137 137 經濟部中央標聿局月工消费合作社印狀 410529 3 56Stwf.doc/006 五、發明说明(/ ) 本發明是有關於一種全彩有機電激發光(〇rganic Electm-Lummescent,OEL)元件的製作方法,且特別是有關-於一種利用使發光材料結構產生共軛偶合及能隙減小之方 式製作全彩有機電激發光元件的方法。 有機電激發光的硏發起始於1960年代,迄今已超過30 年的歷史。在1963年首度發表以單晶有機化合物爲對象 的硏究報告中’於施加400伏特(Volts)之高電壓的狀態下 可以發光’但是其發光強度仍遠低於實用階段所需之強 度。 自從1987年美國柯達(Kodak)公司發表有機小分子電 激發光元件(Appl. Phys· Lett.,VoL51,ρ914(198·7)),以及 1990 年英國Cambridge大學亦成功地將高分子材料應用在電激 發光元件上(Nature, Vol.347, p539(1990)),奠定了有機電激 發光元件實用化的基礎,因而引發了各先進國家產、官、 學三界的高度重視,並進而投入後續的硏究與發展。 有機電激發光具有自發光、廣視角(達160度)、高應 答速度、低驅動電壓、全色彩等特點,被譽爲下一世紀的 平面顯示技術。目前有機電激發光元件的發展已經接近實 用化的階段,將來可望應用於下一代彩色平面顯示器。此 種平面發光元件的高階應用產品將定位在全彩平面顯示元 件,如小型顯示面板、戶外顯示看板、電腦及電視螢幕等。 目前對於有機電激發光元件相關技術之開發,多偏重 於兀件與材料結構。各方對於有機電激發光彩色顯示元件 的開發不遺餘力,特別是對以小分子爲材料之有機電激發 3 (請先閲嘴背面之注意事ίρ4填寫本茛) --1 -° 本紙張尺度適汛中國园家標準(CNS )以故枋丨2ΪΟΧ29·?公 經濟部中央標準局貝工消费合作社印¾ 410529 3568twf.doc/006 A1 ________—______ 、發明説明(之) 光元件而言,已經可以製作出全彩有機電激發光的原型顯 示器。然而對於以高分子爲材料之全彩有機電激發光元件, 而言,其元件的製作仍是一大問題,主要是受限於溶液旋 轉塗佈(Spin-Coating)製程’無法確實定位出紅、綠、藍(R_ G、B)三種光色之像素(Pixel)的位置。 有關於有機電激發光之全彩顯示技術,可以槪括分爲 兩大類:I .直接型全彩顯示技術;及II.間接型全彩顯示 技術。茲就習知技藝中這兩種不同的全彩顯示技術分別加 以說明如下: I .直接型全彩顯示技術 請參照第1圖,其所繪示的是習知一種以微空腔 (Microcavhy)方式製作之全彩有機電激發光元件結構的剖 面示意圖。此種方法是由Cambridge(Adv. Mater.,Vol.7, p541(1995); Synth. Met·,Vol. 76, pl37(1996))與 Cimrova 等 人(Appl. Phys· Lett·,Vol. 69, p608(1996))、Bell 實驗室等 三個硏究群以及Motorola公司(中華民國專利,專利公告 號第301,802、318,284、318,966號)所發展出來的。其方法 是在有機電激發光元件製程中製作出不同特定深度的空腔 (Cavity),如第1圖所示。首先提供材質爲二氧化矽/矽氮 化物(Si02/SiNJ的玻璃基底100,在玻璃基底100上形成材 質爲氮化矽(Sl3N4)及聚亞醯胺(Polynmde)而厚度不同之介 電塡充層(Filler Dielectric Mirror)102 ’做爲四分之一波長 堆疊層(Quarter Wave Stack)。其次於介電塡充層102上形 成銦錫氧化層(Indium Tin Oxide, ITC0104。再以蒸鍍法在銦 4 適用中國國家椋羋(CNS ) Li拓(210x297.;>^· } ^ ---------裝-------訂^------線 t 一* (請t閲讀背而之注意事Jf'人填寫本I ) A7 經濟部中央標準局只工消费合作社印製 Η 7 五、發明説明()) ~~~ 錫氧化層104上形成發光層(Emission Layer)106°其中,介 電塡充層102、銦錫氧化層104及發光層丨06所疊合之厚 度即爲微空腔深度110。接著在發光層106上,形成金屬 電極108 ’以完成全彩有機電激發光元件結構的製作。 請參照第2圖,其所繪示的是具有不同微空腔結構之 兀件的電激發光(Electroluminescent, EL)光譜。其中,橫車由 所表示的是波長,縱軸所表示的是電激發光的強度。圖中 線200是不具空腔(Noncavity)結構之三-(8-羥基 )銘 (Tris-(8-Hydroxyquinoline)Aluminum,Alq3)/疊氮甲基聯胺 (Triazole Diamine, TAD)(A1q3/TAD)電激發光元件的光譜, 其日普線之丰商寬(Full Width at Half Maximum, FWHM)約爲 100nm。線202則是具有多重空腔(Multimode Cavity)結構 之三-(8-羥基 )鋁/疊氮甲基聯胺電激發光元件的光譜, 其中第二個峰値(Peak)的半高寬約爲18iun。 利用光學干涉的原理,不同特定深度之微空腔,會使 得電激發光的光譜重新分佈。因而可以得到半高寬較窄、 解析度較高的電激發光光譜,如第2圖所示,此外還兼具 增進光色純度的功效。因此,若元件原本所發出的光色爲 白光,便可以藉由微空腔製程得到能夠發出紅、綠、藍三 種光色之全彩有機電激發光元件。但是此種製作程序較胃 繁複,而且形成不同特定深度之空腔所需的技術及成本$ 較高。 請參照第3圖,其所繪示的是習知一種以堆疊(Stack) 方式製作之全彩有機電激發光元件結構的剖面示意圖。# 本紙張尺度適用中國囡家榡準(CNS )如忧佑(2i〇x2<m>^ ) (誚先閲讀背而之>±'意事^-丨填*?本頁) -等 -訂 線. 3 568t wf.doc/006 Α7 Η 7 經潢部中央標準局员工消费合作社印災 五、發明説明(¥ ) 種方法是由Princeton與Southern California兩所大學合作 (Appl. Phys. Lett.,Vol.69, p2959(1996);中華民國專利,專 利公告號第294,842號)共同發展出來的。其方法是將發藍 光與發紅光之有機電激發光元件以堆疊的方式製作在基板 上。如第3圖所示,首先提供玻璃基底300,並在其上以 堆疊方式依序形成藍光發光元件層302,以及紅光發光元 件層304。其中藍光發光元件層302中,具有銦錫氧化層 306、氮,氮雙苯基-氮,氮’-(間-甲基苯)聯苯胺(队1^’-Diphenyl-N,N’-(m-Tolyl)Benzidine,TPD)層 308、苯氧雙-(8-經基 )銘(Phenoxyl Bis-(8-HydroxyQuinoline)Aluminum, Alq20Ph)層310、三-(8-羥基 )鋁層312及鎂金屬層314。 而紅光發光元件層304中,則具有銦錫氧化層316、氮,氮 雙苯基-氮,氮’-(間-甲基苯)聯苯胺層318、氮,氮雙苯基-Μ,氣-(間-甲基本)聯本I女/二-(8-經基 )iS (TPD/AIQ3) ί爹 雜層320、鎂金屬層322及銀金屬層324。 利用上述方法所製作出之堆疊式有機電激發光元件可 以同時發出藍光與紅光,應用此一方法便可以製作出能夠 發出紅、綠、藍三種光色之堆疊式有機電激發光元件像素。 不過此一方法所使用的製程技術難度較高,而且發光元件 中間之金屬電極層會遮蔽部份的紅、綠光的強度,降低發 光效率。 請參照第4圖,其所繪示的是習知一種以Χ-Υ定位(Χ-Υ Addressing Pattern)方式製作之全彩有機電激發光元件結構 的剖面示意圖。此法是由美國柯達公司(美國專利第 6 本紙張尺度適用t國國家榡準(CRS >八4心?,( ' ........ --j- - - I I -----孑卜- » - ^^1 -It - T n si I ^^1 >^i i ("先聞讀背而之.江意事項存填艿本頁) A7 1J7 410529 3568twf.doc/006 i、發明説明(s) 5,294,869、5,294,870號)所硏發,採用X-Y定位方式,先 在銦錫氧化玻璃(ΙΤΟ玻璃)基板上作出垂直保護罩幕— (Vertical Shadow Mask)404 *其中銦錫氧化玻璃基板是由玻 璃基底400及銦錫氧化層402構成。其次把紅、綠、藍三 種光色的發光材料分別蒸鍍在垂直保護罩幕404之間的銦 錫氧化層402上,形成發光元件層。此發光元件層具有電 洞傳遞層(Hole Transport Layer)406、發光層408及電子傳 遞層(Electron Transport Layer)410。然後再以不與銦錫氧化 玻璃垂直的傾斜方式,將金屬電極412蒸鍍於發光元件層 上,藉由垂直保護罩幕404的遮蔽,可以避免不同光色像 素之間產生短路情況◊此法雖然可以製作出全彩顯示元 件,但是垂直保護罩幕404與紅、綠、藍三種光色之像素 的定位蒸鍍製程繁複,而且這種全彩顯示技術僅適合使用 於以蒸鍍製程爲主的小分子元件上,對於使用溶液塗膜製 程之高分子元件並不適合。 請參照第5A圖至第5F圖,其所繪示的是習知一種以 照光脫色(Ph〇i〇bleaching)方式製作全彩有機電激發光元件 之製作流程的剖面示意圖。此種方法是由日本的Kld0教 授所提出。如第5A圖所示,首先提供銦錫氧化玻璃基板, 其結構是由玻璃基底500及銦錫氧化層502所組成。其次 請參照第5B圖,在銦錫氧化層502上塗佈一層紅光發光 層504。接著利用光罩506進行照光程序,如第5C圖及第 5D圖所示。以照光方式破壞發光層中紅光能隙材料之共 軛結構,使得材料能隙變大,以形成綠光像素5〇4a、藍光 7 本紙張尺度適爪中囷國家搮隼(CNS ) Λ4ΓΰΓίΤϊοΙ^ΓΑίΓΤ Γ-η先閲讀背而之注意事項再填寫本页) -ys 經濟部中央標準局员工消费合作社印^ 410529 :568twf.doc/006 Α7 Β7 鲤"部中央標泽局只Λ消费合作社印焚 五、發明说明(6) 像素504b及紅光像素504c,並定位出不同光色之像素的 位置。如第5E圖所示,在具有不同光色像素之發光層上,-分別蒸鍍上金屬電極508,就可以得到全彩的有機電激發 光元件。請參照第5F圖,以銦錫氧化層爲正極,金屬電 極爲負極,施予適當的操作電壓,即可發出紅、綠、藍三 種光色,進行全彩顯示。 除了上述的製作方法外,Yang Yang提出利用噴墨印 表機(Ink-Jet Printer)取代旋轉塗佈機(Spin-Coater),以噴墨 方式塗膜來製作高分子電激發光元件(Science,Vol.279, P1135U998))。此法具有節省高分子材料之消耗,而且可以 製作任意的顯示圖案、文字,其墨滴的大小可達30μιη, 並且可以應用在全彩的顯示元件上等優點。由於此法爲一 種新製程,所以在應用上仍有許多問題有待克服,如銦錫 氧化玻璃的傳送、使用溶劑及噴墨頭阻塞等。 II.間接型全彩顯示技術 請參照第6圖,其所繪示的是習知一種使用濾光片 (Color Filter)製作之全彩有機電激發光元件結構的剖面示 葸圖。此法是由TDK公司所提出。首先,以習知方法製 作發白光之電激發光元件’此元件是由玻璃基底6〇〇、銦 錫氧化層602、電洞傳遞層604、白光發光層606、電子傳 遞層608與金屬電極610等所組合而成。其次於發白光的 像素之前加上紅-綠_藍三色之濾光片612,將白光分別轉 換成紅、綠、藍光。此法雖然可以利用發白光之元件製作 出全彩顯示兀件,但是需要多加濾光片製程,而且使用濾 8 用中國國家梂導(CNS ) Λ210 --------------- ^1 ^^1 — -11 ^^1 ^^1 - !| -h^, . - Ι ΙΓΙ I ---- -..... Tw J - . 1 . —^ϋ ^^1 0¾ 1 T: 各 (誚先M1K·-背而之注意事項昨填艿本頁) 經濟部中夾標牟局負Η消Φί合作社印來 410529 3 568twf.doc/006 A 7 B7 五、發明説明(7) 光片會大幅地降低元件的發光效率。 請參照第7圖,其所繪示的是習知一種使用光色轉換-層(Color Conversion Layer)製作之全彩有機電激發光元件結 構的剖面示意圖。此法是由Idemitsu Kosan提出,其元件 之結構與使用濾光片之發光元件結構類似。首先提供銦錫 氧化玻璃基板,其結構是由玻璃基底700及銦錫氧化層702 所組成。其次利用光阻在銦錫氧化玻璃基板上作出分隔柱 以及紅-綠-藍三色之光色轉換層712。然後將發藍光之發 光材料蒸鍍在銦錫氧化玻璃基板的另一面上,形成藍光發 光元件層,其結構是由電洞傳遞層704、藍光發光層706 及電子傳遞層708所組成。再將金屬電極710蒸鍍於發光 元件層上。藉由分隔柱隔離像素之間的金屬電極710。此 一製程雖然可以利用藍光元件之光色轉換來製作全彩顯示 元件’但是分隔柱的製程繁複,而且使用紅-綠-藍三色之 光色轉換層也會降低元件的發光效率。 使用以小分子爲材料之有機電激發光元件,目前已經 可以製作出全彩的原型顯示器。但對於以高分子爲材料之 全彩有機電激發光元件而言,紅、綠、藍三種光色之像素 的定位仍是一大問題。前述各種有機電激發光之全彩顯示 技術都有其缺點與問題,茲將其分析整理如表丨如示。 I 1 I !.辦衣I J-訂^ ! 線 (誚先閱飨背而之';i·意事項Λ填碎本頁) 本紙張尺度適用中國國家標準(CNS ) 210X 297* ) 經濟部中央標苹局貝工消费合作.杜印裝 410529 3568twf.doc/006 A 7 B7 五、發明说明(s ) 表ί現階段有機電激發光之全彩顯示技術分析 項 目 製作方法 提出者 缺 點 1 微空腔 Cambridge; Bell Lab.; Motorola a. 技術需求較高。 b. 製f繁複,所需成本 較闻。 2 堆疊元件 Princeton Univ. & Southern California a. 赛整繁複且所需成本 較商。 b. 中間金屬電極層的遮 蔽會降低發光效率。 C.不適用於以溶液塗佈 的高分子元件。 3 X-Y定位 Kodak a. 紅綠藍像素蒸鍍製程 繁複,成本較高。 b. 不適用於以溶液塗佈 的高分子元件。 4 照光脫色 Kido a. 照光破壞材料共軛結 構會使藍光及綠光像 素的發光效率降低。 b. 操作電壓較高,使用 壽命較短。 5 噴墨印表 機 Yang Yang (UCLA) a. 此法可節省許多高分 子材料之消耗,可以 製作任意的顯示圖案 文字,而且可應用在 全彩的顯示元件上。 b, 此爲一種新製程,在 應用上仍有銦錫氧化 玻璃的傳送、使用溶 劑及噴墨頭阻塞等許 多問題待克服。 6 爐光片 TDK a. 增加了濾光片的製程 與成本。 b. /½濾光片之像素發光 效率較低。 7 光色轉換 層 Idemitsu Kosan a.增加了光色轉換層的 製程與成本α b:經光g轉換之像素發 光效率較低。 1¾先閱讀背而之注意事項&填寫本页) .裝.137 137 Printed by the Central Bureau of Standards, Ministry of Economic Affairs, Monthly Consumer Cooperatives 410529 3 56Stwf.doc / 006 V. Description of the Invention (/) The present invention relates to a full-color organic electroluminescence (OEL) element And particularly relates to a method for fabricating a full-color organic electroluminescent device using a conjugate coupling and a reduction in energy gap of a light-emitting material structure. The burst of organic electrical excitation light began in the 1960s and has a history of more than 30 years. In the first research report on single crystal organic compounds published in 1963, ‘can emit light under a high voltage of 400 volts’, its luminous intensity was still much lower than that required for practical use. Since 1987, Kodak Company of the United States has published organic small-molecule electrically excited light elements (Appl. Phys · Let., VoL51, ρ914 (198 · 7)), and in 1990 the University of Cambridge in the UK has also successfully applied polymer materials to Electrically excited optical elements (Nature, Vol.347, p539 (1990)) laid the foundation for the practical application of organic electrically excited optical elements, and therefore attracted great attention from industry, government and academia in advanced countries, and further invested in follow-up Research and development. Organic electro-excitation light has the characteristics of self-emission, wide viewing angle (up to 160 degrees), high response speed, low driving voltage, full color, etc., and is known as the flat display technology of the next century. At present, the development of organic electroluminescent devices is approaching the stage of practical application, and it is expected to be applied to the next-generation color flat display in the future. The high-end application products of such flat light emitting elements will be positioned in full-color flat display elements, such as small display panels, outdoor display boards, computers and television screens. At present, the development of related technologies for organic electro-optical light-emitting elements is more focused on the components and material structures. All parties have spared no effort in the development of organic electro-luminescent color display elements, especially organic electro-excitation using small molecules as materials3 (please read the notes on the back of your mouth first and fill in this buttercup) --1-° This paper is suitable for Xuan Chinese Garden Home Standard (CNS) is printed on the basis of the original 枋 丨 2Ϊ〇 × 29 ·? Printed by the Bayer Consumer Cooperative of the Central Standards Bureau of the Ministry of Public Economy 410 529 3568twf.doc / 006 A1 _______________, invention description (of) optical components, it is already possible Prototype display of full-color organic electro-excitation light. However, for full-color organic electro-luminescent devices using polymers as materials, the fabrication of the devices is still a major problem, mainly due to the limitation of the solution spin-coating process. The positions of the pixels of three light colors, green, blue (R_G, B). The full-color display technology related to organic electrical excitation light can be divided into two categories: I. direct full-color display technology; and II. Indirect full-color display technology. The two different full-color display technologies in the conventional art are described as follows: I. Please refer to Figure 1 for direct full-color display technology, which shows a conventional microcavity (Microcavhy) A schematic cross-sectional view of the structure of a full-color organic electro-optical excitation light element manufactured by the method. This method was developed by Cambridge (Adv. Mater., Vol. 7, p541 (1995); Synth. Met., Vol. 76, pl37 (1996)) and Cimrova et al. (Appl. Phys. Lett., Vol. 69). , P608 (1996)), Bell Labs and other three research groups and Motorola (Republic of China Patent, Patent Publication No. 301,802,318,284,318,966). The method is to create cavities of different specific depths in the process of manufacturing organic electro-optical light-emitting devices, as shown in Fig. 1. First, a glass substrate 100 made of silicon dioxide / silicon nitride (Si02 / SiNJ) is provided. A dielectric charge of silicon nitride (Sl3N4) and polyimide (Polynmde) with different thicknesses is formed on the glass substrate 100. Layer (Filler Dielectric Mirror) 102 'is used as a quarter wave stack (Quarter Wave Stack). Secondly, an indium tin oxide (ITC0104) layer is formed on the dielectric filling layer 102. Then, an evaporation method is applied on Indium 4 is suitable for China National Smium (CNS) Li Extension (210x297 .; > ^ ·} ^ --------- installation --------- order ^ ------ line t a * (Please read the note below for Jf's person to fill in this I) A7 Printed by the Central Standards Bureau of the Ministry of Economic Affairs and printed by the Consumer Cooperative Η 7 V. Description of the Invention ()) ~~~ A light-emitting layer is formed on the tin oxide layer 104 ( Emission Layer) 106 °, where the thickness of the dielectric halide charge layer 102, the indium tin oxide layer 104, and the light-emitting layer 06 is the depth of the microcavity 110. Then, on the light-emitting layer 106, a metal electrode 108 'is formed. Complete the production of the structure of the full-color organic electro-excitation light element. Please refer to FIG. 2, which shows the electro-excitation of elements with different microcavity structures. Light (Electroluminescent, EL) spectrum. Among them, the horizontal axis represents the wavelength, and the vertical axis represents the intensity of the electro-excitation light. Line 200 in the figure is the third ((8-hydroxy) group with no cavity structure) ) The spectrum of Tris- (8-Hydroxyquinoline) Aluminum, Alq3 / Triazole Diamine (TAD) (A1q3 / TAD) electro-excitation optical element, its full width at Half Maximum (FWHM) is about 100nm. Line 202 is the spectrum of the three- (8-hydroxy) aluminum / azidemethylhydrazine electro-excitation light element with a multimode cavity structure, the second of which The peak half-width of the peak is about 18iun. Using the principle of optical interference, microcavities of different specific depths will cause the spectrum of the electro-excitation light to be redistributed. Therefore, a narrower half-width and a higher resolution can be obtained. As shown in Figure 2, the electro-excitation light spectrum also has the effect of improving the purity of light color. Therefore, if the light color originally emitted by the device is white, it can be obtained by microcavity process that can emit red, Full-color organic electro-excitation light element with three light colors: green and blue. This production is a complicated procedure than the stomach, and the formation of a higher required for different depths of cavities specific technology and cost $. Please refer to FIG. 3, which is a schematic cross-sectional view of a conventional full-color organic electro-optical excitation light device structure manufactured in a stack method. # This paper size is applicable to Chinese Standards (CNS) such as Youyou (2i〇x2 < m > ^) (诮 Read the back first > ± '意 事 ^-丨 fill in *? Page) -etc- Ordering line. 3 568t wf.doc / 006 Α7 印 7 Disaster printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs and Economics 5. Inventory (¥) This method is a collaboration between Princeton and Southern California universities (Appl. Phys. Lett. Vol.69, p2959 (1996); Republic of China Patent, Patent Publication No. 294,842). The method is to fabricate blue and red organic electroluminescent devices on a substrate in a stacked manner. As shown in FIG. 3, a glass substrate 300 is first provided, and a blue light emitting element layer 302 and a red light emitting element layer 304 are sequentially formed thereon in a stacked manner. The blue light-emitting element layer 302 includes an indium tin oxide layer 306, nitrogen, nitrogen bisphenyl-nitrogen, and nitrogen '-(m-methylphenyl) benzidine (1 ^'-Diphenyl-N, N '-( m-Tolyl) Benzidine (TPD) layer 308, Phenoxyl Bis- (8-HydroxyQuinoline) Aluminum, Alq20Ph) layer 310, tri- (8-hydroxy) aluminum layer 312 and magnesium Metal layer 314. The red light emitting element layer 304 includes an indium tin oxide layer 316, nitrogen, nitrogen bisphenyl-nitrogen, nitrogen '-(m-methylphenyl) benzidine layer 318, nitrogen, nitrogen bisphenyl-M, The gas- (m-methylbenzyl) couplet I female / bi- (8-methylbenzyl) iS (TPD / AIQ3) Γ heterolayer 320, magnesium metal layer 322, and silver metal layer 324. The stacked organic electroluminescent device produced by the above method can emit blue light and red light at the same time. By applying this method, a stacked organic electroluminescent device pixel capable of emitting three light colors of red, green and blue can be produced. However, the process technology used in this method is difficult, and the metal electrode layer in the middle of the light-emitting element will shield the intensity of red and green light, reducing the light-emitting efficiency. Please refer to FIG. 4, which is a schematic cross-sectional view showing the structure of a conventional full-color organic electro-optical excitation light element manufactured by the X-Υ Addressing Pattern. This method is adopted by the Kodak Company of the United States (U.S. Patent No. 6 Paper Standard Applicable to National Standards of the Country (CRS > Eight 4 Hearts?), ('........ --j---II --- -孑 卜-»-^^ 1 -It-T n si I ^^ 1 > ^ ii (" read first and read later. Jiang Yi matters deposit this page) A7 1J7 410529 3568twf.doc / 006 i, issued by the invention description (s) No. 5,294,869, 5,294,870), using the XY positioning method, first made a vertical protective cover on the substrate of indium tin oxide glass (ITO glass)-(Vertical Shadow Mask) 404 * of which indium tin The oxidized glass substrate is composed of a glass substrate 400 and an indium tin oxide layer 402. Secondly, light emitting materials of three light colors of red, green, and blue are vapor-deposited on the indium tin oxide layer 402 between the vertical protective covers 404 to form light. Element layer. This light-emitting element layer has a hole transport layer (406), a light-emitting layer (408), and an electron transport layer (410). Then, the metal electrode is tilted in a manner not perpendicular to the indium tin oxide glass. 412 is vapor-deposited on the light-emitting element layer. By shielding by the vertical protective cover 404, different light colors can be avoided. A short circuit occurs between the elements. Although this method can produce a full-color display element, the vertical vapor deposition process of positioning the vertical protective cover 404 and the pixels of three light colors of red, green, and blue is complicated, and this full-color display technology only It is suitable for small-molecule components mainly used in the evaporation process. It is not suitable for high-molecular components that use the solution coating process. Please refer to Figures 5A to 5F, which show a conventional method for decolorization by light. (Phioiobleaching) method for the production process of full-color organic electro-optical light-emitting device. This method is proposed by the Japanese professor Kld0. As shown in Figure 5A, first provide an indium tin oxide glass substrate, Its structure is composed of a glass substrate 500 and an indium tin oxide layer 502. Secondly, please refer to FIG. 5B, and apply a red light emitting layer 504 on the indium tin oxide layer 502. Then use the photomask 506 to perform the illumination process, as shown in FIG. As shown in Figure 5C and Figure 5D. The conjugate structure of the red light gap material in the light-emitting layer is destroyed by the illumination method, so that the material energy gap becomes larger to form green light pixels 504a and blue light. China National Talon (CNS) Λ4ΓΰΓίΤϊοΙ ^ ΓΑίΓΤ Γ-η Please read the following precautions before filling out this page) -ys Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs ^ 410529: 568twf.doc / 006 Α7 Β7 & quot The Ministry of Standards and Standards Bureau only prints the consumer cooperatives. V. Description of the invention (6) Pixels 504b and red pixels 504c, and positions of pixels of different light colors are located. As shown in FIG. 5E, on the light-emitting layers having pixels of different light colors, a metal electrode 508 is separately vapor-deposited to obtain a full-color organic electroluminescent device. Please refer to Figure 5F. With the indium tin oxide layer as the positive electrode and the metal electrode as the negative electrode, the red, green, and blue light colors can be emitted for full-color display by applying an appropriate operating voltage. In addition to the above-mentioned manufacturing method, Yang Yang proposed to use an ink-jet printer instead of a spin-coater to coat the film with an ink-jet method to produce a high-molecular electrical excitation light element (Science, Vol.279, P1135U998)). This method has the advantages of saving the consumption of polymer materials, and can produce arbitrary display patterns and characters. Its ink droplet size can reach 30 μm, and it can be applied to full-color display elements. Since this method is a new process, there are still many problems to be overcome in application, such as the transfer of indium tin oxide glass, the use of solvents, and the blocking of inkjet heads. II. Indirect full-color display technology Please refer to FIG. 6, which is a cross-sectional view of a conventional full-color organic electroluminescent device structure made using a color filter. This method was proposed by TDK Corporation. First, a conventional method is used to fabricate a white light-emitting electrical excitation light element. This element is composed of a glass substrate 600, an indium tin oxide layer 602, a hole transfer layer 604, a white light emitting layer 606, an electron transfer layer 608, and a metal electrode 610. And so on. Secondly, a red-green-blue three-color filter 612 is added before a pixel that emits white light, and the white light is converted into red, green, and blue light, respectively. Although this method can use white-emitting components to make full-color display elements, more filters are needed, and the filter is used for China National Guide (CNS) Λ210 ------------ --- ^ 1 ^^ 1 — -11 ^^ 1 ^^ 1-! | -H ^,.-Ι ΙΓΙ I ---- -..... Tw J-. 1. — ^ Ϋ ^^ 1 0¾ 1 T: Each (the first M1K ·-Note for the back fill in this page yesterday) The Ministry of Economic Affairs, the Ministry of Economic Affairs, the Bureau of the Ministry of Economic Affairs, the Cooperative Press 410529 3 568twf.doc / 006 A 7 B7 V. Invention Note (7) The light sheet will greatly reduce the luminous efficiency of the device. Please refer to FIG. 7, which is a schematic cross-sectional view of a conventional full-color organic electro-optical light-emitting device structure made using a color conversion layer. This method was proposed by Idemitsu Kosan, and its element structure is similar to that of a light-emitting element using a filter. First, an indium tin oxide glass substrate is provided, and its structure is composed of a glass substrate 700 and an indium tin oxide layer 702. Secondly, a photoresist is used to form a separation column and a red-green-blue light-color conversion layer 712 on the indium tin oxide glass substrate. Then, a blue light-emitting material is evaporated on the other surface of the indium tin oxide glass substrate to form a blue light-emitting element layer. The structure is composed of a hole transfer layer 704, a blue light-emitting layer 706, and an electron transfer layer 708. A metal electrode 710 is further deposited on the light-emitting element layer. The metal electrodes 710 between the pixels are separated by the separation pillars. Although this process can use the light-to-color conversion of the blue light element to make a full-color display element ', the process of the separation column is complicated, and the use of the red-green-blue three-color light-color conversion layer will also reduce the light-emitting efficiency of the element. The use of small molecules as the organic electro-optical light-emitting element, can now make a full-color prototype display. However, for full-color organic electroluminescent devices using polymers as materials, the positioning of red, green, and blue pixels is still a major problem. The aforementioned full-color display technologies of organic electro-excitation light have their shortcomings and problems, and their analysis is summarized as shown in the table. I 1 I!. Handle clothes I J-order ^! Line (read first and then back; 'i · Italian matters Λ fill in this page) This paper size applies to China National Standard (CNS) 210X 297 *) Ministry of Economic Affairs The Central Bureau of Standards and Technology Bureau ’s consumer cooperation. Du printed 410529 3568twf.doc / 006 A 7 B7 V. Description of the invention (s) Table ί Presentation of the full-color display technology analysis project of organic electro-excitation light at the present stage. Cavity Cambridge; Bell Lab .; Motorola a. Technical demand is high. b. The system is complicated and the cost is relatively high. 2 Stacked components Princeton Univ. &Amp; Southern California a. Races are complex and costly. b. The shielding of the middle metal electrode layer will reduce the luminous efficiency. C. Not suitable for polymer components coated with solution. 3 X-Y positioning Kodak a. Red, green and blue pixel evaporation process is complicated and costly. b. Not suitable for polymer components coated with solution. 4 Decoloration by illumination Kido a. Irradiation destroys the conjugate structure of the material and reduces the luminous efficiency of blue and green pixels. b. Higher operating voltage and shorter service life. 5 Inkjet printer Yang Yang (UCLA) a. This method can save the consumption of many high-molecular materials, can produce any display pattern text, and can be applied to full-color display elements. b, This is a new process. In application, there are still many problems to be overcome such as the transmission of indium tin oxide glass, the use of solvents, and the blockage of the inkjet head. 6 Furnace TDK a. Increased the manufacturing process and cost of the filter. b. The pixel of the / ½ filter has low luminous efficiency. 7 Light-color conversion layer Idemitsu Kosan a. Added process and cost of light-color conversion layer α b: Pixels converted by light g have low light-emitting efficiency. 1¾Read the precautions & fill in this page first).
'1T 線 本紙張尺度適用中國國家標準(CNS ) Λ4規梢(210乂:m公处) 354lvOSS<96 a7 ___________»1________ 五、發明説明(7 ) . 因此本發明之主要目的就是在提供一種全彩有機電激· 發光元件的製作方法’利用使發光材料結構產生共軛偶合_ 及能隙減小之方式製作全彩有機電激發光元件,而且可以 適用於使用溶液塗佈製程的高分子有機電激發光元件,以 及使用蒸鍍製程的小分子有機電激發光元件。 根據.本發明之上述目的,提出一種全彩有機電激發光 元件之製作方法,在具有玻璃基底及銦錫氧化層之銦錫氧 化玻璃基板的表面上’形成一層藍光發光層。其中發光層 是選用經照光之後會產生共軛偶合、能隙減小等特性之藍 光能隙材料。然後對藍光發光層進行曝光程序,利用光化 學反應使得藍光能隙材料產生共軛偶合及能隙減小,在藍 光發光層中形成不同光色之像素。接著在這些不同光色之 像素上’依序形成適當的金屬電極及保護層。以銦錫氧化. 層爲正極’金屬電極爲負極,施予適當的操作電壓,即可 於發光層發出紅、綠、藍三種光色,進行全彩顯示。 爲讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉一較佳實施例’並配合所附圖式,作詳 細說明如下: 圖式之簡單說明: . 第1圖繪示習知一種以微空腔方式製作之全彩有機電 激發光元件結構的剖面示意圖。 第2圖繪示具有不同微空腔結構之元件的電激發光光 譜3 第3圖繪示習知一種以堆疊方式製作之全彩有機電激 ^ii-TcNsT7\4麟(210X29?.:.>^ ) doc/006 A7 137 五、發明説明(/〇 ) 發光元件結構的剖面示意圖。 第4圖繪示習知一種以X-Y定位方式製作之全彩有機 電激發光元件結構的剖面示意圖。 第5A圖至第5F圖繪示習知一種以照光脫色方式製作 全彩有機電激發光元件之製作流程圖。 第6圖繪示習知一種使用濾光片製作之全彩有機電激 發光元件結構的剖面示意圖。 第7圖繪示習知一種使用光色轉換層製作之全彩有機 電激發光元件結構的剖面示意圖。 第8A圖至第8F圖繪示依照本發明之一較佳實施例, 一種全彩有機電激發光元件之製作流程圖。 第9圖繪示藍光能隙材料氧基三聚物之結構及其光 化學反應程序。 第10圖繪示藍光能隙材料二疊氮之結構及其光化 學反應程序。 第11圖繪示藍光能隙材料內醯胺基三聚物之結構 及其光化學反應程序。 . 裝------1.—訂J------線 (計先閱讀背而之注念事^^4.?5本頁) 經濟部中央標準局貝Η消贽合作社印奴 圖式之標示說明: 100 、 300 、 400 、 500 600、700,800 :玻璃基底 化層 102 104 106 108 介電塡充層 306 ' 316 ' 402 502、602、702、802 :銦錫氧 408 :發光層 412、508、610、7丨0、808 :金屬電極 1 2 本紙張尺度適用中國國家標準(CNS ) Λ4规掊( 經濟部中央標準局貝工消费合作杜印" 410529 3 503twf.doc/006 A 7'1T line paper size applies Chinese National Standards (CNS) Λ4 gauge (210 乂: m common place) 354lvOSS < 96 a7 ___________ »1________ 5. Invention Description (7). Therefore, the main purpose of the present invention is to provide a Manufacturing method of colored organic electro-luminescence and light-emitting element 'producing a full-color organic electro-optic light-emitting element by using a conjugate coupling _ and reducing the energy gap of a light-emitting material structure, and it can be applied to polymers using a solution coating process. Electromechanical excitation light elements, and small-molecule organic electrical excitation light elements using evaporation processes. According to the above-mentioned object of the present invention, a method for manufacturing a full-color organic electro-optical light-emitting device is proposed, in which a blue light-emitting layer is formed on a surface of an indium tin oxide glass substrate having a glass substrate and an indium tin oxide layer. The light-emitting layer is a blue light-gap material that has characteristics such as conjugate coupling and reduced energy gap after light irradiation. Then, the blue light-emitting layer is subjected to an exposure program. The photochemical reaction is used to make the blue light-gap material conjugate coupling and reduce the energy gap to form pixels of different light colors in the blue light-emitting layer. Then, on these pixels of different light colors, appropriate metal electrodes and protective layers are sequentially formed. The indium tin oxide layer is used as the positive electrode and the metal electrode is used as the negative electrode. Appropriate operating voltage can be used to emit three light colors of red, green and blue for the full-color display. In order to make the above and other objects, features, and advantages of the present invention more comprehensible, the following exemplifies a preferred embodiment and the accompanying drawings, which are described in detail as follows: Brief description of the drawings: The figure shows a schematic cross-sectional view of a conventional full-color organic electro-optical excitation light device structure made in a microcavity manner. Figure 2 shows the electro-excitation light spectrum of components with different microcavity structures. 3 Figure 3 shows a conventional full-color organic electro-excitation fabricated in a stacking method. > ^) doc / 006 A7 137 V. Description of the Invention (/ 〇) A schematic cross-sectional view of a light-emitting element structure. FIG. 4 is a schematic cross-sectional view of a conventional full-color organic electro-optical excitation light device structure manufactured by X-Y positioning method. FIG. 5A to FIG. 5F show a conventional manufacturing flow chart for manufacturing a full-color organic electro-optical excitation light element by irradiating light. FIG. 6 is a schematic cross-sectional view of a conventional full-color organic electroluminescence light-emitting device structure using a filter. FIG. 7 is a schematic cross-sectional view of a conventional full-color organic electro-optical light-emitting device structure using a light-color conversion layer. 8A to 8F illustrate a manufacturing flow chart of a full-color organic electroluminescent device according to a preferred embodiment of the present invention. Fig. 9 shows the structure of the oxygen terpolymer of the blue light gap material and its photochemical reaction procedure. Fig. 10 shows the structure and photochemical reaction procedure of the blue light gap material diazide. Figure 11 shows the structure of the amine-based terpolymer in the blue light gap material and its photochemical reaction procedure. . Install ------ 1.—Order J ------ line (plan to read the memorandum first ^^ 4.? 5 pages) Printed by the Central Bureau of Standards of the Ministry of Economic Affairs Slave pattern labeling instructions: 100, 300, 400, 500, 600, 700, 800: glass base layer 102 104 106 108 dielectric charge layer 306 '316' 402 502, 602, 702, 802: indium tin oxide 408 : Light-emitting layers 412, 508, 610, 7, 0, 808: Metal electrodes 1 2 This paper size is applicable to the Chinese National Standard (CNS) Λ4 regulations (Central Bureau of Ministry of Economic Affairs, Shellfisher Consumer Cooperation Du Yin " 410529 3 503twf. doc / 006 A 7
Ml 五、發明説明(// ) 110 :微空腔深度 200 :不具空腔結構之電激發光元件的光譜。 202 :具有多重空腔結構之電激發光元件的光譜。 302 :藍光發光元件層 304 :紅光發光元件層 308、318 :氮,氮雙苯基-氮,氮’-(間-甲基苯)聯苯胺層 310 :苯氧雙-(8-羥基 )鋁層 312:三-(8-羥基 )鋁層 314、322 :鎂金屬層 320 :氮,氮雙苯基-氮,氮’-(間-甲基苯)聯苯胺/三-(8-羥基 )鋁摻雜層 324 :銀金屬層 404 :垂直保護罩幕 406、604、704 :電洞傳遞層 410、608、708 ·•電子傳遞層 504 :紅光發光層 504a、804a :綠光像素 504b、804c :藍光像素 504c、804b :紅光像素 506、806 :光罩 606 :白光發光層 612 :濾光片 706、804 :藍光發光層 712 :光色轉換層 —11 (— I! .^衣 I ~ I I : -7 、1τ! 1 t J 線 (对先閱讀背而L注意事"矜填寫本頁) 本纸張尺度適用中國國家標來(CNS ) 枯(210X2W公# > 經濟部中央標準局只工消贽合作社印^ 410529 356Stwf.doc/〇〇6 ^Ml V. Description of the invention (//) 110: Microcavity depth 200: Spectrum of an electrically excited optical element without a cavity structure. 202: Spectrum of an electrically excited optical element with a multiple cavity structure. 302: blue light emitting element layer 304: red light emitting element layers 308, 318: nitrogen, nitrogen bisphenyl-nitrogen, nitrogen '-(m-methylphenyl) benzidine layer 310: phenoxybis- (8-hydroxy) Aluminum layer 312: tri- (8-hydroxy) aluminum layer 314, 322: magnesium metal layer 320: nitrogen, nitrogen bisphenyl-nitrogen, nitrogen '-(m-methylphenyl) benzidine / tri- (8-hydroxyl ) Aluminum doped layer 324: silver metal layer 404: vertical protective masks 406, 604, 704: hole transfer layers 410, 608, 708 · electron transfer layer 504: red light emitting layer 504a, 804a: green pixel 504b , 804c: blue light pixels 504c, 804b: red light pixels 506, 806: photomask 606: white light emitting layer 612: filter 706, 804: blue light emitting layer 712: light color conversion layer -11 (-I! I ~ II: -7, 1τ! 1 t J line (read the first and read the note & fill in this page) This paper size applies to China National Standard (CNS) dry (210X2W 公 #) Ministry of Economic Affairs The Central Bureau of Standards is only working on the cooperative's seal ^ 410529 356Stwf.doc / 〇〇6 ^
\M 五 '發明説明(/?) 實施例 請參照第8A圖至第8F圖,其所繪示的是依照本發明 之一較佳實施例’一種全彩有機電激發光元件之製作流程 的剖面示意圖。如第8A圖所示,首先提供銦錫氧化玻璃 基板,其結構是由玻璃基底800及銦鍚氧化層802所組成。 對於基板進行表面淸潔處理’以利後續製程進行。其次請 參照第8B圖’在銦錫氧化層802的表面上形成藍光發光 層804。其中形成藍光發光層804的方法例如蒸鍍法及旋 轉塗佈法等’而藍光發光層804材料是選用經紫外光、電 子束或雷射照射後會產生共軛偶合、能隙減小等特性之藍 光能隙材料。 其中形成藍光發光層804之藍光能隙材料包括以 (Anthracene)爲發色團(Chromorphore)之化合物,例如以氧 連接形成之氧基三聚物(Tnmer),其結構及光化學反應程 序如第9圖所示;或由連接兩個疊氮基形成之二疊氮, 其結構及光化學反應程序如第1〇圖所示;或是以內醯胺 (Lactam)連接形成之內醯胺基三聚物,其結構及光化學 反應程序如第U圖所示。此外藍光發光層8〇4之材料也 可以使用由前述之藍光能隙材料與高分子材料所構成的摻 合ί谷液(Blend Solution)或摻合|g.(Biend)。 請參照第8C圖及第gD圖,在發光層中形成不同光色 之像素’形成具有不同光色像素之發光層。其中形成具有 不同光色像素之發光層的方法例如使用光罩806,以紫外 光照射監光發光層8〇4 ’對其進行曝光程序’導致藍光發 14 本纸乐尺度適用中囷國家掠準(CRS ) Λ4^#Γ77ϊ^^7:,ϋ"5 一~~~-- ^---^---- ,η ^------0 ("先閱洛背而之注意事^^填寫本頁) 4105^9 3568twf.doc/0 06 A7 B7 五、發明説明(g) 光層804產生光化學反應,使部份區域之藍光能隙材料產 生共軛結合、能隙減小,將部份藍光能隙材料轉換成綠光 能隙材料及紅能隙材料。因而分別在未曝光的區域形成藍 光像素804c、在曝光量少的區域形成綠光像素804a以及 在曝光量多的區域形成紅光像素804b,因此可以製作出 紅、綠、藍三種光色之像素,並可同時定位出紅、綠、藍 三種光色之像素的位置。而曝光量可以藉由照射強度的強 弱與時間的長短加以控制,此外亦可使用電子束照射藍光 發光層804,或者採用電腦控制的雷射直接對藍光發光層 804進行掃瞄,形成不同光色之像素或其他的文字或圖案。 接著請參照第8E圖,在這些不同光色之像素上,分 別依序形成金屬電極808及金屬保護層(未顯示於圖中), 完成可以發出全彩之有機電激發光顯示元件。其中形成金 屬電極808及金屬保護層的方法例如蒸鍍法。此元件之操 作示意圖如第8F圖所示,以銦錫氧化層802爲正極,金 屬電極808爲負極,施予適當的操作電壓,即可於具有不 同光色像素之發光層中發出紅、綠 '藍三種不同光色,進 行全彩顯示。 由上述本發明較佳實施例可知,應用本發明具有下列 優點: 1.製程簡便、成本低 相較於TDK公司使用白光發光元件及濾光片,與 Idemitsu Kosan使用藍光發光元件及光色轉換層之間接型 全私製作程序’本發明是屬於直接型的全彩顯示技術,因 裝-----^丨訂,--------線 - - _ ("先閱请背而之注意事ν#4.κτ本頁) 經"部中央標革局負工消费合作社印鉍 經滴部中央標準局貝工消费合作社印裂 410529 3 56Stwf.doc/006 iil 五、發明説明(/¥) 此可以免除濾光片或光色轉換層的製作程序、時間與成 本;相較於微空腔與堆疊元件之直接型全彩製作程序,本 發明則不須要進行像素空腔與堆疊元件的繁複製程。本發 明是採用曝光製程定位出紅、綠、藍三種光色之像素,其 製程簡便、快速,可以大幅地降低元件的製作成本,使產 品較具競爭力。 2. 直接發光、效率高 相較於間接型發光程序的TDK公司之濾光片方式與 Idemitsu Kosan之光轉換層方式,以及直接型發光程序之 堆疊元件有中間金屬電極層的遮光效應,本發明是屬於直 接型的全彩顯不技術’其兀件具有較商的發光效率和較長 時間的使用壽命。與Kido利用曝光程序破壞發光材料之 共軛結構,使其能隙變大的方式比較,本發明則是採用曝 光程序使發光材料結構產生共輒偶合、能隙變小之方法。 3. 微影製程、解析高 本發明所提出之全彩有機電激發光製程,可以採用微 影曝光製程定位出紅、綠、藍三種光色之像素,較柯達公 司之個別蒸鍍紅、綠、藍三種光色之像素,及其他的製程 以金屬罩幕(Metal Mask)進行定位程序,更爲簡便、快速, 而且可以獲得較高的解析度。 4. 彩色圖文、變化大 本發明的製作程序除了可以使用既有的紫外光或電子 束之標準製程來進行曝光程序,亦可使用電腦控制掃瞄之 雷射進行曝光,可以快速且輕易地製作出任意的彩色圖 本纸張尺度適用中國國家標隼(CNS >以似?;( 210/2叮:.>片) n ί -- I-I i- - I I I 1 I I . n 1~* In. I I ! 1--- .· - 〆 (¾先w讀背面之注意事少再填艿本5 ) A7 B7 410529 3568tvvf.doc/006 立、發明説明(/s ) 案、文字。 5.材料應用、彈性大 本發明之製作程序對於使用溶液塗佈製程的高分子有 機電激發光元件及使用蒸鍍製程的小分子有機電激發光元 件皆適用。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 和範圍內,當可作各種之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者爲準。 I . ΐ衣 1 n ~:,^ HI n 線 , - (請先間请背而之注意事^再填巧本頁) 經漪部中夾桴準局员工消费合作社印製 本紙乐尺度適用中國园家標準(CRS ) ΛΟωΜ 210X2们公\ M Five 'invention description (/?) For the embodiment, please refer to FIG. 8A to FIG. 8F, which shows a manufacturing process of a full-color organic electroluminescent device according to a preferred embodiment of the present invention. Schematic cross-section. As shown in FIG. 8A, an indium tin oxide glass substrate is first provided, and its structure is composed of a glass substrate 800 and an indium gadolinium oxide layer 802. The substrate is subjected to surface cleaning treatment 'to facilitate subsequent processes. Next, referring to FIG. 8B ', a blue light emitting layer 804 is formed on the surface of the indium tin oxide layer 802. Among them, the method of forming the blue light emitting layer 804 is, for example, evaporation method and spin coating method, and the blue light emitting layer 804 is selected from materials such as conjugate coupling and reduced energy gap after irradiation with ultraviolet light, electron beam or laser. Blue light gap material. The blue light gap material forming the blue light emitting layer 804 includes a compound using (Anthracene) as a chromorphore, such as an oxygen trimer (Tnmer) formed by oxygen linkage. Its structure and photochemical reaction procedure are as described in the first section. As shown in Figure 9; or by the connection of two azide groups, the structure and photochemical reaction procedures are shown in Figure 10; or the lactamyl group formed by the connection of Lactam The structure and photochemical reaction procedure of the polymer are shown in Figure U. In addition, the material of the blue light emitting layer 804 can also be a blended Blend Solution or a blended | g. (Biend) composed of the aforementioned blue light gap material and a polymer material. Referring to FIG. 8C and FIG. GD, pixels of different light colors are formed in the light emitting layer 'to form light emitting layers having pixels of different light colors. The method of forming a light-emitting layer with pixels of different light colors, for example, uses a mask 806, and irradiates the monitor light-emitting layer with ultraviolet light 804, 'exposing it to the program', resulting in blue light emission. (CRS) Λ4 ^ # Γ77ϊ ^^ 7:, ϋ " 5 1 ~~~-^ --- ^ ----, η ^ ------ 0 (" Read Luoluo and pay attention ^^ Fill in this page) 4105 ^ 9 3568twf.doc / 0 06 A7 B7 V. Description of the invention (g) The photolayer 804 produces a photochemical reaction, which causes the conjugate bonding and energy gap reduction of the blue light gap material in some areas. Small, convert part of the blue light gap material into the green light gap material and the red energy gap material. Therefore, the blue light pixels 804c are formed in the unexposed areas, the green light pixels 804a are formed in the areas with less exposure, and the red light pixels 804b are formed in the areas with high exposure. Therefore, pixels of three light colors of red, green, and blue can be produced. , And can simultaneously locate the positions of three light color pixels of red, green and blue. The exposure can be controlled by the intensity of the irradiation intensity and the length of time. In addition, the blue light-emitting layer 804 can be irradiated with an electron beam, or the blue light-emitting layer 804 can be scanned directly with a computer-controlled laser to form different light colors. Pixels or other text or graphics. Next, please refer to FIG. 8E. On these pixels of different light colors, a metal electrode 808 and a metal protective layer (not shown in the figure) are sequentially formed to complete an organic electroluminescent display element that can emit full color. Among them, a method of forming the metal electrode 808 and the metal protective layer is, for example, a vapor deposition method. The schematic diagram of the operation of this element is shown in Figure 8F. With the indium tin oxide layer 802 as the positive electrode and the metal electrode 808 as the negative electrode, red and green can be emitted in the light-emitting layer with pixels of different light colors by applying an appropriate operating voltage. 'Blue three different light colors for full color display. From the above-mentioned preferred embodiments of the present invention, it can be known that the application of the present invention has the following advantages: 1. The process is simple and the cost is low. Compared with the use of a white light emitting element and a filter by TDK, and the use of a blue light emitting element and a light color conversion layer with Idemitsu Kosan Indirect-type full-private production program 'The present invention is a direct-type full-color display technology. Due to the installation of ----- ^ 丨 order, -------- line--_ (" please read the back first And the matters needing attention ν # 4.κτ this page) Ministry of Economy and Trade Central Government Bureau of Labor Standards Cooperative Consumer Cooperative India Bi Bi Jingye Ministry of Central Standards Bureau Shell Industry Consumer Cooperatives 410529 3 56Stwf.doc / 006 iil 5. Description of the invention (/ ¥) This can eliminate the production process, time and cost of filters or light-color conversion layers. Compared with the direct full-color production process of microcavities and stacked components, the present invention does not require pixel cavities and The complicated process of stacking components. The invention uses the exposure process to locate pixels of three light colors: red, green, and blue. The process is simple and fast, which can greatly reduce the manufacturing cost of components and make the product more competitive. 2. Direct light emission and high efficiency Compared with the indirect light emission program of TDK's filter method and Idemitsu Kosan light conversion layer method, and the stacked elements of the direct light emission program have the light shielding effect of the intermediate metal electrode layer, the present invention It is a direct-type full-color display technology. Its components have a relatively good luminous efficiency and a long life. Compared with Kido's use of an exposure program to destroy the conjugate structure of the luminescent material so that its energy gap becomes larger, the present invention uses an exposure program to make the structure of the luminescent material conjugated and reduce the energy gap. 3. Lithography process and analysis process The full-color organic electro-excitation light process proposed by the present invention can use the lithography exposure process to locate pixels of three light colors, red, green, and blue, which are more red and green than those of Kodak. Pixels of three light colors, blue, and other processes use metal masks to perform positioning procedures, which is simpler and faster, and can obtain higher resolution. 4. Color graphics, great changes. In addition to the standard process of UV light or electron beam, the production process of the present invention can be used to perform the exposure process, and the computer-controlled scanning laser can also be used for exposure. It can be performed quickly and easily. Make any color chart. Paper size is applicable to Chinese national standard (CNS > like ?; (210/2 ding :. > piece) n ί-II i--III 1 II. N 1 ~ * In. II! 1 ---. ·-〆 (¾Read the notes on the reverse side and then fill out the transcript 5) A7 B7 410529 3568tvvf.doc / 006 Legislation, invention description (/ s) plan, text. 5. Material application and great flexibility The manufacturing process of the present invention is applicable to both high molecular organic electroluminescent devices using a solution coating process and small molecular organic electroluminescent devices using a vapor deposition process. Although the present invention has been disclosed in a preferred embodiment As above, however, it is not intended to limit the present invention. Any person skilled in the art can make various modifications and retouches without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be regarded as the attached patent. The scope of the definition shall prevail. I. ΐ 衣 1 n ~:, ^ HI n line,-(please take note of it first ^ and fill in this page) The printed paper scales of the Bureau of Consumers Cooperatives in the Ministry of Economic Affairs are printed in accordance with Chinese gardening standards (CRS ) ΛΟωΜ 210X2