TW447226B - Antenna device for generating inductively coupled plasma - Google Patents

Antenna device for generating inductively coupled plasma Download PDF

Info

Publication number
TW447226B
TW447226B TW089108834A TW89108834A TW447226B TW 447226 B TW447226 B TW 447226B TW 089108834 A TW089108834 A TW 089108834A TW 89108834 A TW89108834 A TW 89108834A TW 447226 B TW447226 B TW 447226B
Authority
TW
Taiwan
Prior art keywords
antenna
frequency power
antennas
power source
patent application
Prior art date
Application number
TW089108834A
Other languages
Chinese (zh)
Inventor
Yong-Kwan Lee
Nam-Sik Yoon
Sung-Sik Kim
Pyung-Woo Lee
Hong-Young Chang
Original Assignee
Jusung Eng Co Ltd
Korea Inst Sci & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jusung Eng Co Ltd, Korea Inst Sci & Tech filed Critical Jusung Eng Co Ltd
Application granted granted Critical
Publication of TW447226B publication Critical patent/TW447226B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

The invention relates to an antenna device of a low impedance for generating a large quantity of inductively coupled plasma to process a large size of a specimen with adjustment for a uniform distribution in the density of plasma, comprising: a high frequency power source; a first antenna for receiving the high frequency power supplied from the high frequency power source; and a second antenna connected in parallel with the first antenna for receiving the high frequency power supplied from the high frequency power source, wherein a resonant state is kept between the first and second antennas.

Description

^47226 Α7 Β7 五、發明說明(ί) 經濟部智慧財產局員工消費合作社印ί 發明背景 發明領域 本發明有關一種用於產生電漿之天線元件,尤其有關 用於產生電感耦合電漿而可涵蓋大的有效區域以高的均句 電漿密度來處理大試樣之一種天線元件》 習知技藝描述 為了在基板(誓如半導體晶圓、平板顯示器或製造半導 體裝置技術領域之類似物中)上產生微細型式,產生電聚以 進行多種表面處理程序,謦如乾蝕程序、化學蒸氣沉積程 序、喷濺及類似物。為了降低成本並改良產出,己日益加 大半導體晶圓的尺寸及對於平板顯示器的基板尺寸,譬如 近年來超過300公厘《為此,亦加大用於產生電漿以處理此 大晶圓或基板之一種裝置。 因此,已有二極體型、微波型或射頻波型及類似物之 高頻功率所操作之電漿源*為此,二極體型電漿源具有問 題,譬如難以控制高電壓及需要高度的氣逋壓力,故二極 體型電漿源已不適於處理此微細型式。即若電子迴旋共振 (ECR)型電漿源有利在低壓獲得高密度電漿,其亦不利達 成均勻的電漿分佈。當電漿尺寸增大時此問題亦加嚴重。 並且,根據螺旋波型電漿源,一種射波型電漿源(稱為電感 耦合型),電及磁能中的能量係組合並激勵而能以均句分佈 產生一高密度電漿。但在電漿尺寸增大的情形中,螺旋波 型電漿源不適於達成一均勻的電漿密度分佈。 簡單參照第1圖描述用於產生電感耦合電漿之一般的 4張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐〉 4 {碑先間硪背面之注意事項再填寫本頁> 裝 l· — — —訂---------竣 經濟部智慧財產局員工消費合作社印製 A7 __B7____ 五、發明說明(2 ) 天線元件’用於產生電漿10之元件(下文稱為電漿產生元件 )具有其中可產生電漿之一室104。該室104包括一氣體入口 110,以供應反應物氣體* —真空泵112,以使室的内部保 持一真空狀態,及一氣體出口 114,以在反應之後排放反應 物。此外’具有一夾頭108,其上可供一試樣112(如水、玻 璃基板或類似物)置入室104中◎與一高頻功率源1〇2相連接 之一天線100係安裝在室104上,一絕緣板116安裝在天線 100與室104之間’以減少電容叙合特徵,而有助於自高頻 功率源102經由電感耦合將能量傳送到電装丨〗8。 具有上述構造之電漿產生元件1〇〇係以下述方法產生 電漿,易言之’室104的内部中之所有空氣充填係由—真空 泵112排出’以在第一步辑得到一真空狀態。注入一反應物 氣體以經由氣體入口 110產生電聚,且室1 〇4保持所需之氣 體壓力值’然後’ 13.56百萬赫茲的高頻功率自高頻功率源 102施於天線元件100 « 如第2a及2b圏所示’習知的電漿產生元件丨0係設有一 螺旋型天線200或多數(譬如三個)區分的電極型天線2〇2a 、202b ' 202c。因此,對於高頻功率,連同在與天線1〇〇 呈水平的一平面上之時間改變而形成一垂直磁場,時間變 化之磁場因而在室104的内部形成_電感的電場,當電子受 熱並感應至一電場因此產生與天線100為電感柄合之電裂 時,如上述,電子係與相鄰的中性氣體粒子相碰撞而產生 離子及基(radicals)以及即將用於電漿蝕刻及沉積程序之類 似物。此外,若功率自一分離的高頻功率源(未圊示)施於 本紙張义度適用中國國家標準(CNS>A4規格(210 * 297公*) -------------裝-----Γ---訂---------線 {請先閱讀背*之注意事項再填寫本頁) 44722 6 A7 B7 經 濟 部- 智 慧 財 產 局 員 X 消 費 合 社 印 五、發明說明( 央頭108 ’可調整施於試樣106之離子能量。 如第2a圈所示,以串聯方式連接數個電線以形成一螺 旋型天線200,使各電線中的電流流動保持固定β此情形中 ’難以控制電感電場之分佈,且在室104的内壁上損失離子 及電子。因此,在電漿118中心部份形成電漿之一高密度, 但在接近室104的内壁部份形成電漿之一低密度。結果,非 常難以達成均勻之電漿118的密度分佈》 並且,由於天線200之所有電線以串聯連接,可有可能 以電漿118增加一電容輛合特徵的影響之較大電壓降。結果 ’天線200的電效率減少、且難以使電漿保持均勻的密度分 佈》 然後,如第2a圓所示,在三個分離的電極(各與高頻功 率源204a、204b、204c之三個不同相位相連接)構成的天線 中’電漿密度一般报高,但在接近室〗04中心之一部份處電 漿密度減少》亦難以確保電漿的密度分佈均勻度,且亦難 以處理大尺寸的試樣。此外,分別操作的功率施加係導致 成本增加,因為應該對於各別電極採用一獨立阻抗匹配電 路,以達成一阻抗匹配狀態以有效率地使用功率。 發明概論 本發明之一目的係解決上述問題並提供一種天線元件 ’以產生大量電漿而處理大尺寸試樣》 本發明之另一目的係提供一種天線元件以產生均勻的 電楽·分佈。 為了達成本發明之上述目的,提供_種天線元件以產 武張尺度適用中國國家標準(CNS)A4規格(210 X 297公釐) Ί ί ^-------- 裝·!II 訂· — ‘1! — I 緩 {請先Μ讀背面之注意事項再填寫本頁) A7 ______B7__ 五、發明說明(4 ) 生大量電漿,包含: 一高頻功率源; {請先閲讀背面之注意事項再填寫本I) 一第一天線*以接收自高頻功率源供應的高頻功率; 及 一第二天線,舆第一天線並聯連接,以接收自高頻功 率源供應之高頻功率,其中在第一及第二天線之間保持一 共振狀態。 圖式簡單說明 參照圖式由較佳實施例的下列描述可得知本發明之目 的及型態,其中: 第1圊為顯示一種用於產生電感耦合電漿之習知元件 之示意圖; 第2a及2b圖為顯示用以產生電感耦合電漿的習知天線 元件之示意圖; 第3a及3b圊為顯示根據本發明一實施例用以產生電感 耦合電漿的天線元件之示意圖; 第4a及4b圈為圖3a及3b所示的天線元件之相等電路圖 1 經濟部智慧財產局員工消費合作社印製 第5圊為顯示根據本發明另一實施例用於產生電感耦 合電漿的天線元件之示意圈:及 第6a及6b圊為顯示用於產生電感耦合電漿之天線元件 之相等電路圖。 本發明之詳細描述 參照圖式詳述本發明之較佳實施例。 本紙張尺度適用中國國家標準(CNS)A4規格(2i0 X 297公釐) A7 44722 6 _B7____ 五、發明說明(5 ) (請先閱讀背面之注意事項再填寫本頁>^ 47226 Α7 Β7 V. Description of the invention (ί) Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economics BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an antenna element for generating plasma, and particularly to an antenna element for generating inductively coupled plasma. A large effective area with a high uniform plasma density to process an antenna element of a large sample. The conventional technique is described on a substrate (such as a semiconductor wafer, a flat panel display, or the like in the field of manufacturing semiconductor devices). Produces fine patterns and produces electropolymerization for a variety of surface treatment procedures, such as dry etching procedures, chemical vapor deposition procedures, sputtering, and the like. In order to reduce costs and improve output, the size of semiconductor wafers and the size of substrates for flat panel displays have been increasing. For example, in recent years, the size of substrates for flat-panel displays has exceeded 300 mm. Or a device on the substrate. Therefore, plasma sources operated by high-frequency power of diode type, microwave type, or RF wave type and the like have been used for this purpose. For this reason, diode type plasma sources have problems such as difficulty in controlling high voltages and the need for a high level of gas. Due to the pressure, the diode plasma source is no longer suitable for processing this fine type. That is, if the electron cyclotron resonance (ECR) type plasma source is favorable for obtaining high-density plasma at a low voltage, it is also disadvantageous for achieving a uniform plasma distribution. This problem is also exacerbated when the size of the plasma increases. In addition, according to the spiral wave type plasma source, a radio wave type plasma source (called an inductive coupling type), the energy systems of electric and magnetic energy are combined and excited to generate a high-density plasma in a uniform sentence distribution. However, in the case of increased plasma size, the spiral wave plasma source is not suitable for achieving a uniform plasma density distribution. Briefly refer to Figure 1 to describe the general 4 scales used to generate the inductively coupled plasma. Applicable to China National Standard (CNS) A4 specifications (210 X 297 mm) 4 {Notes on the back of the monument first fill in this page & gt Install l · — — —Order --------- Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 __B7____ V. Description of the invention (2) Antenna element 'The element used to generate plasma 10 (below) (Referred to as a plasma generating element) has a chamber 104 in which a plasma can be generated. The chamber 104 includes a gas inlet 110 to supply a reactant gas *-a vacuum pump 112 to maintain a vacuum state inside the chamber, and a gas An outlet 114 to discharge the reactants after the reaction. In addition, it has a chuck 108 on which a sample 112 (such as water, glass substrate or the like) can be placed into the chamber 104 and a high-frequency power source 1. One of the two-phase connection antenna 100 is installed on the room 104, and an insulating plate 116 is installed between the antenna 100 and the room 104 'in order to reduce the capacitance coupling characteristics, and to help the energy from the high-frequency power source 102 via inductive coupling Send to Denso 丨〗 8. Electricity with the above structure The plasma generating element 100 generates a plasma in the following method. In other words, all the air filling in the interior of the chamber 104 is discharged by the vacuum pump 112 to obtain a vacuum state in the first step. Inject a reactant gas In order to generate electricity through the gas inlet 110 and maintain the required gas pressure value of the chamber 104, then the high-frequency power of 13.56 megahertz is applied to the antenna element 100 from the high-frequency power source 102 «as in 2a and 2b2 The illustrated 'conventional plasma generating element' 0 is provided with a helical antenna 200 or a plurality (for example, three) of electrode antennas 202a, 202b, 202c. Therefore, for high-frequency power, The time on a horizontal plane of 100 is changed to form a vertical magnetic field. The time-varying magnetic field thus forms an _inductive electric field in the interior of the chamber 104. When the electrons are heated and induced into an electric field, the antenna 100 is an inductor handle. In the combined cracking, as mentioned above, the electron system collides with adjacent neutral gas particles to generate ions and radicals, and the like to be used in plasma etching and deposition processes. In addition, if the power The self-separated high-frequency power source (not shown) is applied to this paper with the meaning applicable to the Chinese National Standard (CNS > A4 specification (210 * 297 male *) ------------- install- ---- Γ --- Order --------- line {Please read the notes on the back * before filling out this page) 44722 6 A7 B7 Ministry of Economic Affairs-Member of Intellectual Property Bureau X Consumer Cooperatives Description of the invention (The central head 108 'can adjust the ion energy applied to the sample 106. As shown in circle 2a, several wires are connected in series to form a spiral antenna 200, so that the current flow in each wire is kept fixed β In this case, it is difficult to control the distribution of the inductive electric field, and ions and electrons are lost on the inner wall of the chamber 104. Therefore, a high density of the plasma is formed in the central portion of the plasma 118, but a low density of the plasma is formed near the inner wall portion of the chamber 104. As a result, it is very difficult to achieve a uniform density distribution of the plasma 118. Also, since all the wires of the antenna 200 are connected in series, it is possible to increase the voltage drop of the capacitor 118 with the influence of the capacitance characteristics of the plasma 118. Result 'The electrical efficiency of antenna 200 is reduced and it is difficult to maintain a uniform density distribution of the plasma.' Then, as shown in circle 2a, three separate electrodes (each with three of the high-frequency power sources 204a, 204b, 204c) In the antenna formed by different phases, the plasma density is generally reported to be high, but the plasma density decreases near the center of the chamber. It is also difficult to ensure the uniformity of the density distribution of the plasma, and it is also difficult to handle large plasma density. Sized specimen. In addition, the separately applied power application results in increased cost because an independent impedance matching circuit should be used for each electrode to achieve an impedance matching state to use power efficiently. SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and provide an antenna element to process a large-sized sample to generate a large amount of plasma. Another object of the present invention is to provide an antenna element to generate a uniform voltage distribution. In order to achieve the above-mentioned object of the invention, we provide _ a variety of antenna elements for production. We can apply the Chinese National Standard (CNS) A4 specification (210 X 297 mm) to the brawned scale. Ί ί ^ -------- Installation ·! Order II — — '1! — I slow {please read the notes on the back before filling this page) A7 ______B7__ 5. Description of the invention (4) Generate a large amount of plasma, including: a high-frequency power source; {Please read first Note on the back, fill in this I) A first antenna * to receive the high-frequency power supplied from the high-frequency power source; and a second antenna, the first antenna is connected in parallel to receive from the high-frequency power source The supplied high-frequency power, wherein a resonance state is maintained between the first and second antennas. Brief Description of the Drawings The purpose and form of the present invention can be obtained from the following description of the preferred embodiment with reference to the drawings, in which: the first one is a schematic diagram showing a conventional element for generating an inductively coupled plasma; the second one And 2b are schematic diagrams showing a conventional antenna element used to generate an inductively coupled plasma; 3a and 3b 及 are schematic diagrams showing an antenna element used to generate an inductively coupled plasma according to an embodiment of the present invention; and 4a and 4b The circle is the equivalent circuit of the antenna element shown in Figures 3a and 3b. Figure 1 is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 5 is a schematic circle showing an antenna element for generating an inductively coupled plasma according to another embodiment of the present invention. : And 6a and 6b 圊 are equivalent circuit diagrams showing antenna elements for generating an inductively coupled plasma. DETAILED DESCRIPTION OF THE INVENTION A preferred embodiment of the present invention is described in detail with reference to the drawings. This paper size applies the Chinese National Standard (CNS) A4 specification (2i0 X 297 mm) A7 44722 6 _B7____ V. Description of the invention (5) (Please read the precautions on the back before filling this page >

第3a圖為顯示根據本發明一實施例用於產生電感耦合 電漿的一天線元件之概念圖,而第4a圖為ffl3a所示的一天 線元件之相等電路囷。如第3a及4a圈所示,本發明的一天 線元件100包括彼此呈並聯連接之多數天線單元400a及 400b,其各別包括可變負荷302a及302b及單或多線之天線 300a 及 300b。天線 300a 及 300b 中,編號 R,、R2 及 、L2R 表各別天線之電阻及相等的電感,且天線的電容受到吸收 且對於共振可變電容及可變負荷電容標為CR、<:!_» 此外,天線元件100亦包括一阻抗匹配電路(阻抗匹配 盒:1MB)304以在多數天線單元400a及400b與高頻功率源 102之間達成一阻抗匹配狀態。此時,多數天線單元4〇〇a 、400b係由本發明的最重要特徵之可變電容CR 302a的可變 負荷保持在共振狀態。如第4a圓所示,根據本發明詳述天 線元件100之共振狀態。 經濟部智慧財產局具工消費合作社印 第4a圊為第3a圖所示天線元件之相等電路囷,易言之 ,經由與高頻功率源102相連接的阻抗匹配電路304供應功 率’第一天線單元400a包括一第一可變負荷302a及串聯連 接之一第一天線300a,而第二天線單元400b包括一第二可 變負荷302b及串聯連接之一第二天線300b,第一及第二天 線單元400a、400b均並聯連接。為了將第一及第二天線單 元400a、400b的相等阻抗之一虛部設為零,可調整第一可 變負荷302a的量值。如圖所示,可變電容CR係用以容易地 調整電容,若產生此共振狀態,在第一及第二單元400a、 400b中流動的電流量值變成相等。再參照第3a圓,經由上 8 、張尺度適用中國0家標準(CNS)A4規格(210 * 297公釐〉 A7 ___B7_______ 五、發明說明(6 ) 述程序,增加了位置第二天線單元400b外部之第一天線單 元400a的電流值。 (請先W讀背面之注意事項再填寫本頁) 然後’知用一般的阻抗方法以盡量加大從高頻功率源 102傳送至第一及第二天線單元400a、400b。易言之,在第 一及第二天線單元400a、400b上決定之總可變負荷可視為 一規則的負荷。結果,可能產生一阻抗匹配電路304以達成 一相等的阻抗匹配狀態’可由一種已為相同技術領域熟知 的方法來構成阻抗匹配電路304,訾如在其中一可變電感 L,與可變電容C〗呈並聯連接之一簡單電路中。 易言之,本發明的天線元件100中,先決定可變負荷 302b的量值以控制由第二天線300b傳送到電漿之能量值, 決定共振可變負荷302a的量值以在第一及第二天線300a、 300b之間形成一共振狀態,然後由1MB 304達成一阻抗匹 配狀態。結果可能以改善的電漿密度均勻度從高頻功率源 102有效率地傳送能量至室1〇4中之電漿118。 經濟部智慧財產局員工消費合作社印製 然後1參照第3b及4b圖描述本發明另一實施例,如圊 所示’為了提供可保持一共振狀態之一操作狀況,本發明 之天線元件100’可設有預定數量的天線單元410a、410b、 410c。根據本發明的此實施例,天線元件1 〇〇’設有三個天 線單元。如第4b圖的相等電路所示,天線單元410a、4〗0b 、410c分別包括可變負荷312a ' 312b、312c。附接在兩天 線單元410b、410c之可變負荷312b、312c的量值受到控制 以調整天線單元3 1 Ob、3 10c中流動的電流之一比值。另一 方面,其餘的天線單元310a係用於對電路達成一共振狀態 9 本紙張弋度適用中國S家標準(CNS>A4規格(210x297公釐) 經濟部智慧財產局員工消費合作社印*']. 447226 A7 _____B7 五、發明說明(7 ) ,此實施例中,用以保持一共振狀態之天線單元310a係形 成為一最外電線,且其餘的天線單元310b、310c形成為内 部電線。因此,可能便於改善在整逋天線元件中之能量的 均勻分佈,並且,可瞭解本發明之一特定實施例中可省略 内部天線單元410b ' 410c的可變負荷312b或312c » 此外’如上述,天線單元410a、410、410c應與高頻功 率源102’達成阻抗匹配狀態,以利用謦如具有電感1^’及電 容C"之阻抗匹配電路304’,盡量加大供應至整體天線單元 410a、410b、4i0c之能量值》 根據本發明的第二實施例構成之天線元件100,中,_ 大尺寸的電漿可便於設有一均句的密度分佈。 然後’參照第5及6圖描述本發明之另一實施例,如第5 圖所示,本發明的另一實施例設有與第3圖所示天線元件 100的天線單元400a及400b相同構造之另一组天線單元。第 6囷所示天線元件500之相等電路圖包括一第一組天線單元 520a,其具有第一及第二天線單元510a' 51〇b,及一第二 組天線單元520b,其具有第三及第四天線單元5丨0c、5i0d 。如本發明之其他實施例,可變負荷可施於所有天線單元 510a、510b、5l〇c、510d上。尤其,藉由調整共振可變負 荷CR1或Cm的量值’在各別組天線單元52〇a、520b的天線 單元5 ] 0a、51 Ob、510c、510d之間保持共振狀態。並且, 利用在整組天線520a、520b與高頻功率源1 〇2,之間連接的 阻抗匹配電路504,盡量加大能量的傳送· 即若元件在本發明實施例中圖示設有兩組天線單元, 本紙張尺度適用中國國袁標準(CNS)A4規格(210x297公爱> 10 ..---.--------------11--訂-----II! <請先W讀背面之注意事項再填窵本一* > 經濟部智慧財產局員工消費合作社印製 A7 B7 五、發明說明(8) 可控制天線組數以增加電漿尺寸並更精碟地調整電漿密度 的均勻度。但是’不需限制各组天線單元中包括之天線單 元數。此外,務必瞭解此實施例中,可在位於内部之天線 單元520b组中建立一共振狀態,結果,可藉由將—低功率 值自天線組520b供應至電衆’而比自位於外部的天線組 520a供應更能改善電漿的密度分佈之均勻度β亦可藉由將 外部天線單元520a組保持在一共振狀態,而供應較大量的 功率。 第6a圖顯示一種具有兩或更多組天線單元之天線元件 600,其中天線單元組分別包括三個天線單元。如第6b圖所 示,供應至各天線單元的能量值及與高頻功率源的一阻抗 匹配狀態構成之所有描述係對於本發明上述實施例均相同 或相似β 因此’用於產生電感耦合電漿之天線元件具有下列優 點:一阻抗未匹配狀態並非來自天線元件之尺寸增加,且 I 藉由選擇性調整傳送過特定天線之能量值,而將一共振狀 態感應入天線元件中,而達成電漿的密度分佈之均勻度。 即若已在上文描述本發明之特定較佳實施例,應瞭解 本發明不限於該等精確實施例,熟悉本技藝者可作各種變 化及修改,而不背離申請專利範圍所界定的本發明之範圊 與精神。 本紙張尺度適用中國國家標準(CNS)A4規格(210 X 297公II ) 11 --i 1 l· I I 訂. — — — — — — I- ί請先M讀背面之注意事項再填寫本頁) - 44722 6 A7 B7 經濟部智慧財產局員工消費合作社印*·)『'. 五、發明說明(9 ) 元件標號對照 10,118…電漿 302a,302b…第一,第二可變負荷 100,300a,300b …天線 304,304’,504…阻抗匹配電路 100’,500,600…天線元件 31 Ob,310c,400a,400b,410a,410, 102,102,,204a,204b,204c …高頻 410c,410b,510a,510b,510c, 功率源 510d,520a,520b…天線單元 104…室 400a,400b…第一,第二天線單元 106,112…試樣 410a,410b,410c…整體天線單元 108…夾頭 510a,510b…第一,第二天線單元 Π0·"氣链入口 510c,510d·.·第三,第四天線單元 112···真空泵 CuCr…可變電容 114…氣體出口 cr…電容 116…絕緣板 Cc··可變負荷電容 200…螺旋型天線 CR1,CR2…共振可變負荷 202a,202b,202c…電極型天線 UL2.IV…電感 300a,300b…第一,第二天線 ιυ2…電阻 302a3〇2b312a312b312c”·可變負荷 (請先«讀背面之注意事項再填筠本頁) •ml·. 訂---------綾 本紙張尺度適用中固國家標準(CNS)A4規格(210 * 297公漦) 12Fig. 3a is a conceptual diagram showing an antenna element for generating an inductively coupled plasma according to an embodiment of the present invention, and Fig. 4a is an equivalent circuit of a antenna element shown in ffl3a. As shown in circles 3a and 4a, the antenna element 100 of the present invention includes a plurality of antenna units 400a and 400b connected in parallel with each other, each of which includes a variable load 302a and 302b and a single or multi-line antenna 300a and 300b. In the antennas 300a and 300b, the numbers R, R2, and L2R indicate the resistance and equivalent inductance of each antenna, and the capacitance of the antenna is absorbed and the resonance variable capacitance and variable load capacitance are marked as CR, <:! In addition, the antenna element 100 also includes an impedance matching circuit (impedance matching box: 1MB) 304 to achieve an impedance matching state between most of the antenna units 400a and 400b and the high-frequency power source 102. At this time, most of the antenna units 400a and 400b are kept in a resonance state by the variable load of the variable capacitor CR 302a, which is the most important feature of the present invention. As shown by circle 4a, the resonance state of the antenna element 100 according to the present invention is described in detail. 4a of the Intellectual Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is the equivalent circuit of the antenna element shown in Fig. 3a. In other words, the power is supplied through the impedance matching circuit 304 connected to the high-frequency power source 102. The first day The line unit 400a includes a first variable load 302a and a first antenna 300a connected in series, and the second antenna unit 400b includes a second variable load 302b and a second antenna 300b connected in series. And the second antenna units 400a and 400b are both connected in parallel. In order to set the imaginary part of one of the equal impedances of the first and second antenna elements 400a, 400b to zero, the magnitude of the first variable load 302a may be adjusted. As shown in the figure, the variable capacitor CR is used to easily adjust the capacitance. If this resonance state occurs, the magnitudes of the currents flowing in the first and second units 400a and 400b become equal. Referring to circle 3a again, through the above 8 and Zhang scales, 0 Chinese standards (CNS) A4 specifications (210 * 297 mm) are applied (A7 ___B7_______ V. Description of the invention (6), the second antenna unit 400b is added. The current value of the first external antenna unit 400a. (Please read the precautions on the back before filling this page.) Then 'know the general impedance method to maximize the transmission from the high-frequency power source 102 to the first and second Two antenna units 400a, 400b. In other words, the total variable load determined on the first and second antenna units 400a, 400b can be regarded as a regular load. As a result, an impedance matching circuit 304 may be generated to achieve a The equal impedance matching state can be constituted by a method well known in the same technical field, such as in a simple circuit in which a variable inductor L and a variable capacitor C are connected in parallel. In other words, in the antenna element 100 of the present invention, the magnitude of the variable load 302b is first determined to control the energy value transmitted from the second antenna 300b to the plasma, and the magnitude of the resonant variable load 302a is determined at the first and Second antenna 300a, A resonance state is formed between 300b, and then an impedance matching state is achieved by 1MB 304. As a result, it is possible to efficiently transfer energy from the high-frequency power source 102 to the plasma 118 in the chamber 104 with an improved uniformity of the plasma density. Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs and then referring to Figures 3b and 4b to describe another embodiment of the present invention, as shown in 圊 'in order to provide an operating condition that can maintain a resonance state, the antenna element 100 of the present invention' A predetermined number of antenna units 410a, 410b, and 410c may be provided. According to this embodiment of the present invention, the antenna element 100 ′ is provided with three antenna units. As shown in the equivalent circuit of FIG. 4b, the antenna units 410a, 4 are provided. 0b and 410c include variable loads 312a ', 312b, and 312c, respectively. The magnitudes of the variable loads 312b and 312c attached to the two antenna units 410b and 410c are controlled to adjust the amount of current flowing in the antenna units 3 1 Ob and 3 10c. On the other hand, the remaining antenna units 310a are used to achieve a resonant state of the circuit. 9 This paper is compliant with China S standards (CNS > A4 specification (210x297 mm).) Printed by the production bureau employee consumer cooperative * ']. 447226 A7 _____B7 V. Description of Invention (7) In this embodiment, the antenna unit 310a for maintaining a resonance state is formed as an outermost wire, and the remaining antenna units 310b And 310c are formed as internal wires. Therefore, it may be convenient to improve the uniform distribution of energy in the antenna element, and it can be understood that the variable load 312b of the internal antenna unit 410b '410c or the variable load 312b of the internal antenna unit may be omitted in a specific embodiment of the present invention. 312c »In addition, 'As mentioned above, the antenna units 410a, 410, and 410c should reach the impedance matching state with the high-frequency power source 102', so as to use the impedance matching circuit 304 'with inductance 1 ^' and capacitance C " as much as possible Energy values supplied to the entire antenna unit 410a, 410b, 4i0c. "In the antenna element 100 according to the second embodiment of the present invention, a large-sized plasma can be conveniently provided with a uniform density distribution. Then, another embodiment of the present invention will be described with reference to FIGS. 5 and 6. As shown in FIG. 5, another embodiment of the present invention is provided with the same structure as the antenna units 400 a and 400 b of the antenna element 100 shown in FIG. 3. Another set of antenna elements. The equivalent circuit diagram of the antenna element 500 shown in FIG. 6A includes a first group of antenna units 520a having first and second antenna units 510a 'and 51b, and a second group of antenna units 520b having third and The fourth antenna unit 5i0c, 5i0d. As in other embodiments of the present invention, a variable load can be applied to all the antenna elements 510a, 510b, 51oc, 510d. In particular, by adjusting the magnitude of the resonance variable load CR1 or Cm ', the resonance state is maintained between the antenna elements 5] 0a, 51 Ob, 510c, and 510d of the respective sets of antenna elements 52oa and 520b. In addition, the impedance matching circuit 504 connected between the entire group of antennas 520a and 520b and the high-frequency power source 102 is used to maximize the transmission of energy. That is, if the element is provided with two groups as shown in the embodiment of the present invention, Antenna unit, this paper size is applicable to China National Standard (CNS) A4 specification (210x297 Public Love > 10 ..---.------------- 11--Order ----- --II! ≪ Please read the notes on the back before filling in this one * > Printed by the Consumers ’Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs A7 B7 V. Description of the invention (8) The number of antenna groups can be controlled to increase the plasma Size and more uniformly adjust the plasma density uniformity. But 'there is no need to limit the number of antenna elements included in each group of antenna elements. In addition, it is important to understand that in this embodiment, it can be established in the internal antenna element 520b group A resonance state, as a result, the uniformity β of the density distribution of the plasma can be improved by supplying a low power value from the antenna group 520b to the electric mass' than by supplying it from the external antenna group 520a. The external antenna unit 520a group is maintained in a resonance state, and a larger amount of power is supplied. Fig. 6a An antenna element 600 having two or more antenna elements is shown, wherein the antenna element groups each include three antenna elements. As shown in FIG. 6b, the energy value supplied to each antenna element and an impedance with the high-frequency power source All descriptions of the matched state structure are the same or similar to the above embodiments of the present invention. Therefore, the antenna element used to generate the inductively coupled plasma has the following advantages: an impedance unmatched state does not come from the increase in the size of the antenna element, and I borrows By selectively adjusting the energy value transmitted through a specific antenna and inducing a resonance state into the antenna element, the uniformity of the density distribution of the plasma is achieved. That is, if a specific preferred embodiment of the present invention has been described above, It should be understood that the present invention is not limited to these precise embodiments, and those skilled in the art can make various changes and modifications without departing from the scope and spirit of the invention as defined by the scope of the patent application. The paper standards are applicable to the Chinese National Standard (CNS) A4 specifications (210 X 297 male II) 11 --i 1 l · II order. — — — — — — I- Please read the notes on the back before filling in this )-44722 6 A7 B7 Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs * ·) "". V. Description of the invention (9) Comparison of component numbers 10, 118 ... Plasma 302a, 302b ... First, second variable load 100,300 a, 300b ... antennas 304, 304 ', 504 ... impedance matching circuits 100', 500, 600 ... antenna elements 31 Ob, 310c, 400a, 400b, 410a, 410, 102, 102, 204a, 204b, 204c ... high frequency 410c, 410b, 510a, 510b, 510c, power sources 510d, 520a, 520b ... antenna unit 104 ... rooms 400a, 400b ... first and second antenna units 106, 112 ... samples 410a, 410b, 410c ... integral antenna unit 108 ... chuck 510a, 510b ... first and second antenna units Π0 ... " air chain inlets 510c, 510d .... third and fourth antenna units 112 ... vacuum pump CuCr ... variable capacitor 114 ... gas outlet cr ... capacitance 116 ... insulation Board Cc ·· Variable load capacitance 200 ... helical antennas CR1, CR2 ... resonant variable loads 202a, 202b, 202c ... electrode antenna UL2.IV ... inductance 300a, 300b ... first and second antennas ιυ2 ... resistance 302a3 〇2b312a312b312c "· Variable load (please read« Notes on the back side first » Yun reloading this page) • ml ·. This book --------- Aya paper applies the solid scale national standards (CNS) A4 size (210 * 297 male slime) 12

Claims (1)

A8B8C8D8 4472 2 6 六、申請專利範圍 1. 一種天線元件,用於產生大量電漿,包含: 一高頻功率源; 一第一天線’用以接收自該高頻功率源供應之高頻 功率;及 一第二天線,與該第一天線為並聯連接’以接收自 該高頻功率源供應之高頻功率,其中在該等第一及第二 天線之間保持一共振狀態。 2. 如申請專利範圍第1項之元件,其中該第二天線係與一 可變負荷相連接,以與該第一天線保持一共振狀態。 3_如申請專利範圍第1項之元件,其中一第三天線另外與 該等第一及第二天線為並聯連接》 4. 如申請專利範圍第3項之元件,其中在該等第一、第二 、第三天線之間保持一共振狀態。 5. 如申請專利範圍第〗或4項之元件,其中另外組裝一阻抗 匹配電路,以達成該高頻功率源與該等第一及第二天線 之間的一阻抗匹配狀態。 6. —種天線元件,用於產生大量電漿,包含: 一高頻功率源: 一第一天線組*具有並聯連接之第一及第二天線以 接收自該高頻功率源供應之高頻功率;及 一第二天線組,具有並聯連接之第三及第四天線, 以接收自該咼頻功率源供應之高頻功率且與該第一天 線組呈並聯連接; 其中在該等第一及第二天線之間保持—共振狀態。 '張尺度適用中關家標準(CNS)A4規格(21〇 X 297公爱) ---' -13 - -------— I! ^-------—訂 -------- 線 <請先閱讀背面之注意事項再填寫本頁) 經濟部智慧財產局員工消費合作社印製 經-部智慧財產局員工消費舍作社印製 .ϋϋνΗ.ί--»»« -- _|打·· 六、申請專利範圍 7·如申請專利範圍第6項之元件,其中該第二天線與一可 變負荷相連接’以與該第一天線保持一共振狀態。 8.如申請專利範圍第6項之元件,其中在該等第三、第四 天線之間保持一共振狀態。 9·如申請專利範圍第6項之元件,其中該第四天線舆—可 變負荷相連接以與該第三天線保持—共振狀態。 10. 如申請專利範圍第6項之元件,其中一第五天線另外與 該等第一及第二天線保持相連接。 11. 如申請專利範圍第6或10項之元件,其中另外組裝一阻 抗匹配電路’以達成該高頻功率源與該等第_及第二天 線組之間的一阻抗匹配狀態。 12. 如申請專利範圍第6或丨〇項之元件,其中在該等第—及 第二天線組之間保持一共振狀態。 本紙張尺度適用由國國家標準(CMS)Α4規格(210 x 297公爱) -I I-------裝--------訂 - -------線 ί請先閱讀背面之注意事項再填寫本頁) 14A8B8C8D8 4472 2 6 6. Scope of patent application 1. An antenna element for generating a large amount of plasma, including: a high frequency power source; a first antenna 'for receiving high frequency power supplied from the high frequency power source And a second antenna connected in parallel with the first antenna to receive high-frequency power supplied from the high-frequency power source, wherein a resonance state is maintained between the first and second antennas. 2. The element according to item 1 of the patent application range, wherein the second antenna is connected to a variable load to maintain a resonance state with the first antenna. 3_ If the element of the scope of the patent application is applied for, a third antenna is additionally connected in parallel with the first and second antennas. A resonance state is maintained between the second, third, and third antennas. 5. As for the element in the scope of patent application or item 4, an impedance matching circuit is additionally assembled to achieve an impedance matching state between the high frequency power source and the first and second antennas. 6. An antenna element for generating a large amount of plasma, comprising: a high-frequency power source: a first antenna group * having first and second antennas connected in parallel to receive power supplied from the high-frequency power source High-frequency power; and a second antenna group having third and fourth antennas connected in parallel to receive high-frequency power supplied from the high-frequency power source and connected in parallel with the first antenna group; A resonance state is maintained between the first and second antennas. 'The Zhang scale is applicable to the Zhongguanjia Standard (CNS) A4 specification (21〇X 297 public love) ---' -13---------- I! ^ --------- order- ------ Line < Please read the notes on the back before filling out this page) Printed by the Intellectual Property Bureau Employee Consumer Cooperatives of the Ministry of Economic Affairs-Printed by the Ministry of Intellectual Property Bureau Employee Consumer Cooperatives. ΫϋνΗ.ί-- »» «-_ | Dozens of applications for patent scope 7. If the element of the scope of patent application for item 6 is applied, the second antenna is connected to a variable load to maintain a first antenna Resonance state. 8. The component according to item 6 of the patent application, wherein a resonance state is maintained between the third and fourth antennas. 9. The element of claim 6 in which the fourth antenna is connected to a variable load to maintain a resonance with the third antenna. 10. If the element of the scope of the patent application is item 6, a fifth antenna is additionally connected to the first and second antennas. 11. If the element of the scope of patent application is 6 or 10, an impedance matching circuit is additionally assembled to achieve an impedance matching state between the high frequency power source and the first and second antenna groups. 12. If the element of the scope of the patent application is No. 6 or No. 0, a resonance state is maintained between the first and second antenna groups. This paper size applies to the national standard (CMS) Α4 specification (210 x 297 public love) -I I ------- installed -------- order-------- line ί (Please read the notes on the back before filling out this page) 14
TW089108834A 1999-08-26 2000-05-09 Antenna device for generating inductively coupled plasma TW447226B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990035702A KR100338057B1 (en) 1999-08-26 1999-08-26 Antenna device for generating inductively coupled plasma

Publications (1)

Publication Number Publication Date
TW447226B true TW447226B (en) 2001-07-21

Family

ID=19608827

Family Applications (1)

Application Number Title Priority Date Filing Date
TW089108834A TW447226B (en) 1999-08-26 2000-05-09 Antenna device for generating inductively coupled plasma

Country Status (5)

Country Link
US (1) US6288493B1 (en)
EP (1) EP1079671A3 (en)
JP (1) JP2001085196A (en)
KR (1) KR100338057B1 (en)
TW (1) TW447226B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102056394A (en) * 2009-10-27 2011-05-11 东京毅力科创株式会社 Plasma processing apparatus
CN102420090A (en) * 2010-09-28 2012-04-18 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
TWI508633B (en) * 2008-10-27 2015-11-11 Tokyo Electron Ltd Inductively coupled plasma processing device, plasma processing method and memory medium
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
TWI611735B (en) * 2010-09-28 2018-01-11 Tokyo Electron Ltd Plasma processing device (1)
US9899191B2 (en) 2009-10-27 2018-02-20 Tokyo Electron Limited Plasma processing apparatus
TWI621376B (en) * 2010-09-28 2018-04-11 Tokyo Electron Ltd Plasma processing device (2)
US9997332B2 (en) 2009-10-27 2018-06-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
TWI694482B (en) * 2017-10-13 2020-05-21 南韓商優吉尼科技股份有限公司 Plasma processing apparatus and related inductively coupled plasma (icp) antenna

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6744213B2 (en) * 1999-11-15 2004-06-01 Lam Research Corporation Antenna for producing uniform process rates
JP2002008996A (en) * 2000-06-23 2002-01-11 Mitsubishi Heavy Ind Ltd Feed antenna and feed method
JP4598267B2 (en) 2000-12-26 2010-12-15 レノボ シンガポール プライヴェート リミテッド Transmission device, computer system, and opening / closing structure
KR100440736B1 (en) * 2001-02-19 2004-07-15 오범환 Direct Inductance Controller for Coaxial Parallel ICP Antenna
US7096819B2 (en) * 2001-03-30 2006-08-29 Lam Research Corporation Inductive plasma processor having coil with plural windings and method of controlling plasma density
JP2004531856A (en) * 2001-04-13 2004-10-14 アプライド マテリアルズ インコーポレイテッド Inductively coupled plasma source with controllable power distribution
KR100404723B1 (en) * 2001-04-26 2003-11-07 주식회사 플라즈마트 Device for Generating Inductively Coupled Plasma with Lower Aspect Ratio
KR100396214B1 (en) * 2001-06-19 2003-09-02 주성엔지니어링(주) Plasma processing apparatus having parallel resonance antenna for very high frequency
KR100476902B1 (en) * 2001-07-20 2005-03-17 주식회사 셈테크놀러지 The Large-Area Plasma Antenna(LAPA) and The Plasma Source For Making Uniform Plasma
KR200253559Y1 (en) 2001-07-30 2001-11-22 주식회사 플라즈마트 Antenna Structure of Inductively Coupled Plasma Generating Device
KR100464808B1 (en) * 2001-08-28 2005-01-05 최대규 Multi inductively coupled plasma inductor
KR100428813B1 (en) * 2001-09-18 2004-04-29 주성엔지니어링(주) Plama generation apparatus and SiO2 thin film etching method using the same
KR100415944B1 (en) * 2001-10-09 2004-01-24 주성엔지니어링(주) inductive coupled plasma generation source
KR100420533B1 (en) * 2001-12-05 2004-03-02 주성엔지니어링(주) Plasma apparatus and plasma etching method using the same
KR100478106B1 (en) * 2001-12-10 2005-03-24 (주)울텍 Apparatus of high density plasma
WO2003087857A2 (en) * 2002-04-18 2003-10-23 Ackermann Patent Gmbh Method and device for picking-up and processing interference fields and interference beams
KR100488362B1 (en) * 2002-05-20 2005-05-11 주식회사 플라즈마트 Low-Frequency Type Inductively Coupled Plasma Generating Device
JP3820188B2 (en) 2002-06-19 2006-09-13 三菱重工業株式会社 Plasma processing apparatus and plasma processing method
EP1552727A4 (en) * 2002-07-26 2007-06-06 Plasmart Co Ltd Inductively coupled plasma generator having lower aspect ratio
KR100488360B1 (en) * 2002-07-29 2005-05-11 주식회사 플라즈마트 Antenna Structure of Inductively Coupled Plasma Generating Device for Flat Displayer
US20030015965A1 (en) * 2002-08-15 2003-01-23 Valery Godyak Inductively coupled plasma reactor
KR100486724B1 (en) * 2002-10-15 2005-05-03 삼성전자주식회사 Inductively coupled plasma generating apparatus with serpentine coil antenna
KR100964398B1 (en) * 2003-01-03 2010-06-17 삼성전자주식회사 Inductively coupled antenna and plasma processing apparatus using the same
JP3783689B2 (en) * 2003-02-28 2006-06-07 ソニー株式会社 Antenna device
US7871490B2 (en) * 2003-03-18 2011-01-18 Top Engineering Co., Ltd. Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes and improved field distribution
US20040182319A1 (en) * 2003-03-18 2004-09-23 Harqkyun Kim Inductively coupled plasma generation system with a parallel antenna array having evenly distributed power input and ground nodes
US8974630B2 (en) 2003-05-07 2015-03-10 Sungkyunkwan University Inductively coupled plasma processing apparatus having internal linear antenna for large area processing
KR100523851B1 (en) 2003-05-07 2005-10-27 학교법인 성균관대학 Inductively Coupled Plasma Processing Appratus having internal linear antenna for large area processing
US20060124455A1 (en) * 2003-06-02 2006-06-15 Yizhou Song Thin film forming device and thin film forming method
KR101038204B1 (en) * 2004-02-25 2011-05-31 주성엔지니어링(주) Antenna for plasma
US7253125B1 (en) 2004-04-16 2007-08-07 Novellus Systems, Inc. Method to improve mechanical strength of low-k dielectric film using modulated UV exposure
JP4344886B2 (en) * 2004-09-06 2009-10-14 東京エレクトロン株式会社 Plasma processing equipment
US9659769B1 (en) 2004-10-22 2017-05-23 Novellus Systems, Inc. Tensile dielectric films using UV curing
US8282768B1 (en) 2005-04-26 2012-10-09 Novellus Systems, Inc. Purging of porogen from UV cure chamber
US8137465B1 (en) 2005-04-26 2012-03-20 Novellus Systems, Inc. Single-chamber sequential curing of semiconductor wafers
US8889233B1 (en) 2005-04-26 2014-11-18 Novellus Systems, Inc. Method for reducing stress in porous dielectric films
US8454750B1 (en) * 2005-04-26 2013-06-04 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US8980769B1 (en) 2005-04-26 2015-03-17 Novellus Systems, Inc. Multi-station sequential curing of dielectric films
US20060257342A1 (en) * 2005-05-12 2006-11-16 Weilin Mu Long-wearing glossy cosmetic composition
US8398816B1 (en) 2006-03-28 2013-03-19 Novellus Systems, Inc. Method and apparatuses for reducing porogen accumulation from a UV-cure chamber
JP2007311182A (en) * 2006-05-18 2007-11-29 Tokyo Electron Ltd Inductively-coupled plasma processing device, and plasma processing method
KR100824974B1 (en) * 2006-08-17 2008-04-28 (주)아이씨디 Antenna of Plasma Processing Apparatus
CN101136279B (en) * 2006-08-28 2010-05-12 北京北方微电子基地设备工艺研究中心有限责任公司 Jigger coupling coil and jigger coupling plasma device
US10037905B2 (en) 2009-11-12 2018-07-31 Novellus Systems, Inc. UV and reducing treatment for K recovery and surface clean in semiconductor processing
US9050623B1 (en) 2008-09-12 2015-06-09 Novellus Systems, Inc. Progressive UV cure
US8319436B2 (en) * 2009-02-02 2012-11-27 Advanced Energy Industries, Inc. Passive power distribution for multiple electrode inductive plasma source
CN102318034B (en) * 2009-02-10 2014-07-23 赫利森有限责任公司 Apparatus for large area plasma processing
US9305750B2 (en) * 2009-06-12 2016-04-05 Lam Research Corporation Adjusting current ratios in inductively coupled plasma processing systems
US9967965B2 (en) * 2010-08-06 2018-05-08 Lam Research Corporation Distributed, concentric multi-zone plasma source systems, methods and apparatus
KR20120035559A (en) * 2010-10-06 2012-04-16 주식회사 유진테크 Substrate processing apparatus including semicircle-type antenna
KR101246809B1 (en) * 2010-12-21 2013-03-26 엘아이지에이디피 주식회사 Apparatus for plasma processing and antenna thereof
JP5800532B2 (en) 2011-03-03 2015-10-28 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
JP5800547B2 (en) * 2011-03-29 2015-10-28 東京エレクトロン株式会社 Plasma processing apparatus and plasma processing method
CN103959920B (en) * 2011-09-16 2016-12-07 细美事有限公司 Antenna structure and plasma generating equipment
JP5878771B2 (en) * 2012-02-07 2016-03-08 東京エレクトロン株式会社 Inductively coupled plasma processing method and inductively coupled plasma processing apparatus
US20130256271A1 (en) * 2012-04-03 2013-10-03 Theodoros Panagopoulos Methods and apparatuses for controlling plasma in a plasma processing chamber
US9082589B2 (en) * 2012-10-09 2015-07-14 Novellus Systems, Inc. Hybrid impedance matching for inductively coupled plasma system
KR101468656B1 (en) * 2012-12-28 2014-12-04 엘아이지에이디피 주식회사 Inductively coupled plasma processing apparatus
KR101619896B1 (en) * 2014-07-25 2016-05-23 인베니아 주식회사 An plasma process apparatus and an antenna assembly for that
US10332725B2 (en) * 2015-03-30 2019-06-25 Lam Research Corporation Systems and methods for reversing RF current polarity at one output of a multiple output RF matching network
US10388546B2 (en) 2015-11-16 2019-08-20 Lam Research Corporation Apparatus for UV flowable dielectric
CN107333378B (en) * 2016-04-29 2019-05-03 中微半导体设备(上海)股份有限公司 A kind of device for inductively coupled plasma processing and its control method
US10347547B2 (en) 2016-08-09 2019-07-09 Lam Research Corporation Suppressing interfacial reactions by varying the wafer temperature throughout deposition
US9847221B1 (en) 2016-09-29 2017-12-19 Lam Research Corporation Low temperature formation of high quality silicon oxide films in semiconductor device manufacturing
US11651939B2 (en) 2017-07-07 2023-05-16 Advanced Energy Industries, Inc. Inter-period control system for plasma power delivery system and method of operating same
US11615943B2 (en) 2017-07-07 2023-03-28 Advanced Energy Industries, Inc. Inter-period control for passive power distribution of multiple electrode inductive plasma source
US11437221B2 (en) 2017-11-17 2022-09-06 Advanced Energy Industries, Inc. Spatial monitoring and control of plasma processing environments
JP7289313B2 (en) 2017-11-17 2023-06-09 エーイーエス グローバル ホールディングス, プライベート リミテッド Spatial and temporal control of ion bias voltage for plasma processing
JP7352068B2 (en) * 2019-07-12 2023-09-28 日新電機株式会社 plasma control system
JP7569858B2 (en) 2019-12-02 2024-10-18 ラム リサーチ コーポレーション Impedance transformation in radio frequency assisted plasma production
US11994542B2 (en) 2020-03-27 2024-05-28 Lam Research Corporation RF signal parameter measurement in an integrated circuit fabrication chamber
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching
US12046448B2 (en) 2022-01-26 2024-07-23 Advanced Energy Industries, Inc. Active switch on time control for bias supply
US11978613B2 (en) 2022-09-01 2024-05-07 Advanced Energy Industries, Inc. Transition control in a bias supply

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6068784A (en) * 1989-10-03 2000-05-30 Applied Materials, Inc. Process used in an RF coupled plasma reactor
US6165311A (en) * 1991-06-27 2000-12-26 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna
JPH06104184A (en) * 1992-09-18 1994-04-15 Fujitsu Ltd Plasma processing apparatus
US5401350A (en) * 1993-03-08 1995-03-28 Lsi Logic Corporation Coil configurations for improved uniformity in inductively coupled plasma systems
US5587038A (en) * 1994-06-16 1996-12-24 Princeton University Apparatus and process for producing high density axially extending plasmas
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US5919382A (en) * 1994-10-31 1999-07-06 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
JPH08279493A (en) * 1995-04-04 1996-10-22 Anelva Corp Plasma processing system
US6034346A (en) * 1995-05-19 2000-03-07 Hitachi, Ltd. Method and apparatus for plasma processing apparatus
US5874704A (en) * 1995-06-30 1999-02-23 Lam Research Corporation Low inductance large area coil for an inductively coupled plasma source
JP3153743B2 (en) * 1995-08-31 2001-04-09 東京エレクトロン株式会社 Plasma processing equipment
KR100290813B1 (en) * 1995-08-17 2001-06-01 히가시 데쓰로 Plasma processing equipment
JPH09102471A (en) * 1995-10-05 1997-04-15 Sony Corp Plasma generation source as well as apparatus and method for plasma cvd
US5965034A (en) * 1995-12-04 1999-10-12 Mc Electronics Co., Ltd. High frequency plasma process wherein the plasma is executed by an inductive structure in which the phase and anti-phase portion of the capacitive currents between the inductive structure and the plasma are balanced
US6017221A (en) * 1995-12-04 2000-01-25 Flamm; Daniel L. Process depending on plasma discharges sustained by inductive coupling
US5767628A (en) * 1995-12-20 1998-06-16 International Business Machines Corporation Helicon plasma processing tool utilizing a ferromagnetic induction coil with an internal cooling channel
JP3739137B2 (en) * 1996-06-18 2006-01-25 日本電気株式会社 Plasma generator and surface treatment apparatus using the plasma generator
JPH10134996A (en) * 1996-10-31 1998-05-22 Nec Corp Plasma treatment equipment
JPH11144894A (en) * 1997-08-29 1999-05-28 Matsushita Electric Ind Co Ltd Plasma treatment method and apparatus
JPH11185993A (en) * 1997-12-24 1999-07-09 Matsushita Electric Ind Co Ltd Plasma processing method and device
US6164241A (en) * 1998-06-30 2000-12-26 Lam Research Corporation Multiple coil antenna for inductively-coupled plasma generation systems

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI508633B (en) * 2008-10-27 2015-11-11 Tokyo Electron Ltd Inductively coupled plasma processing device, plasma processing method and memory medium
US9899191B2 (en) 2009-10-27 2018-02-20 Tokyo Electron Limited Plasma processing apparatus
US10804076B2 (en) 2009-10-27 2020-10-13 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9997332B2 (en) 2009-10-27 2018-06-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
US9941097B2 (en) 2009-10-27 2018-04-10 Tokyo Electron Limited Plasma processing apparatus
US9313872B2 (en) 2009-10-27 2016-04-12 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
CN102056394A (en) * 2009-10-27 2011-05-11 东京毅力科创株式会社 Plasma processing apparatus
TWI611735B (en) * 2010-09-28 2018-01-11 Tokyo Electron Ltd Plasma processing device (1)
CN102420090B (en) * 2010-09-28 2016-02-24 东京毅力科创株式会社 Plasma processing apparatus and processing method
TWI621376B (en) * 2010-09-28 2018-04-11 Tokyo Electron Ltd Plasma processing device (2)
US9218943B2 (en) 2010-09-28 2015-12-22 Toyko Electron Limited Plasma processing apparatus and plasma processing method
CN102420090A (en) * 2010-09-28 2012-04-18 东京毅力科创株式会社 Plasma processing apparatus and plasma processing method
TWI694482B (en) * 2017-10-13 2020-05-21 南韓商優吉尼科技股份有限公司 Plasma processing apparatus and related inductively coupled plasma (icp) antenna

Also Published As

Publication number Publication date
JP2001085196A (en) 2001-03-30
EP1079671A2 (en) 2001-02-28
EP1079671A3 (en) 2001-11-07
KR20000053680A (en) 2000-09-05
KR100338057B1 (en) 2002-05-24
US6288493B1 (en) 2001-09-11

Similar Documents

Publication Publication Date Title
TW447226B (en) Antenna device for generating inductively coupled plasma
TWI595807B (en) Plasma processing equipment
TWI362901B (en)
TWI227510B (en) Plasma processing apparatus
TWI239794B (en) Plasma processing apparatus and method
TW455922B (en) Plasma processing apparatus
TW494490B (en) Integrator and plasma processing apparatus
CN113921364A (en) Inductive coil module, inductively coupled plasma generating system and apparatus
KR20010042269A (en) Parellel-antenna transformer-coupled plasma generation systems
KR101062461B1 (en) Antenna of inductively coupled plasma generator and inductively coupled plasma generator comprising same
WO2008028372A1 (en) Inductive coupled coil and inductive coupled plasma device using the same
KR100845890B1 (en) Large area inductive coupled plasma reactor
JP2012018921A (en) Plasma generating apparatus
CN109559987A (en) Method of plasma processing
KR100806522B1 (en) Inductively coupled plasma reactor
JP3396399B2 (en) Electronic device manufacturing equipment
KR100864111B1 (en) Inductively coupled plasma reactor
KR20090009369A (en) Plasma reactor having inductively coupled plasma source with heater
KR101585891B1 (en) Compound plasma reactor
TW200304764A (en) Plasma processing apparatus, matching box, impedance integrator and coupler
KR101160625B1 (en) Plasma reactor having multi power supply for top and bottom multi divided electrode
KR20110066686A (en) Plasma reactor for generating large size plasma
KR101236206B1 (en) Inductively coupled plasma reactor for generating high density uniform plasma
KR101475502B1 (en) Plasma reactor having multi discharging tube
KR100753869B1 (en) Compound plasma reactor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent