TW418464B - Low temperature formation of low resistivity titanium silicide - Google Patents
Low temperature formation of low resistivity titanium silicide Download PDFInfo
- Publication number
- TW418464B TW418464B TW86115438A TW86115438A TW418464B TW 418464 B TW418464 B TW 418464B TW 86115438 A TW86115438 A TW 86115438A TW 86115438 A TW86115438 A TW 86115438A TW 418464 B TW418464 B TW 418464B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- titanium
- refractory metal
- patent application
- item
- Prior art date
Links
Landscapes
- Electrodes Of Semiconductors (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
經濟部中央標準局貝工消费合作社印製 A7 B7 五、發明説明(1 ) 相關申請案之前後未照 本申請案爲美國專利申請案序號08/145,921之一件部份連 績案。 發明範囿 本發明係關於積體電路裝置,且更特定言之,係關於— 種在積體電路裝置令形成矽化鈦層而覆蓋在矽層上之方法 ,其中矽化鈦之相轉變溫度已利用砑火金屬而被降低β 先前技藝之描速 矽化鈦已變成在VLSI工業中供自動對準矽化物應用之最 廣泛使用之矽化物’因其具有低電阻係數、自動對準能力 及相對較良好熱安定性之组合特性。雖然TiSi2相對於其他 矽化物具有某些優點,但事實上,其爲一種於使用時會呈 現其他問題之多晶型材料。明確言之,於典型使用上, TiSi2係以每單位晶胞具有12個原予及電阻係數約60-90微歐 姆-公分之斜方底心相(在此項工業上稱爲C49相),或以每 單位晶胞具有24個原子及電阻係數約19-70微歐姆-公分之 較具熱力學上有利之斜方面心相(稱爲C54相)存在。當使 用一般所接受之處理條件以形成矽化鈦時,較不想要之較 高電阻係數C49相係首先形成。爲獲得較低電阻係數〇54相 ’係需要第二個高溫回火步樣。此第二個步驟是不利的, 因其對於矽化物及其他積體電路元件,尤其是在較小線寬 下,可能會有不利作用。例如,經雙重摻雜之多晶矽閘極 結構在一些裝置中之漸增用途,已增加其對於額外熱循環 之敏感性,如因第二個回火步驟所需要者。氮化砂剝離與 本紙張尺度逋用中國國家標準(CNS ) A4规格(2〗0X297公釐) (請先聞讀背面之注<11^項再填寫本頁) 农· 訂 經濟部中央標率局員工消費合作社印製 、8在“ A7 ___ B7 _____ ~ ---- '·、,_____ ______ _____ _ 五、發明説明(2 ) 裂化亦已伴隨著第二個回火步驟。 一般所接受用以形成矽化鈦之處理條件组合,係包括: (1)預先清理,(2)鈦沈積,(3)在低於約70(TC溫度下之矽化 物形成,⑷選擇性蝕刻,及(5)在大於約700°C溫度下之相 轉變回火。此相轉變回火係使主要C49相轉化成C54相。最 初形成溫度係保持低於700°C,以使上方填隙物橋接作用降 至最低。第二個轉變回火係在任何未反應之鈦已被選擇性 地移除後進行’且通常是在高於形成溫度50-200。〇之温度下 進行’以確保完全轉變成C54相,以獲得最良好控制之薄 片電阻。但是,當裝置線寬與矽化物薄膜厚度持續逐漸降 低時,其的確變成較期望免除對於此第二個回火步棵之需 求,如進_步在下文所討論者。 一般所接受之情況是’ C49相會首先形成,因其具有比 C54相低之表面能。換言之,C54相之較高表面能,會對其 形成造成較高能量障壁。於上述標準方法中使用之第二個 轉變回火步驟,係提供爲克服在形成新穎表面時所伴隨之 成核障壁,及爲生長新形成C54相之晶體結構兩者所必須 之額外熱能。在VLSI應用中’若相轉變係被抑制或未能均 勻地發生,則發現電路性能上之降質。在一些較高性能之 電珞中,伴随著不良相轉變之RC延遲,典型上爲約51〇百 分比》 對於C49至C54相轉變之一項重要限制,係爲一種稱爲黏 聚之現象。若用以獲得此相轉變之熱能過高,則造成砂化 鈦之形態學降解’其常被稱爲黏聚作用。當線寬與砂化物 -5- 本紙張尺度適用中國國家梯準(CNS > Λ4規格(2丨0X297公釐) (请先抽讀背面之注^^項再填寫本頁) 碭1 . 訂 經濟部中央標準局員工消費合作社印製 4\&464 A7 ______B7 五、發明説明(3 ) 薄膜厚度減少時,爲達成C49至C54相轉變所需要之熱能會 增加,而且使矽化物薄膜開始黏聚之熱能階會降低。因此 ’關於進行此相轉變,有一個一直在縮小之處理窗口,使 得程序控制與均勻性更難以達成。 因此’仍需要一種經改良之方法’以形成矽化鈦之C54 相’而無需如在上述一般所接受之方法中之第二個高溫回 火步驟。免除此第二個回火步驟,或降低使矽化鈦之C49 相轉變成所要C54相所必須之溫度,將減少伴随著高溫處 理之問題’及在相轉變回火期間由於矽化物薄膜之黏聚作 用所造成之限制。 發明摘述 根據本發明之原理,藉由一種在半導體晶片上形成覆蓋 於矽層上之金屬矽化物之方法,滿足此項需求,克服先前 技藝之限制’及實現其他利益。此方法包括在半導體裝置 之矽基材上形成矽化鈦層,其包括:⑴沈積鈦合金層於矽 基材上,其中鈦合金包含1至20原子百分比之耐火金屬; 及(2)加熱鈦合金至足以自該鈦合金實質上形成C54相矽化 鈦之溫度。此溫度可低於約700°C » 在上述方法之一項應用中,該鈦合金可包含1至15原子 百分比之耐火金屬,且該耐火金屬可包含一或多種包括Ta 、:1^、:\1〇、沢、¥及0之族群。此鈦合金可包含鈦、矽及 耐火金屬;其一項實例爲TiSi2及一種耐火金屬《半導體基 材可選自單晶矽、多晶矽、非晶質矽、矽鍺合金 '含有N-型摻雜劑之絕緣體外延矽及含有P·型摻雜劑之絕緣體外延 -6 · 本紙張用中賴家刺t ( CNS ) ( 210X297公釐)~ I---------0 ^-- (請先聞讀背面之注意事項再填寫本頁) 訂_ 3¾¾:逛418464 A7 B7 五、發明説明(4) 矽》可將此鈦合金藉物理蒸氣沈積或化學蒸氣沈積,沈積 在矽基材上》 本發明之另一方面,係包括具有C54相矽化鈦層之半導 體裝置,其包含:(1) 一個矽層;及(2)—層矽化鈦於該矽層 上,其中該層矽化鈦係包含實質上C54相矽化鈦及1至20原 子百分比之耐火金屬。本發明半導體裝置之另一方面,係 包含一個矽層,選自單晶矽、多晶矽、非晶質矽、矽鍺合 金、具有N-型摻雜劑之絕緣體外延矽及具有P-型摻雜劑之 絕緣體外延矽》本發明之半導體裝置,可包括含有1至15 原子百分比之耐火金屬,且厚度在10至200毫微米間之矽 化鈦層。 附圈簡述 囷1-3爲橫截面圖,説明根據本發明之一方面形成矽化鈦 之C54相。 圖4爲根據本發明,關於數種使用與未使用耐火金屬之 處理情況之矽化鈦層薄片電阻對所濺射鈦厚度之圖表。 圖5-8爲原位掃描電阻圖表,説明根據本發明關於數種使 用與未使用蒸發或植入砑火金屬之處理情況所形成矽化鈦 層之薄片電阻。 囷9爲根據本發明使用與未使用Mo離子植入物之矽化鈦 線條之經度量電阻之直方圖》 圖10與11爲橫截面側視圖,説明根據本發明一方面之 C54相矽化鈦之形成。 圖12爲描述自純Ti、Ti(鈕)合金及Ti (鈮)合金形成矽化 良紙張尺度逍用中國國家揉準(CIVS ) 規格(210X297公釐) 0 ut ml {請先《讀背面之注f項再填寫本頁) 經濟部中央揉準局員工消費合作社印褽 T--^-^.------訂-------J---1------- 經濟部中央樣率局員工消費合作社印製Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperatives A7 B7 V. Description of the Invention (1) Related applications have not been made before and after this application is part of the US Patent Application Serial No. 08 / 145,921. The invention relates to integrated circuit devices, and more particularly, to a method for forming a silicon silicide layer on the integrated circuit device and covering the silicon layer, in which the phase transition temperature of titanium silicide has been used. Pyrophoric metal is reduced by beta. The previous technology of titanium silicide has become the most widely used silicide in the VLSI industry for self-aligned silicide applications because of its low resistivity, automatic alignment capability, and relatively good performance. Combined properties of thermal stability. Although TiSi2 has some advantages over other silicides, in fact, it is a polymorphic material that presents other problems when used. To be clear, in typical use, TiSi2 has 12 orthorhombic bottom core phases (referred to as the C49 phase in this industry) with a unit cell of 12 elements and an electrical resistivity of about 60-90 microohm-cm. Or, there is a more thermodynamically favorable oblique aspect cardiac phase (called C54 phase) with 24 atoms per unit cell and a resistivity of about 19-70 microohm-cm. When using generally accepted processing conditions to form titanium silicide, the less desirable higher resistivity C49 phase is formed first. A second high temperature tempering step is required in order to obtain a lower resistivity of 054 phase. This second step is disadvantageous because it may have an adverse effect on silicide and other integrated circuit components, especially at smaller line widths. For example, the increasing use of dual-doped polysilicon gate structures in some devices has increased their sensitivity to additional thermal cycling, as required by the second tempering step. Nitrided sand peeling and paper size are in accordance with Chinese National Standard (CNS) A4 specification (2〗 0X297 mm) (Please read the note on the back < 11 ^ before filling out this page) Ministry of Agriculture and Customs Central Standard Printed by the bureau ’s consumer cooperative, 8 in "A7 ___ B7 _____ ~ ---- '· ,, _____ ______ _____ _ V. Description of the invention (2) Cracking has also been accompanied by a second tempering step. Generally accepted The combination of processing conditions used to form titanium silicide includes: (1) pre-cleaning, (2) titanium deposition, (3) silicide formation at temperatures below about 70 ° C, selective etching, and (5 ) Phase transformation and tempering at temperatures greater than about 700 ° C. This phase transformation and tempering system transforms the main C49 phase into the C54 phase. The initial formation temperature system is maintained below 700 ° C to reduce the bridging effect of the interstitial material above. To the minimum. The second transformation tempering is performed after any unreacted titanium has been selectively removed 'and is usually performed at a temperature above 50-200 ° C' to ensure complete conversion to C54. Phase to obtain the most controlled sheet resistance. However, when the device line width and silicide film When the degree continues to gradually decrease, it does become more desirable to dispense with the need for this second tempering step, as discussed further below. The generally accepted situation is that the C49 meeting will first form because it has A lower surface energy than the C54 phase. In other words, the higher surface energy of the C54 phase will cause a higher energy barrier to its formation. The second transformation tempering step used in the standard method described above is provided to overcome novel formation The surface is accompanied by a nucleation barrier and the additional thermal energy necessary to grow a newly formed C54 phase crystal structure. In VLSI applications, 'if the phase transition is suppressed or fails to occur uniformly, the circuit performance is found to be Degradation. In some higher-performance batteries, the RC delay with bad phase transition is typically about 51%. An important limitation on the C49 to C54 phase transition is a type called cohesion. Phenomenon. If the heat energy used to obtain this phase transition is too high, it will cause morphological degradation of sanded titanium. It is often referred to as cohesion. When the line width and sandy substance are used, this paper scale is applicable to China. Ladder standard (CNS > Λ4 specification (2 丨 0X297 mm) (please read the notes on the back ^^ before filling out this page) 砀 1. Order printed by the Consumer Standards Cooperative of the Central Standards Bureau of the Ministry of Economy 4 \ & 464 A7 ______B7 V. Description of the invention (3) When the thickness of the film is reduced, the thermal energy required to achieve the C49 to C54 phase transition will increase, and the thermal energy level at which the silicide film starts to cohes will decrease. Therefore, 'About this phase transition, There is a shrinking processing window that makes program