TW451601B - The fabrication method of full color organic electroluminescent device - Google Patents

The fabrication method of full color organic electroluminescent device Download PDF

Info

Publication number
TW451601B
TW451601B TW089115831A TW89115831A TW451601B TW 451601 B TW451601 B TW 451601B TW 089115831 A TW089115831 A TW 089115831A TW 89115831 A TW89115831 A TW 89115831A TW 451601 B TW451601 B TW 451601B
Authority
TW
Taiwan
Prior art keywords
full
manufacturing
color organic
light
patent application
Prior art date
Application number
TW089115831A
Other languages
Chinese (zh)
Inventor
Ching-Yan Jau
En-Chung Jang
Jia-Fen Shie
Rung-Yuan Tsai
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW089115831A priority Critical patent/TW451601B/en
Priority to US09/715,527 priority patent/US6517996B1/en
Application granted granted Critical
Publication of TW451601B publication Critical patent/TW451601B/en
Priority to US10/310,590 priority patent/US20030118950A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0015Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterized by the colour of the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/164Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using vacuum deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Abstract

A fabrication method of full color organic electroluminescent device is disclosed, wherein the full color organic electroluminescent device is formed on the Indium-tin oxide (ITO) glass substrate. The method comprises: form patterns on the ITO glass substrate by microlithography process and clean up the surface of ITO glass substrate. Form an insulating pad on the ITO glass substrate. Form low protection mask and high protection mask by dry film photoresist process respectively, form hole conduction layer by evaporation process, form red, green, and blue sub-pixels simultaneously by co-evaporation process using low protection mask and high protection mask as the barrier. Form an electron conduction layer and metal layer by evaporation process. In the design of the processing machine, the substrate does not rotate in the film-coating process, the substrates are transferred piece by piece continuously by a conveyer belt, individual film-coating work is performed when they pass through the upper opening of the cavity of different film-coating materials.

Description

4 5 16 0 6242twf.doc/006 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明說明(f ) 本發明是有關於一種全彩有機電激發光(〇rganic Electro-Luminescent, OEL)元件的製作方法1且特別是有關 於一種利用乾膜光阻製程製作隔離罩幕於絕緣墊之上’ RGB次畫素一次同時蒸鍍完成之元件製作方法,以及其製 程機台設計。 有機電激發光的硏發起始於I960年代’迄今已超過30 年的歷史。在1963年首度發表以單晶有機化合物爲對象 的硏究報告中,於施加400伏特(Volts)之高電壓的狀態下 可以發光,但是元件特性不具實用。 自從1987年美國柯達(Kodak)公司發表有機小分子電 激發光元件(Appl. Phys. Lett., Vol.51,p914(1987))’ 以及 1990 年英國Cambridge大學亦成功地將高分子材料應用在電激 發光元件上(Nature, Vol.347, p539(1990)),奠定了有機電激 發光元件實用化的基礎,因而引發了各先進國家產、官、 學三界的高度重視,並進而投入後續的硏究與發展。 有機電激發光具有自發光、廣視角(達160度)、高應 答速度、低驅動電壓、全色彩等特點,被譽爲下一世紀的 平面顯示技術。目前有機電激發光元件的發展已經接近實 用化的階段’將來可望應用於下一代彩色平面顯示器。此 種平面發光兀件的商階應用產品將定位在全彩平面顯示元 件,如小型顯示面板、戶外顯示看板、電腦及電視螢幕等。 目前對於有機電激發光元件相關技術之開發,多偏重 於元件與材料結構。各方對於有機電激發光彩色顯示元件 的開發不遺餘力’特別是對以小分子爲材料之有機電激發 3 本紙張尺度適用令國國家標準(CNS)A4規格(210 * 297公釐 ------------i^i I----- 訂-------線 (請先Μ讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 451601 6242twf,d〇c/006 A7 _ B74 5 16 0 6242twf.doc / 006 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. 5. Description of the Invention (f) The invention relates to a full-color organic electro-luminescence (OEL) element The manufacturing method 1 of the invention relates in particular to a method for manufacturing a component using a dry film photoresist process to produce an isolation mask on an insulating pad with RGB sub-pixels simultaneously and simultaneously vapor-deposited, and a process machine design thereof. The burst of organic electro-excitation light began in the 1960's and has a history of more than 30 years. In the first research report on single crystal organic compounds published in 1963, light could be emitted when a high voltage of 400 Volts was applied, but the device characteristics were not practical. Since 1987, Kodak Company in the United States published organic small molecule electro-optical light-emitting elements (Appl. Phys. Lett., Vol. 51, p914 (1987)) 'and in 1990 the University of Cambridge in the UK has successfully applied polymer materials to Electrically excited optical elements (Nature, Vol.347, p539 (1990)) laid the foundation for the practical application of organic electrically excited optical elements, and therefore attracted great attention from industry, government and academia in advanced countries, and further invested in follow-up Research and development. Organic electro-excitation light has the characteristics of self-emission, wide viewing angle (up to 160 degrees), high response speed, low driving voltage, full color, etc., and is known as the flat display technology of the next century. At present, the development of organic electroluminescent devices is approaching the stage of practical use ', and it is expected to be applied to the next-generation color flat panel display in the future. Commercial applications of such flat light emitting elements will be positioned in full-color flat display elements, such as small display panels, outdoor display boards, computers, and television screens. At present, the development of related technologies for organic electro-optical light-emitting devices is more focused on the components and material structures. All parties have spared no effort in the development of organic electro-luminescent color display elements', especially for organic electro-excitation using small molecules as the material. 3 This paper size applies the national national standard (CNS) A4 specification (210 * 297 mm ---- -------- i ^ i I ----- Order ------- Line (Please read the precautions on the back before filling in this page) Printed by the Employee Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 451601 6242twf, doc / 006 A7 _ B7

五、發明說明(ZJ 光元件而言,已經可以製作出全彩有機電激發光的原型顯 示器。 有關於有機電激發光之全彩顯示技術,可以槪括分爲 兩大類:直接型全彩顯示技術及間接型全彩顯示技術。 間接型全彩顯示技術,包括: 1. 由TDK公司所提出一種使用濾光片(Color Filter)製 作之全彩有機電激發光元件結構。首先,以習知方法製作 發白光之電激發光元件,其次於發白光的像素之前加上紅 -綠-藍三色之濾光片,將白光分別轉換成紅、綠、藍光。 此法雖然可以利用發白光之元件製作出全彩顯示元件,但 是需要多加濾光片製程,而且使用濾光片會大幅地降低元 件的發光效率。 2. 由Idemitsu Kosan提出一種使用光色轉換層(Color Conversion Layer)製作之全彩有機電激發光元件結構,其 元件之結構與使用濾光片之發光元件結構類似。此一製程 雖然可以利用藍光元件之光色轉換來製作全彩顯示元件, 但是分隔柱的製程繁複,而且使用紅-綠-藍三色之光色轉 換層也會降低元件的發光效率。 直接型全彩顯示技術包括: 1.由 Cambridge(Adv. Mater·,V〇1.7,p541(1995); Synth. Met·,Vol. 76,pl37(19%))與 Cimrova 等人(Appl. Phys. Lett., Vol. 69, p608(1996))、Bell實驗室等三個硏究群以及V. Description of the invention (In terms of ZJ light elements, it is possible to make prototype displays of full-color organic electroluminescent light. The full-color display technology of organic electroluminescent light can be divided into two categories: direct full-color display Technology and indirect full-color display technology. Indirect full-color display technology includes: 1. A full-color organic electro-optical excitation light element structure made by TDK company using a color filter. First, to learn The method is to make a white light electric excitation light element, and then add a red-green-blue three-color filter before the white light pixels to convert white light into red, green and blue light. Although this method can use white light The device is used to make a full-color display device, but it needs to add a filter process, and the use of the filter will greatly reduce the luminous efficiency of the device. 2. Idemitsu Kosan proposed a full-color manufacturing method using a color conversion layer. The structure of the color organic electric excitation light element is similar to the structure of the light emitting element using a filter. Although this process can use the light of the blue light element Color conversion is used to make full-color display elements, but the process of separating columns is complicated, and the use of red-green-blue light-color conversion layers will also reduce the luminous efficiency of the elements. Direct full-color display technology includes: 1. By Cambridge (Adv. Mater ·, V〇1.7, p541 (1995); Synth. Met ·, Vol. 76, pl37 (19%)) and Cimrova et al. (Appl. Phys. Lett., Vol. 69, p608 (1996) ), Bell Labs and three other research groups, as well as

Motorola公司(中華民國專利,專利公告號第301,802、 318,284、318,966號)所發展出來的製作出不同深度的微空 4 本紙張尺度適用+固國家標準(CNS)A4規格(210 X 297公釐) --— — —— — —----k I ! I ! 1 I ----^ (請先閲讀背面之ii4事項再填窝本頁) :242twf. doc/006 A7 B7 i、發明說明(&gt;) 腔(Microcavity)來製造出全彩有機電激發光元件結構。但 是此種製作程序較爲繁複,而且形成不同特定深度之空腔 所需的技術及成本也較高。 2. 由 Princeton 與 Southern California兩所大學合作(Appl. Phys. Lett.,Vol.69, p2959(1996);中華民國專利,專利公告 號第294,842號)共同發展出來的。其方法是將發藍光與發 紅光之有機電激發光元件以堆疊的方式製作在基板上。不 過此一方法所使用的製程技術難度較高,而且發光元件中 間之金屬電極層會遮蔽部份的紅、綠光的強度,降低發光 效率。 3. 由日本的Kido教授所提出一種以照光脫色 (Photobleaching)方式製作全彩有機電激發光元件。這是以 照光方式破壞發光層中紅先能隙材料之共轭結構,使得材 料能隙變大,以形成綠光像素及藍光像素及紅光像素,並 疋位出不同光色之像素的位置’以適於進行全彩顯不。 4. Yang Yang提出利用噴墨印表機jet Printer)取代 旋轉塗佈機(Spm-Coater),以噴墨方式塗膜來製作高分子 電激發光元件(Science, V〇l.279, pi 135(1998))。此法具有節 省高分子材料之消耗,而且可以製作任意的顯示圖案、文 字,其墨滴的大小可達30μιτι,並且可以應用在全彩的顯 兀件上等優點。由於此法爲一種新製程,所以在應用上 仍有許多問題有待克服,如銦錫氧化玻璃的傳送、使用溶 劑及噴墨頭阻塞等。 5. 由美國柯達公司(美國專利第5,294,869、5,294,870 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 -. 經濟部智慧財產局員工消費合作社印製 451601 6242twf.d〇c/006 A7 B7 五、發明說明(ίρ 號)所提出,一種以Χ-Υ定位(X-Y Addressing Pattern)方式 製作之全彩有機電激發光元件,利用金屬遮罩(metal mask) 開孔的移位方式,將紅色、綠色及藍色分三次個別地蒸鍍 上去。此法需配合精密的定位機構,且畫素解析度將受限 於metal mask,同時不利在大面積基板製程上使用。 美國柯達公司於US patent 5294869中,另外提出 一近似與本案元件製程的全彩有機電激發光元件之製作方 法(該專利不含設備設計),爲了說明其兩者製程間之差 異,特別針對其製作流程(第1A~1E圖)逐一解說。參照 第1A圖,先在絪錫氧化玻璃基板1〇〇上用濕式光阻製程 或介電層鍍膜的方式作出垂直隔離罩幕1〇2。請參照第1B 圖至第1D圖’然後將紅色、綠色及藍色三種發光材料分 三次進行蒸鍍,其中第一次蒸鍍1〇4利用斜角6&gt;ι方式蒸 鍍上去,形成次畫素106,第二次蒸鍍ι〇8利用斜角負&lt;9 1 方式蒸鍍上去’形成次畫素i 1 〇 ’第三次蒸鍍1丨2利用正 面方向蒸鍍上去’形成次畫素114。請參照第ιέ圖,最後 的金屬層116亦以第四次蒸鍍118以斜角Θ2蒸鍍上去, 藉由垂直隔離罩幕102的遮蔽,以避免像素(pixel)間連 通。此法理論上雖可製作出全彩顯示元件,但實際上存有 一些問題分述如下: (I)垂直隔離罩幕102製作:垂直隔離罩幕丨〇2採濕 式光阻製程或介電層鍍膜的方式製作,厚度上一般並不易 超過20微米,另外在大面積基板上其厚度之均勻性亦是 一大問逼,垂直隔離罩幕高度若不一將影響到後續紅色、 6 本紙張尺度適用中Θ固豕標準(CNS)A4規格(21〇 X 297公楚) I I I----I I I I * — — — — — — — ^ &gt; — — — — — 1 — (請先閱讀背面之注意事項再填窵本頁) 4 5 16 0 1 6242twf.d〇c/006 A7 五、發明說明(f) 綠色及藍色的定位與像素大小的不均性。 (請先閱讀背面之注意事項再填寫本頁&gt; (II) 陰影遮蔽效應(Shadow effect):習知的有機電激發 光元件鍍膜的機台設計,一般是採基板載入固定之後,一 邊旋轉、一邊鍍膜的方式,以增加其鍍膜的均勻度,然而 在此隔離罩幕製程中爲了固定蒸鍍角度,勢必不能採用旋 轉鍍膜的方式。基板不旋轉時,鍍膜的均勻度仍可經校正 而提昇,但最大問題是,在基板固定不動時,基板上的每 一點相對於蒸鍍源的蒸鍍角度皆不盡相同,將造成紅色、 綠色及藍色的次畫素定位與畫素大小不均的現象,此現象 於大面積基板時將更明顯。 (III) 元件漏電流:由第1E圖其專利所述之元件製程 中可明顯地發現,在部分隔離罩幕的右側位置i20,其有 機膜層的厚度僅一層,此較薄處在鍍上金屬電極後,明顯 地會有漏電流產生,甚至短路而造成元件的失效。 經濟部智慧財產局員工消費合作社印製 習知的蒸鍍機台,各蒸鍍室獨立存在,銦錫氧化玻璃 基板由機械手臂進行拿取,送入不同的蒸鍍室進行不同目 的的蒸鍍製程。在蒸鍍的製程中,銦錫氧化玻璃基板必須 不斷的旋轉,以利於蒸鍍薄膜的均勻形成,所以,習知的 蒸鍍機台不適用於隔離罩幕製程。另外,習知的蒸鍍機台 並非運用連續式的設計,因此,空間的利用效率較低。同 時爲了傳送基板於各腔體之間,需使用具精密定位機構的 機械手臂,須利用相當複雜的控制系統,這將增加系統的 不穩定性,也大幅地增加了蒸鍍機台設備成本。 有鑑於此,本發明的目的就是在提供一種全彩有機電 7 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) A7 5 16 0 1 6242twf. doc/〇〇6 五、發明說明(6) 激發光元件的製作方法’係採用直接型的全彩顯示技術’ 元件具有較高的發光效率° 本發明的另一目的就是在提供一種全彩有機電激發光 元件的製作方法,可以使紅色、綠色及藍色次位素定位的 製程同時進行,使得製程步驟簡便可行而且有效率。 本發明的又一目的就是在提供一種全彩有機電激發光 元件的製作方法,其中獨特的絕緣墊設計,可以避免陰影 效應所造成的元件漏電流的現象’增加元件製程的良率。 本發明的再一目的就是在針對本發明所提供一種全彩 有機電激發光元件的製作方法’提供高穩定、高效率、低 成本的創新之製程基台設計。 根據本發明之上述目的’提出一種全彩有機電激發光 元件之製作方法,銦錫氧化玻璃基板先經過銦錫氧化玻璃 基板圖案化的触刻與表面淸潔處理過’在銦錫氧化玻璃基 板上利用光阻與鍍膜至程度上一絕緣墊(insulator Pad)。再 於玻璃基材上利用乾膜光阻製程製作出保護罩幕之圖案。 保護罩幕的圖案有兩種,其中一種的厚度爲1微米至10 微米,稱之爲低保護罩幕(Low Shadow Mask ’ LSM) ’另一 種的厚度爲5微米至100微米,稱之爲高保護罩幕(High Shadow Mask,HSM)。銦錫氧化玻璃基板再經另一道表面 淸潔處理。電洞傳導材料在銦錫氧化玻璃基板之正向以蒸 鍍的方式均勻地形成30毫微米至1〇〇毫微米的厚度’其 較佳的厚度爲40毫微米至80毫微米。 再以一共蒸鍍同時形成紅色、綠色及藍色次位素’此 8 本紙張尺度適用中國國家標準(CNS)A4燒格(210 X 297公釐) - -----------k — II 訂------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 經濟部智慧財產局員工消費合作社印製 451601 6242twf,doc/006 A7 ___B7 五、發明說明(?) 製程所得藍光次位素(sub-plxd)位居中,紅綠光次位素則 於兩旁。再以一斜角蒸鍍上一金屬層,金屬材料可爲鈣、 鎂、鋰、鋁、銀等。以銦錫氧化玻璃基板爲正極,金屬電 極爲負極’施予適當的操作電壓,即可得到發全彩之有機 電激發光顯示元件。 另外,再根據本發明之目的,提出一種適用於本發明 所提供全彩有機電激發光元件製作方法的製程機台設計。 請參照第2圖,此機台包括了用來傳送銦錫氧化玻璃基板 的傳送帶200(未繪示於圖上)、卡匣座(Cassette)202及數個 蒸鍍源組204,每一個蒸鍍源組204包括至少一個蒸鍍源。 這些蒸鍍源組204分別適用於電洞傳導層之蒸鍍、紅色、 綠色及藍色三原色之次位素之共蒸鍍、電子傳導層之蒸鍍 及金屬層之蒸鍍等製程步驟。請參照第2圖區域(I),在於 銦錫氧化玻璃基板212上利用乾膜光阻製程製作出保護罩 幕之圖案之後,將銦錫氧化玻璃基板212至於卡匣座202 中’並藉由傳輸帶200傳送,依序經過電洞傳導層蒸鍍源, 第2圖區域(Π),以形成電洞傳導層,接著是紅色、綠色 及藍色三原色之次位素共蒸鍍源第2圖區域(ΠΙ),以形成 紅色、綠色及藍色三原色之次位素,再來是電子傳導層蒸 鍍源’第2圖區域(IV),以形成電子傳導層,最後則是金 屬層蒸鍍源,第2圖區域(V),以形成金屬導線。這些蒸鍍 源爲相鄰排列,而且每一個蒸鍍源組204可以獨立進行蒸 鍍製程。銦錫氧化玻璃基板在鍍膜過程中並不旋轉,銦錫. 氧化玻璃基板在機台內傳送前進,請繼續參照第2圖,經 9 本紙張尺度適用中國國家標準(CNS)A4規格(210 * 297公釐) ^--------訂--------線 (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局貝工消費合作社印製 16 01 6242twf.doc/006 五、發明說明(含) 過設計的長方形開口 214時鍍膜,因此膜層的厚度將由鍍 膜速率、開口寬度216、傳送速率、蒸鍍源位置等參數所 控制,因此,可以利用這些參數來控制每一步蒸鍍製程均 在相同的時間內完成,所以,這些蒸鍍源組可以同時對不 同的銦錫氧化玻璃基板進行不同的蒸鍍製程。膜層於開口 長度(未繪示於圖上)方向的均勻度則取決於蒸鍍源位置與 開口長度方向之鍍膜速率的一致性,此可藉由於多組蒸鍍 源的校正來改善開口長度方向的均句度。由於本發明所提 供的蒸鍍設備相較於習知的蒸鍍機台具有相當多的優點, 現將兩者比較之結果列於表一 ’其中”〇”代表”佳”、”△” 代表”尙可”而” X”代表”不佳”。 表一、傳統蒸鍍機台與本鍍機台之比較 傳統蒸鍍機 本發明之蒸鍍機台 對保護罩幕製 程的適用性 X 〇 製程調整的彈 性 X 〇 對於不同尺寸 銦錫氧化玻璃 基板的適用性 Δ 〇 空間利用性 △ _ 〇 穩定性 Δ — 〇 機台的製造成 本 高 —---- 低 本紙張尺度適用中國圉家標準(CNS)A4規格(210 X 297公釐) 1111 — — — — — — ^ --------— — — — — — (請先閲讀戈面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 5 16 01 6242twf.doc/006 五、發明說明(1 ) 相較於間接型發光程序的TDK以白光加濾光方式、 Idemitsu Kosan與Kodak的藍光加光轉換方式,以及直接 型之堆疊式元件會有中間電極層的遮光效應’本發明屬於 直接型的全彩顯示技術,其元件具有較高的發光效率’故 其顯示時所需的能量消耗較低,對於應用在如手機、個人 資料助理器(Personal Data Assistant,PDA)、數位相機(Digital Still Camera,DSC)等攜帶式的電子產品特別有利。 本發明之有機電激發光元件全彩顯示製程’利用乾膜 光阻所製得之保護罩幕及斜角蒸鍍的方式來定位紅色、綠 色及藍色之次位素位址,紅色、綠色及藍色三原色之次位 素可於一次蒸鍍完成。相較於一般使用金屬遮罩位移定位 紅色、綠色及藍色分三次蒸鍍,紅色、綠色及藍色的形成 方式簡便許多,且無須遮罩定位、精密位移以及遮罩淸潔 的程序,亦無須微空腔與堆疊式元件製程之像素空腔與堆 疊式元件的繁複製程。因此,本發明之全彩紅色、綠色及 藍色定位製程,相當簡便、快速,可大幅地提昇產能,減 低元件製作成本,使產品較具競爭力。 本發明之有機電激發光元件全彩顯示製程機台上有突 破性的設計,銦錫氧化玻璃基板在鍍膜過程中並不旋轉, 銦錫氧化玻璃基板採由輸送帶連續性地逐片傳送,並同時 經過不同鍍膜腔體上方開口進行個別的鍍膜的工作。因 本紙張尺度適用中國國家標準(CNS)A4規格&lt;210 X 297公釐) ---------- --^·!—^·—!! — — &lt;請先閱讀背面之注意事項再填寫本頁〉 經濟部智慧財產局員工消費合作社印製 4 B 1 6 Ο 1 6 2 42twf.doc/006 五、發明說明(β ) 此,蒸鍍機台可以進行連續式的製程,大幅增加空間的利 用率,而且徂可適用於大靣積銦錫氧化玻璃基板的蒸鍍製 程。因爲是利用傳輸帶的方式來移動銦錫氧化玻璃基板, 避免使用機械手臂,因此,不只降低了設備的成本,亦提 高了製程的穩定性。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂,下文特舉〜較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式之簡單說明: 第1A圖至第1E圖係繪示習知—種以χ_γ定位方式製 作之全彩有機電激發光元件製程的剖面示意圖; 第2贗K系繪示根據本發明之全彩有機電激發光元件製 作方法的製程機台; 第3圖係繪示根據本發明較佳實施例所提供之6x6畫 素之簡單陣列的被動驅動顯示面板俯視示意圖;以及 第4A圖至第4G圖係繪示根據本發明較佳實施例所提 供之一種以X-Y定位方式製作之全彩有機電激發光元件製 程的剖面示意圖。 圖式之標示說明: 100、212 :銦錫氧化玻璃基板 102 :垂直保護罩 104、108、112、118、412、422、424、426、430 :蒸鍍 106、110 ' 114 :次位素 116、432 :金屬層 本紙張尺度適用中國國家標準(CNS)A4規格(2】0 X 297公釐) — — — — — — — — 丨丨 II ! I I ! _ I! , (請先閱讀背面之注意事項再填寫本頁} Λ 5 1 6 Ο 1 6242twf.doc/006 Α7 五、發明說明) 120 :保護罩幕的右側位置 200 :傳送帶 202 :卡匣座 204 :蒸鍍源組 214 ·•開口 216 :開口寬度 300、400 :基板 302、404 :銦錫氧化物圖案 304 :連接點 406 :絕緣墊 408 :低保護罩幕 410 :高保護罩幕 414 :電洞傳導層 416 :紅色次位素 418 :綠色次位素 420 :藍色次位素 428 :電子傳導層 貫施例 本發明之全彩有機電激發光元件製程採紅色、綠色及 藍色三原色之次位素同時鍍膜定位,配合基板線上動態鍍 膜的方式進行,可應用於製作被動驅動電路的全彩有機電 激發光元件顯示面板,以及主動驅動電路(如TFT驅動電 路)的全彩有機電激發光元件顯示面板。面板的畫面由畫 素(pixel)所構成,每個畫素可再細分爲紅色、綠色及藍色 (請先閱讀背面之注意事項再填寫本頁) -------訂---------— 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用_國國家標準(CNS)A4規格(210 X 297公釐) 4 5 ^ δ Ο 1 6242twf.doc/〇〇6 Α7 __5L__ 五、發明說明 三原色之次位素三個次畫素(sub-pixel),晝素的排列於被 動驅動顯示面板上是XY軸垂直交錯的點矩陣排列,於主 動驅動顯示面板上紅色、綠色及藍色三原色之次位素次位 素可爲stripe、triangle、mosaic等排列方式。請參照第3 圖,第3圖係繪示一 6x6畫素之簡單陣列的被動驅動顯示 面板的俯視示意圖,其中300爲玻璃或塑膠基板,3〇2爲 鋼錫氧化物圖案' 304爲姻錫氣化玻璃基板上與外部的連 接點。現以其製程爲例來說明本發明之全彩元件製程與鍍 膜設備設計。 請參照第4A圖,第4A圖係繪示依第3圖中IV-IV,方 向之剖面示意圖,第4B圖是將第4A圖中之單一畫素放大 來說明全彩元件之鍍膜製程。 請參照第4B圖,使用的基板400可爲玻璃或塑膠, 利用一般的黃光與蝕刻製程先製作出所需的銦錫氧化物的 圖案404,再利用光阻與鍍膜製程將絕緣墊(insulator pad)406 鍍上,絕緣墊406的材料可爲氧化矽或氮化矽等材料,其 厚度可從5-200奈米(nm),其功能有二,一爲避免有機膜 層較薄處有漏電流的產生,二爲定義發光區的大小,將畫 素大小一致化。最後再利用兩次的乾膜光阻製程,將所需 之兩種不同高度(厚度)的保護罩幕製作在絕緣墊之上,一 種爲低保護罩幕(Low Shadow Mask,LSM) 408 ’其高度 可爲1微米至10微米,一種爲高保護罩幕(High Shadow Mask,HSM) 410,其高度可爲5微米至100微米。 請參照第2圖區域(I),利用乾膜光阻製程製作出保護 (請先閉讀背面之注項再填寫本頁) i I I II I I ^ ·11/1111 . 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) 經濟部智慧財產局員工消費合作社印製 4 5)601 6242twf.d〇c/006 五、發明說明(β) 罩幕之圖案之後的銦錫氧化玻璃基板212,將銦錫氧化玻 璃基板212至於卡匣座2〇2中,卡匣座2〇2具傳送載具及 遮蔽邊緣電極罩幕之雙重功能。請參照第4C圖,利用電 洞傳導材料蒸鍍412在銦錫氧化玻璃基板212的表面蒸鍍 上一層蒸鍍電洞傳導餍(H〇ie_Transp〇rt Layer)4H。此一蒸 鍍的製程,請參照第2圖區域(II),藉由傳輸帶200傳送, 將銦錫氧化玻璃基板212傳送至第2圖區域(II)中,蒸鍍源 組204以一垂直於銦錫氧化玻璃基板212的方向蒸鍍上電 洞傳導層414 ’電洞傳導材料的蒸鍍鍍率約爲每秒鐘丨埃 到3埃。電洞傳導材料爲氮,氮,-雙苯基-氮,氮,_(間-甲基 苯)聯苯胺(N,N’-Diphenyl_N,N,_(m-T〇lyl)Benzidine,Tpc&gt;)。 電洞傳導層的厚度爲30毫微米至1〇〇毫微米的厚度,其 較佳的厚度爲40¾微米至毫微米。 請參照第4D圖。高保護罩幕410的功能是適用於紅 色次位素416、綠色次位素418及藍色次位素420定位功 能。藍光能隙之發光材料可爲電洞或電子傳遞材料,藍光 能隙之發光材料蒸鍍420是由銦錫氧化玻璃基板212之正 面進行,而紅光與綠光能隙發光材料之摻雜蒸鍍422、424 則由銦錫氧化玻璃基板212之兩側邊以適當的傾角蒸鍍, 此傾角6R與0G可從15度至80度。利用事先以乾膜光 阻製作上之高保護罩幕410的陰影遮蔽效應,將紅光與綠 光能隙之發光材料個別地與藍光能隙之發光材料共蒸鍍在 位素的左右兩邊’而位於中間的次位素則僅有藍光能隙之 發光材料蒸鍍上去。紅光與綠光能隙之發光材料之摻雜佔 本紙張尺度適用中國國家標準(CNS)A4規格(210 χ 297公釐) — — — — — — — — *t — ί — — — 訂-- - -----*5^· (請先閲讀背面之注意事項再填寫本頁) 6242twf.doc/006 經濟部智慧財產局員工消費合作社印製 B7 五、發明說明(外) 藍光能隙之發光材料中的體積百分比可從百分之〇.丨至百 分之10’因此’此步驟中膜層的厚度主要由藍光能隙之發 光材料所控制,蒸鍍的速率對藍光能隙之發光材料言約爲 每秒鐘1埃到3埃,對紅光與綠光能隙之發光材料則爲每 秒鐘0.01埃到0.33埃。共蒸鍍所使用之藍光之材料爲二 苯餅(perylene),由銦錫氧化玻璃基板之正向以蒸鍍的 方式均句地形成30毫微米至!〇〇毫微米的厚度,其較佳 的厚度亦爲40毫微米至80毫微米。而紅光摻雜物(nik red )與綠光摻雜物三-(8-羥基喹啉)鋁(1^-(8-hydroxyquinoline) aluminum,A1q3)的蒸鍍則較大的適當斜 角由兩邊同時蒸鍍,摻雜物的含量控制在百分之0.1至百 分之10 ’較佳的摻雜濃度控制在百分之0.5至百分之5之 間,此製程所得藍光次位素(sub-pixel)位居中,紅綠光次 位素則於兩旁。此一蒸鍍的製程,請參照第2圖區域(III), 傳輸帶200將銦錫氧化玻璃基板212傳送至第2圖區域 (III),利用高保護罩幕410的陰影遮蔽效應,全彩紅色、 綠色及藍色三原色之次位素414〜418的鍍膜採紅色、綠色 及藍色三種材料同時蒸鍍於預定的位置上, 請繼續參照第2圖區域(IV),傳輸帶200將銦錫氧化 玻璃基板212傳送至第2圖區域(IV),蒸鍍源204將電子 傳導材料由銦錫氧化玻璃基板212的正面蒸鍍上去。請參 照第4E圖,電子傳導材料蒸鍍426的方向垂直於銦錫氧 化玻璃基板212形成電子傳導層428。電子傳導材料的蒸 鍍鍍率約爲每一秒鐘1埃至3埃。 本紙張尺度適用令國國家標準(CNS)A4規格&lt;210* 297公釐) ------— Ill — — · I — I I I I 訂.I 1 ---I I 1 (請先閲讀背面之注意事項再填寫本頁) B7 451601 6242twf.d〇c/〇〇6 五、發明說明(/ί) 請參照第2圖區域(ν),傳輸帶200將絪錫氧化玻璃基 板212傳送至第2圖區域(V) ’蒸鍍源204以適當的斜角蒸 鍍上金屬作爲電極。請參照第4F圖’金屬蒸鍍430與銦 錫氧化玻璃基板212的法線成一傾角在銦錫氧化玻璃 基板212表面蒸鍍上一層金屬層432,可從5度至60 度,以斜角蒸鍍上鎂金屬(Mg)與銀金屬(Ag)作爲負電極, 其中鎂金屬的厚度爲1〇毫微米至100毫微米1其較佳的 厚度爲30毫微米至毫微米D銀金屬的厚度爲150毫微 米至500毫微米,其較佳的厚度爲230毫微米至350毫微 米。金屬層432由於高保護罩幕410與低保護罩幕408之 陰影遮蔽效應會自動分隔開,如此便可製得一可應用於全 彩顯示的具紅色、綠色及藍色三原色之次位素三光色的位 素,其中藍光次位素居紅光與綠光次位素之間,如第4G 圖所示。 本發明所設計的元件製程中,請參照第2圖,銦錫氧 化玻璃基板212在鍍膜過程中並不旋轉’銦錫氧化玻璃基 板212在機台內傳送前進,經過設If的長方形開口 214時 鍍膜,因此膜層的厚度將由鍍膜速率、開口寬度216、傳 送速率、蒸鏟源204位置等參數所控制’膜層於開口長度 方向(未繪示於圖上)的均勻度則取決於蒸鍍源204位置與 開口長度方向之鍍膜速率的一致性,此可藉由於多組蒸鍍 源的校正來改善開口長度方向的均勻度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 本紙張尺度適用中國國家標率(CNS)A4規格(210 X 297公爱) — — —lllllllll - I — I I I I I ^ ♦)111111 I I (請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 4 5 1 6 0 1 6242twf.doc/006 A7 _B7__ 五、發明說明(4) 和範圍內,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 經濟部智慧財產局員工消費合作社印製 8 — — — — — — — — — — —— ---I 訂·! I 1 , (請先閲讀背面之注意事項再填寫本頁) 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐)Motorola Corporation (Republic of China Patent, Patent Bulletin Nos. 301,802, 318,284, 318,966) developed micro-spaces of different depths. 4 paper sizes are applicable to the + National Standard (CNS) A4 specification (210 X 297 mm) --—— — —— — —---- k I! I! 1 I ---- ^ (Please read the ii4 item on the back before filling in this page): 242twf. Doc / 006 A7 B7 i. Description of the invention (&Gt;) Cavity (Microcavity) to fabricate a full-color organic electroluminescent device structure. However, this production process is more complicated, and the technology and cost required to form cavities of different specific depths are also high. 2. Developed jointly by Princeton and Southern California universities (Appl. Phys. Lett., Vol. 69, p2959 (1996); Republic of China Patent, Patent Publication No. 294,842). The method is to fabricate blue light-emitting and red light-emitting organic electro-optic light-emitting elements on a substrate in a stacked manner. However, the process technology used in this method is more difficult, and the metal electrode layer in the middle of the light-emitting element will shield the intensity of red and green light, reducing the light-emitting efficiency. 3. A full-color organic electro-optical excitation light element is proposed by the Japanese professor Professor Kido. This is to destroy the conjugate structure of the red-gap material in the light-emitting layer by illuminating the light, so that the material gap becomes larger to form green pixels, blue pixels, and red pixels, and position the pixels of different light colors. 'To be suitable for full-color display. 4. Yang Yang proposed to use an inkjet printer instead of a spin coater (Spm-Coater) to apply inkjet coating to fabricate polymer electroluminescent devices (Science, V〇l.279, pi 135 (1998)). This method has the advantages of saving the consumption of polymer materials, and can produce arbitrary display patterns and texts. Its ink droplet size can reach 30 μm, and it can be applied to full-color display components. Because this method is a new process, there are still many problems to be overcome in application, such as the transfer of indium tin oxide glass, the use of solvents, and the blocking of inkjet heads. 5. From the US Kodak Company (U.S. Patent Nos. 5,294,869, 5,294,870 This paper size applies to Chinese National Standard (CNS) A4 specifications (210 X 297 mm) (Please read the precautions on the back before filling this page)) Intellectual Property Bureau of the Ministry of Economic Affairs Printed by Employee Consumer Cooperatives-. Printed by Employee Consumption Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 451601 6242twf.d〇c / 006 A7 B7 V. Proposed by Invention Description (No. ί), a XY Addressing Pattern The fabricated full-color organic electro-optic light-emitting element uses metal mask openings to shift the red, green, and blue colors into three separate vapor depositions. This method requires a precise positioning mechanism, and The pixel resolution will be limited by the metal mask, and at the same time it is not suitable for large-area substrate manufacturing. In US patent 5294869, the US Kodak company also proposed a method for manufacturing a full-color organic electro-optical excitation light element that is similar to the element manufacturing process of this case ( This patent does not include equipment design. In order to explain the differences between the two processes, the production process (Figures 1A to 1E) is specifically explained one by one. In Figure 1A, a vertical isolation mask 10 is first made on a tin oxide glass substrate 100 using a wet photoresist process or a dielectric coating. Please refer to Figures 1B to 1D ', and then change the red, Three green and blue light-emitting materials are vapor-deposited in three times, of which the first vapor deposition 104 is vapor-deposited using an oblique angle 6> method to form a sub-pixel 106, and the second vapor deposition is oblique-angle 8 The negative &lt; 9 1 method is vapor-deposited to form a secondary pixel i 1 〇 'the third vapor deposition 1 丨 2 is vapor-deposited from the front direction to form a secondary pixel 114. Please refer to the figure, the final metal layer 116 It is also deposited on the fourth evaporation 118 at an oblique angle Θ2, and is shielded by the vertical isolation mask 102 to avoid pixel-to-pixel communication. Although this method can theoretically produce a full-color display element, the actual Some problems are described as follows: (I) Production of vertical isolation screen 102: Vertical isolation screen 丨 02 is made by wet photoresistance process or dielectric layer coating, and it is generally not easy to exceed 20 microns in thickness. In addition, the uniformity of thickness on a large area substrate is also a big challenge. If the height of the screen is not the same, it will affect the subsequent red. 6 This paper size is applicable to the Θ solid standard (CNS) A4 specification (21〇X 297). II I ---- IIII * — — — — — — — ^ &gt; — — — — — 1 — (Please read the notes on the back before filling this page) 4 5 16 0 1 6242twf.d〇c / 006 A7 V. Description of the invention (f) Positioning of green and blue Unevenness with pixel size. (Please read the precautions on the back before filling in this page> (II) Shadow effect: the conventional machine design for organic electroluminescent device coating, generally after the substrate is loaded and fixed, it is rotated The method of coating on one side in order to increase the uniformity of its coating. However, in order to fix the evaporation angle in the isolation mask process, it is impossible to use the rotary coating method. When the substrate is not rotated, the uniformity of the coating can still be corrected. Upgrade, but the biggest problem is that when the substrate is fixed, the evaporation angle of each point on the substrate relative to the evaporation source is different, which will cause the red, green and blue sub-pixel positioning and pixel size to be different. This phenomenon will be more obvious on large-area substrates. (III) Element leakage current: It can be clearly found in the component manufacturing process described in its patent in Figure 1E that at the right position i20 of some isolation covers, its The thickness of the organic film layer is only one layer. After this thin part is plated with a metal electrode, it is obvious that a leakage current may be generated, and even a short circuit may cause the component to fail. Member of the Intellectual Property Bureau, Ministry of Economic Affairs Consumer co-operatives print conventional vapor deposition machines. Each vapor deposition chamber exists independently. The indium tin oxide glass substrate is taken by a robotic arm and sent to different vapor deposition chambers for different purposes. In the manufacturing process, the indium tin oxide glass substrate must be continuously rotated to facilitate the uniform formation of the evaporation film. Therefore, the conventional evaporation machine is not suitable for the isolation mask process. In addition, the conventional evaporation machine is not used Continuous design, therefore, the space utilization efficiency is low. At the same time, in order to transfer the substrate between the cavities, a robot arm with a precise positioning mechanism is required, and a fairly complex control system must be used, which will increase the system instability It also significantly increases the cost of equipment for vapor deposition equipment. In view of this, the purpose of the present invention is to provide a full-color organic electricity. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210 X 297 mm). A7 5 16 0 1 6242twf. Doc / 〇〇6 V. Description of the invention (6) Manufacturing method of the excitation light element 'is a direct full-color display technology' The element has a high luminous efficiency Rate ° Another object of the present invention is to provide a method for manufacturing a full-color organic electroluminescent device, which can simultaneously perform the red, green, and blue subtopic positioning processes, making the manufacturing steps simple, feasible, and efficient. Another object of the invention is to provide a method for manufacturing a full-color organic electro-optic light-emitting device, in which a unique insulation pad design can avoid the phenomenon of leakage current of the device caused by the shadow effect, which increases the yield of the device process. Yet another object is to provide a method for manufacturing a full-color organic electro-optic excitation light element according to the present invention, 'providing a high-stability, high-efficiency, low-cost innovative process abutment design. According to the above-mentioned object of the present invention,' a full-color is proposed. In the method for manufacturing organic electro-optical light-emitting elements, the indium tin oxide glass substrate is first subjected to patterning and surface cleaning treatment on the indium tin oxide glass substrate. The photoresist and coating are used to the extent that it is insulated on the indium tin oxide glass substrate. Pad (insulator Pad). Then, a pattern of a protective cover is made on a glass substrate by a dry film photoresist process. There are two types of protective cover patterns. One of them has a thickness of 1 micrometer to 10 micrometers, which is called Low Shadow Mask 'LSM'. The other has a thickness of 5 micrometers to 100 micrometers, which is called high High Shadow Mask (HSM). The indium tin oxide glass substrate is subjected to another surface cleaning treatment. The hole conductive material is uniformly formed in a thickness of 30 nm to 100 nm 'by vapor deposition in the forward direction of the indium tin oxide glass substrate, and its preferred thickness is 40 nm to 80 nm. Then red, green and blue sub-isotopes are formed by co-evaporation at the same time. These 8 paper sizes are applicable to China National Standard (CNS) A4 firing grid (210 X 297 mm)----------- -k — Order II ------ line (Please read the notes on the back before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed by the Employee Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs Printed 451601 6242twf, doc / 006 A7 ___B7 V. Description of the invention (?) The blue-ray sub-isotopes (sub-plxd) obtained in the process are centered, and the red-green sub-isotopes are on both sides. A metal layer is then deposited at an oblique angle, and the metal material may be calcium, magnesium, lithium, aluminum, silver, or the like. By using an indium tin oxide glass substrate as a positive electrode and a metal electrode as a negative electrode, a proper operating voltage is applied to obtain a full-color organic electroluminescent display element. In addition, according to the purpose of the present invention, a process machine design suitable for the manufacturing method of the full-color organic electro-optical excitation light element provided by the present invention is proposed. Please refer to Fig. 2. This machine includes a conveyor belt 200 (not shown), a cassette 202 and a plurality of evaporation source groups 204 for conveying indium tin oxide glass substrates. The plating source group 204 includes at least one evaporation source. These vapor deposition source groups 204 are respectively suitable for the process steps such as vapor deposition of a hole conductive layer, co-evaporation of sub-topes of the three primary colors of red, green, and blue, vapor deposition of an electronic conductive layer, and vapor deposition of a metal layer. Please refer to the area (I) in FIG. 2. After the pattern of the protective cover is made on the indium tin oxide glass substrate 212 by a dry film photoresist process, the indium tin oxide glass substrate 212 is placed in the cassette holder 202 ′. The transmission belt 200 is transported sequentially through the hole conduction layer evaporation source, and the area (Π) in FIG. 2 forms a hole conduction layer, followed by the secondary isotope co-evaporation source of the three primary colors of red, green, and blue. (II) in the figure, to form the secondary isotopes of the three primary colors of red, green, and blue, and then the source of the electron conductive layer evaporation (Figure 4) (IV) to form the electron conductive layer, and finally the metal layer is evaporated. Plating source, area (V) in Figure 2, to form metal wires. These evaporation sources are arranged next to each other, and each evaporation source group 204 can independently perform an evaporation process. The indium tin oxide glass substrate does not rotate during the coating process. Indium tin. The glass oxide substrate is transported in the machine. Please continue to refer to Figure 2. According to 9 paper standards, the Chinese National Standard (CNS) A4 specification (210 * 297 mm) ^ -------- Order -------- line (please read the notes on the back before filling this page) Printed by Shelley Consumer Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs 16 01 6242twf .doc / 006 V. Description of the invention (including) The coating is applied when the rectangular opening 214 is designed. Therefore, the thickness of the film layer will be controlled by parameters such as the coating rate, opening width 216, transfer rate, and evaporation source position. The parameters are used to control each step of the evaporation process to be completed in the same time. Therefore, these evaporation source groups can perform different evaporation processes on different indium tin oxide glass substrates at the same time. The uniformity of the film layer in the direction of the opening length (not shown in the figure) depends on the consistency of the deposition source position and the coating rate in the direction of the opening length. This can be improved due to the correction of multiple sets of evaporation sources. Direction of the sentence. Since the vapor deposition equipment provided by the present invention has considerable advantages compared with the conventional vapor deposition equipment, the results of comparison between the two are listed in Table 1 where “〇” stands for “Good” and “△” stands for "尙 可" and "X" stands for "poor." Table 1. Comparison of the traditional evaporation machine and the plating machine Traditional evaporation machine The applicability of the evaporation machine of the present invention to the protective cover process X 〇 The flexibility of process adjustment X 〇 For indium tin oxide glass substrates of different sizes Applicability Δ 〇 Space utilization △ _ 〇 Stability Δ — 〇 Machine manufacturing cost is high —---- Low paper size is applicable to China National Standard (CNS) A4 specification (210 X 297 mm) 1111 — — — — — — ^ --------— — — — — — (Please read the precautions for Goumen before filling out this page) Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 5 16 01 6242twf.doc 5. Description of the invention (1) Compared with the indirect light-emitting program, TDK uses a white light plus filter method, Idemitsu Kosan and Kodak's blue light plus light conversion method, and a direct type stacked device has light shielding of the middle electrode layer. Effect 'The present invention belongs to a direct full-color display technology, and its components have higher luminous efficiency.' Therefore, the energy consumption required for display is lower. For applications such as mobile phones, personal data assistants (Personal Data A Ssistant (PDA), Digital Still Camera (DSC) and other portable electronic products are particularly advantageous. The full-color display process of the organic electro-excitation light-emitting element of the present invention uses the protective cover and oblique-angle evaporation method made of dry film photoresist to locate the red, green, and blue sub-bite address, red, green The secondary isotopes of blue and blue can be completed in one evaporation. Compared with the general use of metal mask displacement positioning red, green and blue three times of evaporation, the formation of red, green and blue is much simpler, without the need for mask positioning, precise displacement and mask cleaning procedures, Pixel cavities and stacked components are not required for the complicated reproduction process of microcavities and stacked components. Therefore, the full-color red, green, and blue positioning process of the present invention is quite simple and fast, which can greatly increase production capacity, reduce component manufacturing costs, and make the product more competitive. The organic electroluminescence device of the present invention has a breakthrough design on the full-color display manufacturing machine. The indium tin oxide glass substrate does not rotate during the coating process. The indium tin oxide glass substrate is continuously conveyed piece by piece by a conveyor belt. At the same time, the individual coating work is performed through the openings above the different coating chambers. Because this paper size applies the Chinese National Standard (CNS) A4 specification &lt; 210 X 297 mm) -----------^ ·! — ^ · —! !! — — &Lt; Please read the notes on the back before filling out this page> Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 B 1 6 Ο 1 6 2 42twf.doc / 006 V. Description of the Invention (β) The machine can perform a continuous process, which greatly increases the utilization rate of space, and is also suitable for the evaporation process of large indium tin oxide glass substrates. Because the indium tin oxide glass substrate is moved by a conveyor belt, and the use of a robot arm is avoided, not only the cost of the equipment is reduced, but the stability of the process is also improved. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the following describes the preferred embodiments and the accompanying drawings in detail as follows: Brief description of the drawings: FIG. 1A Fig. 1E is a schematic cross-sectional view showing the process of manufacturing a full-color organic electro-optical excitation light element manufactured by using the χ_γ positioning method. Fig. 2 赝 K shows a method for manufacturing a full-color organic electro-excitation light element according to the present invention. Process machine; Figure 3 is a schematic top view of a passively driven display panel with a simple array of 6x6 pixels provided according to a preferred embodiment of the present invention; and Figures 4A to 4G are preferred A schematic cross-sectional view of a manufacturing process of a full-color organic electro-optic light-emitting device manufactured in an XY positioning manner provided in the embodiment. Description of the drawings: 100, 212: Indium tin oxide glass substrate 102: Vertical protective cover 104, 108, 112, 118, 412, 422, 424, 426, 430: Evaporation 106, 110 '114: Subtopic 116 432: Metal layer This paper size is applicable to China National Standard (CNS) A4 specification (2) 0 X 297 mm. — — — — — — — — 丨 丨 II! II! _ I!, (Please read the Please fill in this page again for attention} Λ 5 1 6 Ο 1 6242twf.doc / 006 Α7 V. Description of the invention 120: Right position of the protective cover 200: Conveyor 202: Cassette holder 204: Evaporation source group 214 216: Opening width 300, 400: Substrate 302, 404: Indium tin oxide pattern 304: Connection point 406: Insulating pad 408: Low protective cover 410: High protective cover 414: Hole conductive layer 416: Red subtope 418: green sub-isotope 420: blue sub-isotope 428: electronic conductive layer implementation Example The process of the full-color organic electroluminescent device of the present invention adopts the red, green and blue sub-primary sub-isotopes to be simultaneously coated and positioned to match the substrate The method of online dynamic coating can be applied to the production of full-color passive driving circuits. Electroluminescent display panel element, and an active driving circuit (driving circuit such as a TFT) full-color organic electroluminescent display panel elements. The screen of the panel is composed of pixels, and each pixel can be subdivided into red, green, and blue (please read the precautions on the back before filling this page) ------- Order --- ------— Printed by the Consumers' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, this paper is applicable to the national standard (CNS) A4 (210 X 297 mm) 4 5 ^ δ Ο 1 6242twf.doc / 〇〇6 Α7 __5L__ V. Description of the invention Three sub-pixels of the three primary colors Three sub-pixels. The arrangement of day pixels on the passively driven display panel is a dot matrix arrangement of XY axis vertical interlaced. On the active drive display panel, the red, The sub-topes of the three primary colors of green and blue can be arranged in stripes, triangles, and mosaic. Please refer to Fig. 3. Fig. 3 is a schematic top view of a passively driven display panel with a simple array of 6x6 pixels, where 300 is a glass or plastic substrate, and 302 is a steel tin oxide pattern. 304 is a marriage tin. Connection points on the glass substrate to the outside. The process of the present invention is taken as an example to illustrate the process and coating equipment design of the full-color component of the present invention. Please refer to FIG. 4A, which is a schematic cross-sectional view taken in the direction of IV-IV in FIG. 3, and FIG. 4B is an enlargement of a single pixel in FIG. 4A to explain the coating process of full-color components. Please refer to FIG. 4B. The substrate 400 used may be glass or plastic. The pattern of the indium tin oxide 404 is firstly produced using a general yellow light and etching process, and then the insulation pad (insulator) is fabricated by a photoresist and coating process. pad) 406, the material of the insulating pad 406 can be silicon oxide or silicon nitride, and its thickness can be from 5-200 nanometers (nm). It has two functions. One is to avoid the thinner organic film layer. The generation of leakage current is to define the size of the light-emitting area and uniformize the pixel size. Finally, the dry film photoresist process was used twice to make two kinds of protective masks with different heights (thicknesses) on the insulation pad. One is Low Shadow Mask (LSM) 408 'its The height can be 1 micrometer to 10 micrometers. One is a High Shadow Mask (HSM) 410, and the height can be 5 micrometers to 100 micrometers. Please refer to the area (I) in Figure 2 and use the dry film photoresist process to create protection (Please close the note on the back before filling out this page) i II II II ^ · 11/1111. Staff Consumption of Intellectual Property Bureau, Ministry of Economic Affairs The paper size printed by the cooperative is applicable to the Chinese National Standard (CNS) A4 (210 X 297 mm) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 4 5) 601 6242twf.d〇c / 006 V. Description of Invention (β) The indium tin oxide glass substrate 212 after the pattern of the cover screen puts the indium tin oxide glass substrate 212 into the cassette holder 200, which has the dual functions of conveying a carrier and shielding the edge electrode cover. Referring to FIG. 4C, a hole-conducting material vapor deposition 412 is used to vapor-deposit a layer of hole-transmission layer 4H on the surface of the indium tin oxide glass substrate 212. For this evaporation process, please refer to the area (II) in FIG. 2, and the indium tin oxide glass substrate 212 is transferred to the area (II) in FIG. 2 through the transfer belt 200. The evaporation source group 204 is vertical The hole-conducting layer 414 'is vapor-deposited in the direction of the indium tin oxide glass substrate 212, and the hole-conducting material is vapor-deposited at a rate of about 3 to 3 angstroms per second. The hole conductive material is nitrogen, nitrogen, -bisphenyl-nitrogen, nitrogen, _ (m-methylphenyl) benzidine (N, N'-Diphenyl_N, N, _ (m-Tollyl) Benzidine, Tpc &gt;). The thickness of the hole-conducting layer is from 30 nm to 100 nm, and the preferred thickness is from 40 ¾ to 100 nm. Please refer to Figure 4D. The function of the high protective cover 410 is suitable for positioning functions of the red sub-isotope 416, the green sub-isotope 418, and the blue sub-isotope 420. The light emitting material of the blue light gap can be a hole or an electron transfer material. The evaporation of the light emitting material of the blue light gap can be performed on the front surface of the indium tin oxide glass substrate 212. The 422 and 424 plating are vapor-deposited from both sides of the indium tin oxide glass substrate 212 at an appropriate inclination angle, and the inclination angles 6R and 0G can be from 15 degrees to 80 degrees. Using the shadow masking effect of the high protective cover 410 made with dry film photoresist in advance, the light emitting materials of red and green light gaps and the light emitting materials of blue light gaps are co-evaporated on the left and right sides of the bite ' In the middle, only the blue light-gap luminescent material is vapor-deposited. The doping of luminescent materials with red and green energy gaps occupies this paper standard and applies Chinese National Standard (CNS) A4 specifications (210 χ 297 mm) — — — — — — — — — — — — — — Order — ------- * 5 ^ · (Please read the notes on the back before filling out this page) 6242twf.doc / 006 Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs B7 V. Invention Description (Outside) Blue Light Gap The volume percentage in the light-emitting material can be from 0.1% to 10%. Therefore, the thickness of the film layer in this step is mainly controlled by the blue-light-gap light-emitting material. The luminescent material is about 1 angstrom to 3 angstroms per second, and the luminescent material for the red and green light gaps is 0.01 angstroms to 0.33 angstroms per second. The blue light used for co-evaporation is diphenyl cake (perylene), and 30 nm to 30 nm are formed uniformly from the forward direction of the indium tin oxide glass substrate by evaporation. The thickness is preferably 0.00 nm, and the preferred thickness is also 40 nm to 80 nm. The evaporation of red light dopant (nik red) and green light dopant tri- (8-hydroxyquinoline) aluminum (1 ^-(8-hydroxyquinoline) aluminum (A1q3)) has a larger appropriate bevel angle. Simultaneous evaporation is performed on both sides, and the content of dopants is controlled between 0.1% and 10%. The preferred doping concentration is controlled between 0.5% and 5%. The blue light isotope obtained by this process ( sub-pixel) is located in the middle, and red and green light subtopes are on both sides. For this evaporation process, please refer to the area (III) in FIG. 2. The transfer belt 200 transfers the indium tin oxide glass substrate 212 to the area (III) in FIG. 2. The shadow shielding effect of the high-protection cover 410 is used for full color. The red, green, and blue primary isotopes of 414 to 418 are coated with three materials, red, green, and blue, at the same time. Please continue to refer to the area (IV) in Figure 2. The tin oxide glass substrate 212 is transferred to the area (IV) in FIG. 2, and the evaporation source 204 vapor-deposits an electron conductive material from the front surface of the indium tin oxide glass substrate 212. Referring to FIG. 4E, the direction of the electron conductive material evaporation 426 is perpendicular to the indium tin oxide glass substrate 212 to form the electron conductive layer 428. The evaporation rate of the electron conductive material is about 1 to 3 angstroms per second. The size of this paper is applicable to the national standard (CNS) A4 specification <210 * 297 mm) ------— Ill — — · I — IIII. I 1 --- II 1 (Please read the Please fill in this page again for the matters needing attention) B7 451601 6242twf.d〇c / 〇〇6 V. Description of the Invention (/ ί) Please refer to the area (ν) in Figure 2. The transfer belt 200 transfers the tin oxide glass substrate 212 to the second In the region (V), the vapor deposition source 204 vapor-deposits a metal as an electrode at an appropriate oblique angle. Please refer to FIG. 4F. The metal vapor deposition 430 and the normal line of the indium tin oxide glass substrate 212 form an inclination angle. A metal layer 432 is vapor-deposited on the surface of the indium tin oxide glass substrate 212. Plating magnesium metal (Mg) and silver metal (Ag) as the negative electrode, wherein the thickness of the magnesium metal is 10 nm to 100 nm 1 and its preferred thickness is 30 nm to nm. The thickness of the silver metal is 150 nm to 500 nm, and its preferred thickness is 230 nm to 350 nm. The metal layer 432 is automatically separated due to the shadow shielding effect of the high-protection screen 410 and the low-protection screen 408, so that a sub-prime with three primary colors of red, green and blue can be produced which can be applied to full-color display The three-light color isotope, in which the blue light isotope is located between the red light and the green light isotope, as shown in Figure 4G. In the component manufacturing process designed by the present invention, please refer to FIG. 2. The indium tin oxide glass substrate 212 does not rotate during the coating process. The indium tin oxide glass substrate 212 is conveyed in the machine and passes through the rectangular opening 214 provided with If. Coating, so the thickness of the coating layer will be controlled by parameters such as coating rate, opening width 216, transfer rate, and position of the steam source 204. The uniformity of the coating layer in the direction of the opening length (not shown in the figure) depends on the evaporation The position of the source 204 is consistent with the coating rate in the length direction of the opening. This can improve the uniformity in the length direction of the opening due to the correction of multiple sets of evaporation sources. Although the present invention has been disclosed as above with a preferred embodiment, it is not intended to limit the present invention. Anyone skilled in the art can apply the Chinese National Standard (CNS) A4 specification (210 X without departing from the spirit of the invention). 297 public love) — — — lllllllll-I — IIIII ^) 111111 II (Please read the notes on the back before filling out this page) Printed by the Intellectual Property Bureau Staff Consumer Cooperatives of the Ministry of Economic Affairs 4 5 1 6 0 1 6242twf.doc / 006 A7 _B7__ 5. In the description of the invention (4) and the scope, various modifications and retouching can be made, so the scope of protection of the present invention shall be determined by the scope of the attached patent application. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs 8 — — — — — — — — — — — I Order! I 1, (Please read the notes on the back before filling out this page) This paper size applies to China National Standard (CNS) A4 (210 X 297 mm)

Claims (1)

A8 B8 C8 D8 4 5 1 6 0 6242twf.d〇c/〇〇6 六、申請專利範圍 L一種全彩有機電激發光元件的製作方法’用以在一 銦錫氧化坡璃基板上形或該全彩有機電激發光元件’該方 法包括: 圖案化該銦錫氧化玻璃基板; 淸潔圖案化之該銦錫氧化玻璃基板表面; 形成一絕緣墊於該銦錫氧化玻璃基板上; 以一乾膜光阻製程形成複數個低保護罩幕之圖案; 以一乾膜光阻製程形成複數個高保護罩幕之圖案; 以一第一蒸鍍製程形成一電洞傳導層; 以該些低保護罩幕及該些高保護罩幕爲阻障,以一第 二蒸鍍製程同時形成複數個紅色、綠色及藍色次位素; 以一第三蒸鍍製程形成一電子傳導層;以及 以一第四蒸鍍製程形成一金屬層。 2.如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法,其中形成該絕緣墊的材質爲係選自由氮化 矽及氧化矽所組成之族群中的任意組合。 3 如申請專利軺圍第1項所述之全彩有機電激發光元 件的製作方法,其中該低保護罩幕的厚度爲1微米至1〇 微米。 4. 如申請專利範圍第丨項所述之全彩有機電激發光元 件的製作方法’其中該高保護罩幕的厚度爲5微米至1〇〇 微米° 5. 如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法’其中該電洞傳導層的材料爲汽氣,-雙苯 -------—I--- 私—------訂·--------I I ί請先閱讀背面之沒意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS〉A4規格(210 X 297公釐) 4 5 16 0 1 A8 BB 6242twf.d〇c/ 0 06_S_ 六、申請專利範圍 基-氮,氮’ ·(間-甲基苯)聯苯胺。 6. 如申請專利範圍第1項所述之全彩有機電激發先元 件的製作方法,其中該電洞傳導層的厚度爲30毫微米至100 毫微米。 7. 如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法,其中該共蒸鍍製程所使用之藍光之材料爲 二苯駢。 8. 如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法,其中該些紅色、綠色及藍色三原色之次位 素的厚度爲30毫微米至100毫微米。 9. 如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法,該共蒸鍍製程包括一藍光材料蒸鍍源、一 紅光摻雜蒸鍍源及一綠光摻雜蒸鍍源。 10. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法,其中形成該些紅色、綠色次位素包括一 紅光摻雜物與一綠光摻雜物三-(8-羥基喹啉)鋁。 11. 如申請專利範圍第9項所述之全彩有機電激發光 元件的製作方法,其中紅光摻雜蒸鍍源及該綠光摻雜蒸鍍 源分別位於該藍光材料蒸鍍源之兩側。 12. 如申請專利範圍第9項所述之全彩有機電激發光 元件的製作方法,形成該些藍光次位素的方法包括該藍光 材料蒸鍍源對該銦錫氧化玻璃基板之正面蒸鍍。 13. 如申請專利範圍第9項所述之全彩有機電激發光 元件的製作方法,其中該紅光摻雜蒸鍍源及該綠光摻雜蒸 20 (請先閱讀背面之注意事項再填寫本頁) 訂---------線1 經濟部智慧財產局員工消費合作社印製 本紙張尺度適用中國國家標準(CNS)A4規格(2丨0 X 297公釐) 451601 A8 BS 6242twf.doc/006 Do 六、申請專利範圍 鍍源分別以一斜角由兩邊對該銦錫氧化玻璃基板同時進行 蒸鍍。 14. 如申請專利範圍第12項所述之全彩有機電激發光 元件的製作方法,該斜角爲15度至80度。 15. 如申請專利範圍第11項所述之全彩有機電激發光 元件的製作方法,該紅光摻雜物與該綠光摻雜物的含量控 制在百分之0.1至百分之10之間。 16. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法,該第四蒸鍍製程包括了一斜角蒸鍍。 17. 如申請專利範圍第16項所述之全彩有機電激發光 元件的製作方法,該斜角蒸鍍的角度爲5度至60度。 18. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法,其中形成該金屬層的材質係選自由鈣金 屬、鎂金屬、鋰金屬' 鋁金屬及銀金屬所組成之族群中的 任意組合。 19. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法,其中該金屬層包括一鎂金屬層及一銀金 屬層。 20. 如申請專利範圍第19項所述之全彩有機電激發光 元件的製作方法,其中該鎂金屬層厚度爲10毫微米至100 毫微米。 21. 如申請專利範圍第19項所述之全彩有機電激發光 元件的製作方法,其中該銀金屬層厚度爲150毫微米至500 毫微米。 (請先閱讀背面之注意事項再填寫本頁) 訂---------線· 經濟部智慧財產局員工消費合作杜印製 本紙張尺度適用中國國家標準(CNS)A4規格(210 x 297公釐) 5 1^01 as B8 6 2 42twf.d〇c/ 0 0 6_g_ 六、申請專利範圍 22. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法;其中該金屬層爲一負電極。 (請先閱讀背面之注意事項再填寫本頁) 23. 如申請專利範圍第1項所述之全彩有機電激發光 元件的製作方法,其中該銦錫氧化玻璃基板爲一正電極。 24. 如申請專利範圍第1項所述之全彩有機電激發光元 件的製作方法,其中該絕緣電的厚度爲5微米至200微米。 25. —種適用於以保護罩幕製程製造全彩有機電激發光 元件的蒸鍍設備,該設備包括: 複數個蒸鍍源組,每一該些蒸鍍源組至少包括一個蒸 鍍源,該些蒸鍍源組分別適用於各種材料層之蒸鍍製程; 複數個卡匣座,每一該些卡匣座適用於承載一銦錫氧 化玻璃基板; 一傳輸帶,帶動該些卡匣座,將每一該些卡匣座上承 載的該銦錫氧化玻璃基板依序傳送至該些蒸鍍源組進行複 數個蒸鍍製程且在該些蒸鍍製程的過程中該輸送帶不停止 傳送的動作。 經濟部智慧財產局員工消費合作社印製 26. 如申請專利範圍第25項所述之適用於以保護罩幕 製程製造全彩有機電激發光元件的蒸鍍設備,每一該些蒸 鍍源組均包括一開口,該開口的長度與該銦錫氧化玻璃基 板的寬度相當。 22 本紙張尺度適用中國國家標準(CNS)Al規格(210 X 297公釐)A8 B8 C8 D8 4 5 1 6 0 6242twf.doc / 〇〇6. Patent application scope L A method for manufacturing a full-color organic electrical excitation light element 'for forming on an indium tin oxide glass substrate or the A full-color organic electro-optical excitation light element 'The method includes: patterning the indium tin oxide glass substrate; cleaning the patterned surface of the indium tin oxide glass substrate; forming an insulating pad on the indium tin oxide glass substrate; and using a dry film The photoresist process forms a plurality of patterns of low protection masks; the dry film photoresist process forms a plurality of patterns of high protection masks; the first vapor deposition process forms a hole conductive layer; and the low protection masks And the high protective masks are barriers, and a plurality of red, green, and blue subtopes are simultaneously formed in a second evaporation process; an electron conductive layer is formed in a third evaporation process; and a fourth A metal layer is formed during the evaporation process. 2. The manufacturing method of the full-color organic electro-optical excitation light element according to item 1 of the scope of patent application, wherein the material forming the insulating pad is any combination selected from the group consisting of silicon nitride and silicon oxide. 3 The manufacturing method of the full-color organic electro-excitation light element according to item 1 of the patent application, wherein the thickness of the low protective cover is 1 micrometer to 10 micrometers. 4. The manufacturing method of the full-color organic electro-optical light-emitting element as described in item 丨 of the patent application, wherein the thickness of the high protective cover is 5 micrometers to 100 micrometers. The manufacturing method of the full-color organic electro-optical excitation light element described in 'wherein the material of the hole conductive layer is vapor,-bisbenzene ---- --- ---------- -------- II ί Please read the unintentional matter on the back before filling out this page) Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Employee Consumer Cooperatives This paper is printed in accordance with Chinese national standards (CNS> A4 specification (210 X 297 public) (Centi) 4 5 16 0 1 A8 BB 6242twf.doc / 0 06_S_ VI. Patent application scope-nitrogen, nitrogen '· (m-methylbenzene) benzidine. 6. As described in item 1 of the scope of patent application A method for manufacturing a full-color organic electro-active excitation element, wherein the hole conductive layer has a thickness of 30 nm to 100 nm. 7. The production of a full-color organic electro-excitation optical device as described in item 1 of the scope of patent application Method, wherein the blue-light material used in the co-evaporation process is diphenylhydrazone. 8. As described in item 1 of the scope of patent application A method for manufacturing a full-color organic electroluminescent device, wherein the thicknesses of the sub-primaries of the three primary colors of red, green, and blue are 30 nm to 100 nm. 9. The full color described in item 1 of the scope of patent application A method for manufacturing an organic electroluminescent device, the co-evaporation process includes a blue-light material evaporation source, a red-light-doped evaporation source, and a green-light-doped evaporation source. The manufacturing method of the full-color organic electro-excitation light element is described, wherein forming the red and green sub-isotopes includes a red light dopant and a green light dopant tri- (8-hydroxyquinoline) aluminum. According to the method for manufacturing a full-color organic electro-optical excitation light element as described in item 9 of the scope of the patent application, the red-light-doped evaporation source and the green-light-doped evaporation source are located on both sides of the blue-light material evaporation source, respectively. 12. According to the method for manufacturing a full-color organic electro-optical light-emitting element as described in item 9 of the scope of the patent application, a method for forming the blue light sub-isotopes includes vapor-depositing a front surface of the indium tin oxide glass substrate by the blue light material evaporation source. 13. As described in item 9 of the scope of patent application Manufacturing method of colored organic electro-optic excitation light element, wherein the red light doped evaporation source and the green light doped evaporation source 20 (please read the precautions on the back before filling this page) Order --------- Line 1 Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs, Consumer Cooperatives. The paper size applies to the Chinese National Standard (CNS) A4 specification (2 丨 0 X 297 mm) 451601 A8 BS 6242twf.doc / 006 Do 6. Application scope of patents, respectively The indium tin oxide glass substrate was simultaneously vapor-deposited from both sides at an oblique angle. 14. As described in the method for manufacturing a full-color organic electroluminescent device described in item 12 of the scope of patent application, the oblique angle is 15 degrees to 80 degrees. 15. As described in the method for manufacturing a full-color organic electroluminescent device described in item 11 of the scope of patent application, the content of the red light dopant and the green light dopant is controlled between 0.1% and 10% between. 16. According to the method for manufacturing a full-color organic electro-optic excitation device described in item 1 of the scope of the patent application, the fourth vapor deposition process includes a beveled vapor deposition. 17. According to the method for manufacturing a full-color organic electro-optical light-emitting device described in item 16 of the scope of the patent application, the angle of the oblique-angle evaporation is 5 to 60 degrees. 18. The method for manufacturing a full-color organic electro-optic light-emitting device as described in item 1 of the scope of patent application, wherein the material forming the metal layer is selected from the group consisting of calcium metal, magnesium metal, lithium metal, aluminum metal, and silver metal. Any combination of ethnic groups. 19. The method for manufacturing a full-color organic electro-optic light-emitting device according to item 1 of the scope of patent application, wherein the metal layer includes a magnesium metal layer and a silver metal layer. 20. The method for manufacturing a full-color organic electro-optic light-emitting device according to item 19 in the scope of the patent application, wherein the magnesium metal layer has a thickness of 10 nm to 100 nm. 21. The method for manufacturing a full-color organic electro-optic light-emitting device according to item 19 of the scope of patent application, wherein the silver metal layer has a thickness of 150 nm to 500 nm. (Please read the precautions on the back before filling this page) Order --------- Line · Consumer Cooperation of Intellectual Property Bureau of the Ministry of Economic Affairs Du printed this paper standard applicable to China National Standard (CNS) A4 Specification (210 x 297 mm) 5 1 ^ 01 as B8 6 2 42twf.doc / 0 0 6_g_ 6. Application scope of patent 22. The manufacturing method of the full-color organic electro-optical excitation light element as described in item 1 of the scope of patent application; The metal layer is a negative electrode. (Please read the precautions on the back before filling this page.) 23. The manufacturing method of the full-color organic electroluminescent device described in item 1 of the patent application scope, wherein the indium tin oxide glass substrate is a positive electrode. 24. The method for manufacturing a full-color organic electro-optic excitation light element as described in item 1 of the scope of the patent application, wherein the thickness of the insulating capacitor is 5 μm to 200 μm. 25. An evaporation device suitable for manufacturing a full-color organic electro-optical excitation light element in a protective cover process, the device comprising: a plurality of evaporation source groups, each of which includes at least one evaporation source, The evaporation source groups are respectively suitable for the evaporation process of various material layers; a plurality of cassette holders, each of which is suitable for carrying an indium tin oxide glass substrate; a transmission belt drives the cassette holders , Sequentially transferring the indium tin oxide glass substrate carried on each of the cassette holders to the evaporation source groups to perform a plurality of evaporation processes, and the conveyor belt does not stop transmitting during the evaporation processes Actions. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 26. As described in item 25 of the scope of patent application, the evaporation equipment suitable for manufacturing full-color organic electro-optical excitation light elements in a protective cover process, each of these evaporation source groups Each includes an opening, and the length of the opening is equivalent to the width of the indium tin oxide glass substrate. 22 This paper size applies to Chinese National Standard (CNS) Al specifications (210 X 297 mm)
TW089115831A 2000-08-07 2000-08-07 The fabrication method of full color organic electroluminescent device TW451601B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW089115831A TW451601B (en) 2000-08-07 2000-08-07 The fabrication method of full color organic electroluminescent device
US09/715,527 US6517996B1 (en) 2000-08-07 2000-11-17 Method of manufacturing full-color organic electro-luminescent device
US10/310,590 US20030118950A1 (en) 2000-08-07 2002-12-04 Method of manufacturing full-color organic electro-luminescent device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW089115831A TW451601B (en) 2000-08-07 2000-08-07 The fabrication method of full color organic electroluminescent device

Publications (1)

Publication Number Publication Date
TW451601B true TW451601B (en) 2001-08-21

Family

ID=21660677

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089115831A TW451601B (en) 2000-08-07 2000-08-07 The fabrication method of full color organic electroluminescent device

Country Status (2)

Country Link
US (2) US6517996B1 (en)
TW (1) TW451601B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7173370B2 (en) 2001-02-01 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US7196360B2 (en) 2001-02-08 2007-03-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7332857B2 (en) 2001-01-18 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7342355B2 (en) 2000-12-28 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having organic light emitting material with mixed layer
US7399991B2 (en) 2001-02-22 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
US7432116B2 (en) 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
CN100456488C (en) * 2006-06-26 2009-01-28 友达光电股份有限公司 Display faceplate of full color organic electroluminescence, and fabricating method
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
US7714503B2 (en) 2006-05-30 2010-05-11 Au Optronics Corp. Organic electroluminescence panel and method for fabricating the same
US8310147B2 (en) 2000-12-28 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Luminescent device
US8354786B2 (en) 2001-02-01 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010104215A (en) * 2000-05-12 2001-11-24 야마자끼 순페이 A method of manufacturing a light emitting device
TW518909B (en) * 2001-01-17 2003-01-21 Semiconductor Energy Lab Luminescent device and method of manufacturing same
US6791258B2 (en) * 2001-06-21 2004-09-14 3M Innovative Properties Company Organic light emitting full color display panel
JP2003017255A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP2003017254A (en) * 2001-06-29 2003-01-17 Sanyo Electric Co Ltd Manufacturing method of electroluminescent display
JP4707271B2 (en) * 2001-06-29 2011-06-22 三洋電機株式会社 Method for manufacturing electroluminescence element
JP3877613B2 (en) * 2002-03-05 2007-02-07 三洋電機株式会社 Method for manufacturing organic electroluminescence display device
US6931132B2 (en) * 2002-05-10 2005-08-16 Harris Corporation Secure wireless local or metropolitan area network and related methods
CN1310342C (en) * 2003-05-07 2007-04-11 友达光电股份有限公司 Organic light-emitting diode vapour-deposition machine table
US7092206B2 (en) * 2003-06-25 2006-08-15 Hitachi Global Storage Technologies Netherlands B.V. Magnetic head with magnetic layers of differing widths and third pole with reduced thickness
US7022534B2 (en) * 2004-01-14 2006-04-04 Osram Opto Semiconductors Gmbh Optimal bank height for inkjet printing
JP2007531236A (en) * 2004-05-18 2007-11-01 メカロニクス カンパニー リミテッド Organic light emitting layer formation method
US20060105550A1 (en) * 2004-11-17 2006-05-18 Manish Sharma Method of depositing material on a substrate for a device
WO2009029302A2 (en) * 2007-05-08 2009-03-05 University Of Washington Shadow edge lithography for nanoscale patterning and manufacturing
JP5623786B2 (en) * 2009-05-22 2014-11-12 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition equipment
TWI472639B (en) * 2009-05-22 2015-02-11 Samsung Display Co Ltd Thin film deposition apparatus
US8882920B2 (en) 2009-06-05 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
US8882921B2 (en) * 2009-06-08 2014-11-11 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101074792B1 (en) * 2009-06-12 2011-10-19 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101117719B1 (en) * 2009-06-24 2012-03-08 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101127575B1 (en) * 2009-08-10 2012-03-23 삼성모바일디스플레이주식회사 Apparatus for thin film deposition having a deposition blade
JP5328726B2 (en) * 2009-08-25 2013-10-30 三星ディスプレイ株式會社 Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5677785B2 (en) * 2009-08-27 2015-02-25 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
JP5611718B2 (en) * 2009-08-27 2014-10-22 三星ディスプレイ株式會社Samsung Display Co.,Ltd. Thin film deposition apparatus and organic light emitting display device manufacturing method using the same
US8696815B2 (en) * 2009-09-01 2014-04-15 Samsung Display Co., Ltd. Thin film deposition apparatus
US20110052795A1 (en) * 2009-09-01 2011-03-03 Samsung Mobile Display Co., Ltd. Thin film deposition apparatus and method of manufacturing organic light-emitting display device by using the same
US8876975B2 (en) 2009-10-19 2014-11-04 Samsung Display Co., Ltd. Thin film deposition apparatus
KR101084184B1 (en) * 2010-01-11 2011-11-17 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101174875B1 (en) * 2010-01-14 2012-08-17 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101193186B1 (en) * 2010-02-01 2012-10-19 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101156441B1 (en) * 2010-03-11 2012-06-18 삼성모바일디스플레이주식회사 Apparatus for thin layer deposition
KR101202348B1 (en) 2010-04-06 2012-11-16 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
US8894458B2 (en) 2010-04-28 2014-11-25 Samsung Display Co., Ltd. Thin film deposition apparatus, method of manufacturing organic light-emitting display device by using the apparatus, and organic light-emitting display device manufactured by using the method
KR101223723B1 (en) 2010-07-07 2013-01-18 삼성디스플레이 주식회사 Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
KR101129030B1 (en) * 2010-07-09 2012-03-23 주식회사 하이닉스반도체 Method for forming etching barrier by using shadow effect and method for fabricating one side contact of vertical transistor
KR101673017B1 (en) 2010-07-30 2016-11-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101723506B1 (en) 2010-10-22 2017-04-19 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101738531B1 (en) 2010-10-22 2017-05-23 삼성디스플레이 주식회사 Method for manufacturing of organic light emitting display apparatus, and organic light emitting display apparatus manufactured by the method
KR20120045865A (en) 2010-11-01 2012-05-09 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR20120065789A (en) 2010-12-13 2012-06-21 삼성모바일디스플레이주식회사 Apparatus for organic layer deposition
KR101760897B1 (en) 2011-01-12 2017-07-25 삼성디스플레이 주식회사 Deposition source and apparatus for organic layer deposition having the same
KR101852517B1 (en) 2011-05-25 2018-04-27 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101840654B1 (en) 2011-05-25 2018-03-22 삼성디스플레이 주식회사 Apparatus for organic layer deposition and method for manufacturing of organic light emitting display apparatus using the same
KR101857249B1 (en) 2011-05-27 2018-05-14 삼성디스플레이 주식회사 Patterning slit sheet assembly, apparatus for organic layer deposition, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR101826068B1 (en) 2011-07-04 2018-02-07 삼성디스플레이 주식회사 Apparatus for thin layer deposition
JP6155020B2 (en) * 2012-12-21 2017-06-28 株式会社半導体エネルギー研究所 Light emitting device and manufacturing method thereof
KR20140118551A (en) 2013-03-29 2014-10-08 삼성디스플레이 주식회사 Deposition apparatus, method for manufacturing organic light emitting display apparatus and organic light emitting display apparatus
KR102037376B1 (en) 2013-04-18 2019-10-29 삼성디스플레이 주식회사 Patterning slit sheet, deposition apparatus comprising the same, method for manufacturing organic light emitting display apparatus using the same, organic light emitting display apparatus manufacture by the method
TWI791481B (en) * 2017-01-30 2023-02-11 德商麥克專利有限公司 Method for forming an organic electroluminescence (el) element
GB201718897D0 (en) * 2017-11-15 2017-12-27 Microsoft Technology Licensing Llc Superconductor-semiconductor fabrication
US11024792B2 (en) 2019-01-25 2021-06-01 Microsoft Technology Licensing, Llc Fabrication methods
CN114072915A (en) * 2019-02-15 2022-02-18 微软技术许可有限责任公司 Fabrication method using oblique deposition and shadow walls
EP4139970A1 (en) * 2020-04-22 2023-03-01 Microsoft Technology Licensing, LLC Method of forming shadow walls for fabricating patterned structures

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358472A (en) * 1978-06-16 1982-11-09 Optical Coating Laboratory, Inc. Multi-layer coating method
US4344988A (en) * 1978-08-01 1982-08-17 Nippon Sheet Glass Co., Ltd. Method for forming patterned coating
US5294869A (en) * 1991-12-30 1994-03-15 Eastman Kodak Company Organic electroluminescent multicolor image display device
JP2845856B2 (en) * 1997-03-10 1999-01-13 出光興産株式会社 Method for manufacturing organic electroluminescence device
JPH1161386A (en) * 1997-08-22 1999-03-05 Fuji Electric Co Ltd Film forming device of organic thin film light emitting element
JPH11199864A (en) * 1997-10-10 1999-07-27 Koto Gijutsu Kenkyuin Kenkyu Kumiai Production of electroluminescence device
US6384529B2 (en) * 1998-11-18 2002-05-07 Eastman Kodak Company Full color active matrix organic electroluminescent display panel having an integrated shadow mask
US6537607B1 (en) * 1999-12-17 2003-03-25 Texas Instruments Incorporated Selective deposition of emissive layer in electroluminescent displays

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8432094B2 (en) 2000-12-28 2013-04-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8310147B2 (en) 2000-12-28 2012-11-13 Semiconductor Energy Laboratory Co., Ltd. Luminescent device
US7342355B2 (en) 2000-12-28 2008-03-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device having organic light emitting material with mixed layer
US9362518B2 (en) 2000-12-28 2016-06-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7915807B2 (en) 2000-12-28 2011-03-29 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US8878431B2 (en) 2000-12-28 2014-11-04 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US9209418B2 (en) 2000-12-28 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and method of manufacturing the same
US7332857B2 (en) 2001-01-18 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US9219241B2 (en) 2001-02-01 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US7459722B2 (en) 2001-02-01 2008-12-02 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US7173370B2 (en) 2001-02-01 2007-02-06 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US8674348B2 (en) 2001-02-01 2014-03-18 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US7858977B2 (en) 2001-02-01 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US9349977B2 (en) 2001-02-01 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device having mixed layer including hole transporting compound
US8174007B2 (en) 2001-02-01 2012-05-08 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US9608224B2 (en) 2001-02-01 2017-03-28 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting element and display device using the element
US8354786B2 (en) 2001-02-01 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
US7456425B2 (en) 2001-02-08 2008-11-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US8513648B2 (en) 2001-02-08 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7629025B2 (en) 2001-02-08 2009-12-08 Semiconductor Energy Laboratory Co., Ltd. Film formation apparatus and film formation method
US7196360B2 (en) 2001-02-08 2007-03-27 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US7432116B2 (en) 2001-02-21 2008-10-07 Semiconductor Energy Laboratory Co., Ltd. Method and apparatus for film deposition
US7663149B2 (en) 2001-02-22 2010-02-16 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
US7399991B2 (en) 2001-02-22 2008-07-15 Semiconductor Energy Laboratory Co., Ltd. Organic light emitting device and display device using the same
US7714503B2 (en) 2006-05-30 2010-05-11 Au Optronics Corp. Organic electroluminescence panel and method for fabricating the same
CN100456488C (en) * 2006-06-26 2009-01-28 友达光电股份有限公司 Display faceplate of full color organic electroluminescence, and fabricating method

Also Published As

Publication number Publication date
US6517996B1 (en) 2003-02-11
US20030118950A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
TW451601B (en) The fabrication method of full color organic electroluminescent device
US11751455B2 (en) Non-common capping layer on an organic device
CN108933155A (en) Organic light-emitting display device
CN103187539B (en) Organic luminescent device and manufacture method thereof
EP3321986B1 (en) Organic light emitting diode and organic light emitting diode display device including the same
KR101229022B1 (en) Method of fabricating Organic electro luminescent device
US20150014667A1 (en) Oled device and manufacturing method thereof, display apparatus
KR20110089663A (en) Apparatus for thin layer deposition, method for manufacturing of organic light emitting display apparatus using the same, and organic light emitting display apparatus manufactured by the method
CN103283306B (en) The forming method of evaporation film and the manufacture method of display device
JP5565047B2 (en) Organic electroluminescence device and method for producing the same
KR20120029895A (en) Apparatus for thin layer deposition and method for manufacturing of organic light emitting display apparatus using the same
CN1640201B (en) Organic electroluminescence display and its manufacturing method
WO2020258395A1 (en) Organic electroluminescent component and display panel
CN105378139B (en) The manufacture method of evaporation coating device, evaporation coating method and organic electroluminescent device
JP5718362B2 (en) Vapor deposition apparatus, vapor deposition method, and manufacturing method of organic electroluminescence display apparatus
WO2018188153A1 (en) Woled display device
US10692937B2 (en) Manufacturing method of OLED display panel with stacks structure
WO2019109438A1 (en) Stacked oled device and manufacturing method thereof
US11903300B2 (en) Pixel configurations for high resolution OVJP printed OLED displays
KR100787452B1 (en) Organic light emitting display device
KR100768230B1 (en) Organic electro luminescence display device
TW410529B (en) Method for fabricating a full-color organic electro-luminescent device
Han et al. OLED Manufacturing Process for TV Application
KR100761989B1 (en) Single-direction powered oled
JP2014067627A (en) Organic el display panel and method of manufacturing the same

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent