TW442919B - Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor - Google Patents

Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor Download PDF

Info

Publication number
TW442919B
TW442919B TW88116902A TW88116902A TW442919B TW 442919 B TW442919 B TW 442919B TW 88116902 A TW88116902 A TW 88116902A TW 88116902 A TW88116902 A TW 88116902A TW 442919 B TW442919 B TW 442919B
Authority
TW
Taiwan
Prior art keywords
patent application
scope
oxide
item
layer
Prior art date
Application number
TW88116902A
Other languages
Chinese (zh)
Inventor
Dung-Po Chen
Ming-Yin Hau
Original Assignee
United Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Microelectronics Corp filed Critical United Microelectronics Corp
Priority to TW88116902A priority Critical patent/TW442919B/en
Application granted granted Critical
Publication of TW442919B publication Critical patent/TW442919B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention relates to a method of manufacturing CMOS transistor, which comprises the steps of: at first, providing a p-type semiconductor substrate and an n-type well region; then forming a shallow trench isolation on p-substrate and n-well region to form a plurality of active regions; forming a channel in p-substrate and n-well region; then, forming a p-type gate pattern of CMOS and an n-type gate pattern of CMOS in p-substrate and n-well region; forming the first defined photoresist layer on n-well region; then, implanting n-type dopant into the p-substrate to form a lightly doped source/drain; then, removing the first defined photoresist layer; depositing a dielectric layer on p-substrate and n-well region; forming the second defined photoresist layer on the dielectric layer; then etching part of the dielectric layer on n-well region for the first time; then forming a offset spacer on n-well region during the etching step of part of the dielectric layer; then, removing the second defined photoresist layer; depositing a borosilicate glass layer in n-well region and the dielectric layer; then etching part of the borosilicate glass layer and etching part of the dielectric layer for the second time to form the first borosilicate glass spacer and the second borosilicate glass spacer; then forming an n-type heavily doped source/drain in p-substrate; and forming a p-type heavily doped source/drain in n-well region; finally, annealing the first borosilicate glass spacer, and diffusing boron atoms in the lower region of the first borosilicate glass spacer to form a source/drain extension junction.

Description

;-4 4 429 Ί 9 ____號咖卿〇2 ___年 月 日 你( 五、發明說明(1) 5 _ 1發明領域: 本發明係有關於一種製造互補式金氧半場效 CMOS)的方法’特別是有關於—種製造互補式金 電晶體使用删石夕玻璃形成一源極/没極延伸接面自 5-2發明背景: 近來,由於巨大型積體電路(ultra Urge integration, ULS I)形成於半導體基板上具有引 半導體技術,.使得在單一晶片上的積體電路密度 ’造成個別元件的尺寸 ’高解析度的微影技術 體技術的革新,有顯著 。然而’未來需要更高 和在電子元件的需求上 一金氧半場效電晶體(m〇sfet) 所::的。一般而言’於-相當薄的閑U 一未摻雜的多晶矽化金屬(p〇lycide); -4 4 429 Ί 9 ____Ca Qing 0 2 _ ___________ (V. Description of the invention (1) 5 _ 1 Field of invention: The present invention relates to a method for manufacturing complementary metal-oxide-semiconductor half field-effect CMOS) The method 'is particularly related to the manufacture of a complementary gold transistor using a cut-out glass to form a source / electrode extension interface. Background from 5-2: Recently, due to the huge Urge integration (ULS) I) The semiconductor technology is formed on the semiconductor substrate, so that the integrated circuit density on a single wafer 'results in the size of individual components' and the high-resolution lithography technology's innovation is significant. However, ‘the future needs to be higher and the demand for electronic components is a metal oxide half field effect transistor (m0sfet). Generally speaking, ′-rather thin free U- undoped polycrystalline silicon silicide (p〇lycide)

PolysUicon)材料,藉以製造金氧 效曰曰曰 晶矽化金屬或多晶矽材料和薄认日日& f政電曰日 電晶體( 乳半場效 丨方法。 積體電路密度增加的結果 增加元件群的密度。近來 性蝕刻技術、及其他半導 藉以達成元件尺寸的減小 度,在半導體製程技術上 附加的要求。 scale 人注目的 增加。此 減小,和 、非等向 的進步, 的電路密 ,以達成 過程是眾 上,放置 ( 。完成多 、4 42 9 1 9 --索號 88〗彳的的_年月日_修正 _ 五、發明說明(2) 植入一摻雜雜質的材料,於閘極導體和源極/汲極區域上 。假如使用摻雜雜質的材料,形成η型的源極/汲極區域, 這樣結果的金氧半場效電晶體稱之為 η型金氧半場效電晶 體元件(η通道)。相對地,假如使用摻雜雜質的材料,形 成一 Ρ型的源極/汲極區域,這樣結果的金氧半場效電晶體 稱之為一 Ρ型金氧半場效電晶體元件(ρ通道)。 使用微影技術(p h 〇 t ο 1 i 1; h 〇 g r a p h y t e c h n i q u e )形成閘 極導體和鄰近的源極/汲極區域。透過一厚的場氧化層, 在窗口出現閘極導體和源極/汲極區域。形成電晶體的那 些窗口,稱之為主動區域(active region)。因此,主動 區域的範圍,介於場氧化層之間。於場氧化層之上,安排 金屬内連線去連接多晶矽閘極導體和源極/汲極區域,藉 以形成一完整的電路結構。 積體電路利用η通道元件、ρ通道元件、或兩者組成的 元件於單一基板之上。當形成兩者型式元件時,基本上元 件必須各別植入不同摻雜雜質的源極/汲極區域。在源極/ 汲極區域植入η型雜質形成一 η通道元件,而在源極/汲極 區域植入ρ型雜質形成一 ρ通道元件,唯一的問題相關於每 一元件。如此增加密度,將使得問題更加惡化。元件發現 不良,可調整製程參數和製程步驟。在大多數的例子之中 ,由於每種型式元件的單一性問題,使得 η通道的製程不 同於ρ通道的製程。首先先討論η通道的製程,接著再討論 ρ通道的製程。PolysUicon) materials, which are used to make gold-oxide effects, are crystalline silicidated metal or polycrystalline silicon materials, and thin-plate solar cells are used in Japan ’s Japanese electric crystal (milk half field effect) method. As a result of the increase in the density of integrated circuits, the density of component groups is increased. .Recent etching technology, and other semiconductors to achieve the reduction in component size, additional requirements on semiconductor process technology. Scale noticeable increase. This reduction, and anisotropic progress, circuit density, In order to achieve the process is the public, put (. Completed more, 4 42 9 1 9-cable number 88〗 彳 _ year month day _ correction _ V. Description of the invention (2) implanting a doped impurity material, On the gate conductor and source / drain region. If an impurity-doped material is used to form an n-type source / drain region, the resulting metal-oxide half-field effect transistor is called an n-type metal-oxide half-field effect Transistor element (η channel). In contrast, if a doped impurity material is used to form a P-type source / drain region, the resulting metal-oxide-semiconductor field-effect transistor is called a P-type metal-oxide half-field effect. Transistor element Channel). Using lithography technology (ph 0t ο 1 i 1; h 〇graphytechnique) to form the gate conductor and the adjacent source / drain region. Through a thick field oxide layer, the gate conductor and source appear in the window The electrode / drain region. The windows that form the transistor are called the active region. Therefore, the range of the active region is between the field oxide layer. Above the field oxide layer, metal interconnects are arranged. The polysilicon gate conductor and the source / drain region are connected to form a complete circuit structure. The integrated circuit uses an η channel element, a ρ channel element, or both components on a single substrate. When forming both In the case of a type element, basically the element must be implanted with different doped source / drain regions. Implanted n-type impurities in the source / drain region to form an n-channel element, and in the source / drain region Implanting a p-type impurity to form a p-channel element, the only problem is related to each element. Such an increase in density will make the problem worse. The component is found to be bad, and the process parameters and process steps can be adjusted. In most cases, the process of the η channel is different from the process of the ρ channel due to the unity of each type of component. The process of the η channel is discussed first, and then the process of the ρ channel is discussed.

第6頁 五、發明說明(3) -ES__88116902 曰 修正 通道元件對於所謂的短通.道效應(short channel e f f ec t)特別敏感。源極和没極區域之間的距離,通常根 據實際的通道長度(phySicai channel length)。然而, 源極和’及極在離子佈植和擴散程序之後,源極和汲極區域 之間的距離變得小於實際的通道長度,此乃稱之為有效通 道長度(effective channel length)。在超大型積體電路 t 4之中’實際的通道變短,使得短通道效應變成一個更 加明顯的問題。 一般而言,短 元件的臨界電壓( (sub-thresho1d 短,則源極和汲極 •端,產生實際的 乏,對於閘極電壓 閘極電荷’去反轉 相對於臨界電壓 此一概念。即使當 間的電流存在於電 通道效應將 threshold current)° 區域相對的 通道區域。 沒有任何影 具有一短的 影響元件的操作,藉以降低 volt age)和增加次臨界電流 像有效通道長度變得十分的 空乏區域可以向前延伸至另 因此,一些通道將部份地空 響。逭結果使得需要較低的 有效通道長度電晶體的通道 的下降,其次臨界電流的流量也應具有 閘極電壓低於臨界量時,源極和汲極之 晶體’具有一相當短的有效通道長度。 然而,增加次臨界電流主要的兩個原因是貫穿(punch through)和沒極導致阻障下降(drain-induced barrier lower ing)。貫穿的結果是源自於寬的汲極空乏區域,當 供給一反向偏壓給汲極井二極體時。汲極電場可能貫穿源Page 6 V. Explanation of the invention (3) -ES__88116902 Modification Channel elements are particularly sensitive to the so-called short channel e f f ec t. The distance between the source and non-polar regions is usually based on the actual channel length (phySicai channel length). However, after the ion implantation and diffusion processes, the distance between the source and the drain region becomes smaller than the actual channel length. This is called the effective channel length. In the ultra-large integrated circuit t 4 ', the actual channel becomes shorter, making the short channel effect a more obvious problem. In general, the short-circuit voltage of a short element ((sub-thresho1d is short, the source and drain terminals will produce a practical shortage, for the gate voltage, the gate charge 'goes to reverse the concept relative to the threshold voltage. Even When the current is present in the electrical channel effect, the current will be in the opposite channel area. There is no effect on the operation of the device with a short influence, thereby reducing the volt age) and increasing the subcritical current like the effective channel length becomes very empty. The area can extend forward to another. As a result, some channels will be partially empty.逭 As a result, the channel of the transistor requiring a lower effective channel length is reduced, and the flow rate of the critical current should also have a gate voltage lower than the critical amount. The source and drain crystals have a relatively short effective channel length. . However, the two main reasons for increasing the sub-critical current are punch through and drain-induced barrier lowering. The result of the penetration is derived from the wide drain empty region when a reverse bias is applied to the drain well diode. The drain field may run through the source

4429 1 9 ---1S_88H6902_年月日 修正_ 五、發明說明(4) 極區域’藉以降低源極至基板接面的位能障。貫穿電流和 基板材料相連於基板表面之下。相對於貫穿電流,汲極導 致阻障下降引起電流幾乎發生在基板表面。一汲極電壓的 應用可能造成基板表面位能下降,這樣的結果在基板表面 具有一較低的位能障,這將造成在通道附近的矽一二氧化 矽表面的次臨界電流增加。一種控制短通道效應的方法, 為增加元件基板的雜質濃度。不幸地,增加基板雜質有害 於確保元件増加位能梯度。 增加位能梯度產生一額外的效應,此效應稱之為熱載 體效應(hot carrier effect)。熱載體效應的現象是藉由 增加載體(電子或電洞)的動能,加速通過大的位能梯度, 接著在閘極氧化層之中變成缺陷。最大的位能梯度通常根 據最大電場,此最大電場發生於接近飽和操作期間。特別 是,在接近通道没極的橫向接面,電場效應更為明顯。 以η通道元件為例,電場產生電子動能於汲極,造成 通道電子打入閘極。電子一電子之間的動能隨機散射,使 得電子變得十分的”熱"。這些熱電子有足夠的能量去產生 電子一電洞對’這將影響矽原子的離子化。當電洞流入基 板產生一基板電流於元件之中,加入通道電子的流量,將 影響離子化產生電子。於元件之中,基板電流第一次創造 出熱載體。以 ρ通道元件為例,除了電洞和電子的角色是 相反的以外,基本的製造過程具有相同的本質。4429 1 9 --- 1S_88H6902_year, month, day, revision_ five. Description of the invention (4) Pole region ’is used to reduce the potential barrier at the interface from the source to the substrate. The through current and the substrate material are connected below the substrate surface. Compared to the through current, the drain causes the barrier to drop and causes the current to occur almost on the substrate surface. The application of a drain voltage may cause the surface potential of the substrate to drop. As a result, there is a lower potential barrier on the substrate surface, which will cause the subcritical current of the silicon-silicon dioxide surface near the channel to increase. A method for controlling the short channel effect is to increase the impurity concentration of the element substrate. Unfortunately, the addition of substrate impurities is detrimental to ensuring the component's puppet energy gradient. Increasing the potential energy gradient creates an additional effect, which is called the hot carrier effect. The phenomenon of heat carrier effect is to increase the kinetic energy of the carrier (electron or hole), accelerate through a large potential energy gradient, and then become a defect in the gate oxide layer. The maximum potential energy gradient is usually based on the maximum electric field, which occurs during near-saturation operation. In particular, the effect of the electric field is more pronounced at the lateral junction near the channel pole. Taking an n-channel element as an example, the electric field generates electron kinetic energy at the drain, causing the channel electrons to enter the gate. The kinetic energy between electrons and electrons is randomly scattered, making the electrons very "hot". These hot electrons have enough energy to generate an electron-hole pair, which will affect the ionization of silicon atoms. When the holes flow into the substrate Generate a substrate current in the element, and add the flow of channel electrons, which will affect the ionization to generate electrons. In the element, the substrate current creates the heat carrier for the first time. Take the ρ channel element as an example, except for holes and electrons. Apart from the opposite roles, the basic manufacturing process has the same essence.

442919 _案號 88116902 曰 修正 五、發明說明(5) 熱載體效應的發生為當一些熱載體射入接近汲極接面 附近的閘極氧化層時,熱載體將破壞閘極氧化層,造成缺 陷的閘極氧化層。一般在閘極氧化層的缺陷將變成電子缺 陷,即使這些電子缺陷在初始時為電洞所填滿。缺陷電荷 累積的時間,將影響η通道元件和ρ通道元件的正臨界漂移 。就我們所知,熱電子的遷移率遠超過熱電洞。在 η通道 元件和 ρ通道元件之中,熱載體效應造成一巨大的臨界斜 率。因此,一 ρ通道元件將經歷負臨界斜率。 除了修正製造電晶體的結構之外,次臨界電流和臨界 漂移的問題,將導致短通道效應和熱載體效應保持原狀。 克服這些問題,必須遵擇任一汲極結構使用雙重擴散的汲 極(D D D )或輕微摻雜的没極(L D D )。上述之兩種型式的結構 具有相同的目的,就是去吸收於汲極之中的一些位能,藉 以降低最大電場。雙重擴散的汲極結構的流行性已讓步給 輕微摻雜的汲極結構,這是因為雙重擴散的汲極會造成不 可接受的深接面和有害的接面電容。 一傳統的輕微摻雜的没極是藉由一低濃度的雜質自行 對準閘極電極,接著於兩已形成的側壁間隙壁之上,藉由 一較高的雜質自行對準閘極電極。接近閘極邊緣的通道, 第一次植入劑量的用途在源極和;:及極兩區域產生一輕微摻 雜的截面。第二次植入劑量的空間,藉由側壁間隙壁的厚 度,植入劑量距通道有一段距離。第一次和第二次植入的 結果,一雜質梯度發生在源極和通道之間的接面,和發生442919 _ Case No. 88116902 Amendment V. Description of the invention (5) The heat carrier effect occurs when some heat carriers are injected into the gate oxide layer near the drain junction, the heat carrier will destroy the gate oxide layer and cause defects. Gate oxide. Defects in the gate oxide layer generally become electron defects, even if these electron defects are initially filled with holes. The accumulated time of the defect charge will affect the positive critical drift of the η-channel element and the ρ-channel element. To our knowledge, the mobility of hot electrons far exceeds that of thermo holes. Among the n-channel element and the p-channel element, the heat carrier effect causes a huge critical slope. Therefore, a p-channel element will experience a negative critical slope. In addition to modifying the structure of the transistor, the problems of subcritical current and critical drift will cause the short channel effect and heat carrier effect to remain intact. To overcome these problems, one must choose to use either a double-diffused drain (D D D) or a lightly doped non-drain (L D D). The two types of structures mentioned above have the same purpose, that is, to absorb some potential energy in the drain to reduce the maximum electric field. The popularity of double-diffused drain structures has given way to lightly doped drain structures because double-diffused drains can cause unacceptable deep junctions and harmful junction capacitances. A conventional lightly doped electrode is self-aligned to the gate electrode by a low-concentration impurity, and then is aligned to the gate electrode by a higher impurity above the two formed sidewall spacers. The channel near the gate edge, the use of the first implant dose produces a slightly doped cross-section in the source and; regions. The space for the second implant dose is a distance from the channel by the thickness of the side wall gap. As a result of the first and second implants, an impurity gradient occurs at the junction between the source and the channel, and occurs

4 429 1 9 案號 88116902 年 月 曰 修正 五、發明說明(6) 在·汲極和通道之間的接面是一樣的 適當地定義輕微摻雜的汲極結構必須具有一最小的熱 敎廄,相太能招生猫林66、:JS扬/ :¾搞雷阻。此外"""_工 載體效應,但不能損失額外的源極/汲極電阻。此外一輕 微摻雜的汲極植入於通道的附近,不幸地加入了電卩旦進^ 源極/汲極路徑。加入的電阻,一般稱之為寄生電阻’把 寄生電阻具有很多有害的效應。首先,寄生電阻可能降低 飽和電流。其次,寄生電阻可能降低整個電晶體的速度° 適當地設計輕微摻雜的源極/汲極,克服上述的問題 ’藉以應用於η通道電晶體和p通道電晶體。然而’ 一種方 法將使用於互補式金氧半場效電晶體(CMOS)製造過程之中 。使用現存之製程技術,製造互補式金氧半場效電晶體。 依據很多現有的製程技術,改善互補式金氧半場效電晶體 ’藉以達成所期望具有低電阻(1 〇 w r e s i s t a n c e)和超歲接 面(ultra shallow junction)的互補式金氧半場效電晶體 5-3發明目的及概述: 繁於上述之發明背景中,提供一種形成低電阻(l〇w resistance)和超淺接面(ultra shallow junction)的互 補式金氧半場效電晶體(CMOS)的方法。此外,典型的互補 式金氧半場效電晶體的結構包含 p型井互補式金氧半場效4 429 1 9 Case No. 88116902 Amendment V. Description of the Invention (6) The junction between the drain and the channel is the same. The lightly doped drain structure must have a minimum thermal chirp. , Xiangtai can enroll Maolin 66,: JS 扬 /: ¾ for thunder. In addition " " " _ carrier effect, but can not lose additional source / drain resistance. In addition, a lightly doped drain is implanted near the channel, which unfortunately adds an electrical source / drain path. The added resistance is generally referred to as parasitic resistance. The parasitic resistance has many harmful effects. First, parasitic resistance may reduce saturation current. Secondly, the parasitic resistance may reduce the speed of the entire transistor. Appropriately designing a lightly doped source / drain to overcome the above-mentioned problems ′ can be applied to n-channel transistors and p-channel transistors. However, a method will be used in the manufacturing process of complementary metal-oxide-semiconductor field-effect transistor (CMOS). Use existing process technology to manufacture complementary metal-oxide-semiconductor half-field-effect transistors. Based on many existing process technologies, the complementary metal-oxide-semiconductor half-effect transistor is improved to achieve the desired complementary metal-oxide-semiconductor half-effect transistor with low resistance (100wresistance) and ultra shallow junction 5- 3 Object and Summary of the Invention: In the background of the present invention, a method for forming a complementary metal-oxide-semiconductor half-field-effect transistor (CMOS) with low resistance and ultra shallow junction is provided. In addition, the structure of a typical complementary metal-oxide-semiconductor field-effect transistor includes a p-type complementary metal-oxide-semiconductor field-effect transistor.

第10頁 Λ 4429 1 9 -----案號88116902_年月日 修正_ 五、發明說明(7) 電晶體(p-we丨i CMOS) ' η型井互補式金氧半場效電晶體 (p-well CMOS)、和雙井互補式金氧半場效電晶體( •t w i η - w e 1 1 c Μ 0 S )。然而’在本實施例中僅詳細描述n型井 互補式金氧半場效電晶體’至於其他兩種互補式金氧半場 效電晶體的結構亦包含在其中。在本實施例中,此製造方 法步驟如下。首先,於一 P型雜質的單晶矽基板之上或之 中’提供一互補式金氧半場效電晶體的區域。然後,於一 P型半導體基板(p-type semiconductor substrate)之中 ’形成一 η型井區域(n-well region)。之後,於p型半導 體基板和一部份的 η型井區域之中,形成一相當深的淺溝 渠隔離(STI),藉以形成一 ρ型金氧半場效電晶體主動區域 (PMOSFET active r e g i ο η )和一 η型金氧半場效電晶體主動 區域(NMOSFET active region)。於ρ型金氧半場效電晶體 主動區域和 η型金氧半場效電晶體主動區域之中,形成一 通道。之後’於ρ型金氧半场效電晶體主動區域和η型金氧 半場效電晶體主動區域之上,形成一閘極氧化層(gate ox i de 1 ay er)。然後’於閘極氧化層之上,沉積一多晶石夕 閘極(po 1 y s i 1 i con gat e)。接著,蝕刻多晶矽閘極和閘 極氧化層,藉以形成ρ型金氧半場效電晶體閘極圖案( PMOSFET gate pattern)於ρ型金氧半場效電晶體主動區域 之上和一 η型金氧半場效電晶體閘極圖案(NMOSFET gate pattern)於η型金氧半場效電晶體主動區域之上。於ρ型金 氧半場效電晶體主動區域和一部份的淺溝渠隔離之上,形 成一第一已定義光阻層。之後,於 η型金氧半場效電晶體 主動區域之中’植入一 η型雜質,藉以形成一輕微摻雜的Page 10 Λ 4429 1 9 ----- Case No. 88116902_Year Month and Day Amendment_ V. Description of the invention (7) Transistor (p-we 丨 i CMOS) 'η-type complementary metal-oxide half field effect transistor (p-well CMOS), and dual-well complementary metal-oxide-semiconductor field-effect transistor (twi η-we 1 1 c M 0 S). However, in this embodiment, only the n-type complementary metal-oxide-semiconductor field-effect transistor is described in detail. As for the structures of the other two complementary metal-oxide-semiconductor half-field-effect transistors, it is also included therein. In this embodiment, the steps of this manufacturing method are as follows. First, a region of a complementary metal-oxide-semiconductor field-effect transistor is provided on or in a single crystal silicon substrate of a P-type impurity. Then, an n-well region is formed in a p-type semiconductor substrate. Then, a relatively deep shallow trench isolation (STI) is formed in the p-type semiconductor substrate and a part of the n-type well region, thereby forming a p-type metal-oxide-semiconductor field-effect transistor active region (PMOSFET active regi ο η). ) And an n-type metal-oxide-semiconductor half-field-effect transistor active region (NMOSFET active region). A channel is formed in the active region of the p-type metal-oxide half-field effect transistor and the active region of the n-type metal-oxide half-field effect transistor. After that, a gate oxide layer (gate ox i de 1 ay er) is formed on the active region of the p-type metal-oxide-semiconductor field-effect transistor and the active region of the n-type metal-oxide-semiconductor field-effect transistor. Then on top of the gate oxide layer, a polycrystalline stone gate (po 1 y s i 1 i con gat e) is deposited. Next, the polysilicon gate and gate oxide layers are etched to form a p-type metal-oxide-semiconductor half-field-effect transistor gate pattern (PMOSFET gate pattern) over the active region of the p-type metal-oxide-semiconductor half-field effect transistor and an n-type metal-oxide half-field The NMOSFET gate pattern is above the active area of the n-type MOSFET. A first defined photoresist layer is formed above the active region of the p-type metal-oxide-semiconductor field-effect transistor and a portion of the shallow trench. After that, an n-type impurity is implanted in the active region of the n-type metal-oxide-semiconductor field-effect transistor to form a lightly doped

第II頁 Λ429 1 9 _案號88116902_年月曰 修正_ 五、發明說明(8) 源極/汲極(lightly doped source/drain)。然後,移除 第一已定義光阻層。於淺溝渠隔離、η型金氧半場效電晶 體閘極圖案、ρ型金氧半場效電晶體閘極圖案、η型金氧半 場效電晶體主動區域、和 ρ型金氧半場效電晶體主動區域 之上,沉積一介電層。於介電層之上,形成一第二已定義 光阻層。之後,於 ρ型金氧半場效電晶體主動區域和一部 份的淺溝渠隔離之上,第一次蝕刻一部份的介電層。然後 ,在一部份的介電層蝕刻步驟期間,於 ρ型金氧半場效電 晶體主動區域之上,形成一補償間隙壁(〇 f f s e t s p a c e r ) 。接著,移除第二已定義光阻層。於一部份的淺溝渠隔離 、ρ型金氧半場效電晶體主動區域、ρ型金氧半場效電晶體 閘極圖案、補償間隙壁、和介電層之上,沉積一棚石夕玻璃 層(B S G 1 a y e r )。然後,融刻一部份的砸石夕玻璃層和第二 次蝕刻一部份的介電層,藉以形成一第一硼矽玻璃間隙壁 (first BSG spacer)和一第二棚石夕玻璃間隙壁(second BSG spacer)。之後,於ρ型金氧半場效電晶體主動區域之. 中,植入一 ρ型雜質,藉以形成一 ρ型重摻雜的源極/汲極 (heavily doped source/drain)。接著,於 η型金氧半場 效電晶體主動區域之中,植入一 η型雜質,藉以形成一 η 1 型重摻雜的源極/汲極。最後,回火第一硼矽玻璃間隙壁 ,於第一硼矽玻璃間隙壁的下方區域擴散硼原子,藉以形 成一源極/汲極延伸接面於一 ρ型金氧半場效電晶體之中。 5-4發明詳細說明:Page II Λ429 1 9 _Case No. 88116902_ Year and month Amendment_ V. Explanation of the invention (8) Lightly doped source / drain. Then, the first defined photoresist layer is removed. In shallow trench isolation, n-type metal-oxide-semiconductor field-effect transistor gate pattern, p-type metal-oxide-semiconductor field-effect transistor gate pattern, n-type metal-oxide-semiconductor field-effect transistor active region, and p-type metal-oxide semi-effect transistor active region Above the area, a dielectric layer is deposited. A second defined photoresist layer is formed on the dielectric layer. After that, a part of the dielectric layer is etched for the first time on the active region of the p-type metal-oxide-semiconductor half field effect transistor and a part of the shallow trench isolation. Then, during a part of the dielectric layer etching step, a compensation gap (0 f f s e t s p a c e r) is formed over the active region of the p-type metal-oxide half field effect transistor. Then, the second defined photoresist layer is removed. On a part of the shallow trench isolation, the active region of the p-type MOSFET, the gate pattern of the p-type MOSFET, the compensation gap, and the dielectric layer, a shed glass layer is deposited. (BSG 1 ayer). Then, a part of the stone crushing glass layer and a part of the dielectric layer are etched for a second time, thereby forming a first borosilicate glass spacer and a second shed glass spacer Wall (second BSG spacer). After that, a p-type impurity is implanted in the active region of the p-type metal-oxide half field-effect transistor to form a p-type heavily doped source / drain. Next, an n-type impurity is implanted in the active region of the n-type metal-oxide-semiconductor half-effect transistor to form a n-type heavily doped source / drain. Finally, the first borosilicate glass spacer is tempered, and the boron atoms are diffused in the area below the first borosilicate glass spacer, thereby forming a source / drain extension junction in a p-type gold-oxygen half field effect transistor. . 5-4 Invention Details:

第12頁 Λ429 1 9 案號 88116902 曰 修正 五、發明說明(9) 一種製造互補式金氧半場效電晶體使用蝴碎玻璃形成 P型金氧半場效電晶體源極/汲極延伸接面的方法,詳細描 述如下。典型的互補式金氧半場效電晶體的結構包含 p型 井互補式金氧半場效電晶體(P-well CMOS)、η型井互補式 金氧半場效電晶體(p-well CMOS)、和雙井互補式金氧半 場效電晶體(t w i η - w e 1 1 C Μ 0 S )。然而,在本實施例中僅詳 細描述 η型井互補式金氧半場效電晶體,至於其他兩種互 補式金氧半場效電晶體的結構亦包含在其中。第一圖至第 八圖的圖式所示,根據本發明之實施例去製造互補式金氧 半場效電晶體流程的截面圖。 依據第一圖的圖式所示,於一 <100 >晶格指向的ρ型單 晶矽基板之上或之中,提供一互補式金氧半場效電晶體的 區域。此ρ型半導體基板(p-type semiconductor subs ΐ ra t e) 1 0具有一濃度大約小於每立方公分1. 0 E 1 5個 原子。然後,形成一 η型井區域(η - w e 1 1 r e g i ο η ) 1 5,使用 磷(P)為一離子源的離子佈植程序,於一能量大約lOOKeV 至2 0 0 KeV之間,植入一劑量大約每平方公分1. 0E 1 2至1. 0 E 1 3之間個原子,接著,使用一驅入(d r i v e - i η )程序於一 溫度大約1 0 0 0度,形成一濃度大約每立方公分 1. 0 Ε 1 6個 原子的η型井區域1 5,於ρ型半導體基板1 0之上。之後,於 Ρ型半導體基板1 0和一部份的η型井區域1 5周圍,形成一相 當深的淺溝渠隔離(ST I ) 2 0,去隔離各元件區域之間的漏 電流,藉以形成一 ρ型金氧半場效電晶體主動區域(Page 12 Λ429 1 9 Case No. 88116902 Amendment V. Description of the Invention (9) A method for manufacturing complementary metal-oxide-semiconductor half-field-effect transistors using butterfly glass to form P-type metal-oxide-semiconductor half-field effect source / drain extension junctions The method is described in detail below. The structure of a typical complementary metal-oxide-semiconductor field-effect transistor includes a p-well complementary metal-oxide-semiconductor field-effect transistor (P-well CMOS), an n-well complementary metal-oxide-semiconductor field-effect transistor (p-well CMOS), and Double well complementary metal-oxide half-field effect transistor (twi η-we 1 1 C Μ 0 S). However, in this embodiment, only the η-type complementary metal-oxide-semiconductor field-effect transistor is described in detail, and the structures of the other two complementary metal-oxide-semiconductor half-field-effect transistors are also included therein. The first to eighth drawings are cross-sectional views of a process for manufacturing a complementary metal-oxide-semiconductor field-effect transistor according to an embodiment of the present invention. According to the diagram of the first figure, a region of a complementary metal-oxide-semiconductor field-effect transistor is provided on or in a p-type single crystal silicon substrate with a < 100 > crystal lattice orientation. This p-type semiconductor substrate (p-type semiconductor subs ΐ ra t e) 1 0 has a concentration of less than about 1.0 E 1 5 atoms per cubic centimeter. Then, an n-type well region (η-we 1 1 regi ο η) 15 is formed, and an ion implantation procedure using phosphorus (P) as an ion source is performed at an energy of about 10 OKeV to 2 0 KeV. Inject a dose of approximately 1.0E 1 2 to 1.0 E 1 3 atoms per square centimeter, and then use a drive-i η procedure at a temperature of approximately 1000 degrees to form a concentration The n-type well region 15 having a diameter of 1.0 0 E 1 per cubic centimeter is above the p-type semiconductor substrate 10. After that, a relatively deep shallow trench isolation (ST I) 20 is formed around the P-type semiconductor substrate 10 and a part of the n-type well region 15 to isolate the leakage current between the element regions, thereby forming Active region of a p-type metal oxide half field effect transistor (

第13頁 ".V 4Λ29 1 9 r_案號88116902 _iL_月 日 修正 五、發明說明(10) PMOSFET active region ) 5 0 0和一砲金氧半場效電晶體主 動區域(NMOSFET active regi〇n)505。於p型金氧半場效 電晶體主動區域5 0 0和η型金氧半場效電晶體主動區域5 〇 5 之中’使用硼(Β )或氟化硼(BF 2)為一離子源的離子佈植程 序,於一能量大約1 0 K e V,植入一劑量大約每平方公分1. 〇 E 12個原子,形成一通道(channel)25。之後,於p型金氧 半場效電晶體主動區域5 0 0和η型金氧半場效電晶體主動區 域505之上,使用熱氧化法(thermal oxidation),此熱 氧化法包含一乾式氧化法(d r y ο X i d a t i ο η )和一濕式氧化 法(wet oxidation),形成一閘極氧化層(gate oxide 1 a y e r) 3 0。然後,於閘極氧化層3 0之上,沉積一多晶石夕閘 極(polysilicon gate)35。使用石夕甲烧(silane)作為一來 源氣體,以低壓化學氣相沉積(LPCVD)技術’於一溫度大 約6 0 0度至6 5 0度之間,形成多晶矽層,其厚度大約為1 0 0 0 埃至2 5 0 0埃之間。接著,蝕刻多晶矽閘極3 5和閘極氧化層 30,藉以形成p型金氡半場效電晶體閘極圖案(PM0SFET gate pattern) 4 5於p型金氧半場效電晶體主動區域50 0之 上和一 η型金氧半場效電晶體閘極圖案(NMOSFET gate pattern)4 0於η型金氧半場效電晶體主動區域50 5之上。 依據第二圖的圖式所示,於 Ρ型金氧半場效電晶體主 動區域 5 0 0和一部份的淺溝渠隔離2 〇之上,形成一第一已 定義光阻層5 0 Α。之後’於η型金氧半場效電晶體主動區域 5 0 5之中,使用靖(Ρ)或砷(A s )為一離子源的離子佈植程序 ,於一能量大約小於 3 0 K e V ’植入一劑量大约每平方公分Page 13 " .V 4Λ29 1 9 r_ Case No. 88116902 _iL_ Month Day Amendment V. Description of the invention (10) PMOSFET active region) 5 0 0 and a shot of metal-oxide-semiconductor half field effect transistor active region ) 505. An ion using boron (B) or boron fluoride (BF 2) as an ion source in the active region 500 of the p-type metal-oxide-semiconductor field-effect transistor and the active region 500 of the eta-type metal-oxide-semiconductor half-field-effect transistor. In the implantation procedure, a dose of about 1.0 OE 12 atoms per square centimeter is implanted at an energy of about 10 K e V to form a channel 25. After that, a thermal oxidation method is used on the p-type metal-oxide-semiconductor active region 500 and the n-type metal-oxide-semiconductor active region 505. This thermal oxidation method includes a dry oxidation method ( dry ο X idati η) and a wet oxidation method to form a gate oxide 1 ayer 3 0. Then, a polysilicon gate 35 is deposited on the gate oxide layer 30. Using silane as a source gas, low-pressure chemical vapor deposition (LPCVD) technology is used to form a polycrystalline silicon layer at a temperature of about 600 to 650 degrees, with a thickness of about 10 0 0 Angstroms to 2 500 Angstroms. Next, the polysilicon gate 35 and the gate oxide layer 30 are etched to form a p-type gold-alloy half-field-effect transistor gate pattern (PM0SFET gate pattern) 4 5 above the p-type metal-oxide half-field-effect transistor active region 50 0. And an n-type metal-oxide-semiconductor half-field-effect transistor gate pattern (NMOSFET gate pattern) 40 above the n-type metal-oxide-semiconductor half-field-effect transistor active region 505. According to the diagram in the second figure, a first defined photoresistive layer 50 A is formed above the active region 500 of a P-type metal-oxide-semiconductor field-effect transistor and a portion of the shallow trench isolation 200. Afterwards, in the active region of the η-type metal-oxide-semiconductor field-effect transistor 5 05, an ion implantation procedure using Jing (P) or arsenic (A s) as an ion source is performed at an energy of less than 30 K e V 'Implant a dose approximately

第14頁 ___案號 88116902 五、發明說明(11) 年月曰_修正Page 14 ___ Case No. 88116902 V. Description of Invention (11)

1. 0E 14至5. 0E 15之間個原子,形成一 rr型輕微摻雜的源 極 /没極(lightly doped source/drain)50。然後,移除 第一已定義光阻層50A。1. 0E 14 to 5. 0E 15 atoms to form a lightly doped source / drain 50 of rr type. Then, the first defined photoresist layer 50A is removed.

依據第三圖的圖式所示,於淺溝渠隔離 2 0、η型金氧 半·%效電晶體閘.極圖案4 0、 ρ型金氧半場效電晶體間極圖 案45、η型金氧半場效電晶體主動區域 5 0 5、和d型金氧半 場效電晶體主動區域 50 0之上,沉積一介電層60’此介電 層60包含一二氧化石夕層(siiiC0I1 oxide layer)、一氣化 石夕層(silicon nitride layer)、或一氧化石夕/氮化石夕層 (silicon oxide/silicon nitride layer)。其沉積方法 與條件如下。在沉積二氧化矽層時,使用正矽酸乙酯( TE0S)作為一來源氣體,以低壓化學氣相沉積(LPCVD)技術. ’於一溫度大約5 0 0度至8 0 0度之間,沉積二氧化矽層,其 厚度大約5 0埃至 3 0 0埃之間。在沈.積氮化矽層時,使用低 壓化學氣相沉積(LpCVD)技術,於一溫度大約75〇度,沈積 氮化梦詹’其厚度大約50埃至3 0 0埃之間。在沈積氧化破/ 氮化破層時’使用低壓化學氣相沉積(LPCVD)技術,於_ 溫度大約5 0 〇度至8 〇 〇度之間,沈積氧化矽/氮化矽層,其 厚度大約1 0 0埃至3 〇 〇埃之間。 依據第四圖的圖式所示,於介電層60之上,形成一第 二已疋義光阻層60A。之後’於p型金氧半場效電晶體主動 區域500和—部份的淺溝渠隔離20之上,使用CHF作為蝕 刻劑的反應性離子蝕刻(R I E )技術,第一次蝕刻一部份的According to the diagram in the third figure, a 20, η-type metal-oxide-semiconductor half-efficiency transistor gate is isolated in a shallow trench. A pole pattern of 40, ρ-type metal-oxide-semiconductor half-effect transistor pattern 45, η-type gold On top of the active area of the oxygen half field effect transistor 505 and the active area of the d-type metal oxide half field effect transistor 50 0, a dielectric layer 60 'is deposited. The dielectric layer 60 includes a siiiC0I1 oxide layer ), A silicon nitride layer (silicon nitride layer), or a silicon oxide / silicon nitride layer. The deposition method and conditions are as follows. During the deposition of the silicon dioxide layer, TEOS was used as a source gas, and low pressure chemical vapor deposition (LPCVD) technology was used. 'At a temperature of about 500 degrees to 800 degrees, A silicon dioxide layer is deposited to a thickness of about 50 angstroms to 300 angstroms. When depositing a silicon nitride layer, a low-pressure chemical vapor deposition (LpCVD) technique is used to deposit a nitrided nitride Mg ’s at a temperature of about 75 ° C and a thickness of about 50 angstroms to 300 angstroms. When depositing oxide / nitride layers, using low pressure chemical vapor deposition (LPCVD) technology, a silicon oxide / silicon nitride layer is deposited at a temperature of about 500 ° to 800 ° 100 angstroms to 300 angstroms. According to the diagram in the fourth figure, a second photoresist layer 60A is formed on the dielectric layer 60. After that, on the p-type metal-oxide-semiconductor field-effect transistor active region 500 and a portion of the shallow trench isolation 20, a reactive ion etching (R I E) technique using CHF as an etchant was used to etch a portion of the first

第15頁 V 4 429 1 9 __案號 88116902 - !_Λ..曰 絛正 _ 五、發明說明(12) 介電層6 0。然後,在一部份的介電層6 0蝕刻步驟期間,於 Ρ型金氧半場效電晶體主動區域5 0 0之上,形成一補償間隙 壁(offset spacer)65。接著’移除第二已定義光阻層60Α 依據第五圖的圖式所示’於一部份的淺溝渠隔離2 0、 P型金氧半場效電晶體主動區域500、p型金氧半場效電晶 體閘極圖案4 5、補償間隙壁6 5、和介電層6 0之上,使用常 壓化學氣相沉積(APCVD)技術、低壓化學氣相沉積(LPCVD) 技術、或電漿輔助化學氣相沉積(PEC VD)技術,沉積硼矽 玻璃層(BSG layer)70,其厚度大約5 0 0埃至20 00埃之間。 沈積的蝴碎玻璃層7 0,包含一蝴劑量大約百分之一至百分 之十之間。 依據第六圖的圊式所示,使用CHF3作為蝕刻劑的反應 性離子领刻(R I E )技術’敍刻一部份的领矽玻璃層7 〇和第 二次姓刻一部份的介電層6 0 ’藉以形成一第一硼石夕玻璃間 隙壁(f i r s t BSG spacer ) 7 5和一第二硼矽玻璃間隙壁 (second BSG spacer)80 。 依據第七A圖的圖式所示,以第一區域光阻5i 1覆蓋η 型金氧半場效電晶體主動區域5 0 5,然後在ρ型金氛半場效 電晶體主動區域5 0 0之中,執行使用硼(Β)或氟化硼(Β]ρ2) 作為p型.佈植離子5 1 2的離子佈植程序,藉以形成—p+型重 摻雜的源極/ 汲極(heavi ly doped source/drain ) 85,在Page 15 V 4 429 1 9 __ Case No. 88116902-! _Λ .. Said Zheng Zheng _ V. Description of the invention (12) Dielectric layer 60. Then, during a part of the dielectric layer 60 etching step, an offset spacer 65 is formed on the P-type metal-oxide-semiconductor field-effect transistor active area 500. Then 'remove the second defined photoresist layer 60A according to the diagram of the fifth figure' to isolate a part of the shallow trench 20, P-type metal-oxide-semiconductor field-effect transistor active region 500, p-type metal-oxide-semiconductor half-field Effect transistor gate pattern 4 5. Compensating spacers 6 5 and dielectric layer 60. Using atmospheric pressure chemical vapor deposition (APCVD) technology, low pressure chemical vapor deposition (LPCVD) technology, or plasma assist The chemical vapor deposition (PEC VD) technology deposits a borosilicate glass layer (BSG layer) 70 with a thickness between about 500 angstroms and 20,000 angstroms. The deposited butterfly glass layer 70 contains a butterfly dose between about one and ten percent. According to the formula in the sixth figure, a reactive ion collar etch (RIE) technique using CHF3 as an etchant is used to 'etch a part of the collar silica glass layer 70 and a second part of the dielectric is etched. The layer 60 ′ forms a first borosilicate glass spacer (first BSG spacer) 75 and a second borosilicate glass spacer (second BSG spacer) 80. According to the diagram in FIG. 7A, the first region photoresist 5i 1 is used to cover the active region of the n-type metal-oxide-semiconductor field-effect transistor 5 0 5 and In the process, an ion implantation procedure using boron (B) or boron fluoride (Β) ρ2) as the p-type implanted ion 5 1 2 is performed to form a -p + -type heavily doped source / drain (heavi ly doped source / drain) 85, in

第16頁 V 4 429 1 9 _ΕΒ_8«Ι16902_ 五、發明說明(13) 2 2 Ϊ :子的t量大約1KeV至8〇KeV之間,而其植入劑量 ΐ::1,15至UE 16之間個原子。之後: ΐI:所示二般Λ移除第一區域光阻511並形成第二區域光 :?型’氧半場效電晶體主動區域5 0 0上’然後在 ΛΓί效電晶體主動㈣5 0 5中’執行使用-(ρ)或坤 S為η型佈植離子5 1 4的離子佈植程序,藉以形成—η + 型重換雜的源極/沒極9 〇,在此離子的佈植能量大約小於 1 0 K e ¥至8 0 K e V之間,而其佈植劑量則大約每平方公分^〇 E 1 5至1. 〇 E 1 6之間個原子,。 依據第八圖的圖式所示’回火第一硼矽玻璃間隙壁7 5 ,使用一快速熱製程(RTP),於—溫度大約95〇度至1〇5〇度 之間,擴散一硼原子於第一硼矽玻璃間隙壁75的下方區域 ’其時間大約1 0秒至6 0秒之間。藉以,於一 p型金氧半場 效電晶體之中’形成一源極/汲極延伸接面(s〇urce/drain extension junction ) 100° 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。Page 16 V 4 429 1 9 _ΕΒ_8 «Ι16902_ V. Description of the invention (13) 2 2 Ϊ: The amount of t in the child is between about 1 KeV and 80 KeV, and its implantation dose is ΐ :: 1, 15 to UE 16 Between atoms. After: ΐI: shown in the two general Λ remove the first area photoresist 511 and form a second area light:? -Type 'oxygen half field effect transistor active area 50 0' and then in ΛΓ effect transistor active ㈣ 5 0 5 'Implement an ion implantation procedure using-(ρ) or Kun S as the η-type implant ion 5 1 4 to form a -η + -type re-transformed heterogeneous source / dimer 9 〇, where the ion implantation energy It is less than about 10 Ke e ¥ to 80 Ke V, and its implantation dose is about 15 to 1. OE 16 atoms per square centimeter. According to the diagram in the eighth figure, 'Tempering the first borosilicate glass partition wall 7 5 uses a rapid thermal process (RTP) to diffuse a boron at a temperature of about 95 ° to 1050 °. The time period of the atoms in the region below the first borosilicate glass spacer 75 is about 10 seconds to 60 seconds. Thereby, forming a source / drain extension junction (100 °) in a p-type metal-oxide-semiconductor half-field-effect transistor is only a preferred embodiment of the present invention. It is not intended to limit the scope of patent application of the present invention; all other equivalent changes or modifications made without departing from the spirit disclosed by the present invention shall be included in the scope of patent application described below.

第17頁 4 429 1 9 _案號88116902_年月日__ 圖式簡單說明 第一圖至第八圖的圖式所示,根據本發明之實施例去 製造互補式金氧半場效電晶體流程的截面圖。 要部分 之代表符號: 10 P型半導體基板 15 η型井區域 20 淺溝渠隔離 25 通道 30 閘極氧化層 35 多晶梦閘極 40 η型金氧半場效電晶體閘極圖案 45 ρ型金氧半場效電晶體閘極圖案 50 輕微摻雜的源極/汲極 50A 第一已定義光阻層 60 介電層 60A 第二已定義光阻層 65 補償間隙壁 70 硼矽玻璃層 75 第一硼矽玻璃間隙壁 80 第二硼矽玻璃間隙壁 85 Ρ +型重摻雜的源極/汲極 90 η +型重摻雜的源極/没極 100 源極/汲極延伸接面 500 ρ型金氧半場效電晶體主 動 區域 505 η型金氧半場效電晶體主 動 區域Page 17 4 429 1 9 _Case No. 88116902_Year Month Date __ Schematic illustrations The diagrams in the first to eighth figures are shown. According to the embodiment of the present invention, a complementary metal-oxide-semiconductor field-effect transistor is manufactured. A cross-sectional view of the process. Main symbols: 10 P-type semiconductor substrate 15 η-type well area 20 Shallow trench isolation 25 Channel 30 Gate oxide layer 35 Polycrystalline gate 40 η-type metal-oxide-semiconductor field-effect transistor gate pattern 45 ρ-type metal oxide Half field effect transistor gate pattern 50 Lightly doped source / drain 50A First defined photoresist layer 60 Dielectric layer 60A Second defined photoresist layer 65 Compensation barrier 70 Borosilicate glass layer 75 First boron Silica glass spacer 80 Second borosilicate glass spacer 85 P + -type heavily doped source / drain 90 η + -type heavily doped source / inverted 100 source / drain extension junction 500 ρ type Active region of metal oxide half field effect transistor 505 Active region of η type metal oxide half field effect transistor

第18頁 v 442919P. 18 v 442919

第19頁Page 19

Claims (1)

442%號98_ 曰 修正 六、申請專利範圍 1. 一種製造一互補式金氧半場效電晶體(CMOS)的方法’該 方法至少包含: 提供一半導體基板(semiconductor substrate)具有 一第一導電性(first conductivity type); 形成一井區域(well region)於該半導體基板之中, 該井區域具有一第二導電性(second conductivity type) ,且該第二導電性的導電性與該第一導電性相反; 形成一淺溝渠隔離(shallow trench isolation STI )於該半導體基板和該井區域之中,藉以形成一複數個主 動區域(active region); 形成一通道(channel)於該半導體基板和該井區域之 中; 形成一 P型金氧半場效電晶體(PM0SFET)閘極圖案和一 η型金氧半場效電晶體(NM0SFET)閘極圖案於該半導體基板 和該井區域之上; 形成一第一已定義光阻層於該井區域之上; 植入該第二導電性的一第一雜質於該半導體基板之中 ’藉以形成一輕微接雜的源極/汲極(lightly doped source/dra i η); 移除該第一已定義光阻層; 沉積一絕緣層(insulating layer)於該半導體基板和 該井區域之上; 形成一第二已定義光阻層於該絕緣層之上; 第一次蝕刻一部份的該絕緣層於該井區域之上;442% No. 98_ Amendment VI. Patent Application Scope 1. A method of manufacturing a complementary metal-oxide-semiconductor field-effect transistor (CMOS) 'The method includes at least: providing a semiconductor substrate having a first conductivity ( first conductivity type); forming a well region in the semiconductor substrate, the well region having a second conductivity type, and the second conductivity and the first conductivity Instead; forming a shallow trench isolation (STI) between the semiconductor substrate and the well region, thereby forming a plurality of active regions; forming a channel between the semiconductor substrate and the well region Forming a P-type metal-oxide-semiconductor field-effect transistor (PM0SFET) gate pattern and an n-type metal-oxide-semiconductor field-effect transistor (NM0SFET) gate pattern over the semiconductor substrate and the well region; forming a first A photoresist layer has been defined over the well region; a first impurity of the second conductivity is implanted in the semiconductor substrate to form Lightly doped source / drain i; remove the first defined photoresist layer; deposit an insulating layer over the semiconductor substrate and the well region; form A second defined photoresist layer on the insulating layer; a portion of the insulating layer is etched on the well region for the first time; 第20頁 ' ZU29 1 9 - _案號88Π6902_年月日__ 六、申請專利範圍 形成一補償間隙壁(〇 f f s e t s p a c e r )於該井區域之上 ,在一部份的該絕緣層蝕刻步驟期間; 移除該第二已定義光阻層; 沉積一硼矽玻璃(BS G )層於該井區域和該絕緣層之上 » 蝕刻一部份的該硼矽玻璃層和第二次蝕刻一部份的該 絕緣層,藉以形成一第一石朋石夕_玻璃間隙壁(B S G s p a c e r )和 一第二硼矽玻璃間隙壁; 植入該第一導電性的一雜質於該井區域之中,藉以形 成一第一重摻雜的源極/没極(heavily doped source/ drain); 植入該第二導電性的一第二雜質於該半導體基板之中 ,藉以形成一第二重摻雜的源極/汲極,其中該第二雜質 的一濃度大於該第一雜質;及 回火該第一棚石夕玻璃間隙壁,擴散原子(b 〇 r ο η atom)於該第一硼矽玻璃間隙壁的下方區域,藉以形成一 源極/Ϊ及極延伸接面。Page 20 'ZU29 1 9-_Case No. 88Π6902_ YYYY__ VI. The scope of the patent application forms a compensation gap (〇ffsetspacer) above the well area, during a part of the insulating layer etching step ; Remove the second defined photoresist layer; deposit a borosilicate glass (BS G) layer on the well region and the insulating layer »etch a part of the borosilicate glass layer and a second etch Part of the insulating layer, so as to form a first BSG spacer and a second borosilicate glass spacer; implanting an impurity of the first conductivity into the well region, Thereby forming a first heavily doped source / drain; implanting a second impurity of the second conductivity into the semiconductor substrate to form a second heavily doped source / drain; A source / drain, wherein a concentration of the second impurity is greater than the first impurity; and tempering the first shed glass barrier wall, diffusing atoms (b 〇r ο η atom) in the first borosilicate glass The area under the barrier wall to form a source / 源 and pole extension Extend the face. 第21頁 ,4429 1 9 _案號 88116902_年月日__ 六、申請專利範圍 4 ·如申請專利範圍第1項之方法,其中上述之井區域的形 成,至少包含以磷(P)為一離子源的離子佈植程序,於一 能量大約1 0 0 K e V至2 0 0 K e V之間,植入一劑量大約每平方公 分1. 0E 1 2至1 · 0E 1 3之間個原子,接著,使用一驅入( d r i v e - i η)程序於一溫度大約1 0 0 0度,形成一濃度大約每 立方公分1. 0 Ε 1 6個原子的該井區域。 5. 如申請專利範圍第1項之方法,其中上述之第二導電層 至少包含一 η型。 6. 如申請專利範圍第1項之方法,其中上述之主動區域至 少包含一 ρ型金氧半場效電晶體的主動區域。 7. 如申請專利範圍第1項之方法,其中上述之主動區域至 少包含一 η型金氧半場效電晶體的主動區域。 8. 如申請專利範圍第1項之方法,其中上述之通道的形成 ,至少包含以硼(Β)為一離子源的離子佈植程序,於一能 量大約1 OKeV,植入一劑量大約每平方公分1. 0Ε 1 2個原子 9.如申請專利範圍第1項之方法,其中上述之通道的形成 ,至少包含以II化蝴(BF 2)為一離子源的離子佈植程序, 於一能量大約lOKeV,植入一劑量大約每平方公分1. 0E 12Page 21, 4429 1 9 _Case No. 88116902_Year_Month__ VI. Application for Patent Scope 4 · For the method of applying for the first item of the patent scope, in which the formation of the above well area contains at least phosphorus (P) as An ion implantation procedure of an ion source is implanted at a dose of about 1. 0E 1 2 to 1 · 0E 1 3 between an energy of about 100 K e V and 2 0 Ke V. 0 atom, and then using a drive-in program at a temperature of about 1000 degrees to form a well region with a concentration of about 1.0 0 E 16 per cubic centimeter. 5. The method according to item 1 of the patent application range, wherein the second conductive layer mentioned above includes at least an n-type. 6. The method according to item 1 of the scope of patent application, wherein the above active area includes at least an active area of a p-type metal-oxide half field effect transistor. 7. The method according to item 1 of the scope of patent application, wherein the above active area includes at least an active area of an n-type metal-oxide half field effect transistor. 8. The method of claim 1 in claim 1, wherein the formation of the above-mentioned channels includes at least an ion implantation procedure using boron (B) as an ion source at an energy of about 1 OKeV, and a dose of about 1 per square kilogram is implanted. 1. 0Ε 1 2 atoms 9. The method according to item 1 of the scope of patent application, wherein the formation of the above-mentioned channel includes at least an ion implantation procedure using II-butterfly (BF 2) as an ion source at an energy About lOKeV, implant a dose of about 1. 0E 12 第22頁 4 42^19 _案號88116902_年月日___ 六、申請專利範圍 個原子。 I 0 .如申請專利範圍第1項之方法,其中上述之p型金氧半 場效電晶體閘極圖案和 η型金氧半場效電晶體閘極圖案的 形成,至少包含一多晶石夕閘極(ρ ο 1 y s i 1 i c ο n g a ΐ e )和一閘 極氧化層(gate oxide layer)。 1 1.如申請專利範圍第1項之方法,其中上述之輕微摻雜的 源極/汲極的形成,至少包含以磷(P )為一離子源的離子佈 植程序,於一能量大約小於 3 0 K e V,植入一劑量大約每平 方公分1, 0 E 1 4至5. 0 E 1 5之間個原子。 1 2.如申請專利範圍第1項之方法,其中上述之輕微摻雜的 源極/汲極的形成,至少包含以砷(A s)為一離子源的離子 佈植程序,於一能量大約小於 3 0 K e V,植入一劑量大約每 平方公分1. 0 E 1 4至5 . 0 E 1 5之間個原子。 1 3.如申請專利範圍第1項之方法,其中上述之絕緣層至少 包含一氧化矽層,使用正矽酸乙酯(TE0S)作為一來源氣體 ,以低壓化學氣相沉積(LPCVD)技術,於一溫度大約5 0 0度 至8 0 0度之間,沈積該絕緣層,其厚度大約5 0埃至3 0 0埃之 間。 1 4 .如申請專利範圍第1項之方法,其中上述之絕緣層至少Page 22 4 42 ^ 19 _Case No. 88116902_ Year Month ___ Six, the scope of patent application Atom. I 0. The method according to item 1 of the patent application range, wherein the formation of the p-type metal-oxide-semiconductor field-effect transistor gate pattern and the n-type metal-oxide-semiconductor field-effect transistor gate pattern include at least one polycrystalline silicon gate Electrode (ρ ο 1 ysi 1 ic ο nga ΐ e) and a gate oxide layer. 1 1. The method according to item 1 of the patent application range, wherein the formation of the lightly doped source / drain described above includes at least an ion implantation procedure using phosphorus (P) as an ion source at an energy of less than about 30 K e V, implanted at a dose of about 1,0 E 1 4 to 5.0 E 1 5 atoms per square centimeter. 1 2. The method according to item 1 of the scope of patent application, wherein the formation of the lightly doped source / drain described above includes at least an ion implantation procedure using arsenic (A s) as an ion source at an energy of approximately Less than 30 K e V, a dose of about 1.0 E 1 4 to 5.0 E 1 5 atoms per square centimeter is implanted. 1 3. The method according to item 1 of the scope of patent application, wherein the above-mentioned insulating layer includes at least a silicon oxide layer, using ethyl orthosilicate (TE0S) as a source gas, and low pressure chemical vapor deposition (LPCVD) technology, The insulating layer is deposited at a temperature between about 500 degrees and 800 degrees, with a thickness between about 50 angstroms and 300 angstroms. 14. The method according to item 1 of the scope of patent application, wherein the above-mentioned insulating layer is at least 第23頁 4 42 9 1 9 _案號 88116902 六、申請專利範圍 年 月 日 修正 包合一氮化矽層’使用低壓化學氣相沉積(LpcvD)技術, 於一溫度大約75 0度’沈積該絕緣層,其厚度大約5 〇埃至 3 0 0埃之間。 15.如申^請專利範圍第!項之方法,其中上述之絕緣層至少 包含一氧化矽/氮化矽層,使用低壓化學氣相沉積(LpcVD) 技術’於一溫度大約5〇〇度至8〇〇度之間,沈積該絕緣層, 其厚度大約1 0 0埃至3 0 0埃之間。 1 6.如申請專利範圍第1項之方法,其中上述之絕緣層的第 一次敍刻’至少包含以CHF拃為蝕刻劑的反應性離子蝕刻 (RIE)技術。 1 7.如申請專利範圍第1項之方法,其令上述之硼矽玻璃( BSG)層的沈積’至少包含常壓化學氣相沉積(APCVD)技術 ,其厚度大約5 0 0埃至2 0 0 0埃之間。 1 8 如申請專利範圍第1項之方法,其中上述之硼矽玻璃( BSG)層的沈積’至少包含低壓化學氣相沉積(LPCVD)技術 ,其厚度大約5 0 〇埃至2 0 0 〇埃之間。 1 9.如申請專利範圍第1項之方法,其中上述之硼矽玻璃( BSG)層的沈積’至少包含電漿輔助化學氣相沉積(pECVD) 技術’其厚度大約5 0 0埃至2 0 0 0埃之間。 4429 1 9 _ 索號88Π6902 年月日 修正 __-^ 六'申請專利範圍 20.如申請專利範圍第1項之方法,其中上述之硼矽破璃詹 的沈積’至少包含一硼劑量大约百分之·至百分之十之間 〇 2 1 ·如申請專利範圍第1項之方法,其中上述之硼石夕玻璃廣 的蝕刻,至少包含以C H F拃為蝕刻劑的反應性離子蝕刻( R I Ε )技術^ — 2 2.如申請專利範圍第1項之方法,其中上述之絕緣層的第 二次蝕刻,至少包含以CHF拃為蝕刻劑的反應性離子钱刻 (R I Ε )技術。 23.如申請專利範圍第1項之方法,其中上述之第一重摻雜 的源極/汲極的形成,至少包含以硼(Β )為一離子源的離子 佈植程序’於一能量大約 1 K e V至8 0 K e V之間’植入—劑量 大約每平方公分1. 〇 E 1 5至1. 〇 E 1 6之間個原子。 24..如申請專利範圍第1項之方法’其中上述之第—重摻雜 的源極/没極的形成,至少包含以氟化棚(BF z)為一離子源 的離子佈植程序,於一能量大約 IKeV至80KeV之間,植入 一劑量大約每平方公分1. 0 E 1 5至1. 0 E 1 6之間個原子。 25.如申請專利範圍第I項之方法’其中上述之第一重推雜Page 23 4 42 9 1 9 _ Case No. 88116902 6. The scope of the patent application is amended to include a silicon nitride layer 'using low pressure chemical vapor deposition (LpcvD) technology, which is deposited at a temperature of about 7500 degrees' The insulating layer has a thickness between about 50 angstroms and 300 angstroms. 15. If you apply, please ask for the scope of patents! Method, wherein the above-mentioned insulating layer includes at least a silicon oxide / silicon nitride layer, and the insulating layer is deposited using a low pressure chemical vapor deposition (LpcVD) technology at a temperature of about 500 to 800 degrees. Layer having a thickness between about 100 angstroms and 300 angstroms. 16. The method according to item 1 of the scope of patent application, wherein the first engraving of the insulating layer mentioned above includes at least a reactive ion etching (RIE) technique using CHF 拃 as an etchant. 1 7. The method according to item 1 of the scope of patent application, which enables the above-mentioned deposition of borosilicate glass (BSG) layer to include at least atmospheric pressure chemical vapor deposition (APCVD) technology, and has a thickness of about 50 angstroms to 20 angstroms. Between 0 0 Angstroms. 18 The method according to item 1 of the scope of patent application, wherein the above-mentioned deposition of a borosilicate glass (BSG) layer includes at least a low pressure chemical vapor deposition (LPCVD) technology, and has a thickness of about 500 angstroms to 2000 angstroms. between. 19. The method according to item 1 of the scope of patent application, wherein the above-mentioned borosilicate glass (BSG) layer is deposited 'at least including plasma assisted chemical vapor deposition (pECVD) technology' and has a thickness of about 50 Angstroms to 2 0 Between 0 0 Angstroms. 4429 1 9 _ cable number 88Π6902 amended on __- ^ 6 'application for patent scope 20. If the method of applying for the scope of the first item of the patent application, wherein the above-mentioned deposition of borosilicate broken glass can contain at least a boron dose of about one hundred 0 · 10% to 0% 1 · The method according to item 1 of the patent application range, wherein the above-mentioned borosilicate glass etching includes at least reactive ion etching (RI using CHF 拃 as an etchant) Ε) Technology ^ 2 2. The method according to item 1 of the scope of patent application, wherein the second etching of the above-mentioned insulating layer includes at least a reactive ion engraving (RI EI) technology using CHF 拃 as an etchant. 23. The method of claim 1, wherein the formation of the first heavily doped source / drain described above includes at least an ion implantation procedure using boron (B) as an ion source at an energy of approximately Between 1 K e V and 80 Ke V 'implantation—the dose is approximately between 1.0 and 1.0 E 16 per square centimeter. 24. The method according to item 1 of the scope of the patent application, wherein the formation of the above-mentioned heavily doped source / deposit electrode includes at least an ion implantation procedure using a fluoride booth (BF z) as an ion source, Between an energy of about IKeV and about 80KeV, a dose of about 1.0 E 1 5 to 1.0 E 1 6 atoms per square centimeter is implanted. 25. The method according to item I of the scope of patent application ', wherein the above-mentioned first reintroduction 第25頁 ,4429 1 9 _案號 88116902_年月日__ 六、申請專利範圍 的源極/汲極的形成,至少包含以填(P )為一離子源的離子 伟植程序,於一能量大約小於1 OKeV至80KeV之間,植入一 劑量大約每平方公分1. 0 E 1 5至1. 0 E 1 6之間個原子。 2 6 ·如申請專利範圍第1項之方法,其中上述第一重摻雜的 源極/汲極的.形成,至少包含以砷(As)為一離子源的離子 佈植程序,於一能量大約小於1 OKeV至8 OKeV之間,植入一 劑量大約每平方公分1 · 0 E 1 5至1, 0 E 1 6之間個原子。 2 7.如申請專利範圍第1項之方法,其中上述之硼原子的擴 散,至少包含一快速熱製程(RTP ),於一溫度大約9 5 0度至 1 0 5 0度之間,擴散該硼原子,其時間大約1 0秒至6 0秒之間 28.—種製造一互補式金氧半場效電晶體(CMOS)的方法, 該方法至少包含: 提供一 ρ型半導體基板(p-type semiconductor substrate ); 形成一 η型井區域(n-well region)於該p型半導體基 板之中; 形成一淺溝渠隔離(shallow trench isolation, STI )於該p型半導體基板和一部份的該η型井區域之中,藉以 形成一 Ρ型金氧半場效電晶體(PM0SFET)主動區域(act i ve r e g i ο η )和一 η型金氧半場效電晶體(Ν Μ 0 S F E T )主動區域;Page 25, 4429 1 9 _Case No. 88116902_Year_Month__ VI. The formation of the source / drain in the patent application scope includes at least the ion implantation procedure with filling (P) as an ion source. The energy is less than 1 OKeV to 80KeV, and a dose of about 1.0 E 1 5 to 1.0 E 1 6 atoms per square centimeter is implanted. 2 6 · The method according to item 1 of the patent application range, wherein the first heavily doped source / drain is formed, including at least an ion implantation procedure using arsenic (As) as an ion source at an energy About less than 1 OKeV to 8 OKeV, a dose of about 1 · 0 E 1 5 to 1, 0 E 1 6 atoms per square centimeter is implanted. 2 7. The method according to item 1 of the scope of patent application, wherein the above-mentioned diffusion of boron atoms includes at least a rapid thermal process (RTP), and the diffusion is performed at a temperature of about 950 degrees to 105 degrees. Boron atom, its time is about 10 seconds to 60 seconds. 28. A method for manufacturing a complementary metal-oxide-semiconductor field-effect transistor (CMOS), the method at least includes: providing a p-type semiconductor substrate (p-type semiconductor substrate); forming an n-well region in the p-type semiconductor substrate; forming a shallow trench isolation (STI) on the p-type semiconductor substrate and a portion of the n In the well region, a P-type metal-oxide-semiconductor field-effect transistor (PM0SFET) active region (act i ve regi ο η) and an n-type metal-oxide-semiconductor field-effect transistor (NM MOS 0 SFET) active region are formed; 第26頁 4429 1 9 _ 案號 88116902 年 月 曰 修正 六、申請專利範圍 形成一通道(channel)於該p型金氧半場效電晶體主動 區域和該η型金氧半场效電晶體主動區域之中; 形成一閘極氧化層(g a t e ο X i d e 1 a y e r )於該ρ型金氧 半場效電晶體主動區域和該 η型金氧半場效電晶體主動區 域之上; 沉積一多晶石夕間極(ρ ο 1 y s i 1 i c ο n g a t e )於該閘極氧化 層之上; Ί虫刻該多晶石夕閘極和該閘極氧化層,藉以形成一 ρ型 金氧半場效電晶體閘極圖案於該 ρ型金氧半場效電晶體主 動區域之上和一 η型金氧半場效電晶體閘極圖案於該η型金 氧半場效電晶體主動區域之上; 形成一第一已定義光阻層於該 ρ型金氧半場效電晶體 主動區域和一部份的該淺溝渠隔離之上; 植入一 η型雜質於該 η型金氧半場效電晶體主動區域 之中,藉以形成一輕微摻雜的源極/汲極(lightly doped source/dra in); 移除該第一已定義光阻層; 沉積一介電層(dielectric layer)於該淺溝渠隔離、 該η型金氧半場效電晶體閘極圖案、該ρ型金氧半場效電晶 體閘極圖案、該η型金氧半場效電晶體主動區域、和該ρ型 金氧半場效電晶體主動區域之上; 形成一第二已定義光阻層於該介電層之上; 第一次餘刻一部份的該介電層於該 ρ型金氧半場效電 曰-a體主動區域和一部份的該淺溝渠隔離之上;Page 26 4429 1 9 _ Case No. 88116902 Amended 6. The scope of the patent application forms a channel in the active region of the p-type metal-oxide-semiconductor field-effect transistor and the active region of the n-type metal-oxide-semiconductor field-effect transistor. A gate oxide layer (gate ο X ide 1 ayer) is formed on the active region of the p-type metal-oxide-semiconductor field-effect transistor and the active region of the n-type metal-oxide-semiconductor field-effect transistor; a polycrystalline stone is deposited The inter-pole (ρ ο 1 ysi 1 ic ο ngate) is on the gate oxide layer; the maggot engraved the polycrystalline stone gate and the gate oxide layer to form a p-type metal-oxygen half field effect transistor gate A pole pattern is above the active region of the p-type metal-oxide-semiconductor field-effect transistor and an n-type metal-oxide-semiconductor field-effect transistor gate pattern is formed over the active region of the n-type metal-oxide-semiconductor field-effect transistor; forming a first defined A photoresist layer is isolated on the active region of the p-type metal-oxide-semiconductor field-effect transistor and a part of the shallow trench; an n-type impurity is implanted in the active region of the n-type metal-oxide-semiconductor field-effect transistor to form A lightly doped source / drain (Lightly doped source / dra in); removing the first defined photoresist layer; depositing a dielectric layer to isolate the shallow trench, the n-type metal-oxide-semiconductor field-effect transistor gate pattern, the ρ A gate pattern of a metal oxide semiconductor field-effect transistor, the active region of the n-type metal oxide semiconductor field effect transistor, and the active region of the p-type metal oxide semiconductor field effect transistor; forming a second defined photoresistive layer on the dielectric; Above the electrical layer; for the first time, a part of the dielectric layer is isolated on the p-type metal-oxygen half-field-effect electrical-a body active region and a part of the shallow trench; 第27頁 d429 1 9 _案號 88116902 年 月 曰 修正 六、申請專利範圍 形成一補償間隙壁(〇 f f s e t s p a c e r )於該p型金氧半場 效電晶體主動區域之上,在一部份的該介電層蝕刻步驟期 間; 移除該第二已定義光阻層; 沉積一硼矽玻璃(BSG )層於一部份的該淺溝渠隔離、 該P型金氧半場效電晶體主動區域、該p型金氧半場效電晶 體閘極圖案、該補償間隙壁、和該介電層之上; 蝕刻一部份的該硼矽玻璃層和第二次蝕刻一部份的該 介電層,藉以形成一第一棚石夕玻璃間隙壁(B S G s p a c e r )和 一第二硼矽玻璃間隙壁; 以一第一光阻覆蓋該 η型金氧半場效電晶體主動區 域,並植入一 ρ型雜質於該 ρ型金氧半場效電晶體主動區 域之中,藉以形成一 ρ型重摻雜的源極/及極(h e a ν i 1 y doped source/drain); 移除該第一光阻並以一第二光阻覆蓋p型金氧半場效 電晶體主動區域,並該植入一 η型雜質於該 η型金氧半場 效電晶體主動區域之中,藉以形成一 η型重摻雜的源極/ 汲極;及 回火該第一棚石夕玻璃間隙壁,擴散蝴原子(b 〇 r ο η atom)於該第一硼矽玻璃間隙壁的下方區域,藉以形成一 源極/汲極延伸接面於一 ρ型金氧半場效電晶體之中。 2 9 .如申請專利範圍第2 8項之方法,其中上述之ρ型半導體 基板至少包含一濃度大約小於每立方公分 1, 0 E 1 5個原子Page 27 d429 1 9 _ Case No. 88116902 Amendment VI. The scope of the patent application forms a compensation gap (0ffsetspacer) above the active area of the p-type metal-oxygen half field effect transistor. During the electrical layer etching step; removing the second defined photoresist layer; depositing a borosilicate glass (BSG) layer in a portion of the shallow trench isolation, the active area of the P-type metal-oxygen half field effect transistor, the p -Type metal-oxide-semiconductor field-effect transistor gate pattern, the compensation spacer, and the dielectric layer; a part of the borosilicate glass layer is etched and a part of the dielectric layer is etched a second time to form A first shed glass spacer (BSG spacer) and a second borosilicate glass spacer; a first photoresist is used to cover the active area of the n-type metal-oxide-semiconductor field-effect transistor, and a p-type impurity is implanted in In the active region of the p-type metal-oxide half field effect transistor, a p-type heavily doped source / and (hea ν i 1 y doped source / drain) is formed; the first photoresist is removed and a Second photoresist covers p-type metal-oxide half field effect transistor An active region, and an n-type impurity is implanted in the active region of the n-type metal-oxide half field effect transistor to form an n-type heavily doped source / drain; and tempering the first shed stone A glass spacer wall, with a diffusion atom (b ο ο η atom) in a region below the first borosilicate glass spacer wall, thereby forming a source / drain extension interface to a p-type metal-oxide-semiconductor field-effect transistor. in. 29. The method according to item 28 of the scope of patent application, wherein the above-mentioned p-type semiconductor substrate contains at least a concentration of less than about 1, 0 E 1 5 atoms per cubic centimeter. 第28頁 :;V 4429 1 9 _案號88116902 年月 日_ 六、申請專利範圍 3 0 ·如申請專利範圍第2 8項之方法,其中上述之η型井區域 的形成,至少包含以磷(.Ρ )為一離子源的離子佈植程序, 於一能量大約1 OOKeV至2 0 0KeV之間,植入一劑量大約每平 方公分1 · 0 E 1 2至1. 0 E 1 3之間個原子,接著,使用一驅 入(d r i v e - i η )程序於一溫度大約1 0 0 0度,形成一濃度大約 每立方公分1. 0 Ε 1 6個原子的該η型井區域。 3 1.如申請專利範圍第2 8項之方法,其中上述之通道的形 成,至少包含以硼(Β)為一離子源的離子佈植程序,於一 能量大约1 OKeV,植入一劑量大約每平方公分1. 0Ε 1 2個原 子。 3 2 .如申請專利範圍第2 8項之方法,其中上述之通道的形 成,至少包含以氟化硼(BF 2)為一離子源的離子佈植程序 ,於一能量大約1 OKeV,植入一劑量大約每平方公分 1. 0E 1 2個原子。 3 3.如申請專利範圍第2 8項之方法,其中上述之閘極氧化 層的形成,至少包含一熱氧化法(thermal oxidation)。 3 4.如申請專利範圍第3 3項之方法,其中上述之熱氧化法 至少包含一乾式氧化法(d r y ο X i d a t i ο η )和一濕式氧化法Page 28:; V 4429 1 9 _ Case No. 88116902 _ 6 、 Applicable patent scope 30 • If the method of the patent application scope No. 28, the formation of the above-mentioned n-type well area contains at least phosphorus (.P) is an ion implantation procedure for an ion source, implanting a dose between 1 · 0 E 1 2 and 1.0 E 1 3 between an energy of approximately 100 OKeV and 200 KeV. Then, a drive-i η program is used to form a n-type well region with a concentration of about 1.0 0 E 16 atoms per cubic centimeter at a temperature of about 1000 degrees. 3 1. The method according to item 28 of the scope of patent application, wherein the formation of the above-mentioned channels includes at least an ion implantation procedure using boron (B) as an ion source, at an energy of about 1 OKeV, and implanting a dose of about 1. 0Ε 1 2 atoms per square centimeter. 32. The method according to item 28 of the scope of patent application, wherein the formation of the above-mentioned channels includes at least an ion implantation procedure using boron fluoride (BF 2) as an ion source, and implanting at an energy of about 1 OKeV. One dose is about 1.0E 1 2 atoms per square centimeter. 3 3. The method according to item 28 of the scope of patent application, wherein the formation of the above-mentioned gate oxide layer includes at least a thermal oxidation method. 3 4. The method according to item 33 of the scope of patent application, wherein the above-mentioned thermal oxidation method includes at least a dry oxidation method (d r y ο X i d a t i ο η) and a wet oxidation method 第29頁 -V 4 429 19 ' _案號 88116902_年月日_^_ 六、申請專利範圍 (wet oxidation)。 3 5 .如申請專利範圍第2 8項之方法,其中上述之輕微掺雜 的源極/汲極的形成,至少包含以磷(P)為一離子源的離子 佈植程序,於一能量大約小於 3 0 K e V,植入一劑量大約每 平方公分1 . 0 E 1 4至5 . 0 E 1 5之間個原子。 3 6.如申請專利範圍第2 8項之方法,其中上述之輕微掺雜 的源極/汲極的形成,至少包含以砷(A s )為一離子源的離 子佈植程序,於一能量大約小於 3 0 K e V,植入一劑量大約 每平方公分1 · 0 E 1 4至5 . 0 E 1 5之間個原子。 3 7.如申請專利範圍第2 8項之方法,其中上述之介電層至 少包含一二氧化碎層,使用正石夕酸乙S旨(TE0S )作為一來源 氣體,以低壓化學氣相沉積(LPCVD)技術,於一溫度大約 5 0 0度至8 0 0度之間,沈積該介.電層,其厚度大約5 0埃至 3 0 0埃之間。 38.如申請專利範圍第28項之方法,其中上述之介電層至 少包含一氣化5夕層,使用低壓化學氣相沉積(L P C V D )技術 ,於一溫度大約 7 5 0度,沈積該介電層,其厚度大約5 0埃 至3 0 0埃之間。 3 9.如申請專利範圍第2 8項之方法,其中上述之介電層至Page 29 -V 4 429 19 '_Case No. 88116902_Year Month _ ^ _ VI. Wet oxidation application. 35. The method according to item 28 of the scope of patent application, wherein the formation of the lightly doped source / drain described above includes at least an ion implantation procedure using phosphorus (P) as an ion source at an energy of approximately Less than 30 KeV, a dose of between 1.0 E 1 4 and 5.0 E 1 5 is implanted. 3 6. The method according to item 28 of the scope of patent application, wherein the formation of the lightly doped source / drain described above includes at least an ion implantation procedure using arsenic (A s) as an ion source at an energy Approximately less than 30 K e V, a dose of about 1 · 0 E 1 4 to 5.0 E 1 5 atoms per square centimeter is implanted. 37. The method according to item 28 of the scope of patent application, wherein the above-mentioned dielectric layer includes at least a fragmented dioxide layer, and uses TEOS as a source gas in low-pressure chemical vapor deposition. (LPCVD) technology, the dielectric layer is deposited at a temperature of about 500 degrees to 800 degrees, with a thickness of about 50 angstroms to 300 angstroms. 38. The method of claim 28, wherein the dielectric layer includes at least one gasification layer, and the dielectric is deposited using a low pressure chemical vapor deposition (LPCVD) technology at a temperature of about 750 degrees. Layer with a thickness between about 50 angstroms and 300 angstroms. 3 9. The method according to item 28 of the scope of patent application, wherein the above-mentioned dielectric layer to 第30頁 、442919 _案號 88116902 _年月日_fvi._ 六、申請專利範圍 少包含一氧化矽/氮化矽層,使用低壓化學氣相沉積( LPCVD)技術,於一溫度大約5 0 0度至8 0 0度之間,沈積該介 電層,其厚度大約1 0 0埃至3 0 0埃之間。 4 0 .如申請專利範圍第2 8項之方法,其中上述之介電層的 第一次触刻,至少包含以CHF作為飯刻劑的反應性離子|虫 刻(R I E)技術。 4 1.如申請專利範圍第2 8項之方法,其中上述之硼矽玻璃 (BSG)層的沈積,至少包含常壓化學氣相沉積(APCVD)技術 ,其厚度大約5 0 0埃至2 0 0 0埃之間。 4 2 .如申請專利範圍第2 8項之方法,其中上述之硼矽玻璃 (BSG)層的沈積,至少包含低壓化學氣相沉積(LPCVD)技術 ,其厚度大約5 0 .0埃至2 0 0 0埃之間。 4 3 .如申請專利範圍第2 8項之方法,其中上述之硼矽玻璃 (BSG)層的沈積,至少包含電漿輔助化學氣相沉積(PECVD) 技術,其厚度大約5 0 0埃至2 0 0 0埃之間。 4 4.如申請專利範圍第2 8項之方法,其中上述之硼矽玻璃 層的沈積,至少包含一硼劑量大約百分之一至百分之十之 間。Page 30, 442919 _ Case No. 88116902 _ Month and Day _fvi._ VI. The scope of patent application includes silicon monoxide / silicon nitride layer, using low pressure chemical vapor deposition (LPCVD) technology, at a temperature of about 50 Between 0 and 800 degrees, the dielectric layer is deposited to a thickness of between about 100 and 300 angstroms. 40. The method according to item 28 of the scope of patent application, wherein the first contact of the dielectric layer described above includes at least a reactive ion | insect etch (R I E) technique using CHF as a food engraving agent. 4 1. The method according to item 28 of the scope of patent application, wherein the deposition of the above borosilicate glass (BSG) layer includes at least atmospheric pressure chemical vapor deposition (APCVD) technology and has a thickness of about 50 angstroms to 20 angstroms. Between 0 0 Angstroms. 4 2. The method according to item 28 of the scope of patent application, wherein the deposition of the above-mentioned borosilicate glass (BSG) layer includes at least low-pressure chemical vapor deposition (LPCVD) technology and has a thickness of about 50.0 angstroms to 2 0 Between 0 0 Angstroms. 43. The method according to item 28 of the scope of patent application, wherein the above-mentioned deposition of borosilicate glass (BSG) layer includes at least plasma-assisted chemical vapor deposition (PECVD) technology, and its thickness is about 500 Angstroms to 2 0 0 0 Angstroms. 4 4. The method according to item 28 of the scope of patent application, wherein the deposition of the above borosilicate glass layer comprises at least a boron dose of between about 1% and 10%. 第31頁 * . 4A29 ^ 9 _案號 88116902_年月日__ 六、申請專利範圍 4 5 .如申請專利範圍第2 8項之方法,其中上述之硼矽玻璃 層的蝕刻,至少包含以C H F拃為蝕刻劑的反應性離子蝕刻 (RIE)技術。 4 6 .如申請專利範圍第2 8項之方法,其中上述之絕緣層的 第二次蚀刻,至少包含以CHF作為餘刻劑的反應性離子敍 刻(R I Ε )技術。 4 7 .如申請專利範圍第2 8項之方法,其中上述之Ρ型重摻 雜的源極/汲極的形成,至少包含以硼(Β )為一離子源的離 子佈植程序,於一能量大約 IKeV至80KeV之間,植入一劑 量大約每平方公分1. 0 Ε 1 5至1. 0 Ε 1 6之間個原子。 4 8 .如申請專利範圍第2 8項之方法,其中上述之P型重摻 雜的源極/汲極的形成,至少包含以氟化硼(BF 2)為一離子 源的離子佈植程序,於一能量大約 IKeV至80KeV之間,植 入一劑量大約每平方公分1 . 0 Ε 1 5至1. 0 Ε 1 6之間個原子。 4 9 ·如申請專利範圍第2 8項之方法,其中上述之η型重摻 雜的源極/汲極的形成,至少包含以磷(Ρ )為一離子源的離 子佈植程序,於一能量大約小於lOKeV至80KeV之間,植入 一劑量大約每平方公分1. 0E 1 5至1. 0E 1 6之間個原子。 5 0 .如申請專利範圍第2 8項之方法,其中上述之η蜜重摻Page 31 *. 4A29 ^ 9 _ Case No. 88116902 _ month and year __ Six, the scope of patent application 4 5. If the method of the scope of patent application No. 28, wherein the above-mentioned etching of the borosilicate glass layer includes at least CHF 拃 is a reactive ion etching (RIE) technology of an etchant. 46. The method according to item 28 of the scope of patent application, wherein the second etching of the above-mentioned insulating layer includes at least a reactive ion engraving (R I E) technique using CHF as a post-etching agent. 47. The method according to item 28 of the scope of patent application, wherein the formation of the P-type heavily doped source / drain described above includes at least an ion implantation procedure using boron (B) as an ion source in a The energy is between about IKeV and 80KeV, and a dose of about 1.0 Ε 1 5 to 1.0 Ε 1 6 per square centimeter is implanted. 48. The method according to item 28 of the scope of patent application, wherein the formation of the above-mentioned P-type heavily doped source / drain includes at least an ion implantation procedure using boron fluoride (BF 2) as an ion source. At an energy of about IKeV to 80KeV, a dose of about 1.0 Ε 1 5 to 1.0 0 Ε 16 is implanted at a dose. 4 9 · The method according to item 28 of the scope of patent application, wherein the formation of the n-type heavily doped source / drain includes at least an ion implantation procedure using phosphorus (P) as an ion source. The energy is about less than lOKeV to 80KeV, and a dose of about 1.0E 15 to 1.0E 16 atoms per square centimeter is implanted. 50. The method according to item 28 of the scope of patent application, wherein the η honey is re-blended 第32頁 , Λ429 1 9 _案號 88116902_年月曰__ 六、申請專利範圍 雜的源極/汲極的形成,至少包含以砷(A s )為一離子源的 離子佈植程序,於一能量大約小於1 OKeV至80KeV之間,植 入一劑量大約每平方公分1. 0 E 1 5至1. 0 E 1 6之間個原子。 5 1 .如申請專利範圍第2 8項之方法,其中上述之硼原子的 擴散,至少包含一快速熱製程(RTP ),於一溫度大約9 5 0度 至1 0 5 0度之間,擴散該硼原子,其時間大約1 0秒至6 0秒之 間。Page 32, Λ429 1 9 _Case No 88116902_Year Month __ VI. The formation of a source / drain with a range of patent applications, including at least an ion implantation procedure using arsenic (A s) as an ion source, Between an energy of approximately less than 1 OKeV and 80 KeV, a dose of approximately 1.0 E 1 5 to 1.0 E 1 6 atoms per square centimeter is implanted. 51. The method according to item 28 of the scope of patent application, wherein the above-mentioned diffusion of boron atoms includes at least a rapid thermal process (RTP), and the diffusion is at a temperature of about 950 degrees to 105 degrees. The boron atom has a time between about 10 seconds and 60 seconds. 第33頁Page 33
TW88116902A 1999-10-01 1999-10-01 Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor TW442919B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88116902A TW442919B (en) 1999-10-01 1999-10-01 Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88116902A TW442919B (en) 1999-10-01 1999-10-01 Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor

Publications (1)

Publication Number Publication Date
TW442919B true TW442919B (en) 2001-06-23

Family

ID=21642456

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88116902A TW442919B (en) 1999-10-01 1999-10-01 Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor

Country Status (1)

Country Link
TW (1) TW442919B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840381B2 (en) 2016-08-10 2020-11-17 International Business Machines Corporation Nanosheet and nanowire MOSFET with sharp source/drain junction

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10840381B2 (en) 2016-08-10 2020-11-17 International Business Machines Corporation Nanosheet and nanowire MOSFET with sharp source/drain junction

Similar Documents

Publication Publication Date Title
US7470593B2 (en) Method for manufacturing a cell transistor of a semiconductor memory device
US6255152B1 (en) Method of fabricating CMOS using Si-B layer to form source/drain extension junction
US10079279B2 (en) FET with local isolation layers on S/D trench sidewalls
JP2007073578A (en) Semiconductor device and its manufacturing method
EP0978141A1 (en) Method of making nmos and pmos devices with reduced masking steps
KR19980039124A (en) Manufacturing method of semiconductor device
EP0465045B1 (en) Method of field effect transistor fabrication for integrated circuits
US7098099B1 (en) Semiconductor device having optimized shallow junction geometries and method for fabrication thereof
KR100861835B1 (en) Method for fabricating semiconductor for a dual gate cmos
US20060001105A1 (en) Semiconductor device having optimized shallow junction geometries and method for fabrication thereof
US6051459A (en) Method of making N-channel and P-channel IGFETs using selective doping and activation for the N-channel gate
US6261885B1 (en) Method for forming integrated circuit gate conductors from dual layers of polysilicon
KR20010025030A (en) Method of manufacturing a mis field-effect transistor
US20090096023A1 (en) Method for manufacturing semiconductor device
TW442919B (en) Method to form source/drain extension junction by using borosilicate glass in manufacturing CMOS transistor
KR100685879B1 (en) Semiconductor Device and Fabricating Method Thereof
TW426972B (en) Method of forming the extending junction of source/drain by using Si-B layer in fabricating complementary metal oxide semiconductor field effect transistor
JP3423081B2 (en) Method for manufacturing semiconductor device
KR100519507B1 (en) Method for Forming Semi-conductor Device
US7157322B2 (en) Semiconductor device and method for manufacturing same
KR100288686B1 (en) Semiconductor device manufacturing method
JPH06140590A (en) Manufacture of semiconductor device
KR100247816B1 (en) Method for manufacturing semiconductor device
KR100604046B1 (en) Method for fabricating the semiconductor device
KR100386623B1 (en) method for manufacturing of semiconductor device

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees