TW423101B - Method of producing bottle-shaped deep trench - Google Patents

Method of producing bottle-shaped deep trench Download PDF

Info

Publication number
TW423101B
TW423101B TW88114025A TW88114025A TW423101B TW 423101 B TW423101 B TW 423101B TW 88114025 A TW88114025 A TW 88114025A TW 88114025 A TW88114025 A TW 88114025A TW 423101 B TW423101 B TW 423101B
Authority
TW
Taiwan
Prior art keywords
oxygen
helium
hydrogen bromide
patent application
nitrogen fluoride
Prior art date
Application number
TW88114025A
Other languages
Chinese (zh)
Inventor
Ming-Hung Lin
Nian-Yu Tsai
Bau-Ju Jang
Jin-Ruei Li
Original Assignee
Promos Technologies Inc
Mosel Vitelic Inc
Siemens Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc, Mosel Vitelic Inc, Siemens Ag filed Critical Promos Technologies Inc
Priority to TW88114025A priority Critical patent/TW423101B/en
Application granted granted Critical
Publication of TW423101B publication Critical patent/TW423101B/en

Links

Abstract

A method of producing a bottle-shaped deep trench is applicable on a semiconductor substrate, and comprises: performing a first etching stage, which uses a plasma gas composition of nitrogen fluoride, hydrogen bromide and a premixed helium/oxygen, at a specified pressure and a specified flowrate of the nitrogen fluoride, hydrogen bromide and premixed helium/oxygen, to etch a semiconductor substrate thereby forming a neck-portion profile; performing a second etching stage by increasing the flowrate of the nitrogen fluoride and the hydrogen bromide and adjusting the specified flow ratio between the hydrogen bromide and the premixed helium/oxygen to over about 4:1, to etch the semiconductor substrate below the neck-portion profile to form a bottom profile; and performing a third etching stage by increasing the flowrate of the hydrogen bromide and reducing the specified pressure, to etch the semiconductor substrate surround the bottom profile in order to form a bottle-shaped deep trench. Therefore, the depth and width of the bottle-shaped deep trench can be increased and the surface area of the bottle-shaped deep trench can be increased.

Description

4231 01 , 五、發明說明(1) 本發明係有關於一種深溝槽之製造方法,特別有關於 一種瓶型深溝槽之製造方法。 近年來,隨著積體電路集積度的增加,半導體製程設 計亦朝向縮小半導體元件尺寸以提高密度之方向發展,以 目前廣泛使用之動態隨機存取記憶體(DRAM : dynamic random access memory)為例,64M DRAM製程已從〇.35um 轉換至0.3um以下,而128M DRAM或256M DRAM則更朝向 0.2um以下發展。 由於電谷益基本上是由隔著一絕緣物質之兩導電層表 面(即電極板)構成’而電容器儲存電荷之能力係由三種 物理特徵決定’即(1)絕緣物質之厚度;(2)電極板之表 面積;及(3)絕緣物質之電氣性質。 其中為了使S己憶體電路能包含大量之記憶胞,記憶胞 之基底面積必須不斷減少以提高密度,同時,記憶胞電容 之電極板部份則仍必須有足夠之表面積以儲存充分之電 荷。 一般而言,高密度記憶體係具有兩種不同的電容器形 成技術’其中一種為三維(three — dimension)之堆疊式 電容(STC : stacked capacitor cell),另一種為溝槽 式電容。例如皇冠狀(crown)堆疊電容結構,其利用矽晶 ^中存取裝置之上方空間來形成電容電極板,而溝槽式電 谷則利用基底主動區(active region)中之深溝槽來形成 電容储存區。本發明之技術則是溝槽式電容技術的延伸。 然而’隨著DRAM製程的持續縮小化,深溝槽之孔徑大4231 01, V. Description of the invention (1) The present invention relates to a method for manufacturing a deep groove, and more particularly to a method for manufacturing a bottle-shaped deep groove. In recent years, with the increase of the integration degree of integrated circuits, the design of semiconductor processes has also developed toward reducing the size of semiconductor elements to increase the density. Take the currently used dynamic random access memory (DRAM) as an example. The 64M DRAM manufacturing process has been switched from 0.35um to less than 0.3um, while 128M DRAM or 256M DRAM is moving towards 0.2um. Because Dianguyi is basically composed of the surfaces of two conductive layers (ie, electrode plates) separated by an insulating substance, and the ability of a capacitor to store charge is determined by three physical characteristics, namely (1) the thickness of the insulating substance; (2) Surface area of the electrode plate; and (3) electrical properties of the insulating substance. Among them, in order for the S memory circuit to contain a large number of memory cells, the substrate area of the memory cells must be continuously reduced to increase the density. At the same time, the electrode plate portion of the memory cell capacitor must still have sufficient surface area to store sufficient charge. Generally speaking, high-density memory systems have two different capacitor formation technologies, one of which is a three-dimensional stacked capacitor cell (STC), and the other is a trench capacitor. For example, a crown-shaped stacked capacitor structure uses a space above the access device in the silicon crystal to form a capacitor electrode plate, while a trench-type valley uses a deep trench in the active region of the substrate to form a capacitor. Storage area. The technology of the present invention is an extension of the trench capacitor technology. However, as the DRAM process continues to shrink, the diameter of deep trenches is large.

第4頁 五、發明說明(2) 小亦隨之限縮,當溝槽之縱寬比(aspect ratio)已超過 35 : 1時’作為電容儲存區之深溝槽將因而受限,此外’ 由於電容量係與電容電極板之表面積成正比,而溝槽電容 之電極板表面積為溝槽之深度與溝槽圓周面積之乘積,溝 槽圓周面積則又與溝槽之孔徑有關,換言之,當製程技術 從〇.2um縮小至〇.18um時,溝槽之孔徑隨之變小,連帶使 溝槽電容難以得到足夠之電容表面積以使電容量維持於 4 OpF左右。再者’欲形成具有較小臨界尺寸之深溝槽,便 必須選擇高縱寬比之方式進行蝕刻,同時當溝槽臨界尺寸 愈小’即愈難使溝槽保持垂直輪廓,一般溝槽之孔徑係愈 趨於基底底部愈加窄化,此亦為目前蝕刻技術所面臨之挑 戰。 以傳統製程為例, 他材料組成之半導 例如動態隨機存取 一墊堆疊層(pad s 序沈積氮化 如,碎玻璃 為一用於深 底10與氮化 進附著效果 暴露出部分 佈及曝光顯 表面,然後 或其 置, 形成 沈積 積一Page 4 V. Description of the invention (2) Smallness will also be limited. When the aspect ratio of the trench has exceeded 35: 1, 'deep trenches as capacitor storage areas will be limited. In addition,' The capacitance is directly proportional to the surface area of the capacitor electrode plate. The surface area of the electrode plate of the trench capacitor is the product of the depth of the trench and the circumferential area of the trench. The circumferential area of the trench is related to the aperture of the trench. In other words, when the process is When the technology is reduced from 0.2um to 0.18um, the aperture of the trench becomes smaller, which makes it difficult for the trench capacitor to obtain a sufficient surface area to maintain the capacitance at about 4 OpF. Furthermore, 'to form a deep trench with a smaller critical size, it is necessary to choose a high aspect ratio for etching. At the same time, the smaller the critical dimension of the trench, the more difficult it is to maintain the vertical profile of the trench. The more the system tends to narrow the bottom of the substrate, this is also a challenge facing the current etching technology. Taking the traditional manufacturing process as an example, a semiconducting material composed of other materials such as a dynamic random access pad stack layer (pad s-sequence deposition nitridation such as broken glass is used for deep bottom 10 and nitriding effect to expose part of the distribution and The exposed surface is exposed, and then it is set to form a deposit.

如第1圖所示,首先係提供—由矽 體基底10以製造所欲之半導體裝 記憶體等,其次’於半導體基底上 tack layer)15,例如以化學氣相 矽層12於半導體基底1〇表面、及沈 層14於鼠化石夕層12表面,塾堆疊層 溝槽触刻步驟之硬罩幕。另外,可 碎層12之間形成一墊氧化層〗丨以減 。接著’於墊堆疊層15内形成一罩 半導體基底表面,例如可先利用光 影等微影製程形成一光阻圖案16於 再利用反應性離子飯刻製程或電漿 4231 01 五、發明說明(3) 餘刻製程等蝕刻墊堆疊層1 5以形成一罩幕開口 2〇。 其次,連續進行數階段以不同蝕刻參數控制的溝槽蝕 刻步驟如採用非等向性蝕刻製程,在此則以反應性離子蚀 刻製程為例。 其中’由於罩幕開口 20可能會使部分半導體矽基底因 暴露於外在環境下而形成原生氧化層(native 〇xide layer),故有必要先進行一道原生氧化層之蝕刻階段,例 如利用溴化氫(HBr)、氟化氮(NF3)為主要電漿氣體來源 (plasma gas composition)以蝕刻去除(breakthrough)可 能出現的原生氧化層。其鞋刻參數則如下列所示:2 〇至 50mtorr的壓力,較佳為25mtorr ;500至900w的RF功率, 較佳為600w ;10至40高斯之磁場,較佳為is高斯;溴化氫 (HBr)與氟化氮(NF3)之流量(seem)比約為20 : 5 ;蝕刻時 間約為20至40秒,較佳者為25秒。 其次’進行瓶型溝槽之頸部輪廓(neck pr0fiie)之蝕 刻階段’例如,利用溴化氫(HBr )、氟化氮(肝3 )以及預混 合之氦/乳(He/02)為主要電聚氣體來源以姓刻去除露出之 部分半導體矽基底,形成一具有傾斜頂部(tapered t〇p portion)且深度約為1. 2 um之頸部輪廓22。其蝕刻參數則 如下列所示:80至llOmtorr的壓力,較佳為i〇〇mtorr ; 700至900w的RF功率’較佳為800w ;80至11〇高斯(Gauss) 之磁場’較佳為100高斯;溴化氫(HBr)、氟化氮(NF3)與 氦/氧(He/02)之流量(seem)比約為87 :13 :35 ;氦/氧 (H e / 0 2)之混合比約為7 0 % : 3 0 % :嵌刻時間約為9 〇至11 〇As shown in FIG. 1, firstly, the silicon substrate 10 is provided to manufacture a desired semiconductor-mounted memory, etc., and secondly, the semiconductor substrate 1 is a tack layer) 15, such as a chemical vapor phase silicon layer 12 on the semiconductor substrate 1. The surface and the sink layer 14 are on the surface of the rat fossil evening layer 12, and the hard mask of the stacked layer trench engraving step. In addition, a pad oxide layer is formed between the fragile layers 12 to reduce. Next, a surface of the semiconductor substrate is formed in the pad stacking layer 15. For example, a photoresist pattern 16 may be formed by a photolithography process such as light and shadow, and then a reactive ion rice engraving process or plasma 4231 01 is used. ) Etching process, etc., etch pad stack layers 15 to form a mask opening 20. Secondly, the trench etching step controlled by different etching parameters in several stages is continuously performed. For example, an anisotropic etching process is used. Here, the reactive ion etching process is used as an example. Among them, because the mask opening 20 may cause a part of the semiconductor silicon substrate to form a native oxide layer due to exposure to the external environment, it is necessary to first perform an etching step of the native oxide layer, for example, using bromination Hydrogen (HBr) and nitrogen fluoride (NF3) are the main plasma gas composition to etch through the possible primary oxide layer. Its shoe engraving parameters are as follows: pressure of 20 to 50mtorr, preferably 25mtorr; RF power of 500 to 900w, preferably 600w; magnetic field of 10 to 40 Gauss, preferably is Gauss; hydrogen bromide (HBr) and nitrogen fluoride (NF3) flow rate (seem) ratio is about 20: 5; etching time is about 20 to 40 seconds, preferably 25 seconds. Secondly, the "etching stage of neck pr0fiie of bottle groove" is performed, for example, using hydrogen bromide (HBr), nitrogen fluoride (liver 3) and pre-mixed helium / milk (He / 02) as the main The source of the polycondensing gas is etched to remove a part of the exposed semiconductor silicon substrate to form a neck profile 22 having a tapered top portion and a depth of about 1.2 um. The etching parameters are as follows: a pressure of 80 to 110 mtorr, preferably 100 mtorr; an RF power of 700 to 900 w 'preferably 800 w; a magnetic field of 80 to 110 gauss' (preferably 100) Gauss; hydrogen bromide (HBr), nitrogen fluoride (NF3) and helium / oxygen (He / 02) flow (seem) ratio is about 87:13:35; helium / oxygen (H e / 0 2) mixture The ratio is about 70%: 30%: the engraving time is about 90 to 11

五、發明說明(4) ---- 秒,較佳者為9 5秒。 然後’請參閱第2圖’進行瓶型溝槽之底部輪廓 (bottom profile)之蝕刻階段,例如,繼續利用溴化氣 (HBr)、氣化氮(NF3)以及預混合之氦/氧(He/〇2)為主要電 聚氣體來源以自頸部輪廓2 2繼續姓刻去除露出之部分半導 體石夕基底’形成一深度約為6.3 um之底部輪廓26。其蝕刻 參數則如下列所示:11〇至130mtorr的壓力,較佳為 125mtorr ;600 至 lOOOw 的 RF 功率,較佳為 i〇〇〇w ;4〇至6〇 高斯(Gauss)之磁場’較佳為50高斯;溴化氫(HBr)、氣化 氮(NF3)與氦/氧(He/02)之流量(Sccm)比約為87 : 13 : 3 5 ;蝕刻時間約為4 5 0至5 0 0秒,較佳者為4 8 5秒。 前述傳統技術之問題在於進行瓶型溝槽之底部輪廓 (bottom prof i le)之蝕刻階段時,由於此蝕刻製程受溝槽 表面孔徑大小和溝槽深度之限制,因此僅能形成錐形深溝 槽,而無法形成可以擴大電容儲存區表面積之深溝槽。 此外,一種傳統瓶形電容製程,係由T. Ozaki等人所 提出’參見(0.228 um Trench Cell Technologies with Bottle Shaped Capacitor for 1Gbit DRAMs,by T.Ozaki,et al,IEDM,95,pp66 1 -664, 1 995 ),其 中,瓶形電容之製造方法如下所述,首先在溝槽上部形成 一厚度約80nm之環形氧化層(collar oxide layer ),然 後執行氧化罩幕和原生氧化層之去除等電容製程’此時, 環形氧化層厚度亦因此減少至約5〇nm左右’接著沈積一複 晶矽層,並於同環境下摻雜磷離子’隨之藉由爐管之熱退V. Description of the invention (4) ---- seconds, preferably 9 5 seconds. Then 'see Figure 2' for the bottom profile etch step of the bottle trench, for example, continue to use brominated gas (HBr), gasified nitrogen (NF3), and pre-mixed helium / oxygen (He / 〇2) as the main source of electro-polymerization gas from the neck contour 22 to continue to remove the exposed part of the semiconductor stone Xi substrate to form a bottom contour 26 with a depth of about 6.3 um. The etching parameters are as follows: a pressure of 110 to 130 mtorr, preferably 125 mtorr; an RF power of 600 to 1000 w, preferably 100 000 w; a magnetic field of 40 to 60 gauss. It is preferably 50 Gauss; the flow (Sccm) ratio of hydrogen bromide (HBr), gasified nitrogen (NF3) and helium / oxygen (He / 02) is about 87: 13: 3 5; the etching time is about 4 50 to 500 seconds, preferably 485 seconds. The problem with the aforementioned conventional technology is that during the etching of the bottom profile of the bottle-shaped trench, since the etching process is limited by the surface diameter of the trench and the depth of the trench, only a tapered deep trench can be formed. , And can not form a deep trench that can increase the surface area of the capacitor storage area. In addition, a traditional bottle-shaped capacitor manufacturing process was proposed by T. Ozaki et al. (See 0.228 um Trench Cell Technologies with Bottle Shaped Capacitor for 1Gbit DRAMs, by T. Ozaki, et al, IEDM, 95, pp66 1 -664 , 1 995), wherein the manufacturing method of the bottle-shaped capacitor is as follows. First, a ring oxide layer with a thickness of about 80 nm is formed on the upper part of the trench, and then the capacitors such as the oxide mask and the primary oxide layer are removed. In the process 'at this time, the thickness of the ring-shaped oxide layer is also reduced to about 50 nm', and then a polycrystalline silicon layer is deposited and doped with phosphorus ions in the same environment.

M2 五、發明說明(5) 火製程將填離子摻雜入溝槽之 可阻止磷離子摻雜入溝槽上邱…二土 1哀狀氧化層則 ,^ β 僧上然後利用化學性乾蝕釗去 除複晶梦層,同時在環狀惫各+ 攄*。缺m二 氧層下方之溝槽直徑也因此而 :兹曰二傳技術之問題在於,矽基底與摻雜離子 ΓΓΓΠϊ選擇比並未較其他材質例如氧化層等為 佳,因此,在+導體裝置尺寸曰益縮 度並不符需求。 月卉精早 有鑑於此,本發明之目的即為了解決上述問題,而 出一種瓶型料槽之製造方法m一半導體基底,其 包括·進行一第一蝕刻階段,其以氟化氮、溴化氫、及預 混合之氦/氧為電漿氣體組成物,在一既定壓力與氟化 氮、溴化氫、及預混合之氦/氧之一既定流量下蝕刻該 半導體基底以形成一頸部輪廓;進行一第二蝕刻階段,其 增加氟化氮與溴化氫之既定流量並調整溴化氫與預混合之 氦/氧之既疋流量比值為約4 :1以上’餘刻頸部輪廓下之半 導體基底以形成一底部輪廓;及進行—第三钱刻階段,其 增加溴化氫之既定流量並減少既定壓力,蝕刻圍繞底部輪 廓之半導體基底以形成一瓶型深溝槽。如此,可增加瓶型 深溝槽之深度及寬度,並使瓶型深溝槽之表面積隨之增 加。 為讓本發明之上述和其他目的、特徵、和優點能更明 顯易懂’下文特舉一較佳實施例,並配合所附圖式,作詳 細說明如下: 圖式簡單說明M2 V. Description of the invention (5) Doping ions into the trench during the fire process can prevent phosphorus ions from being doped on the trench. Qiu Er 2 is an oxide-like layer, and ^ β is used for chemical dry etching. Zhao removes the polycrystalline dream layer, and at the same time exhausts each ring + 摅 *. The diameter of the trench below the m-deficient oxygen layer is also the result: the problem with the second pass technology is that the silicon substrate and doped ions ΓΓΓΠϊ are not better than other materials such as oxide layers, so the + conductor device Size shrinkage does not meet demand. In view of this, Yue Huijing has long considered that the purpose of the present invention is to solve the above-mentioned problems and to provide a method for manufacturing a bottle-shaped trough. A semiconductor substrate includes a first etching stage, which uses nitrogen fluoride and bromine. Hydrogen hydride and pre-mixed helium / oxygen are plasma gas compositions. The semiconductor substrate is etched at a predetermined pressure with a predetermined flow of one of nitrogen fluoride, hydrogen bromide, and pre-mixed helium / oxygen to form a neck. Profile; performing a second etching stage, which increases the predetermined flow rate of nitrogen fluoride and hydrogen bromide and adjusts the existing flow rate ratio of hydrogen bromide and pre-mixed helium / oxygen to about 4: 1 or more. The semiconductor substrate under the profile forms a bottom profile; and the third stage of the engraving process, which increases a predetermined flow of hydrogen bromide and reduces a predetermined pressure, etches the semiconductor substrate around the bottom profile to form a bottle-shaped deep trench. In this way, the depth and width of the bottle deep groove can be increased, and the surface area of the bottle deep groove can be increased accordingly. In order to make the above and other objects, features, and advantages of the present invention more comprehensible ', a preferred embodiment is exemplified below, and in conjunction with the accompanying drawings, a detailed description is as follows: Brief description of the drawings

4231 01 五、發明說明(6) "~ 第1至2圖為一半導體結構剖面圖,其顯示傳統之一種 瓶型深溝槽之製造方法實施例。 第3至7圖為一半導體結構剖面圖,其顯示本發明之一 種瓶型深溝槽之製造方法實施例。 [符號說明] 10、100〜基底;11、110〜墊氧化物層;12、12〇〜墊氮化物 層,14、140〜氧化物層,15、〜墊堆疊層;丨6、bo〜光 阻層’20、200~罩幕開口; 22、220〜頸部輪廓;240、 260〜底部輪廓;241、26卜底部輪廓側壁。 實施例 首先請參閱第3至7圖,其顯示本發明之一實施例之製 造流程。 依據第3圖,其係顯示本發明之起始步驟。其中,基 底1〇〇為一半導體材質,例如由矽材質(silic〇n)組成, 為方便說明起見’在此以一矽基底為例。 首先,起始步驟為如第3、4圖所示,於提供一由碎或 其他材料組成之半導體基底〗〇〇後,接著於半導體基底1〇〇 上形成一塾堆養層(pad stack layer) 150,例如以化學氣 相沈積製程依序沈積氮化矽層12〇於半導體基底1〇〇表面、 及沈積一絕緣層如硼矽玻璃層14〇於氮化矽層12〇表面,墊 堆疊層1 5 G在此係作為一用於深溝槽蝕刻步驟之硬罩幕。 另外’可在半導體基底1〇〇與氮化矽層12〇之間形成一墊氧 化層110以減少應力及促進附著效果。接著,於墊堆疊層 150内形成一罩幕開口 2〇〇以暴露出部分半導體基底表面,4231 01 V. Description of the invention (6) " ~ Figures 1 to 2 are cross-sectional views of a semiconductor structure, which show an embodiment of a conventional manufacturing method of a bottle-shaped deep trench. 3 to 7 are cross-sectional views of a semiconductor structure, showing an embodiment of a method for manufacturing a bottle-shaped deep trench according to the present invention. [Symbol description] 10, 100 ~ substrate; 11, 110 ~ pad oxide layer; 12, 12 ~ pad nitrogen layer, 14, 140 ~ oxide layer, 15, ~ pad stack layer; 6, bo ~ light Barrier layer '20, 200 ~ mask openings; 22, 220 ~ neck outline; 240, 260 ~ bottom outline; 241, 26 side wall of bottom outline. Embodiment First, please refer to Figs. 3 to 7, which show a manufacturing process of an embodiment of the present invention. Figure 3 shows the initial steps of the invention. The substrate 100 is made of a semiconductor material, for example, it is made of silicon. For convenience of description, a silicon substrate is used as an example here. First, as shown in Figures 3 and 4, after providing a semiconductor substrate composed of scrap or other materials, a pad stack layer is formed on the semiconductor substrate 100. 150), for example, in a chemical vapor deposition process, a silicon nitride layer 120 is sequentially deposited on the surface of the semiconductor substrate 100, and an insulating layer such as a borosilicate glass layer 14 is deposited on the surface of the silicon nitride layer 120, and the pads are stacked. Layer 15 G is used here as a hard mask for the deep trench etch step. In addition, a pad oxide layer 110 may be formed between the semiconductor substrate 100 and the silicon nitride layer 120 to reduce stress and promote adhesion. Next, a mask opening 200 is formed in the pad stacking layer 150 to expose a part of the surface of the semiconductor substrate.

4231 014231 01

歹1可先利用光阻材料之塗佈及曝光顯影等微影製程形成 一光阻圖案160於塾堆疊層15〇表面,然後再利用反應性離 子蝕刻製程或電漿蝕刻製程等蝕刻墊堆疊層〗5 〇以形成一 罩幕開口 2 0 0。 其次’連續進行數階段以不同蝕刻參數控制的溝槽蝕 刻步驟如採用非等向性蝕刻製程,在此則以反應性離子蝕 刻製程為例。 其中’由於罩幕開口 2〇〇可能會使部分半導體矽基底 因暴露於外在環境下而形成原生氧化層(native 〇xide 1 a y e r ) ’故可先進行—道原生氧化層之蝕刻階段,例如利 用漠化氫(HBr)、氟化氮(NF3)為主要電漿氣體來源 (plasma gas composition)以蝕刻去除(breakthrough)可 能出現的原生氧化層。其姓刻參數則如下列所示:2 〇至 50mtorr的壓力’較佳為25mtorr ;500至900w的RF功率, 較佳為600w ; 10至40高斯之磁場,較佳為15高斯;溴化氫 (HBr)與氟化氮(NF3)之流量(seem)比約為20 :5 ;餘刻時 間約為2 0至4 0秒,較佳者為2 5秒。 其次’請參閲第5圖,進行瓶型溝槽之頸部輪廓(neck prof i le)之蝕刻階段,例如’利用溴化氫(HBr)、氟化氮 (NF3)以及預混合之氦/氧(He/02)為主要電漿氣體來源以 蝕刻去除露出之部分半導體矽基底,形成一具有傾斜頂部 (tapered top portion)且深度約為1.2 um之頸部輪廟 220。其餘刻參數則如下列所示:80至llOmtorr的壓力, 較佳為lOOmtorr ;700至900w的RF功率,較佳為8〇〇w ;80歹 1 A photoresist pattern 160 can be formed on the surface of the 塾 stack layer 150 by photolithographic processes such as coating and exposure development of the photoresist material, and then the etching pad stack layer such as reactive ion etching process or plasma etching process can be used. 〗 5 〇 to form a curtain opening 2 0 0. Secondly, the trench etching step controlled by different etching parameters in several stages is performed continuously. For example, an anisotropic etching process is used. Here, a reactive ion etching process is used as an example. Among them, 'because the opening of the mask 200 may cause some semiconductor silicon substrates to form a native oxide layer (native 0xide 1 ayer) due to exposure to the external environment', so it can be performed first-the etching stage of the native oxide layer, such as Hydrogenated hydrogen (HBr) and nitrogen fluoride (NF3) are used as the main plasma gas composition to etch through the possible primary oxide layer. Its engraved parameters are as follows: a pressure of 20 to 50 mtorr, preferably 25 mtorr; an RF power of 500 to 900 w, preferably 600 w; a magnetic field of 10 to 40 gauss, preferably 15 gauss; hydrogen bromide (HBr) and nitrogen fluoride (NF3) flow rate (seem) ratio is about 20: 5; the remaining time is about 20 to 40 seconds, preferably 25 seconds. Secondly, please refer to FIG. 5 for the etching stage of the neck profile of the bottle groove, such as' Using hydrogen bromide (HBr), nitrogen fluoride (NF3) and pre-mixed helium Oxygen (He / 02) is the main plasma gas source to remove the exposed semiconductor silicon substrate by etching to form a neck wheel temple 220 with a tapered top portion and a depth of about 1.2 um. The remaining parameters are as follows: pressure from 80 to 110 mtorr, preferably 100 mtorr; RF power from 700 to 900 w, preferably 800 w; 80

第10頁Page 10

至110高斯(Gauss)之磁場,較佳為100高斯;溴化氫 (HBr)、氟化氮(NF3)與氦/氧(He/02)之流量(sccm)比約為 87 : 13 : 35 ;氦/氧(He/02)之混合比約為70% : 30% ;蝕刻 時間約為9 0至1 1 0秒,較佳者為9 5秒。 然後’凊參閲第6圖’進行瓶型溝槽之底部輪廓 (b 〇 11 〇 m p r 〇 f i 1 e)之第一钮刻階段,例如,繼續利用溴化 H(HBr)、氣化氮(NF3)以及預混合之氦/氧(jje/〇2)為主要 電漿氣體來源以自頸部輪廓220繼續蝕刻去除露出之部分 半導體矽基底,形成一底部輪廓240。其中,為了擴大底 部輪廓240 ’必須增加此蝕刻階段的橫向蝕刻(lateral etch)能力’因此其蝕刻參數主要調整包括: (a) 增加氟化氮(NF3)之流量以減少底部輪廓24〇側壁 241之聚合物(polymer)的生成,增加橫向蝕刻的能力。 (b) 增加溴化氫(HBr)之流量,增加橫向蝕刻的能力。 (c) 使溴化氫(HBr)與氦/氧(He/02)之流量比提高到4 : 1以上或較佳的5:1以上’增加橫向蝕刻的能力。 本實施例中,調整後之較佳蝕刻參數如下列所示: 110 至 130mtorr 的壓力,較佳為lOOmtorr ;600 至 1000w 的 RF功率,較佳為1000w ;55至75高斯(Gauss)之磁場,較佳 為65高斯;溴化氫(HBr)、氟化氮(NF3)與氦/氧(He/02)之 流量(seem)比變更為約200 : 20 : 2 0,其中,氟化氮 (NF3)、溴化氫(HBr)之流量分別提高到20與200sccm,氦/ 氧(He/02)之流量下降至20sccra,而溴化氫(HBr)與氦/氧 (He/02)之流量比提高到10: 1 ;蝕刻時間約為180至220Magnetic field to 110 Gauss, preferably 100 Gauss; ratio of flow (sccm) of hydrogen bromide (HBr), nitrogen fluoride (NF3) and helium / oxygen (He / 02) is about 87:13:35 ; The mixing ratio of helium / oxygen (He / 02) is about 70%: 30%; the etching time is about 90 to 110 seconds, preferably 95 seconds. Then '凊 Refer to Figure 6' for the first button stage of the bottom profile (b 〇11 〇mpr 〇fi 1 e) of the bottle groove, for example, continue to use HBr (HBr), gasification nitrogen ( NF3) and pre-mixed helium / oxygen (jje / 〇2) are the main plasma gas sources to continue etching to remove the exposed semiconductor silicon substrate from the neck contour 220 to form a bottom contour 240. Among them, in order to enlarge the bottom profile 240 'the lateral etch capability of this etching stage must be increased'. Therefore, the main adjustments of its etching parameters include: (a) Increase the flow of nitrogen fluoride (NF3) to reduce the bottom profile 24. sidewall 241 The formation of polymer (polymer), increase the ability of lateral etching. (b) Increase the flow of hydrogen bromide (HBr) and increase the ability to etch laterally. (c) Increasing the flow ratio of hydrogen bromide (HBr) to helium / oxygen (He / 02) to 4: 1 or more or preferably 5: 1 or more 'increases the ability of lateral etching. In this embodiment, the preferred etching parameters after adjustment are as follows: a pressure of 110 to 130mtorr, preferably 100mtorr; an RF power of 600 to 1000w, preferably 1000w; a magnetic field of 55 to 75 Gauss, 65 Gauss is preferred; the flow (seem) ratio of hydrogen bromide (HBr), nitrogen fluoride (NF3), and helium / oxygen (He / 02) is changed to about 200: 20: 20, where nitrogen fluoride ( NF3), the flow of hydrogen bromide (HBr) increased to 20 and 200 sccm, the flow of helium / oxygen (He / 02) decreased to 20 sccra, and the flow of hydrogen bromide (HBr) and helium / oxygen (He / 02) The ratio is increased to 10: 1; the etching time is about 180 to 220

4231 014231 01

秒’較佳者為2 0 0秒。 接著,請參閱第7圖,進行瓶型溝槽之底部輪廓 (bottom profile)之第二蝕刻階段,例如’繼續利用溴化 氫(HBr)、氟化氮(NF3)以及預混合之氦/氧(He/〇2)為主要 電聚氣體來源以自底部輪廓240繼續蝕刻去除露出之部分 半導體矽基底,形成一底部輪廓26 0。其中,為了增加^ 部輪廟260之深度與侧壁261之寬度,必須進一步同^時增加 此#刻階段的垂直钱刻(vertical etch)與橫向钱刻能 力’因此其#刻參數主要調整包括: (a)減少壓力,增加垂直蝕刻的能力。 (b)增加溴化氫(HBr)之流量,增加橫向餘刻的能力。 本實施例中,調整後之較佳餘刻參數如下列所示:2 〇 至50mto.rr的壓力,較佳為3〇mtorr ;600至1000w的RF功 率,較佳為600w ; 55至75高斯(Gauss)之磁場,較佳為65 高斯;溴化氫(HBr)、氟化氮(NF3)與氦/氧(He/02)之流量 (seem)比變更為約15〇 : 13 : 20,其中,氟化氮(NF3)之流 量維持傳統製程之1 3 s c c m,溴化數(Η B r)之流量則提高到 150sccm,氦/氧(He/〇2)之流量下降至20sccm,溴化氫 (HBr)與氦/氧(He/〇2)之流量比提高到10: 1 ;蝕刻時間約 為270至320秒,較佳者為3〇〇秒。 此外’於完成前述實施例之瓶型深溝槽之後,尚可接 續之後的傳統半導體製程,例如半導體元件之製作等,舉 例而言,可藉此瓶塑深溝槽來形成溝槽電容結構之電容儲 存區。而由於本實施例之瓶型深溝槽向外擴張’使圍繞溝The second 'is preferably 200 seconds. Next, please refer to FIG. 7 for the second etching stage of the bottom profile of the bottle groove, such as' continue the use of hydrogen bromide (HBr), nitrogen fluoride (NF3), and pre-mixed helium / oxygen (He / 〇2) is the main source of the electropolymerization gas, and the exposed part of the semiconductor silicon substrate is continuously etched from the bottom contour 240 to form a bottom contour 260. Among them, in order to increase the depth of the Bulun Temple 260 and the width of the side wall 261, it is necessary to further increase the vertical etch and horizontal money engraving capabilities at the same time. Therefore, the main adjustments of its # 刻 parameters include: : (A) Reduce the pressure and increase the ability of vertical etching. (b) Increasing the flow of hydrogen bromide (HBr) and increasing the capacity of the lateral remainder. In this embodiment, the preferred parameters for the remaining moment after adjustment are as follows: a pressure of 20 to 50 mto.rr, preferably 30 mtorr; an RF power of 600 to 1000 w, preferably 600 w; 55 to 75 Gauss The magnetic field (Gauss) is preferably 65 Gauss; the flow rate (seem) ratio of hydrogen bromide (HBr), nitrogen fluoride (NF3) and helium / oxygen (He / 02) is changed to about 15: 13: 20, Among them, the flow rate of nitrogen fluoride (NF3) is maintained at 13 sccm of the traditional process, the flow rate of bromine number (Η B r) is increased to 150 sccm, the flow rate of helium / oxygen (He / 〇2) is reduced to 20 sccm, and bromination The flow ratio of hydrogen (HBr) to helium / oxygen (He / 〇2) is increased to 10: 1; the etching time is about 270 to 320 seconds, preferably 300 seconds. In addition, after completing the bottle-shaped deep trench of the foregoing embodiment, it can still continue the subsequent traditional semiconductor manufacturing processes, such as the fabrication of semiconductor components. For example, the bottle-shaped deep trench can be used to form a capacitor storage of a trench capacitor structure. Area. And because the bottle-shaped deep grooves of this embodiment expand outward, the surrounding grooves

第12頁 4231 01 面積增加約50%,因此: 亦隨之增加約5 0 %以上t 之瓶型溝槽製造方法可 槽電容結構,亦可符合 達0_ 13um之兩個世代製 構可應用於動態隨機存 胞面積下,可大幅增加 所應用之物質材料,並 種具恰當特性之物質和 空間亦不限於實施例引 已以一較佳實施例揭露 任何熟習此技藝者,在 可做些許之更動與潤飾 之申請專利範圍所界定 有效利 下一世 程以上 取記憶 相當之 不限於 形成方 用之尺 如下, 不脫離 *因此 者為準 五、發明說明(ίο) 槽之基底側壁表 電容儲存區面積 由於本發明 而以此形成之溝 需求,甚至是到 本發明之電容結 其在有限之記憶 同時,本發明中 述者,其能由各 且本發明之結構 雖然本發明 以限定本發明, 神和範圍内,當 護範圍當視後附 溝槽電容結構之 用空間,因 代之記憶體 。因此,藉 體(dram), 電容容量。 實施例所弓丨 法所置換, 寸大小。 然其並非用 本發明之精 本發明之保Page 124231 01 The area is increased by about 50%, so: the bottle-type trench manufacturing method of the bottle-type trench manufacturing method which also increases by about 50% or more can also meet the two generations of structures up to 0_13um can be applied to Under the dynamic random cell area, the applied materials and materials can be greatly increased, and the materials and spaces with appropriate characteristics are not limited to the embodiments. A person who is familiar with this technique has been disclosed in a preferred embodiment. Changes and retouching as defined by the scope of the patent application for effective use of the next generation of memory are not limited to the rule of formation as follows, do not depart from * Therefore, whichever is the fifth, the description of the invention (ίο) the base wall surface of the tank capacitor storage area The area required to form the trench due to the present invention, even to the capacitive junction of the present invention, while the limited memory of the present invention, the person described in the present invention, can be composed of the structure of the invention. Although the invention is to limit the invention, Within the scope of God and God, when protecting the scope, the space used by the capacitor structure behind the trench is replaced by the memory. Therefore, the capacity of a capacitor is a dram. Replaced by the example method, inch size. However, it does not use the essence of the invention

第13頁Page 13

Claims (1)

4231 CM μ、申請專利範圍 底 1’ 種瓶型深溝槽之製造方法,適用於一半導體基 ’其包括: 預、、(^)進行一第一蝕刻階段,其以氟化氮、溴化氫、及 氣現η之氦/氧為電漿氣體組成物,在一既定壓力與氟化 半邋ϊ ΐ氫、及預混合之氦/氧之一既定流量下,蝕刻該 遐暴底以形成一頸部輪廓; 之既(定行―第二钱刻階段’其增加該氣化氮與演化氫 比枯* "IL罝並調整該溴化氫與預混合之氦/氧既定流量之 為約4:1以上,敍刻該頸部輪廓下之半 成-底部輪廊;及 +導體基底以形 量並(^ VI行一第三姓刻階段’其增加該漠化氫之既定流 乂形成一瓶型深溝槽。 基底 2. 如申請專利範圍第丨項所述之方法,其中於步驟 ’該既定壓力為約8〇至11〇1111:〇1·!·。 3. 如申請專利範圍第i項所述之方法,其中於步驟 、:),該漠化氫、氟化氮、及預混合之氦既 值為約87 : 1 3 : 35。 4. 如申請專利範圍第丨項所述之方法,其中於步帮 (b) ’該溴化氫、氟化氮、及預混合之氦/氧既定流量之比 值為約 200 : 20 : 20。 5. 如申請專利範圍第1項所述之方法,其中於步驟 (c) ,該既定壓力為約20至SOmtorr。 6. 如申請專利範圍第1項所述之方法,其中於步驟4231 CM μ, the patent application scope of the bottom 1 'bottle-shaped deep trench manufacturing method, suitable for a semiconductor substrate', which includes: pre-, (^) to perform a first etching stage, which uses nitrogen fluoride, hydrogen bromide The helium / oxygen of the gas phase η is a plasma gas composition. At a predetermined pressure and a predetermined flow rate of one of the pre-mixed helium / oxygen hydrogen and one of the pre-mixed helium / oxygen to form a The contour of the neck (the fixed line-the second stage of the engraving stage) which increases the gasification nitrogen and evolution hydrogen ratio cumulus * " IL 罝 and adjusts the predetermined flow rate of the hydrogen bromide and pre-mixed helium / oxygen to about Above 4: 1, describe the half of the neck contour-the bottom contour; and + the conductor base in the shape and (^ VI line-a third name carved stage 'which increases the predetermined flow of the desertified hydrogen formation One bottle-shaped deep groove. Substrate 2. The method as described in item 丨 of the patent application scope, wherein in the step 'the predetermined pressure is about 80 to 1101011: 001 ...! 3. The method according to item i, wherein, in step, :), the desert hydrogen, nitrogen fluoride, and pre-mixed helium have an existing value of about 87: 1 3: 35. 4. The method as described in item 丨 of the scope of patent application, wherein in step (b) 'the hydrogen bromide, nitrogen fluoride, and pre-mixed helium / oxygen predetermined flow ratio is about 200: 20: 20. 5. The method according to item 1 of the patent application scope, wherein in step (c), the predetermined pressure is about 20 to SOmtorr. 6. The method according to item 1 of the patent application scope, wherein step 第14頁 4231 01 六、申請專利範圍 (C )’該溴化氫、氟化氮、及預混合之氦/氧既定流量之比 值為約 1 50 : 1 3 : 20。 7. —種瓶型深溝槽之製造方法,適用於一半導體基 底,其包括: (a) 進行一第一敍刻階段,其以氟化氮、溴化氫、及 預混合之氦/氧為電漿氣體組成物,在一 80至llOmtorr之 壓力與一既定流量之氟化氮、溴化氳、及預混合之氦/氧 下’钱刻該半導體基底以形成一頸部輪廓; (b) 進行一第二蝕刻階段,其增加該氟化氮與溴化氫 之流量並調整該溴化氫與預混合之氦/氧流量之比值為約 4:1以上,蝕刻該頸部輪廓下之半導體基底以形成一底部 輪廓;及 (c) 進行一第三蝕刻階段,其增加該溴化氫之流量並 減少該壓力至20至50mtorr,蝕刻圍繞該底部輪廓之半導 體基底以形成一瓶型深溝槽。 8. 如申請專利範圍第7項所述之方法,其中於步驟 (a) ,該既定壓力為約1〇〇mt〇rr。 9. 如申請專利範圍第&項所述之方法’其中於步驟 (a )’該溴化氫、氟化氮、及預潞合之氦/氧既定流量之比 值為約87 : 1 3 : 35。 10. 如申請專利範圍第9項所述之方法’其中於步驟 (b) ’該溴化氫、氟化氮、及預浪合之氦/氣流量之比值為 約200 : 2〇 : 20 。 11. 如申請專利範圍第10項所述之方法,其中於步驟Page 14 4231 01 VI. Scope of patent application (C) 'The predetermined ratio of the hydrogen bromide, nitrogen fluoride, and pre-mixed helium / oxygen flow is about 1 50: 1 3: 20. 7. —A method for manufacturing a bottle-shaped deep trench, which is suitable for a semiconductor substrate, includes: (a) performing a first stage of etch, which uses nitrogen fluoride, hydrogen bromide, and pre-mixed helium / oxygen as Plasma gas composition, engraving the semiconductor substrate to form a neck profile under a pressure of 80 to 110 mtorr and a predetermined flow of nitrogen fluoride, thorium bromide, and pre-mixed helium / oxygen; (b) A second etching stage is performed, which increases the flow rate of the nitrogen fluoride and hydrogen bromide and adjusts the ratio of the hydrogen bromide to the pre-mixed helium / oxygen flow rate to about 4: 1 or more, and etches the semiconductor under the contour of the neck The substrate to form a bottom profile; and (c) performing a third etching stage that increases the flow of hydrogen bromide and reduces the pressure to 20 to 50 mtorr, etches the semiconductor substrate surrounding the bottom profile to form a bottle-shaped deep trench . 8. The method according to item 7 of the scope of patent application, wherein in step (a), the predetermined pressure is about 100 mTrr. 9. The method according to item & in the scope of the patent application, wherein in step (a), the predetermined ratio of the hydrogen bromide, nitrogen fluoride, and pre-coupled helium / oxygen is about 87: 1 3: 35. 10. The method according to item 9 of the scope of the patent application, wherein in step (b), the hydrogen bromide, nitrogen fluoride, and helium / gas flow ratio of pre-wave combining is about 200: 20: 20. 11. The method as described in claim 10, wherein 第15貰 4 2 31 0 I 六、申請專利範圍 (c),該壓力為約30mtorr ° 1 2.如申請專利範圍第1 1項所述之方法,其中於步驟 (c ),該溴化氫、氟化氮、及預混合之氦/氧既定流量之比 值為約 1 5 0 : 1 3 : 2 0。Section 15 贳 4 2 31 0 I VI. Patent application scope (c), the pressure is about 30mtorr ° 1 2. The method according to item 11 of the patent application scope, wherein in step (c), the hydrogen bromide The ratio of the predetermined flow rate of helium, nitrogen fluoride, and pre-mixed helium / oxygen is about 150: 13: 20. 第16頁Page 16
TW88114025A 1999-08-17 1999-08-17 Method of producing bottle-shaped deep trench TW423101B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW88114025A TW423101B (en) 1999-08-17 1999-08-17 Method of producing bottle-shaped deep trench

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW88114025A TW423101B (en) 1999-08-17 1999-08-17 Method of producing bottle-shaped deep trench

Publications (1)

Publication Number Publication Date
TW423101B true TW423101B (en) 2001-02-21

Family

ID=21641944

Family Applications (1)

Application Number Title Priority Date Filing Date
TW88114025A TW423101B (en) 1999-08-17 1999-08-17 Method of producing bottle-shaped deep trench

Country Status (1)

Country Link
TW (1) TW423101B (en)

Similar Documents

Publication Publication Date Title
US8592326B2 (en) Method for fabricating an inter dielectric layer in semiconductor device
US7179706B2 (en) Permeable capacitor electrode
US6562679B2 (en) Method for forming a storage node of a capacitor
US8377829B2 (en) Method of manufacturing a capacitor deep trench and of etching a deep trench opening
CN1333456C (en) Method for fabricating semiconductor device with fine patterns
TWI291736B (en) Method for forming bottle-shaped trench in semiconductor substrate
US6846744B1 (en) Method of fabricating a bottle shaped deep trench for trench capacitor DRAM devices
US7358146B2 (en) Method of forming a capacitor
JP2007324490A (en) Manufacturing method of semiconductor device
KR100950470B1 (en) Method for forming storage electrode of semiconductor device
TW423101B (en) Method of producing bottle-shaped deep trench
US20060003571A1 (en) Method for forming contact hole in semiconductor device
TW202312356A (en) Semiconductor device with contacts having different dimensions and method for fabricating the same
TWI294668B (en) Method of fabricating trench isolation for trench-capacitor dram devices
TW452971B (en) Manufacturing method of bottle-shaped deep trench
TW455987B (en) Deep trench structure with large surface area and its manufacturing method
TW552673B (en) A method of fabricating a semiconductor device
WO2020170865A1 (en) Method for manufacturing semiconductor device
KR20130037519A (en) Capacitor and method of manufacturing the same
JPH11204758A (en) Manufacture of horizontal trench capacitor buried in semiconductor substrate
TW399287B (en) Structure of bottle-shaped deep trench and its manufacturing method
US7026210B2 (en) Method for forming a bottle-shaped trench
KR100644046B1 (en) Method for manufacturing the capacitor of semiconductor device
KR100291410B1 (en) Selective hemispherical silicon grain charge storage electrode formation method of semiconductor device
TW451391B (en) Manufacturing method of isolating device formed in trench capacitor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MM4A Annulment or lapse of patent due to non-payment of fees