing silicon. When the antireflection film is formed, the film is formed on the base substrate by relatively increasing the flow ratio of the source gas containing nitrogen or oxygen to the source gas containing silicon in one film forming step. A method for manufacturing a substrate to be processed, wherein the Si concentration of the anti-reflection film continuously decreases in the film forming direction.
【請求項6】請求項5に記載の被処理基板の製造方法
に、 さらに、上記反射防止膜上にフォトレジスト膜を形成す
る工程と、 このレジスト膜にエキシマレーザ光などの短波長の光を
用いて露光、現像を行ないレジスト膜にマスクパターン
を転写する工程と、 このマスクパターンが転写されたフォトレジスト膜をマ
スクとして、上記下地基板をエッチング加工し、下地基
板にマスクパターンを転写する工程とを備えた微細パタ
ーンの製造方法。
6. The method for manufacturing a substrate to be processed according to claim 5, further comprising: forming a photoresist film on the antireflection film; and applying a short-wavelength light such as excimer laser light to the resist film. Exposing and developing the resist pattern to transfer a mask pattern to the resist film, and using the photoresist film to which the mask pattern has been transferred as a mask, etching the base substrate and transferring the mask pattern to the base substrate. A method for producing a fine pattern comprising:
【請求項7】請求項6の微細パターンの製造方法が、半
導体製造過程に用いられる半導体装置の製造方法。
7. A method for manufacturing a semiconductor device, wherein the method for manufacturing a fine pattern according to claim 6 is used in a semiconductor manufacturing process.
JP18792297A 1997-07-14 1997-07-14 Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device Pending JPH1131650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18792297A JPH1131650A (en) 1997-07-14 1997-07-14 Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18792297A JPH1131650A (en) 1997-07-14 1997-07-14 Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH1131650A true JPH1131650A (en) 1999-02-02

Family

ID=16214559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18792297A Pending JPH1131650A (en) 1997-07-14 1997-07-14 Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH1131650A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248669B1 (en) 1998-05-01 2001-06-19 Nec Corporation Method for manufacturing a semiconductor device
KR100708640B1 (en) * 2001-02-07 2007-04-18 삼성에스디아이 주식회사 Functional film having an improved optical and electrical properties
KR100777718B1 (en) * 2001-09-14 2007-11-19 삼성에스디아이 주식회사 Target for functional films and method of manufacturing functional films using the same
JP2012506642A (en) * 2008-10-21 2012-03-15 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for performing photolithography using BARC with tilted optical properties
KR101246499B1 (en) * 2003-08-25 2013-03-25 가부시키가이샤 알박 Process for producing oxide thin film and production apparatus therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248669B1 (en) 1998-05-01 2001-06-19 Nec Corporation Method for manufacturing a semiconductor device
KR100708640B1 (en) * 2001-02-07 2007-04-18 삼성에스디아이 주식회사 Functional film having an improved optical and electrical properties
KR100777718B1 (en) * 2001-09-14 2007-11-19 삼성에스디아이 주식회사 Target for functional films and method of manufacturing functional films using the same
KR101246499B1 (en) * 2003-08-25 2013-03-25 가부시키가이샤 알박 Process for producing oxide thin film and production apparatus therefor
JP2012506642A (en) * 2008-10-21 2012-03-15 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Method for performing photolithography using BARC with tilted optical properties

Similar Documents

Publication Publication Date Title
US6514667B2 (en) Tunable vapor deposited materials as antireflective coatings, hardmasks and as combined antireflective coating/hardmasks and methods of fabrication thereof and applications thereof
US5968324A (en) Method and apparatus for depositing antireflective coating
US5698352A (en) Semiconductor device containing Si, O and N anti-reflective layer
EP0588087B1 (en) Method of forming a resist pattern using an optimized anti-reflective layer
JPH0955351A (en) Manufacture of semiconductor device
US6399481B1 (en) Method for forming resist pattern
Ogawa et al. Practical resolution enhancement effect by new complete antireflective layer in KrF excimer laser lithography
US6177235B1 (en) Antireflection treatment of reflective surfaces
JPH1131650A (en) Antireflection coating, substrate to be treated, manufacture of the substrate to be treated, manufacture of fine pattern and manufacture of semiconductor device
JP2897569B2 (en) Method for determining conditions of antireflection film used in forming resist pattern, and method for forming resist pattern
Babich et al. Hardmask technology for sub-100-nm lithographic imaging
US8153351B2 (en) Methods for performing photolithography using BARCs having graded optical properties
JP2000106343A (en) Manufacture of semiconductor device
JP3339156B2 (en) Method for manufacturing fine pattern and method for manufacturing semiconductor device
Ong et al. CVD SiN/sub X/anti-reflective coating for sub-0.5/spl mu/m lithography
KR100242464B1 (en) Method of forming anti-reflection film of semiconductor device
EP0794460A2 (en) A process for device fabrication and an anti-reflective coating for use therein
JPH0855790A (en) Resist pattern formation method and reflection preventive film formation method
JPH0855791A (en) Resist pattern formation method and reflection preventive film formation method
JPH04234109A (en) Method of forming wiring in semiconductor device
JPH0737799A (en) Fine pattern formation for semiconductor device
KR100562323B1 (en) Semiconductor device and method of manufacturing the same
Kumar et al. Dielectric bottom anti-reflective coatings for copper dual damascene interconnects
JPH09180981A (en) Anti-reflection film, forming method thereof, and manufacture of semiconductor device
KR100463170B1 (en) Manufacturing method of anti reflection coat in semiconductor device