control and uniformity more difficult to achieve. Therefore 'an improved method is still needed to form the C54 phase of titanium silicide' without the need for Two high temperature tempering steps. Eliminating this second tempering step, or reducing the temperature necessary to transform the C49 phase of titanium silicide to the desired C54 phase, will reduce the problems associated with high temperature processing 'and the cohesion of the silicide film during phase transition tempering Limitations due to role. Summary of the Invention According to the principle of the present invention, a method for forming a metal silicide layer overlying a silicon layer on a semiconductor wafer is used to meet this demand, overcome the limitations of the prior art, and achieve other benefits. The method includes forming a titanium silicide layer on a silicon substrate of a semiconductor device, which includes: depositing a titanium alloy layer on the silicon substrate, wherein the titanium alloy contains 1 to 20 atomic percent of a refractory metal; and (2) heating the titanium alloy. A temperature sufficient to substantially form a C54 phase titanium silicide from the titanium alloy. This temperature may be lower than about 700 ° C »In one application of the above method, the titanium alloy may include 1 to 15 atomic percent of a refractory metal, and the refractory metal may include one or more including Ta,: 1 ^ ,: \ 1〇, 沢, ¥, and 0. This titanium alloy may include titanium, silicon, and a refractory metal; one example is TiSi2 and a refractory metal. The semiconductor substrate may be selected from monocrystalline silicon, polycrystalline silicon, amorphous silicon, and silicon-germanium alloys containing N-type doping. Insulating epitaxial silicon with insulating agent and Insulating epitaxial with P · type dopant -6 · Lai Thorn (CNS) (210X297 mm) for this paper ~ I --------- 0 ^- (Please read the precautions on the back before filling this page) Order_ 3¾¾: Visit 418464 A7 B7 V. Description of the invention (4) Silicon "This titanium alloy can be deposited on the silicon substrate by physical vapor deposition or chemical vapor deposition. Top >> Another aspect of the present invention is a semiconductor device including a C54 phase titanium silicide layer, including: (1) a silicon layer; and (2) a layer of titanium silicide on the silicon layer, wherein the layer of titanium silicide It contains substantially C54 phase titanium silicide and 1 to 20 atomic percent of refractory metal. Another aspect of the semiconductor device of the present invention includes a silicon layer selected from the group consisting of monocrystalline silicon, polycrystalline silicon, amorphous silicon, silicon-germanium alloy, insulating epitaxial silicon with N-type dopants, and P-type doping. Insulating Silicon on the Surface of the Agent "The semiconductor device of the present invention may include a titanium silicide layer containing 1 to 15 atomic percent of a refractory metal and having a thickness between 10 and 200 nm. Brief description of the attached circle 1-3 is a cross-sectional view illustrating the formation of the C54 phase of titanium silicide according to one aspect of the present invention. Fig. 4 is a graph of the resistance of the titanium silicide sheet flakes against the thickness of the sputtered titanium in accordance with the present invention with respect to several treatments with and without the use of refractory metals. Figures 5-8 are in-situ scanning resistance charts illustrating the sheet resistance of the titanium silicide layer formed in accordance with the present invention with respect to several treatments with and without the use of vaporized or implanted pyrometal.囷 9 is a histogram of measured resistance of titanium silicide lines with and without Mo ion implants according to the present invention. "Figures 10 and 11 are cross-sectional side views illustrating the formation of C54 phase titanium silicide according to one aspect of the present invention. . Figure 12 depicts the formation of silicified paper from pure Ti, Ti (button) alloy, and Ti (niobium) alloy. The paper uses the Chinese National Standard (CIVS) specification (210X297 mm). 0 ut ml {Please read the note on the back first (F-item, please fill out this page again.) Staff Consumer Cooperatives of the Central Bureau of the Ministry of Economic Affairs of the People's Republic of China printed T-^-^ .------ Order ------- J --- 1 ------ -Printed by the Consumer Cooperative of the Central Sample Rate Bureau of the Ministry of Economic Affairs
/Π846 A A7 ______ B7 " -—--— 五、發明説明(5) 欽之正規化薄片電阻對溫度之圖表β 圏13爲描述在900°C下回火之矽化鈦層電阻係數對耐火金 屬原子百分比之圖表。 圏14爲在70(TC下回火之矽化鈦層電阻係數對耐火金屬原 子百分比之圖表。 囷15爲描述C54矽化鈦形成溫度對耐火金屬原子百分比 之圖表》 圖16爲掺有本發明低電阻係數矽化鈦之一部份半導體裝 置之橫截面側視圖。 發明説明 根據本發明之一項具:體實施例,係將耐火金屬配置於緊 鄰矽層之表面,鈦金屬層(稍後用以形成矽化鈦)係被沈積 而覆蓋在耐火金屬上,並將晶片加熱至足以形成矽化飲之 溫度。 在第二個具體實施例中,鈦金屬層亦可摻有矽,例如在 已知聚矽化物方法中之情況°當飲金屬層择有碎時,最後 矽化鈦係在沈積Ti·矽合金(其在一些情況中可爲化學計量) 後,藉由加熱晶片至足以獲得所要固相之溫度而獲得。除 了 Si之外,先質金屬層可摻有其他來自週期表第πβ、瓜八 '^'▽八及乂1八族之元素,包括3、€、;^、〇、义、?、 S、Zn、Ga、Ge、As、Se、Cd、In、Sn、Sb、Te、Hg、Tl 、Pb 及 Bi。 耐火金屬較佳爲能夠形成金屬矽化物之金屬,且在碎層 表面之耐火金屬濃度,較佳係超過約1017原子/立方公分 -8- 本紙張尺度適用中固國家揉準(CNS ) Α4規格(210X297公釐) ^1- n ^^1 - 1^1 ^^1 I ί請先M讀背面之注意Ϋ項再填寫本頁) 訂 V}- 418464 A7 B7 經濟部中央標準局負工消費合作社印製 五、發明説明(β 。此耐火金屬可爲1^〇、双、13、1^)、¥或(:1'。矽層可爲單 晶性或多晶性,但較佳爲多晶性。用以形成矽化物之加熱 步驟,係在溫度低於約700°C下,且更佳係在約600-700eC之 間進行。 有數種研究途徑用以配置可使用之耐火金屬。一般而言 ’此等配置方法係將耐火金屬原子放置在數埃或數埃内之 表面上,例如在約2埃内。第一種配置耐火金屬之研究途 徑,係藉離子植入法,使用約1012至5xl014個原子/平方公 分之劑量,且更佳爲約1013至1014個原子/平方公分之劑 量。較佳植入能量爲約15至90 KeV。在另一種研究途徑中 ’耐火金屬係藉例如金屬丸粒之蒸發,而被配置於矽層之 表面上。耐火金屬亦可藉由濺射或經由使矽層表面曝露於 含有耐火金屬離子之溶液中而被配置。例如,該溶液可爲 含有HC1或硝酸之稀酸溶液。在所有上述配置之研究途徑 下,惟植入法除外,於矽表面上所配置耐火金屬層之厚度 ,較佳係低於約2·0毫微米,且更佳爲約0.01至1.5毫微米。 視情況在配置耐火金屬之步騍後,及在沈積先質金屬層 之步驟前,使晶片回火。此回火步驟較佳係在晶片溫度至 少約900°C下,且更佳係在約900與1000°C之間進行。在一種 研究途徑中,此回火作用係使用快速熱回火(RTA)進行至少 約5秒。或者,可使用在遠中回火至少約1〇分鐘。 在本發明之另一種研究途徑中,係形成矽化鈦層,覆蓋 在半導體晶片上之矽層上。根據此研究途徑,耐火金屬係 緊鄰矽層表面配置,沈積鈦層而覆蓋在耐火金屬上,並將 9 表紙張尺度通用中國國家榡準(CNS ) Α4規格(210X297公釐) n n *n i— I— ^ m. I (請先抑讀背面之注意事項再填寫本頁) ,1T- 418464 第86115438號專利申請案 中文說明書修正頁(89年9月) A7 修煩 ί妾 f真 I孕 實: 五、發明説明( B7ψψ^ 修正 曰補充 子 修所 正提 〇之 經 濟 部 t 央 準 局 % i 消 費 合 作 社 印 裝 晶片加熱至足以形成至少部份來自鈦層之矽化钦層之溫 度。在此加熱步驟期間所形成之矽化鈦層,較佳係實質上 顯π TiSi2之C54相。鈦層較佳係沈積至約25_57 5毫微米之厚 度,且TiSis層係在溫度低於約7〇(rc下,且更佳為約6〇〇_7〇〇它 下形成。而且’耐火金屬較佳為1^〇、识、1^、灿、乂或 C r ’ iL較佳係藉離子植入或金屬蒸發進行配置。已發現 M0、Ta&Nb會賦予最良好結果,即使是相對於从而言亦 然。離予植入較佳是以約1〇1 3至1〇14個原子/平方公分之植 入劑量進行。較佳係進行上述之選用回火步騾。 在根據本發明之一項替代具體實施例中,金屬矽化物係 藉一種包括沈積鈦層而覆蓋在矽層上之步驟之方法,以於 覆孟在半導體晶片上之矽層上之層中形成,其中鈦層含有 少量耐火金屬,並將晶片加熱至足以形成矽化欽之溫度。 矽化鈦從C49至C54之相轉變溫度,係因該耐火金屬存在於 該矽層表面處而被降低。鈦與耐火金屬較佳係在相同沈積 程序期間沈積’且耐火金屬層在源極中之原子百分比係低 於約20原子百分比’較佳係在1與15原子百分比之間。 在根據替代具體實施例之一項較佳研究途徑中,敛層係 自亦含有少量耐火金屬之鈦來源沈積。然後,將晶片加熱 至足以貫·友上形成碎化鈥之C54相之溫度。此溫度較佳係低 於約700°C ’且耐火金屬之原子百分比係低於約2〇原子百分 比。 本發明之優點係為免除相轉變回火步驟。例如,關於石夕 化欽’所要之C 5 4相係實質上直接在矽化鈦形成步驟期間 -10- 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X 297公釐) (請先Μ讀背面之注意事項再填寫本頁) 經濟部t央樣準局員工消费合作社印裝 A7 B7 五、發明説明(8 ) 形成。無需第二個相轉變回火以將TiSi2從C49轉變至C54相 。而且,黏聚作用基本上係被消除,因爲矽化鈦薄膜係曝 露至較低處理溫度下。本發明之其他優點,係爲經改良之 控制最後矽化物薄膜C54相之微觀結構之能力,且C54相晶 粒之小的晶粒大小,可低於所製造裝置之臨界尺寸。 在一項具體實施例中,耐火金屬係緊鄰矽層表面配置, 且鈦層係沈積在耐火金屬及矽表面上。然後,將晶片加熱 至約600至700eC之溫度,歷經足以形成矽化妓之C54相之時 期。 更明確言之’參考圖1,係提供矽層1〇,其可爲單晶矽 晶片(100)或多晶矽。矽層10可爲例如多晶性N或P-型線條 或單晶性N或P-型區域。耐火金屬係經配置在於或接近矽 層10之頂部表面12,部份依配置金屬之方式而定。咸信耐 火金屬係用以降低形成TiSi2之C54相之表面能障壁’因此耐 火金屬之存在於或接近該表面,會促進^^斗相之形成。咸 信耐火金屬-矽合金係接近頂部表面12形成。並不確實知 道其是爲金屬-梦錯合物或者是金屬硬化合物。一般而言 ,一部份經配置之耐火金屬,應在頂部表面12之數埃上或 在數埃内。當然’耐火金屬原予之正確配置將依配置方式 而定。但是,對本申請案之目的而言,本文中所述之各配 置方式,咸認係將耐火金屬原子緊鄰矽表面配置。 現在參考圓2’财火金屬14係顯示緊鄰碎層1〇之表面。 首先’應明瞭圖2僅爲説明目的,且耐火金屬14未必覆蓋 所有頂部表面12。其次,應注意的是,耐火金屬14之分佈 -11 - 本纸張尺度逍用中國國家棣準(CNS ) Α4規格(210X297公釐) (請先間讀背面之注意事項再填寫本頁}/ Π846 A A7 ______ B7 " --------- V. Explanation of the invention (5) Qin Zhi's normalized sheet resistance vs. temperature chart β 圏 13 is a graph describing the resistivity of the titanium silicide layer tempered at 900 ° C against fire resistance Graph of metal atomic percentage.圏 14 is a graph of the resistivity of the titanium silicide layer tempered at 70 ° C against the atomic percentage of refractory metal. 囷 15 is a graph describing the formation temperature of C54 titanium silicide vs. atomic percentage of refractory metal. A cross-sectional side view of a part of a semiconductor device with a coefficient of titanium silicide. DESCRIPTION OF THE INVENTION According to one aspect of the present invention, a refractory metal is arranged on the surface adjacent to the silicon layer, and a titanium metal layer (to be used later to form Titanium silicide) is deposited to cover the refractory metal, and the wafer is heated to a temperature sufficient to form a silicified beverage. In a second embodiment, the titanium metal layer may also be doped with silicon, such as in known polysilicides. The situation in the method ° When the drinking metal layer is broken, the final titanium silicide is after depositing Ti · silicon alloy (which may be stoichiometric in some cases), and by heating the wafer to a temperature sufficient to obtain the desired solid phase, Obtained. In addition to Si, the precursor metal layer may be doped with other elements from the πβ, melons '^' ▽ and VIII groups of the periodic table, including 3, €,; ^, 〇, meaning,?, S, Zn, Ga, G e, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, and Bi. The refractory metal is preferably a metal capable of forming a metal silicide, and the concentration of the refractory metal on the surface of the broken layer is preferred. More than about 1017 atoms / cubic centimeter-8- This paper size is applicable to the Central Solid State Standard (CNS) Α4 size (210X297 mm) ^ 1- n ^^ 1-1 ^ 1 ^^ 1 I ί Please read the back first Please pay attention to the item (please fill in this page) Order V}-418464 A7 B7 Printed by the Consumers' Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs 5. Description of the invention (β. This refractory metal can be 1 ^ 〇, double, 13, 1 ^) , ¥, or (: 1 '. The silicon layer may be monocrystalline or polycrystalline, but is preferably polycrystalline. The heating step used to form the silicide is at a temperature below about 700 ° C, and more The best line is between about 600-700eC. There are several research ways to configure the refractory metal that can be used. Generally, 'the configuration method is to place refractory metal atoms on the surface within or within several angstroms, for example Within about 2 Angstroms. The first research approach to deploy refractory metals is by ion implantation, using about 1012 to 5xl014 atoms / cm2. Dose, and more preferably a dose of about 1013 to 1014 atoms per square centimeter. The preferred implantation energy is about 15 to 90 KeV. In another research approach, 'refractory metals are obtained by, for example, evaporation of metal pellets. It is disposed on the surface of the silicon layer. The refractory metal may also be disposed by sputtering or by exposing the surface of the silicon layer to a solution containing refractory metal ions. For example, the solution may be a dilute acid solution containing HC1 or nitric acid. In all of the above research methods, except for the implantation method, the thickness of the refractory metal layer disposed on the silicon surface is preferably less than about 2.0 nm, and more preferably about 0.01 to 1.5 nm. Temper the wafer as appropriate after the step of disposing the refractory metal and before the step of depositing the precursor metal layer. This tempering step is preferably performed at a wafer temperature of at least about 900 ° C, and more preferably between about 900 and 1000 ° C. In one approach, this tempering was performed using rapid thermal tempering (RTA) for at least about 5 seconds. Alternatively, tempering in the middle can be used for at least about 10 minutes. In another research approach of the present invention, a titanium silicide layer is formed to cover the silicon layer on the semiconductor wafer. According to this research approach, the refractory metal system is arranged close to the surface of the silicon layer, and a titanium layer is deposited to cover the refractory metal. The 9-sheet paper size is in accordance with the Chinese National Standard (CNS) A4 size (210X297 mm) nn * ni— I — ^ M. I (please read the precautions on the reverse side before filling out this page), 1T-418464 No. 86115438 Patent Application Chinese Manual Correction Page (September 89) A7 Xiu Fen I really: V. Description of the invention (B7ψψ ^ Amendment: The Ministry of Economic Affairs of the Ministry of Economic Affairs and the Central Bureau of Commerce, which are being referred to by the Central Government Bureau %%, i. The printed wafers of the consumer cooperative are heated to a temperature sufficient to form at least part of the silicide layer from the titanium layer. The titanium silicide layer formed during the step is preferably a C54 phase that is substantially π TiSi2. The titanium layer is preferably deposited to a thickness of about 25_57 5 nm, and the TiSis layer is at a temperature lower than about 70 (rc). And more preferably formed under about 600-700. And 'refractory metal is preferably 1 ^ 〇, Shi, 1 ^, Can, 乂 or C r' iL is preferably by ion implantation or metal Evaporation to configure. M0, Ta & Nb have been found to give the best As a result, even if it is relative to. The implantation is preferably performed at an implantation dose of about 103 to 1014 atoms / cm 2. It is preferable to perform the optional tempering step described above. In an alternative embodiment according to the present invention, the metal silicide is a method including a step of depositing a titanium layer on the silicon layer to cover the layer on the silicon layer on the semiconductor wafer. Formation, in which the titanium layer contains a small amount of refractory metal, and the wafer is heated to a temperature sufficient to form silicic acid. The phase transition temperature of titanium silicide from C49 to C54 is reduced because the refractory metal is present on the surface of the silicon layer. Titanium It is preferably deposited during the same deposition process as the refractory metal, and the atomic percentage of the refractory metal layer in the source is less than about 20 atomic%. It is preferably between 1 and 15 atomic%. According to alternative embodiments In a preferred research approach, the convergence layer is deposited from a titanium source that also contains a small amount of refractory metal. Then, the wafer is heated to a temperature sufficient to form a fragmented C54 phase on the substrate. This temperature is better Below about 700 ° C and the atomic percentage of the refractory metal is below about 20 atomic percent. The advantage of the present invention is to eliminate the phase transition tempering step. For example, regarding the C 5 4 phase system required by Shi Xihua Qin ' Substantially directly during the titanium silicide formation step-10- This paper size applies the Chinese National Standard (CNS) A4 specification (210X 297 mm) (please read the notes on the back before filling this page) Bureau employee consumer cooperatives printed A7 B7 5. The invention description (8) was formed. No second phase transition tempering is needed to change TiSi2 from C49 to C54 phase. Moreover, the cohesion is basically eliminated because the titanium silicide film is exposed to a lower processing temperature. Other advantages of the present invention are the improved ability to control the microstructure of the C54 phase of the final silicide film, and the small grain size of the C54 phase grains can be lower than the critical size of the device being manufactured. In a specific embodiment, the refractory metal is disposed adjacent to the surface of the silicon layer, and the titanium layer is deposited on the surface of the refractory metal and the silicon. The wafer is then heated to a temperature of about 600 to 700 eC for a period of time sufficient to form the C54 phase of the silicified prostitute. More specifically, referring to FIG. 1, a silicon layer 10 is provided, which may be a single crystal silicon wafer (100) or polycrystalline silicon. The silicon layer 10 may be, for example, a polycrystalline N or P-type line or a monocrystalline N or P-type region. The refractory metal is arranged on or near the top surface 12 of the silicon layer 10, depending in part on the way the metal is arranged. The Xianxin refractory metal is used to reduce the surface energy barrier of the C54 phase forming TiSi2. Therefore, the presence of refractory metal on or near the surface will promote the formation of ^^ phase. The Xianxin refractory metal-silicon alloy is formed near the top surface 12. It is not known whether it is a metal-dream complex or a metal hard compound. In general, a portion of the configured refractory metal should be on or within a few angstroms of the top surface. Of course, the correct configuration of the refractory metal will depend on the configuration method. However, for the purpose of this application, each of the arrangements described herein refers to the placement of refractory metal atoms next to the silicon surface. Now referring to the circle 2 'fortune fire metal 14 series, the surface immediately adjacent to the broken layer 10 is shown. First, it should be understood that FIG. 2 is for illustrative purposes only, and refractory metal 14 may not necessarily cover all top surfaces 12. Secondly, it should be noted that the distribution of refractory metal 14 -11-This paper size is in accordance with China National Standard (CNS) A4 size (210X297 mm) (Please read the precautions on the back before filling in this page}
-l1T 4184 6 4 Α7 Β7 五、發明説明(9 ) 亦將依配置方式而改變<•例如,若耐火金屬14係藉離子植 入法配置,則大部份金屬將低於頂部表面12。另—方面, 若此金屬係藉蒸發配置,則大部份金屬將配置在頂部表面 12上,而非其下方β使用離子植入與蒸發兩種研究途徑, 咸信使C54相表面能障壁降低者,即爲緊鄰頂部表面12之 耐火金屬濃度。在配置耐火金屬14後,接著藉例如濺射或 蒸發,將鈦層16沈積在耐火金屬14上β例如,使用25至 57.5毫微米之厚度,惟熟諳此藝者將明瞭,較大與較小厚 度亦可使用。頂部表面12並未明確地示於圖2中,因其位 置將根據所使用之耐火金屬配置方式而改變。 除了濺射或蒸發以外,鈦層16亦可藉化學蒸氣沈積法沈 積在耐火金屬14上。再者,當藉由此等方法之一沈積時, 可沈積含有Ti與Si之合金層,代替基本鈦層。此合金可爲 化學計量之TiSh,但這是不需要的,且Ti_a合金在其矽組 成上可爲富含或貧乏。當沈積Ti-Si合金時,根據本發明之 方法係實質上類似本文中所述者。熟諳此藝者將明瞭任何 所需要之修正。於本文中使用時,鈦層之沈積亦可替代地 指爲鈇·碎合金層之沈積β 經济部中央標準局貝工消費合作社印裝 ----1--i — (請先閱讀背面之注意事項再填寫本頁) 於圖3中,TiSi2薄膜18已在矽層10上形成,其方式是將梦 層10加熱至約600與70(TC間之溫度,歷經足以形成Tisi2之 C54相之時期。此段時期通常爲對RTA之約2〇秒至在習用竣 子中回火之約20分鐘。根據本發明之方法,咸信形成五% 薄膜並未實質上通過C49相,而主要是直接到達C54相.,此 係由於降低之表面能障壁所致。 -12 本紙張尺度適用中國羁家搮準(CNS )八4规格(2〗〇χ297公釐 A7 B7 年月8 418464 第86U5438號專利申請案 中文說明書修正頁(89年9月) 五、發明説明(10 ) 已發現一個選用之回火步驟對於進—步促進丁丨%之c54相 之形成是有利的’尤其是當在較低溫度下,例如低於約 c下形成砂化物時。此選用之回火係在对火金屬14配置後 及在Τι層16沈積前進行。—般而纟,此回火係在晶片溫度 至少約900 C,且更佳為9〇〇_I〇〇〇t:下進行,當使用RTA時歷 經至少約5秒時期,而當使用習用石英爐時,通常為約10-30 刀鐘。較佳回火係在壚子中,於%環境下,在約9〇〇<>c之溫 度下歷經約10分鐘。_般認為此選用回火可進一步促進耐 火金屬-矽合金在矽層表面形成,惟這並不確定。 一般而$,咸信根據本發明方法之耐火金屬,可為任何 此夠形成金屬矽化物之金屬。對本申請案之目的而言,,,耐 火金屬"係足義為包括(非限制)下列較佳金屬:M〇、v、 W、Ta、Nb或Cr、Ta與Nb提供最顯著效果。咸信上述金屬 通常將以任何本文中所揭示之配置方式進行工作,但M〇、 Ta及/或Nb之離子植入與蒸發,係為較佳研究途徑。 现在更詳細地討論上述矽化方法’有數種研究途徑用以 配置可使用工耐火金屬。一般而言,此等配置方法係將耐 火金屬原子放置在頂部表面丨2之數埃上或在數埃内。咸信 最接近矽界面之耐火金屬原子是最具活性的,但其他較遠 原子並未被排除在本文中所使用之緊鄰意義之外。例如, 在此表面之约2埃(意即約0.2毫微米)内之原子,可能最耳活 性。用以配置耐火金屬之第一種研究途徑,係藉離子植入 法’使用約1 0 1 2至5 X 1 0 1 4個原子/平方公分之劑量,且又 -13 本紙張尺度適用中國圉家標準(CNS ) A4規格(210X297公釐) —mV m· ftn l^i (請先閲讀背面之注意事項再填寫本頁〕 經濟部中央標準局貝工消費合作社印装 418464 A7 B7 ____ 五、發明説明(n) 更佳爲約ίο13至ίο14個原子/平方公分之劑量。關於此等 情況之較佳植入能量,係爲約15至卯KeV。 一種植入耐火金屬之方式,係涉及使用市購可得離子植 入系統之電弧室。由於電弧室通常係製自耐火金屬(譬如 鉬、鈮、钽或鎢)或在其他情況中以其做内襯,故植入此 等金屬之一種方法係利用電弧室作爲欲枝植入金屬之來源 而達成。欲被植入之金屬物種係經選擇,其方式是適當地 改變電弧室材料,及藉由調整磁分析器,以選擇所要金屬 物種之原子質量單位(AMU),以所要物種之已知同位素爲 基礎。例如,適當設定値對Mo爲98 AMU,或對W爲184。 由於W在植入工具之離子源纖絲中亦爲一種常用纖絲材料 ,故W可替代地藉由調整分析器磁鐵,對單獨離子化w係 至184 AMU,或對雙重離子化W係至92 AMU以進行植入。 對於特定金屬物種所選擇之劑量與能量,將受限於離子植 入系統之能力,及所投注於進行植入之時間。 經濟部中央標準局員工消費合作杜印装 (請先閛讀背面之注^^項再填寫本頁} 對Mo植入物之特定情況而言,Mo電弧室係被安裝至植 入系統中,將三氟化硼來源氣趙(BF3)引進電弧室中。咸信 離子化BF3係用以使鉬自電弧室揮發,以提供適當Mo離子 (98Mo+)束電流爲約200 mA,且植入能量爲至少約45 KeV。 由於電弧室在使用期間,於其他習用之應用中,有時會變 成被其他材料塗覆,故較佳係使用清潔或新源極室,以獲 得Mo離子束電流。 當在上述條件(意即45 KeV之能量)下植入Mo原子時,已 測定出最大濃度之Mo原子係發生在矽層中約30毫微米之深 -14 良紙張尺度適用中國國家橾準(CNS > A4規格(210X297公釐) 418464 ΓΓ: 發明説明(12 ) Α7 Β7 度處’相當於尖峰Mo濃度約ι〇ι9個原子/立方公分β但是· ,正如上文所討論者,最令人感興趣之河〇原子濃度係在該 表面處。當使用上述之選用回火步驟時,SIMS數據已顯示 Mo原子在表面處之濃度,係爲約5xi〇l8個原子/立方公分 。預期耐火金屬在妙界面之表面濃度超過約1〇17個原子/ 立方公分可能是所想要的。 在另一種研究途徑中,係藉例如金屬丸粒之蒸發,將耐 火金屬配置在矽層之表面上。這可藉Ε束蒸發或藉電阻加 熱(例如’將丸粒放置在已藉大電流加熱之坩堝中)進行。 當使用蒸發時,重要的是耐火金屬之厚度不得太大。例如 ’經配置在矽層上之Mo層厚度,較佳係低於約2 〇毫微米 。這並非絕對最太厚度’但當Mo層之厚度增加高於2〇毫 微米時,已發現矽化物薄膜之剝離。更佳係使用約〇〇1至 1.5毫微米之Mo厚度。關於其他金屬之所要厚度,可稍微 改變》 當蒸發此種小厚度之耐火金屬至矽層上時,有時難以控 制蒸發速率β因此,在一種蒸發研究途徑中,係將光閘置 於蒸發金屬源室中,以容纳耐火金屬,直到準備配置在矽 屠上爲止。然後,相當迅速地打開與關閉光閘(所謂"急驟 "蒸發)以提供薄耐火金屬層於矽層上β可使用其他更良好 控制蒸發速率之蒸發途徑。 下述係作爲蒸發耐火金屬之一種替代方式,可以類似上 文關於蒸發所述之方式,將耐火金屬替代地藉濺射以配置 在矽層上至某一厚度。所使用濺射途徑之修正,係爲熟諳 -15- 本紙張尺度逍用中固國家橾準(CNS ) Μ規格(210><297公兼) ——¾— c請先閱讀背面之注$項再填寫本頁) -訂 經濟部中央標準局員工消費合作社印製 經濟部中央樣準局負工消费合作杜印製 418464 A7 B7 五、發明説明(13) 此藝者所明瞭的。 除了上述以外,可將耐火金屬配置在矽廣上,其方式是 使砍層表面曝露於含有耐火金屬離子之溶液中β在—較佳 研究途徑中,該溶液係爲水性,並可含有稀酸,譬如HC1 或_酸。 就上述ιϊ&2研究途徑而論,晶片係視情況在配置耐火金 屬之步驟後,及在沈積鈦層之步驟前進行回火。此回火步 棵較佳係在晶片溫度至少約90〇Χί下,且更佳是在約9〇〇與 1000°C之間進行。 圖4-9提出關於數種根據本發明所形成之TiSi2薄膜之實驗 數據β圖4爲根據本發明,關於數種使用與未使用耐火金 屬之處理情況之矽化鈦層薄片電阻對所濺射鈦厚度之圖表 。此數據顯示標準薄膜係在未使用耐火金屬及未使用第二 個相轉變回火時形成。相應於W之數據點及Mo之數據之 TiSi2薄膜,係根據本發明在n2中,於(100)單晶矽上,藉由 600eC回火30分鐘而形成。在耐火金屬(使用w與Mo兩者) 植入後’使用選用之5秒、1000X之RTA回火。當TiSi2薄膜 在約600eC下形成時,該選用之回火是必須的,但對於約 700°C之形成溫度是不必要的。各薄膜之薄片電阻係由囷表 中之數據點顯示。 圖5-7爲原位掃描電阻圖表,説明根據本發明關於數種使 用與未使用蒸發之耐火金屬之處理情況所形成矽化鈦層之 薄片電阻。此等度量係在TiSi2薄膜形成期間,藉由連續放 置四點探針於爐予中進行。在圖5-7中之耐火金屬,於使用 衣紙張X度適用中國國家揉準(CNS ) A4規惠(210X297公釐) <諳先聞讀背面之注$項再填寫本頁) 装. 訂 經濟部中央標半局負工消费合作社印裝 Α7 Β7 五、發明説明(14 ) 之處,係藉由上文所述之"急驟"蒸發方法進行配置。囷8 爲關於TiSi2薄膜之原位掃描電阻囷表,其中係使用經植入 而非經蒸發之耐火金屬。關於囷5-8之一般條件,係包括自 預先沈積在約300毫微米多晶矽層上之約57.5毫微米厚之Ti 層,形成矽化物薄膜。各矽化物薄膜係在每分鐘約15°C下 ,藉由慢慢增加溫度而形成。 現在注视圖5,曲線30顯示在未使用耐火金屬下所形成 之矽化鈦薄膜之薄片電阻行爲。曲線3〇顯示已知及預期之 電阻増加,此係由於在點32附近之混合所致,其中曲線3〇 係在約500Ό下形成電阻峰値。高於約500X,其電阻下降 ,如箭頭34所示。當溫度從約50(TC移動至約700°C時,所 形成之TiSi2薄膜係實質上在C49相中《在約700°C下,曲線 30在點36處變平成爲所謂”膝部",其中電阻係實質上随著 漸增之溫度保持不變。此”膝部”係由於矽化物薄膜破裂, 從C49相轉化成C54相,直到抵達甚至更高溫度爲止。與曲 線30對照,曲線40係説明在根據本發明配置約0 015毫微米 Mo後,所形成矽化物薄膜之電阻。其行爲類似,但注意到 在上文曲線30中所發現之"膝部"係實質上不存在於曲線4〇 中(參閲點42) »咸信此膝部不存在係表示丁沾^之〇54相在矽 化期間,係直接形成至大量程度,而未經過C49相。 於圖6中,曲線50係顯示所形成矽化物薄膜之薄片電阻 行爲,其中約0.015毫微米Ta,係根據本發明藉急驟蒸發進 行配置〇至於圖5中之曲線4〇,在TiSi2t C54相形成期間, 未發現顯著膝部。於圖7中,曲線60係説明根據本發明使 -17- 本紙張尺度適用中國Η务標準(CNS ) A4規格(2丨〇χ297公羞) (請先M讀背面之注意事項再填寫本頁) 袈· 訂 418464 • '«'-.r-S- 418464 • '«'-.r-S- 經濟部中央標準局貝工消費合作社印製 A7 B7 五、發明説明(15 ) 用約0.015毫微米W所形成之TiSi2薄膜之薄片電阻對溫度。 顯示之曲線30與40係和曲線60作比較。再一次,對曲線60 而言,沒有顯著膝部,且C54相係實質上在溫度低於約700 下形成。 圓8爲原位掃描電阻圖表,説明根據本發明使用經植入 耐火金屬所形成矽化鈦層之薄片電阻。曲線7〇爲未使用耐 火金屬所形成之對照矽化物薄膜,以供比較目的用,而曲 線80爲在沈積Ti之前,其中Mo已被植入(在1014個原子/ 平方公分之劑量及45KeV之植入能量下)所形成之TiSi2薄膜 。於植入Mo後,亦在沈積Ti之前,於900eC下進行回火步 驟10分鐘。如同關於上文習用曲線3〇 ,曲線70在點72處_ 示膝部’但曲線80則否。曲線80之膝部不存在,係表示 TiSi2i C54相係實質上在溫度低於約700。〇下形成。 闽9爲根據本發明使用與未使用Mo離子植入物之矽化鈦 線條之經度量電阻之直方圖。 除了在上文圖4-9中所提出之數據以外,有進一步之証據 顯示C49相係實質上藉本發明在矽化作用中旁通。根據本 發明所形成矽化鈦層之C54相之光學顯微照片,已顯示晶 粒大小係顯著地小於未使用耐火金屬之習用情況。這証明 C54相之成核作用能量障壁,係顯著地藉由本發明之方法 而降低。這在線寬小於若使用習用途徑時將會形成之C54 相晶粒大小之VLSI電路中,變成最重要。 雖然咸信上述根據本發明之方法,係相當強效,但.對其 使用有一些注意事項。首先,當使用本發明以防止可能之 -18 - 本纸張尺度逋用中國鬮家椟率(CNS > Λ4規格(210X297公釐) ί1^------ir viv. t (請先聞讀背面之注意事項再填寫本X) 41846 4 A7 B7 五、發明説明(16 ) 妙化物不安定性問題時,應避免加熱循環高於7〇〇乇歷經長 時間。其次’若对火金屬層之厚度太大,則可能會造成碎 化物之脱層。 本發明之另一項優點爲其不會在矽層之頂部表面上產生 非晶質矽層。明確言之’當使用離子植入方法以配置耐火 金屬時’選用之回火步棵會移除任何可能存在之非晶質矽 。以其他方式配置’不必進行選用回火,以避免弗晶質梦 。一般期望避免非晶質矽之存在,因其會伴随著接面滲漏 破壞6 在本發明之一項替代具體實施例中,金屬矽化物可藉一 種方法在覆蓋於半導體晶片上之矽層上之層中形成,該方 法包括沈積一層含有耐火金屬之鈦合金於矽層上,並將晶 片加熱至足以自鈦合金層實質上形成C54相矽化鈦之溫度 ,其中鈦合金之相轉變溫度係因耐火金屬存在而被降低。 用以形成C54相之溫度,較佳係低於約7〇〇。(:》 參考圖1與10,可將欽合金層30沈積在妙基材1〇之表面 上。矽基材10可本身覆蓋著其他電子组件,或可本身包含 —部份此種組件’但是,半導體裝置之此等方面並未被顯 示,以更清楚地顯示與説明本發明之各方面。於本文中使 用之"電子组件"一詞,係意欲包括被動電子元件與有源電 子装置兩者。鈦合金層可包含鈦及至高20原子百分比之耐 火金屬,其實例爲Ta ' Nb、Mo、W、V、Cr或其组合。Ta 與Nb爲較佳耐火金屬》除了耐火金屬以外,亦可將si摻入 鈦合金層中。熟諳此藝者將明瞭其中將矽加入鈦合金層中 -19- ΜΛ張尺变遒用中國國家榇率(CNS ) Λ4規格(2丨0X297公釐) 請 先 « 讀 背 面 之 注-l1T 4184 6 4 Α7 Β7 V. Description of the invention (9) will also change according to the configuration method < • For example, if the refractory metal 14 is configured by ion implantation, most of the metal will be lower than the top surface 12. On the other hand, if this metal is configured by evaporation, most of the metal will be placed on the top surface 12 instead of β below it. Ion implantation and evaporation are used as two research approaches. , Is the refractory metal concentration next to the top surface 12. After the refractory metal 14 is configured, the titanium layer 16 is then deposited on the refractory metal 14 by, for example, sputtering or evaporation. For example, a thickness of 25 to 57.5 nm is used, but those skilled in the art will understand that larger and smaller Thickness can also be used. The top surface 12 is not explicitly shown in Fig. 2, as its position will vary depending on the configuration of the refractory metal used. In addition to sputtering or evaporation, the titanium layer 16 may be deposited on the refractory metal 14 by chemical vapor deposition. Furthermore, when deposited by one of these methods, an alloy layer containing Ti and Si may be deposited instead of the basic titanium layer. This alloy may be stoichiometric TiSh, but this is not required, and the Ti_a alloy may be rich or depleted in its silicon composition. When depositing a Ti-Si alloy, the method according to the present invention is substantially similar to that described herein. Those skilled in the art will understand any needed corrections. As used in this article, the deposition of a titanium layer may alternatively refer to the deposition of a 鈇 · broken alloy layer. Β Printed by the Shellfish Consumer Cooperative of the Central Standards Bureau of the Ministry of Economic Affairs ---- 1--i — (Please read the Note: Please fill in this page again.) In Figure 3, the TiSi2 film 18 has been formed on the silicon layer 10 by heating the dream layer 10 to about 600 and 70 (temperature between TC, which is enough to form the Ti54 C54 phase). Period. This period usually ranges from about 20 seconds to RTA to about 20 minutes of tempering in the conventional finish. According to the method of the present invention, the 5% thin film formed does not substantially pass the C49 phase, but mainly Directly reach phase C54. This is due to the reduced surface energy barrier. -12 This paper size is applicable to China Standards Standard (CNS) 8-4 (2) 0297 mm A7 B7 August 8 418464 No. 86U5438 Revised page of the Chinese specification of the patent application (September 89) 5. Description of the invention (10) It has been found that an optional tempering step is beneficial to further promote the formation of the c54 phase, especially when compared with At low temperatures, such as when sand formation occurs below about c. It is performed after the hot metal 14 is configured and before the Ti layer 16 is deposited. In general, this tempering is performed at a wafer temperature of at least about 900 C, and more preferably 900-1000 t: When using RTA, it lasts for at least about 5 seconds, and when using a conventional quartz furnace, it is usually about 10-30 knife clocks. The preferred tempering is in a ladle, in a% environment, at about 900 ° ; > The temperature lasted about 10 minutes. Generally speaking, this selection of tempering can further promote the formation of refractory metal-silicon alloy on the surface of the silicon layer, but this is not certain. Generally, $, according to the method of the present invention The refractory metal may be any metal which is sufficient to form a metal silicide. For the purpose of this application, "refractory metal" is intended to include (non-limiting) the following preferred metals: M0, v, W, Ta, Nb or Cr, Ta and Nb provide the most significant effect. It is believed that the above metals will usually work in any of the configurations disclosed in this article, but the ion implantation and evaporation of Mo, Ta and / or Nb is Better research approach. Now discuss the above silicification method in more detail. There are several research approaches. It is used to configure the refractory metal that can be used. Generally speaking, these configuration methods place the refractory metal atoms on the top surface or within several angstroms. The refractory metal atoms closest to the silicon interface are the most Active, but other distant atoms are not excluded from the immediate meaning used herein. For example, atoms within about 2 angstroms (meaning about 0.2 nanometers) of this surface may be most ear-active. The first research approach to deploy refractory metals was by ion implantation, using a dose of about 10 12 to 5 X 1 0 1 4 atoms / cm 2, and this paper size is applicable to China 圉Standard (CNS) A4 (210X297 mm) — mV m · ftn l ^ i (Please read the notes on the back before filling out this page] Printed by the Central Standards Bureau of the Ministry of Economic Affairs, Shellfish Consumer Cooperative, 418464 A7 B7 ____ V. Description of the invention (n) More preferably, a dose of about 1313 to ίο 14 atoms / cm². The preferred implantation energy for these cases is about 15 to 卯 KeV. One method of implanting refractory metal involves using an arc chamber using a commercially available ion implantation system. Since arc chambers are usually made of or lined with refractory metals (such as molybdenum, niobium, tantalum, or tungsten), one method of implanting these metals is to use the arc chamber as a metal to be implanted. Source. The metal species to be implanted is selected by appropriately changing the material of the arc chamber, and by adjusting the magnetic analyzer to select the atomic mass unit (AMU) of the desired metal species, using the known isotope of the desired species as basis. For example, set 値 to 98 AMU for Mo or 184 for W as appropriate. Since W is also a commonly used filament material in ion source filaments of implantation tools, W can alternatively be adjusted to 184 AMU for individual ionization w or to dual ionization W by adjusting the analyzer magnet. 92 AMU for implantation. The dose and energy chosen for a particular metal species will be limited by the ability of the ion implantation system and the time spent on implantation. Du Yinzhuang, Consumer Co-operation of the Central Bureau of Standards, Ministry of Economic Affairs (please read the note ^^ on the back before filling out this page) For the specific case of Mo implants, the Mo arc chamber is installed in the implant system. Boron trifluoride source gas Zhao (BF3) was introduced into the arc chamber. Xianxin ionized BF3 is used to volatilize molybdenum from the arc chamber to provide a suitable Mo ion (98Mo +) beam current of about 200 mA and implant energy It is at least about 45 KeV. Since the arc chamber is sometimes coated with other materials in other conventional applications during use, it is preferable to use a clean or new source chamber to obtain the Mo ion beam current. When When Mo atoms are implanted under the above conditions (meaning 45 KeV energy), the maximum concentration of Mo atoms has been determined to occur in the silicon layer to a depth of about 30 nanometers. -14 Good paper standards are applicable to China National Standards (CNS > A4 specification (210X297 mm) 418464 ΓΓ: Description of the invention (12) Α7 Β7 degrees' equivalent to the peak Mo concentration of about 9 atoms / cubic centimeter β But, as discussed above, the most The river 0 atomic concentration of interest is at this surface. When using the above-mentioned optional tempering step, the SIMS data has shown that the concentration of Mo atoms at the surface is about 5 × 1018 atoms / cm³. It is expected that the surface concentration of refractory metals at the wonderful interface will exceed about 1017 atoms / Cubic centimeters may be desired. In another research approach, refractory metals are placed on the surface of the silicon layer by, for example, evaporation of metal pellets. This can be done by e-beam evaporation or by resistance heating (for example, 'will The pellets are placed in a crucible that has been heated by a large current). When evaporation is used, it is important that the thickness of the refractory metal is not too large. For example, the thickness of the Mo layer configured on the silicon layer is preferably less than about 20 nanometers. This is not an absolute maximum thickness, but when the thickness of the Mo layer increases above 20 nanometers, peeling of the silicide film has been found. More preferably, a Mo thickness of about 0.01 to 1.5 nanometers is used The thickness of other metals can be changed slightly. When such a small thickness of refractory metal is evaporated onto the silicon layer, it is sometimes difficult to control the evaporation rate β. Therefore, in one evaporation research approach, the shutter is set In the evaporation metal source chamber to contain refractory metal until it is ready to be placed on the silicon sludge. Then, the shutter is opened and closed fairly quickly (the so-called " emergency " evaporation) to provide a thin refractory metal layer on the silicon layer β can use other evaporation ways to better control the evaporation rate. The following is an alternative way to evaporate the refractory metal. The refractory metal can be placed on the silicon layer by sputtering instead of the method described above for evaporation. To a certain thickness. The correction of the sputtering method used is familiar -15- This paper size is not applicable to the National Solid State Standards (CNS) M specification (210 > < 297) and ——¾- c Read the note $ on the back and fill out this page)-Order the Consumer Cooperatives of the Central Standards Bureau of the Ministry of Economic Affairs and print the Consumer Cooperative Work of the Central Prototype Bureau of the Ministry of Economics and Du Dudian 418464 A7 B7 V. Invention Description (13) clear. In addition to the above, the refractory metal can be arranged on the silicon substrate by exposing the surface of the cutting layer to a solution containing refractory metal ions. In a preferred research approach, the solution is aqueous and can contain dilute acid. , Such as HC1 or _ acid. As far as the above research methods are concerned, the wafer is tempered after the step of arranging refractory metal and before the step of depositing titanium layer, as the case may be. This tempering step is preferably performed at a wafer temperature of at least about 90 ° C, and more preferably between about 900 ° C and 1000 ° C. Figure 4-9 presents experimental data on several TiSi2 films formed according to the present invention. Β Figure 4 shows the resistance of the titanium silicide layer to the sputtered titanium according to the present invention with respect to the treatment of several kinds of TiSi2 films with and without the use of refractory metals. Thickness chart. This data shows that standard films are formed when refractory metal is not used and when a second phase transition tempering is not used. The TiSi2 film corresponding to the data points of W and the data of Mo was formed according to the present invention in n2 on (100) single crystal silicon by tempering at 600 eC for 30 minutes. After the refractory metal (using both w and Mo) is implanted ', use the optional RTA of 5 seconds and 1000X for tempering. When TiSi2 film is formed at about 600eC, this optional tempering is necessary, but it is not necessary for the formation temperature of about 700 ° C. The sheet resistance of each film is shown by the data points in the table. Figures 5-7 are in-situ scanning resistance diagrams illustrating the sheet resistance of a titanium silicide layer formed in accordance with the present invention regarding the treatment of several types of refractory metals with and without evaporation. These measurements are performed during the formation of the TiSi2 film by continuously placing a four-point probe in the furnace. The refractory metal shown in Figure 5-7 is applicable to the Chinese papers (CNS) A4 regulations (210X297 mm) at the X degree of the clothing paper. (谙 Please read the $ on the back and fill in this page). Order printing of A7 B7 in the Central Standard Bureau of the Ministry of Economic Affairs and Consumer Cooperatives Fifth, the description of the invention (14) is configured by the "emergency" evaporation method described above. Figure 8 is an in-situ scanning resistance table for TiSi2 thin films, which uses implanted rather than evaporated refractory metals. The general conditions for 囷 5-8 include forming a silicide film from a 57.5 nm-thick Ti layer previously deposited on a polycrystalline silicon layer of about 300 nm. Each silicide film is formed at about 15 ° C per minute by slowly increasing the temperature. Turning now to Figure 5, curve 30 shows the sheet resistance behavior of the titanium silicide film formed without the use of refractory metal. Curve 30 shows a known and expected increase in resistance, which is due to the mixing near point 32, where curve 30 forms a resistance peak 値 at about 500 Ό. Above about 500X, its resistance decreases as shown by arrow 34. When the temperature moves from about 50 ° C to about 700 ° C, the TiSi2 film formed is substantially in the C49 phase. "At about 700 ° C, the curve 30 flattens at point 36 to become the so-called" knee ". In which, the resistance system remains substantially unchanged with increasing temperature. This "knee" is converted from the C49 phase to the C54 phase due to the silicide film rupture until it reaches an even higher temperature. In contrast to curve 30, the curve Series 40 illustrates the resistance of the silicide film formed after the configuration of about 0 015 nm Mo according to the present invention. The behavior is similar, but it is noted that the " lap " found in curve 30 above does not substantially Exist in curve 40 (see point 42) »The absence of this knee indicates that the phase 54 of Ding Zhan ^ was formed directly to a large extent during the silicidation without passing through the C49 phase. In Figure 6 Curve 50 shows the sheet resistance behavior of the silicide film formed. Among them, about 0.015 nm Ta is configured according to the present invention by rapid evaporation. As for the curve 40 in FIG. 5, during the formation of the TiSi2t C54 phase, no Significant knees. In Figure 7, curve 60 says According to the present invention, -17- this paper size is applicable to China Customs Service Standard (CNS) A4 specification (2 丨 〇χ297 public shame) (please read the notes on the back before filling this page) 袈 · Order 418464 • '«' -.rS- 418464 • '«' -.rS- Printed by A7 B7, Shellfish Consumer Cooperative, Central Bureau of Standards, Ministry of Economic Affairs 5. Description of the invention (15) The sheet resistance versus temperature of a TiSi2 film formed with about 0.015 nm W. The curve 30 shown is compared with the 40 series and the curve 60. Again, for the curve 60, there is no significant knee, and the C54 series is formed substantially at a temperature below about 700. Circle 8 is an in-situ scanning resistance chart Explains the sheet resistance of the titanium silicide layer formed by the implantation of refractory metal according to the present invention. Curve 70 is a control silicide film formed without refractory metal for comparison purposes, and curve 80 is before deposition Ti In which Mo has been implanted (at a dose of 1014 atoms / cm2 and an implantation energy of 45KeV) of a TiSi2 film. After Mo implantation, the tempering step is performed at 900eC before depositing Ti. 10 minutes. As used above Line 30, curve 70 at point 72_ shows the knees, but curve 80 does not. The knees of curve 80 do not exist, indicating that the TiSi2i C54 phase is formed substantially at a temperature below about 700 °. Min 9 Histogram of measured resistance of titanium silicide lines with and without Mo ion implants according to the present invention. In addition to the data presented in Figures 4-9 above, there is further evidence that the C49 phase is essentially By the present invention, the silicidation is bypassed. Optical micrographs of the C54 phase of the titanium silicide layer formed according to the present invention have shown that the grain size is significantly smaller than the conventional case where no refractory metal is used. This proves that the nucleation energy barrier of the C54 phase is significantly reduced by the method of the present invention. This becomes the most important in VLSI circuits where the line width is smaller than the C54 phase grain size that would be formed if the conventional approach is used. Although the above-mentioned method according to the present invention is believed to be quite powerful, there are some precautions for its use. First of all, when using the present invention to prevent the possible -18-this paper size uses the Chinese household rate (CNS > Λ4 size (210X297 mm) ί1 ^ ------ ir viv. T (please first Please read the notes on the back of the reading and fill in this X) 41846 4 A7 B7 V. Description of the invention (16) When the problem of the instability of the magical compound, the heating cycle should be avoided for more than 7000 hours and last a long time. If the thickness is too large, it may cause delamination of fragmented materials. Another advantage of the present invention is that it does not generate an amorphous silicon layer on the top surface of the silicon layer. Specifically, when an ion implantation method is used In the configuration of refractory metal, 'optional tempering step will remove any amorphous silicon that may exist. In other ways, it is not necessary to perform optional tempering to avoid the crystalline dream. It is generally expected to avoid amorphous silicon. Exist, because it will be damaged by junction leakage6 In an alternative embodiment of the present invention, metal silicide may be formed in a layer overlying a silicon layer on a semiconductor wafer by a method including: Deposition of a titanium alloy containing refractory metal On the silicon layer, the wafer is heated to a temperature sufficient to substantially form the C54 phase titanium silicide from the titanium alloy layer, wherein the phase transition temperature of the titanium alloy is reduced due to the presence of refractory metal. The temperature used to form the C54 phase is lower than The best line is less than about 700. (: >> With reference to FIGS. 1 and 10, the Chin alloy layer 30 may be deposited on the surface of the wonderful substrate 10. The silicon substrate 10 may itself cover other electronic components, or may itself Contains-some of these components' However, these aspects of the semiconductor device have not been shown to more clearly show and explain aspects of the invention. The term " electronic component " as used herein is intended It includes both passive electronic components and active electronic devices. The titanium alloy layer may include titanium and refractory metals up to 20 atomic percent, examples of which are Ta 'Nb, Mo, W, V, Cr, or a combination thereof. Ta and Nb are relatively In addition to refractory metal, "Silicon refractory metal" can also be incorporated into the titanium alloy layer. Those skilled in the art will understand that the silicon is added to the titanium alloy layer. Λ4 specifications (2 丨 0X297 mm) please First «read the back note
I 订 經濟部中央標準局WC工消費合作社印製 418464 經濟部中央標隼局員工消費合作社印製 A7 B7 五、發明説明(17 ) 之具趙實施例,可抑制自動對準矽化物處理技術之使用β 除了耐火金屬以外,鈦合金層亦可摻有其他來自週期表第 11认、;^、乂八及\/1八族之元素,包括8、0:、:^、〇、^\1、 Ρ、In、Sb及As。VIIA族元素,譬如F,係被避免,但若存 在則應以遠低於耐火金屬原予百分比之含量存在β 欽合金層可藉此項技藝中已知之數種技術中之任何一種 進行配置》鈦與耐火金屬可自鈦之不同來源,或一種亦含 有少量耐火金屬之鈦來源進行沈積,以致使耐火金屬層在 所形成層中之原子百分比係低於2〇原子百分比,較佳係在 1-15原子百分比之間。鈦合金可藉濺射之物理蒸氣沈積 (PVD)方法,沈積在梦基材上。例如,製備適當处合金之歲 射用標靶,以致當將薄膜沈積在矽基材上時,其具有所要 之对火金屬原子百分比。或者,可利用蒸發之PVD方法, 以配置救合金,其中鈦與耐火金屬係自兩種不同來源,在 適當速率下沈積,以達成所要之耐火金屬原子百分比。無 論是上述任一種方法,以及此項技藝中已知用以沈積鈦或 金屬妙化物之其他方法,均可用以配置鈦合金層於矽基材 上。妓合金層可經配置而具有1〇至2〇〇毫微米之厚度,較 佳爲10至60毫微米層。 參考圖10與11,可接著將鈦合金層3〇加熱至足以形成一 層實質上爲C54相珍化欽32之溫度。於本文中使用之"實質 上爲C54相"片語,係意謂一種矽化鈦層,其中電阻特性係 被C54相所支配,並包含至少50重量% C54相β正如在下文 中更詳細地討論者,本發明之優點係爲相轉變回火步驟可 -20 ----c·^------ΐτ (諳先聞讀背面之注意事項再填寫本頁) 本紙張尺度適用申困{ PMC 'i / -Hftw Λ必— '· * y z < 418Αβ^ Α7 ___ Β7 五、發明説明(18 ) 被免除,因C54相可在矽化鈦形成步驟期間,實質上直接 形成,故避免第二個相"轉變回火"之需求。再者,由於耐 火金屬存在於矽化鈦中,故熱降解溫度,可能發生不想要 的轉變譬如黏聚之溫度,係實質上増加。提升熱降解溫度 具有建立較大處理窗口之利益。 如圖12中所示,原位掃描電阻圓係説明相對於純矽化鈦 之形成溫度,具有耐火金屬於其中之矽化鈦,具有降低之 形成溫度。此圖亦顯示當採用耐火金屬時,熱安定性會增 加。於圖12中所指之鈦層,係各在He大氣中回火至l〇5〇eC (15°C /分鐘)之溫度。 囷13顯示電阻係數作爲存在於用以形成矽化鈦之鈦合金 中之耐火金屬原子百分比之函數。此鈦合金係在He大氣中 回火至900eC (15°C /分鐘)。此囷中被虚線包圍而其標題爲 "C49 TiSi/與"C54 TiSi2”之區域,係標示由純1通2所形成之 C49相與C54相TiSi2之標準電阻係數範圍。此囷係説明本發 明具有1-20原子%耐火金屬之經回火鈦合金,具有電阻遠 低於C49相TiSi2。但是,以Mo形成之鈦合金在濃度低於約5 經濟部中央標隼局員工消f合作社印製 --------ί} 表 __ ‘ (請先間讀背面之注項再填寫本頁) 原子%下,顯示降低之電阻係數。此外,圖14同樣地顯示 電阻係數作爲存在於用以形成矽化鈦之鈦合金中之耐火金 屬原子百分比之函數。但是,於圖14中,回火係在30-50毫 微米鈦合金層上,於N2大氣中,在700°C (35°C /秒,保持60 秒)下進行。圖13與14顯示由摻有Ta、Nb、Mo、W及V之 鈦合金所形成之矽化鈦,各顯示電阻遠低於C49相妙化鈦 。圖15進一步顯示C54形成之溫度作爲被添加至鈦合金之 — _ - 21 - 紙張尺度適用中國國家標牟(CNS } A4说格(210X297公釐) 418464 經濟部中央標準局員工消費合作杜印製 A7 B7 五、發明説明(19) 耐火金屬原子百分比之函數。圖14與15均顯示本發明之經 回火鈦合金,具有相當於製自純TiSi2之C54相TiSi2之電阻, 且其係在頗爲較低溫度回火下達成此等低電阻。 本發明之方法可容易地整合至目前採用製自純鈦之矽化 欽層之半導體製造技術中。例如,參考圖16,其顯示一種 CMOS電晶體,採用本發明之矽化鈦層5〇作爲源極52、汲 極54及閘極56於N- MOSFET與P- MOSFET裝置上。但是,本 發明之矽化鈦可伴隨著許多其他電子組件之製造處理技術 一起使用。 包含鈦與耐火金屬之鈦合金,可沈積在裝置上,包括多 晶妙層58,及在源極52與没極54區域之經高度捧雜碎上, 如同在目前自動對準矽化物應用上之純鈦。於沈積後,可 首先將鈦合金在"成形回火"中,於低溫下加熱以形成矽化 鈦。由於C54相矽化鈦可在比其他矽化物顯著較低之溫度 下製自鈥合金,故其成形回火可形成實質上爲C54相之梦 化鈦層。因此,在許多情況中,當使用鈦合金時,對於轉 化回火之需求可完全免除,因C54相矽化鈦可賁質上以第 一次低溫回火形成。但是’依成形回火溫度及裝置之幾何 形狀而定’轉化回火在一些應用中可能仍然有必要。 此碎化鈥無論是C49相、C54相或兩者之混合物,可接著 根據目前之處理技術選擇性地蝕刻,以移除鈦合金層之未 反應部份。此程序一般稱爲"自動對準矽化物"或自動對準 矽化物程序,因爲未被定位在矽基材上之鈦合金區域,不 會反應以形成矽化物,並可藉蝕刻"自動對準",該蝕刻係 -22- 泰紙張尺度適用中國國家橾準(CNS ) A4規格(2】0X297公釐) (諳先Μ讀背面之注^.項再填寫本頁) -11 A7 B7I Printed by the Central Standards Bureau of the Ministry of Economic Affairs, printed by WC Industrial Consumer Cooperative, 418464 Printed by the Central Standards Bureau of the Ministry of Economic Affairs, printed by the Consumer Consumer Cooperative of A7 B7 V. The embodiment of the invention description (17) can suppress the automatic alignment of silicide processing technology. Use β In addition to refractory metal, the titanium alloy layer can also be doped with other elements from the 11th, ^, 乂, and \ / 1 groups of the periodic table, including 8, 0:,: ^, 〇, ^ \ 1 , P, In, Sb, and As. Elements of the VIIA group, such as F, are avoided, but if present, they should be present at a content far lower than the original percentage of refractory metal. The β-Cin alloy layer can be configured by any of several techniques known in this technology. Titanium The refractory metal can be deposited from a different source of titanium, or a titanium source that also contains a small amount of refractory metal, so that the atomic percentage of the refractory metal layer in the formed layer is less than 20 atomic%, preferably 1- 15 atomic percent. Titanium alloys can be deposited on dream substrates by sputtering by physical vapor deposition (PVD). For example, an alloy target for radioactivity is prepared so that when a thin film is deposited on a silicon substrate, it has a desired atomic percentage of metal to fire. Alternatively, the vapor-deposited PVD method can be used to configure the salvage alloy, in which titanium and refractory metals are deposited from two different sources at an appropriate rate to achieve the desired percentage of refractory metal atoms. Regardless of any of the above methods, and other methods known in the art for depositing titanium or metal oxides, a titanium alloy layer can be disposed on a silicon substrate. The gypsum alloy layer may be configured to have a thickness of 10 to 200 nm, preferably 10 to 60 nm. Referring to Figures 10 and 11, the titanium alloy layer 30 can then be heated to a temperature sufficient to form a layer that is substantially C54-phase crystalline 32. The phrase "essentially C54 phase" as used herein means a titanium silicide layer in which the resistance characteristic is dominated by the C54 phase and contains at least 50% by weight of the C54 phase β as described in more detail below Discussant, the advantage of the present invention is that the phase transformation tempering step can be -20 ---- c · ^ ------ ΐτ (谙 first read the notes on the back and then fill out this page) {{PMC 'i / -Hftw Λ 必 —' · * yz < 418Αβ ^ Α7 ___ B7 V. Explanation of the invention (18) is exempted, because the C54 phase can be formed directly directly during the titanium silicide formation step, so avoid The second phase is the need to transform and temper. Furthermore, since refractory metals are present in titanium silicide, thermal degradation temperatures, such as unwanted cohesion temperatures, may increase substantially. Increasing the thermal degradation temperature has the benefit of establishing a larger processing window. As shown in Fig. 12, the in-situ scanning resistance circle indicates that, with respect to the formation temperature of pure titanium silicide, titanium silicide having a refractory metal therein has a reduced formation temperature. This figure also shows that when using refractory metal, thermal stability increases. The titanium layers referred to in FIG. 12 are each tempered in a He atmosphere to a temperature of 1050 eC (15 ° C / minute).囷 13 shows the resistivity as a function of the atomic percentage of refractory metal present in the titanium alloy used to form the titanium silicide. This titanium alloy is tempered to 900eC (15 ° C / min) in He atmosphere. The area surrounded by a dashed line and titled "C49 TiSi / and" C54 TiSi2 "indicates the standard resistivity range of the C49 phase and C54 phase TiSi2 formed by pure 1 through 2. This line is It shows that the tempered titanium alloy with 1-20 atomic percent refractory metal in the present invention has a resistance much lower than that of C49 phase TiSi2. However, the titanium alloy formed with Mo has a concentration of less than about 5 Printed by the cooperative -------- ί} Table __ '(please read the note on the back before filling out this page) The atomic% shows the reduced resistivity. In addition, Figure 14 also shows the resistivity As a function of the atomic percentage of refractory metal present in the titanium alloy used to form the titanium silicide. However, in Figure 14, the tempering is on a 30-50 nm titanium alloy layer in N2 atmosphere at 700 ° C (35 ° C / sec, hold for 60 seconds). Figures 13 and 14 show titanium silicides formed from titanium alloys doped with Ta, Nb, Mo, W and V, each showing a resistance much lower than that of C49. Titanium. Figure 15 further shows the temperature at which C54 is formed as added to the titanium alloy. National Standards (CNS) A4 grid (210X297 mm) 418464 Consumption cooperation between employees of the Central Bureau of Standards, Ministry of Economic Affairs, Du printed A7 B7 V. Description of the invention (19) A function of the atomic percentage of refractory metals. Figures 14 and 15 both show this The tempered titanium alloy of the invention has a resistance equivalent to that of the C54 phase TiSi2 made of pure TiSi2, and it achieves such low resistance under relatively low temperature tempering. The method of the present invention can be easily integrated into the present In the semiconductor manufacturing technology using a silicon silicide layer made of pure titanium, for example, referring to FIG. 16, it shows a CMOS transistor using the titanium silicide layer 50 of the present invention as the source 52, the drain 54 and the gate 56 on N-MOSFET and P-MOSFET devices. However, the titanium silicide of the present invention can be used with many other electronic component manufacturing processing techniques. A titanium alloy containing titanium and refractory metals can be deposited on the device, including polycrystalline silicon The layer 58 and the highly mixed debris in the regions of the source 52 and the electrode 54 are like the pure titanium used in the current self-aligned silicide application. After deposition, the titanium alloy can be first " formed and tempered "; It can be heated at low temperature to form titanium silicide. Because C54 phase titanium silicide can be made from alloy at a significantly lower temperature than other silicides, its forming and tempering can form a dream layer of titanium which is essentially C54 phase. Therefore, in many cases, when a titanium alloy is used, the need for transformation and tempering can be completely eliminated, because the C54 phase titanium silicide can be essentially formed at the first low temperature tempering. However, depending on the forming tempering temperature and device Depending on the geometry, 'transform backfire' may still be necessary in some applications. This fragmentation—whether it is the C49 phase, the C54 phase, or a mixture of the two—can then be selectively etched to remove unreacted portions of the titanium alloy layer in accordance with current processing techniques. This procedure is commonly referred to as " auto-aligned silicide " or auto-aligned silicide procedure, because the titanium alloy region that is not positioned on the silicon substrate will not react to form silicide, and can be etched " Automatic alignment ", this etching system is -22- Thai paper size applicable to China National Standards (CNS) A4 specifications (2) 0X297 mm) (谙 read the note on the back ^. Before filling this page) -11 A7 B7
41846A 五、發明説明(20 ) 相對於矽化物選擇性地蝕刻金屬。於蝕刻後,C49相矽化 鈦或具有C49與C54相混合物之矽化鈦,可接受第二次回火 ”轉化回火"’其係使矽化物轉變成所要之實質上C54相矽 化欽。但是,即使是在轉化回火爲必要或想要之情況中, 轉化回火均可在頗爲較低溫度下進行,於是保存可採用之 熱預算。在本發明之低電阻係數矽化鈦層形成後,電子組 件與所要之互連可採用習知半導體製造技術完成β 使用純矽化鈦,則成形回火係形成C49相矽化鈦》成形 回火必須在低溫下完成,其不能自純TiSi2形成C54相,以避 免矽化物在不期望之裝置區域上形成,意即常被稱爲橋接 作用之問題。例如,在圖16之裝置中,在選擇性蝕刻鈦層 之不期望部份之前,使裝置接受爲從純鈦形成C54相矽化 鈦所必須之溫度,可能會造成矽化物在氧化物填隙物62上 形成。矽化物在填隙物62上形成,將以電方式連接閘極59 與源極52或汲極54區域,於是使裝置短路。因此,現行之 矽化物處理技術必須採用第二次高溫回火,意即轉化回火 ,以在蝕刻鈦之未反應部份後,使C49相矽化鈦轉化成所 要之低電阻係數C54相。因此,特別重要的是,低電阻係 數矽化鈦層,實質上C54相,可經由將具有鈦合金之裝置 ,在單一成形回火或在轉化回火中,於溫度顯著低於900eC 下加熱而形成。如上文所指出者,自鈦合金形成C54相, 其有利之處在於其將造成摻雜劑材料之較少潛移,包括個 別電子組件之預先界定之摻雜區域58與60。 雖然本發明已於上文詳細描述,但其並不意欲受限於本 -23- 本紙張尺度逍用中國國家標準(CNS ) A4规格(210 X 297公釐) <請先聞讀背面之注意事項再填寫本頁) 哀. 訂 經濟部中央標準局員工消費合作杜印製 418A64 A7 B7 五、發明説明(21) 文中所提出之特定形式,而是意欲涵蓋此等可合理地包含 在本發明之精神與範圍内之替代方式與等效事物,如藉由 隨文所附之申請專利範園所定義者。 經濟部中央揉準局員工消費合作社印製 -24 <請先助讀背面之注意事項再填寫本頁)41846A V. Description of the invention (20) Selectively etch metal with respect to silicide. After etching, the C49 phase titanium silicide or titanium silicide with a mixture of C49 and C54 phases can be subjected to a second tempering "conversion tempering", which converts the silicide into the desired substantially C54 phase silicide. However, Even in cases where transformation and tempering are necessary or desired, the transformation and tempering can be performed at a relatively low temperature, so the available thermal budget is saved. After the low resistivity titanium silicide layer of the present invention is formed, Electronic components and desired interconnections can be completed using conventional semiconductor manufacturing technologies. Β Using pure titanium silicide, the forming and tempering system forms C49 phase titanium silicide. The forming and tempering must be completed at low temperature. It cannot form the C54 phase from pure TiSi2. To avoid the formation of silicide on undesired device areas, which is often referred to as a bridging problem. For example, in the device of FIG. 16, before selectively etching the undesired portion of the titanium layer, the device is accepted as The temperature necessary to form the C54 phase titanium silicide from pure titanium may cause silicide to form on the oxide interstitial 62. The silicide is formed on the interstitial 62 and will electrically connect the gate 59 to the source Area 52 or Sink 54 thus short-circuiting the device. Therefore, the current silicide processing technology must use a second high temperature tempering, which means transforming the tempering to silicify the C49 phase after etching the unreacted portion of titanium Titanium is transformed into the desired low-resistivity C54 phase. Therefore, it is particularly important that the low-resistivity titanium silicide layer, essentially the C54 phase, can be tempered in a single forming or transformed into a tempering device through a device with a titanium alloy. , Formed by heating at a temperature significantly below 900eC. As noted above, the formation of the C54 phase from titanium alloys has the advantage that it will cause less latent migration of dopant materials, including the pre-definition of individual electronic components The doped regions 58 and 60. Although the present invention has been described in detail above, it is not intended to be limited to this -23- this paper size uses the Chinese National Standard (CNS) A4 specification (210 X 297 mm) < Please read the notes on the reverse side before filling out this page) Ai. Order the consumer cooperation of the Central Bureau of Standards of the Ministry of Economic Affairs 418A64 A7 B7 V. Description of Invention (21) The specific form proposed in the text is intended to imply These alternatives and equivalents that can reasonably be included within the spirit and scope of the present invention are as defined by the patent application park attached to the article. Printed by the Consumer Consumption Cooperative of the Central Bureau of the Ministry of Economic Affairs- 24 < Please read the notes on the back before filling out this page)
本紙張尺度逍用中國國家標準(CNS )八4規洛(2!〇Χ297公釐)The standard of this paper is Chinese National Standard (CNS) 8-4 gauge (2! 〇 × 297 mm)
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/586,046 US5828131A (en) | 1993-10-29 | 1996-01-16 | Low temperature formation of low resistivity titanium silicide |
Publications (1)
Publication Number | Publication Date |
---|---|
TW418464B true TW418464B (en) | 2001-01-11 |
Family
ID=24344081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW86115438A TW418464B (en) | 1996-01-16 | 1997-10-20 | Low temperature formation of low resistivity titanium silicide |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW418464B (en) |
-
1997
- 1997-10-20 TW TW86115438A patent/TW418464B/en not_active IP Right Cessation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0155587B1 (en) | Low temperature formation of low resistivity titanium silicide | |
Mann et al. | Reduction of the C54–TiSi2 phase transformation temperature using refractory metal ion implantation | |
US5828131A (en) | Low temperature formation of low resistivity titanium silicide | |
EP0159935B1 (en) | Method for inhibiting dopant out-diffusion | |
US5856698A (en) | Second implanted matrix for agglomeration control and thermal stability | |
KR100266019B1 (en) | Method for fabricating semiconductor device | |
JP3184320B2 (en) | Diamond field effect transistor | |
US6204173B1 (en) | Multiple implantation and grain growth method | |
JP3659330B2 (en) | Method and structure for preventing high temperature agglomeration of alloys using silicides | |
JPH1187711A (en) | Fabrication of transistor | |
US6812121B2 (en) | Process for forming a low resistivity titanium silicide layer on a silicon semiconductor substrate | |
JP2956583B2 (en) | Semiconductor device and manufacturing method thereof | |
US8586463B2 (en) | Method for preparing a layer comprising nickel monosilicide NiSi on a substrate comprising silicon | |
TW200411781A (en) | Method of forming a nickel silicide region in a doped silicon-containing semiconductor area | |
TW418464B (en) | Low temperature formation of low resistivity titanium silicide | |
US5382808A (en) | Metal boride ohmic contact on diamond and method for making same | |
WO2000022659A1 (en) | Method of forming cobalt-disilicide contacts using a cobalt-carbon alloy thin film | |
KR100270185B1 (en) | Low temperature formation of low resistivity titanium silicide | |
JP3639009B2 (en) | Manufacturing method of semiconductor device having Ti silicide layer | |
TW200428499A (en) | Improved gate electrode for semiconductor devices | |
Mann et al. | Reduction of the C54-TiSi2 phase formation temperature using metallic impurities | |
JPH1154454A (en) | Low temperature formation of low resistivity titanium silicide | |
KR100325297B1 (en) | Method for manufacturing semiconductor device | |
Bae et al. | Formation of CoSi2 on various polycrystalline silicon structures and its effects on thermal stability | |
KR100505405B1 (en) | method for forming gate electrode in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |