TW202431685A - 用於電化學電池單元之3d結構化電極 - Google Patents

用於電化學電池單元之3d結構化電極 Download PDF

Info

Publication number
TW202431685A
TW202431685A TW112135983A TW112135983A TW202431685A TW 202431685 A TW202431685 A TW 202431685A TW 112135983 A TW112135983 A TW 112135983A TW 112135983 A TW112135983 A TW 112135983A TW 202431685 A TW202431685 A TW 202431685A
Authority
TW
Taiwan
Prior art keywords
cathode
film
recesses
conversion
battery
Prior art date
Application number
TW112135983A
Other languages
English (en)
Inventor
斯蒂芬 布克哈特
Original Assignee
美商柯納米克斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商柯納米克斯股份有限公司 filed Critical 美商柯納米克斯股份有限公司
Publication of TW202431685A publication Critical patent/TW202431685A/zh

Links

Abstract

本文描述了除其他之外在電化學電池單元(例如,電池)中使用之結構化陰極。在一些實施例中,一結構化陰極包括在一圖案化膜中包括的至少一種電化學活性材料。該膜可安置於一基材(例如,集電器)上或可係獨立式的。該膜具有至少一個圖案化表面,例如具有延伸至該膜中的凹入部。一圖案化膜可係多孔的。一圖案化膜可由包括一電化學活性材料的顆粒之一總成製成。凹入部可包括洞或溝槽或其一組合。凹入部可藉由諸如利用雷射剝蝕將材料自一初始膜移除來形成。凹入部可僅部分地延伸至一膜中或完全延伸穿過該膜。凹入部可係互連的或單獨的。凹入部可跨一圖案化表面規則地或不規則地安置。凹入部可至少部分地填充有電解質。

Description

用於電化學電池單元之3D結構化電極
本揭露總體而言係關於用於電池之3D結構化陰極。
某些電池使用在電化學循環期間經歷大體積改變的陰極。例如,在其陰極中使用電化學活性轉化材料的電池將由於將轉化材料自一種形式轉化成另一種形式而在其陰極中表現出膨脹及收縮。此種電池之一個具體實例係鋰-硫電池,其中硫及硫化鋰之間的轉化引起陰極的大體積改變。朝向Li 2S的轉化可導致顯著的體積膨脹。此種膨脹可對電池之效能具有有害影響。例如,膨脹可致使電解質自陰極之本體移位出,這可然後影響電池之充電(及隨後的放電)。因此,存在對陰極材料之需要,該等陰極材料在其中結合有該等陰極材料的電池之電化學循環期間減輕體積改變之負面影響。
可在於陰極中使用電化學活性轉化材料的某些電池化學物質中存在的另一問題係在電化學循環期間形成不溶產物。此類產物通常例如在陰極-隔板界面處沉積於陰極之一或多個表面上。此種產物沉積於一或多個此類表面上減少向陰極之本體的質量輸送。因此,容量可在隨後的電化學循環期間被非所要地降低。因此,亦存在對陰極材料之需要,該等陰極材料減輕不溶產物不受控制地沉積於未來電化學循環上的負面影響。
本揭露藉由使用三維結構化陰極(簡稱「結構化陰極」)來解決由在電化學循環期間的體積改變及/或不溶產物形成引起的問題。結構化陰極可包括陰極膜,該陰極膜具有圖案化表面,該圖案化表面具有延伸至膜中的凹入部。在某些實施例中,結構化陰極包括電化學活性轉化材料(稱為「結構化轉化陰極」)。不同結構化陰極可在具有不同化學物質的各種電化學電池單元中使用。在一些實施例中,結構化轉化陰極在鋰-硫電池中使用。硫係常見的電化學活性轉化材料,但可使用其他材料,諸如其他硫屬化物(例如,Se或Te)。
結構化陰極可藉由提供(例如,形成)陰極膜,且然後圖案化陰極膜之表面以具有凹入部(諸如洞及/或溝槽)來形成。例如,可將陰極膜沉積於基材(例如,集電器)上,且然後進行圖案化。凹入部可僅部分地延伸至膜中或完全延伸穿過該膜。凹入部可係互連的或單獨的。凹入部可跨圖案化表面規則地或不規則地安置。凹入部可在電池中至少部分地填充有電解質。陰極膜可在圖案化之前被壓延。與相反順序相比,該等步驟之此種順序可改良最終陰極膜結構,其中壓延可非所要地變更或破壞預期凹入部(例如,其形態)。在某些實施例中,圖案化藉由將材料自陰極膜移除來完成。雷射剝蝕係一種特別有用的材料移除製程,因為它例如使用精確的雷射佈局、光點大小及曝光時間而高度可控。此外,雷射剝蝕可容易地整合至陰極製造製程(諸如捲式製程)中。對於某些電池技術(尤其諸如鋰-硫電池)之競爭力,成本係一個非常重要的考慮因素。用於鋰-硫電池的低材料成本可證明來自雷射剝蝕的增加的費用合理。在一些實施例中,雷射剝蝕本身因其易於整合至現有製造製程中而係低成本的。因此,成本可行的結構化轉化陰極可被達成以用於電池。脈衝雷射可用於執行雷射剝蝕。在一些實施例中,執行圖案化壓實製程或其他凹陷製程以在陰極膜中形成凹入部。
非結構化轉化陰極可在電池單元之電化學循環期間經歷顯著膨脹(例如,在鋰-硫電池中朝向Li 2S轉化)。特別地,膨脹可引起孔體積減小及電解質對應地移位出孔體積。在一些電池單元中,電解質可移位出電池單元堆及/或移位至空隙體積中,這使得電解質在電池單元充電時難以輸送回至孔隙中,即使當陰極體積的減少發生時(例如,當一或多種硫化鋰(如Li 2S)轉化回至S時)亦如此。圖案化陰極表面中之凹入部可為電解質提供本地儲器位置。電解質可在陰極膨脹期間容易地移動至此類儲器位置中,且當陰極體積減小時更容易地輸送回至陰極之本體中。
另外或替代地,圖案化陰極表面中之凹入部可為電活性物種(例如,Li +)進出陰極之本體提供更短質量輸送距離。不希望受任何特定理論之束縛,藉由減小質量輸送距離,可實現對陰極中可用離子儲存容量之更大利用率。在非結構化陰極中,質量輸送主要由膜之厚度判定。在結構化陰極中,因為凹入部延伸至陰極膜中,所以該等凹入部提供了通向膜之本體中的更短輸送距離。陰極膜之圖案化表面中的凹入部可在電化學循環期間導致離子輸送(例如,鋰離子輸送)至陰極膜中及/或自陰極膜離開的更高速率及/或更大程度。
另外或替代地,電化學電池單元可被結構化,使得在電池單元的電化學循環期間形成不溶產物(例如,非平衡產物)。此類產物可形成於電化學電池單元中的陰極-隔板界面處及/或輸送至陰極-隔板界面。在非結構化陰極中,可形成抑制跨整個內部陰極表面(例如,不與集電器接觸的表面)向及自陰極之本體輸送的層。結構化陰極中的凹入部可提供不具有不溶產物或具有減小濃度的不溶產物的區域。因此,雖然穿過圖案化表面之未凹入的最上部分的輸送可因不溶產物層之形成而受到阻礙,但穿過凹入部的輸送可以更大速率發生或甚至不減弱。
另外或替代地,使用圖案化陰極膜能夠達成可利用固體電解質及聚合物、凝膠或液體電解質二者的優點的改良的混合電解質系統。例如,固體電解質可直接安置於結構化陰極上。由於結構化陰極中的凹入部,仍存在聚合物、凝膠或液體電解質之體積,即使結構化陰極的表面之最上部分與固體電解質接觸亦如此。以此種方式,電化學電池單元可達成固體電解質(例如,減少鋰-硫電池中的多硫化物穿梭)及聚合物、凝膠或液體電解質之益處(例如,更快動力學)二者之益處。
替代地或另外,本文所揭示的用於鋰-硫電池的結構化陰極之益處可包括:(i)在循環期間經由降低的陰極彎曲度,從而減輕來自非平衡氧化還原反應的有害功率衰減而改良的多硫化物之可逆輸送;(ii)由於當硫轉化為硫化鋰時電解質自陰極孔隙擠出,從而在該製程中擴展至孔隙中而改良的電解質管理;(iii)經由使用低E/S比率達成的高體積容量,該低E/S比率能夠由重度壓延的陰極以及自戰略性成型及放置的圖案化結構(例如,雷射剝蝕結構)(例如,微結構)改良的電解質輸送達成。本揭露能夠達成鋰-硫電池的調諧陰極,該等調諧陰極平衡高硫利用率及高能量二者之設計要求:高內部表面積、低彎曲度、匹配超低E/S比率的孔隙率及在轉化時因硫膨脹而造成的電解質移位。一般技藝人士將瞭解,亦可在其他電池化學物質(諸如但不限於鈉硫電池)中達成相似或相同益處。
在一些實施例中,可使用本文所揭示的結構化陰極構造達成以下效能度量中之一或多者的電池:(i)至少550的重力能量密度(Wh/kg);(ii)至少900的體積能量密度(Wh/L);(iii)至少1.3的充電功率/接受度(kW/kg);(iv)不大於0.4的效能損耗/ oC (%,≤ 30 oC至-20 oC);(v)至少90%的初始容量(80%充電狀態(state of charge;SOC)擺幅)的至少750的循環壽命;(vi)不大於60的電池單元成本目標($/kWh)。在一些實施例中,利用除簡單地使用結構化陰極之外的附加技術以便達成此等效能度量中之一或多者。例如,可使用薄膜固態隔板技術(SwRI),如濺鍍/蒸發LLZO2;增強鋰鍍速率,防止枝晶形成且確保化學穩定性的原子層沉積(atomic layer deposition;ALD)塗層;及/或結構化陰極與Li陽極之固態保護的整合。
在一些態樣,本揭露提供用於二次鋰電池(例如,鋰-硫電池)的電極,該電極包含膜,該膜包含電化學活性材料。膜可具有與基材(例如,集電器)接觸的第一表面及位於膜之與第一表面相反的一側上的圖案化第二表面(例如,不與基材接觸)。圖案化第二表面包含朝向基材(例如,在實質上垂直於第一表面的方向上)延伸至膜中的凹入部 在一些實施例中,電極係陰極。在一些實施例中,電化學活性材料係電化學活性轉化材料。
在一些實施例中,膜之圖案化第二表面具有凹入部之重複幾何圖案。例如,重複幾何圖案可保形於六方網格。作為另一實例,重複幾何圖案可保形於等距網格或正方形網格。
在一些實施例中,該等凹入部中之至少一部分可跨第二表面互連(例如,跨第二表面之範圍形成該等凹入部之網路)。膜之第二表面中的凹入部可包含洞。在一些實施例中,洞的橫截面可係實質上圓形的。
在一些實施例中,洞之直徑可係至少20 nm且不大於500 µm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm)。洞之直徑可對應於用於形成洞的雷射之分辨率極限。
在一些實施例中,該等洞各自可具有係電極膜之厚度之至少25%的深度(例如,係電極膜之厚度之至少50%、至少75%、至少80%或至少90%的深度)或其中該等洞自第二表面完全穿過膜延伸至第一表面。
另外或替代地,在一些實施例中,本發明所揭示的電極之凹入部可包含溝槽,其中溝槽可跨第二表面具有寬度及長度。例如,寬度可小於長度。在一些實施例中,寬度為至少20 nm且不大於500 µm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm)。溝槽之寬度可對應於用於形成溝槽的雷射之分辨率極限。
該等溝槽各自可具有係陰極膜之厚度之至少25%的深度(例如,係陰極膜之厚度之至少50%、至少75%、至少80%或至少90%的深度)或其中該等溝槽自第二表面完全穿過膜延伸至第一表面。
在一些實施例中,凹入部可至少部分地填充有電解質。例如,電解質可包含聚合物。在一些情況下,電解質可係液體或可係固體。
在一些實施例中,本發明所揭示的電極之凹入部可以規則圖案跨膜之第二表面分佈。例如,該等凹入部可跨第二表面分佈,使得膜內任何點與該等凹入部中之至少一個之至少一個邊緣相距皆不大於500 μm (例如,不大於200 µm、不大於100 µm、不大於50 µm、不大於25 µm或不大於20 µm)。
另外或替代地,該等凹入部可跨第二表面分佈,使得膜內之任何點在該等凹入部中之最近一個之距離內,該距離不大於膜之最大厚度的三倍(例如,不大於兩倍或不大於1.5倍)。在一些實施例中,該距離不大於膜之最大厚度。
在一些實施例中,所揭示的電極之凹入部可佔與第二表面之最上部分重合的平面與第一表面之間所含的總體積之至少5% (例如,至少10%、至少15%、至少20%、至少25%、至少33%或至少50%)。
在一些情況下,該等凹入部之表面(例如,第二表面之由該等凹入部界定的部分)可塗佈有固體材料,該固體材料具有與膜中之本體電極之組成物不同的組成物。例如,該等凹入部之表面可塗佈有固體磊晶材料(例如,在形成該等凹入部之後藉由原子層沉積形成)。
在一些實施例中,至少一些(例如,全部)凹入部完全延伸穿過膜。在一些實施例中,至少一些(例如,全部)凹入部不完全延伸穿過膜。
在一些實施例中,所揭示的電極之膜係第一膜且電極進一步包含第二膜,該第二膜安置於基材之與該第一膜相反的一側上。
在一些實施例中,第二膜具有圖案化第二表面,該圖案化第二表面包含延伸至第二膜中的凹入部;及第一表面,該第一表面與第二表面相反,其中第二膜之第一表面與基材接觸。在一些實施例中,基材可係多孔的。第一膜中的凹入部可完全延伸穿過第一膜且與基材中的孔相交。替代地或另外,基材中的孔完全延伸穿過基材(例如,從而界定完全穿過電極的孔)。
在本發明所揭示的電極之一些實施例中,可在膜已被施加至基材之後,膜之第二表面可被圖案化。例如,膜可藉由將濕漿液施加至基材且隨後乾燥該漿液,之後進行圖案化來產生。
在一些實施例中,膜可在圖案化第二表面之前被壓延。
在一些實施例中,本發明所揭示的電極之第二表面可藉由雷射剝蝕來圖案化。
例如,雷射剝蝕可使用脈衝雷射對第二表面進行圖案化。在一些實施例中,脈衝雷射可施加小於1000飛秒(例如,小於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的持續時間的脈衝。
在一些實施例中,所揭示的電極之膜可係多孔的[例如,係個別結構(例如,顆粒) (例如,奈米顆粒) (例如,核-殼式或蛋黃-殼式顆粒)之多孔總成]。
在一些本發明所揭示的電極中,電化學活性材料(例如電化學活性轉化材料)包含:(i)元素硫(例如,呈其S 8環狀八原子分子形式),(ii)呈硫化鋰(例如,Li 2S 2及/或Li 2S)形式之硫,(iii)呈電化學活性有機硫化合物形式之硫,(iv)呈電化學活性含硫聚合物形式之硫,或(v) (i)-(iv)中之任意二者或更多者之組合。
另外或替代地,所揭示的電極膜可進一步包含一或多種金屬硫化物。例如,一或多種金屬硫化物中之至少一者可係嵌入電化學活性材料。
替代地或另外,在一些實施例中,所揭示的電極可進一步包含導電添加劑(例如,導電碳)。
替代地或另外,所揭示的電極可進一步包含聚合物黏合劑。
在一些實施例中,所揭示的電極可實質上不含碳(例如,不大於10重量%碳、不大於5重量%碳、不大於2重量%碳或不大於1重量%碳)。
在一些實施例中,本發明所揭示的電極可提供:(i)通往電化學活性材料(例如,電化學活性轉化材料)的平均質量輸送路徑短於通往不具有凹入部的在其他方面等同的陰極中的電化學活性材料的平均質量輸送路徑;(ii)與不具有凹入部的在其他方面等同的電極之彎曲度相比,該電極之彎曲度減小;或(iii) (i)及(ii)二者。
另外或替代地,本發明所揭示的電極可提供:(i)在相同電流密度下,該電極之容量大於不具有凹入部的在其他方面等同的陰極之容量;(ii)該電極具有高體積容量;或(iii) (i)及(ii)二者。
在一些實施例中,本揭露提供包含本文所揭露的示範性電極的二次電池(例如,鋰-硫)。
在一些實施例中,本發明所揭示的電池可進一步包含安置於所揭示的電極之膜中的電解質,其中凹入部係用於電解質的在電池之電化學循環期間自膜之本體移位的部分的本地儲器。
另外或替代地,所揭示的電池可進一步包含液體電解質,該液體電解質至少部分地填充所揭示的電極之凹入部(例如,其中液體電解質亦直接接觸未凹入的第二表面)。例如,在一些實施例中,二次電池可進一步包含固體、聚合物或凝膠電解質(例如,聚合物凝膠電解質),該固體、聚合物或凝膠電解質至少部分地填充凹入部。
在一些實施例中,二次電池可進一步包含液體電解質,該液體電解質與固體、聚合物或凝膠電解質接觸(例如,其中液體電解質安置於所揭示的電極之凹入部中且固體、聚合物或凝膠電解質直接接觸第二表面)。
另外或替代地,二次電池可進一步包含非導電隔板,其中所揭示的電極之膜之第二表面與非導電隔板接觸(例如,在第二表面之非凹入部分處) [例如,從而界定隔板-電極界面,且其中與在凹入部中相比,非平衡不溶產物在隔板-電極界面處以更高濃度安置(例如,沉澱)於膜之表面上]。
本發明所揭示的二次電池可進一步包含固體電解質,其中所揭示的電極之膜之第二表面與固體電解質接觸(例如,在第二表面之非凹入部分處)。
另外或替代地,所揭示的二次電池可進一步包含受保護鋰陽極,其中所揭示的電極(例如,轉化陰極)之膜之第二表面與受保護鋰陽極接觸。
在一些實施例中,本發明所揭示的二次電池可具有無陽極組態(例如,其中電池包含集電器且鋰在第一電化學循環期間沉積於集電器上)。
在一些實施例中,本發明所揭示的二次電池之電解質可不包括磺醯胺鹽(例如,雙(三氟甲烷磺醯)亞胺鋰(LiTFSI))。
在一些實施例中,所揭示的二次電池可具有低電解質對硫(E/S)比率。
在一些實施例中,本揭露提供操作本發明所揭示的二次電池(例如,鋰-硫電池)之方法,該二次電池包含本文所揭示的電極(例如,轉化陰極)及電解質,該方法包含:在電池之電化學循環期間(例如,在對電池放電時)使所揭示的電極之膜膨脹[例如,由於裝配於膜中的個別結構(例如,顆粒)之膨脹] (例如,由於膜中之減小的孔隙率),使得電解質之一部分自膜之本體移位至凹入部中。
在一些實施例中,所揭示的操作方法可進一步包含:在電池之進一步電化學循環期間(例如,在對該電池放電時)將電解質之一部分移位回至膜之本體中(例如,由於膜之收縮)。
在一些實施例中,操作方法之電池可進一步包含:隔板,該隔板與所揭示的電極(例如,陰極)之膜之第二表面接觸,從而界定隔板-電極界面,且該方法包含:在電化學循環期間形成非平衡不溶產物;及將非平衡不溶產物在隔板-電極界面處安置(例如,沉澱)於膜之表面上。
在一些實施例中,所揭示的操作方法可包含:與非平衡不溶產物安置於凹入部中相比,非平衡不溶產物在隔板-電極界面處以更高濃度安置於所揭示的電極之膜之表面上。
在一些實施例中,所揭示的操作方法可包含:非平衡不溶產物不安置於凹入部中。
在一些實施例中,所揭示的操作方法可包含:在電化學循環期間經由凹入部將鋰(例如,呈多硫化物的形式)可逆地輸送至電極(例如,轉化陰極)中。
另外或替代地,本文所揭示的操作方法可包含:經由凹入部將鋰輸送至電極(例如,轉化陰極)中發生的速率及/或程度(例如,基於所輸送的鋰之量)與經由其上安置有非平衡不溶產物的表面輸送鋰同時發生的速率及/或程度相比更大。
此外,操作方法可包含其中在電化學循環期間向電池單元堆及/或電池之一或多個空隙中的電解質移位由於向凹入部中的移位而減少。
在一些態樣,本揭露提供製作用於電池(例如,鋰-硫電池)的電極(例如,陰極)之方法,該製作方法包含:提供(例如,形成)包含電化學活性材料(例如,電化學活性轉化材料)的膜。在一些實施例中,該方法進一步包含:在膜之表面中形成延伸至膜中的凹入部。在一些實施例中,形成凹入部可包含移除膜之一部分。
在一些實施例中,移除可包含雷射剝蝕膜。在一些實施例中,雷射剝蝕包含向膜施加脈衝雷射。例如,脈衝雷射可施加小於1000飛秒(例如,小於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的持續時間的脈衝。
在一些實施例中,雷射剝蝕可線上執行(例如,在電池之製造期間)。
在一些實施例中,製作方法可包含:將膜壓延[例如,在基材(例如,集電器)上]。在一些實施例中,形成可發生在壓延之後。在一些實施例中,(i)該壓延已剩下的膜之孔隙率不大於壓延之前的膜之初始孔隙率的40% (例如,不大於30%、不大於20%或不大於10%),(ii)膜之最大厚度不大於壓延之前的初始厚度的40% (例如,不大於30%、不大於20%或不大於10%),或(iii) (i)及(ii)二者。
在一些實施例中,形成可包含刮削、切割及/或刮擦(例如,利用一或多個刀片)。在一些實施例中,形成可包含使膜凹陷(例如,壓實、壓印及/或衝印)。
在其中提供包含形成膜的一些實施例中,形成膜可包含裝配包含電化學活性材料(例如,電化學活性轉化材料)的個別結構(例如,顆粒)。
在一些實施例中,裝配可包含選自由以下各項組成之群組的一或多個成員:漿液塗佈、狹縫式塗佈、旋轉塗佈、噴霧乾燥、洩降塗佈、刮刀塗佈、噴墨列印、逗點式塗佈及反向逗點式塗佈。
在一些實施例中,該方法可作為捲式製造製程(例如,捲式陰極製造製程或捲式電池製造製程)之一部分執行。
本說明書中(包括此發明內容部分中)所述之任何二或更多個特徵可組合以形成未在本說明書中特定具體描述的實施方案。 定義
為了更容易地理解本揭露,本文中使用的某些術語定義如下。可在整個說明書中闡述以下術語及其他術語之附加定義。
在本申請案中,除非上下文另外清楚或另外明確說明,否則(i)術語「一」可被理解為意謂「至少一個」;(ii)術語「或」可被理解為「及/或」;(iii)術語「包含」及「包括」可被理解為涵蓋逐項列出的組件或步驟,無論係其單獨呈現還係與一或多個附加組件或步驟一起呈現;(iv)術語「約」及「大約」可被理解為允許如由一般技藝人士將理解的標準變化;及(v)在提供範圍的情況下,包括端點。
約、大約 :如本文所用,術語「約」及「大約」用作等同物。除非另外說明,否則術語「約」及「大約」可被理解為允許如由一般技藝人士將理解的標準變化。在本文中提供範圍的情況下,包括端點。本申請案中使用的具有或不具有約/大約的任何數字都意謂涵蓋一般技藝人士所瞭解的任何正常波動。在一些實施例中,術語「大約」或「約」係指落入所述參考值之在任一方向上(大於或小於)25%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%、2%、1%或更小內的值之範圍,除非另外說明或另外自上下文顯而易見(除在此種數字將超過可能值之100%的情況下之外)。
聚合物 :如本文所用,術語「聚合物」一般係指具有主要或完全由結合在一起的重複子單元組成的分子結構的物質,諸如用作塑膠及樹脂的合成有機材料。
實質上 :如本文所用,術語「實質上」係指展現所關注特性或性質之全部或接近全部的範圍或程度之定性條件。
相關申請案之交互參照
本申請案主張2022年9月23日申請之美國臨時申請案第63/409,688號之優先權,該申請案以引用方式整體併入本文中。
本文描述了除其他之外在電化學電池單元(例如,電池諸如二次電池)中使用的結構化陰極、包括此類陰極的電化學電池單元(例如,電池)、及它們的形成及使用方法。結構化陰極包括至少一種電化學活性材料。電化學活性材料可係電化學活性轉化材料。電化學活性轉化的實例係鋰-硫電池中的硫基材料。電化學活性轉化材料可包括於圖案化膜中。包括一或多種電化學活性材料的圖案化膜可安置於(例如在其上形成膜的)基材(例如,集電器)上或可係獨立式的。圖案化膜係具有至少一個圖案化表面,例如具有延伸至膜中(例如,在實質上垂直於膜之表面的方向上)的凹入部的膜。圖案化膜可係多孔的。圖案化膜可由包括電化學活性材料(例如,轉化材料)的顆粒之總成製成。使用結構化陰極之方法可包括在電化學電池單元(例如,電池)之電化學循環期間使膜膨脹,使得電池單元中的電解質之一部分自膜之本體移位至延伸至膜中的凹入部中。製作結構化陰極之方法可包括提供(例如,形成)包括電化學活性轉化材料的膜,及在膜之表面中形成延伸至膜中的凹入部。形成凹入部可耤由將材料自膜移除(例如藉由雷射剝蝕)而發生。 結構化陰極
在一些實施例中,陰極包括膜,該膜包括電化學活性材料;及基材(例如,集電器)。電化學活性材料可係轉化材料。膜具有與基材(例如,集電器)接觸的第一表面及在膜之與第一表面相反的一側上的第二表面(例如,不與基材接觸)。第二表面被圖案化,使得該第二表面包括朝向基材延伸至膜中的凹入部。凹入部可一直延伸至基材(完全延伸穿過膜)或可僅延伸自表面至基材的距離之一部分,或其組合。凹入部可包括洞、溝槽(例如,井、槽、通道或其組合)或二者。洞的橫截面可係實質上圓形的(這一般係藉由雷射剝蝕形成時的情況,因為雷射光束通常係圓形的)。溝槽可具有實質上矩形橫截面或「U」形橫截面。溝槽可跨圖案化表面具有遠大於溝槽之寬度、溝槽之深度或二者的長度。凹入部可至少部分地填充有電解質,例如液體、凝膠或聚合物電解質。在一些實施例中,凹入部填充有固體電解質。基材可係導電的,諸如集電器的情況。
圖1係根據本揭露之說明性實施例的示出陰極100之表面之自上而下視圖的SEM顯微照片。陰極100包括陰極膜102,該陰極膜係圖案化膜。陰極膜102具有圖案化第二表面(示出)及未圖案化第一表面(未示出),該未圖案化第一表面與第二表面相反且與集電器(未示出)接觸。膜102之圖案化第二表面包括凹入部,該等凹入部係溝槽,包括溝槽106a-106d。溝槽106a-106d互連,例如溝槽106a與溝槽106b直接互連,且溝槽106c經由溝槽106b與溝槽106a互連。溝槽106a-106d不一直延伸穿過膜102 (僅部分地延伸至該膜中)。膜102亦包括最上部分104。膜102係顆粒之總成,各顆粒包括電化學活性轉化材料(例如,硫),諸如核-殼式或蛋黃-殼式顆粒。膜102可包括附加組分,諸如黏合劑及/或一或多種導電添加劑。
圖2A係圖示說明本揭露之實施例的橫截面圖。圖2A示出陰極200,該陰極包括安置(例如,形成)於集電器210上的圖案化膜202,該圖案化膜包括電化學活性轉化材料。圖案化膜202包括安置於集電器210上的未圖案化第一表面204a,及圖案化第二表面204b。圖案化第二表面204b包括最上部分及延伸至膜202中的凹入部206a-206d。凹入部206a-206d具有至少兩個實質上均勻尺寸(若係溝槽,則紙內/外尺寸可變化),但一般而言,凹入部不需要具有實質上均勻尺寸。具體而言,凹入部206a-206d至少具有實質上均勻寬度208a及深度208b。(在其他實施例中,不同凹入部之寬度及/或深度可不係均勻的。)若凹入部206a-206d包括一或多個洞,則一或多個洞的橫截面可係實質上圓形的且特徵在於對應於寬度208a的直徑。若凹入部206a-206d包括一或多個溝槽,則一或多個溝槽可具有實質上相同長度或不同長度(例如,如圖1所示,其中通常自一側至另一側溝槽(如溝槽106c)長於一般由上至下溝槽(如溝槽106b))。凹入部206a-206d並未跨第二表面204b均勻地分佈,如自不均一間距所見。在一些實施例中,凹入部206a-206d可被均勻地安置(例如,在一維或二維中)。膜200可(或可不)由顆粒之總成製成,各顆粒包括電化學活性材料(例如,核-殼式或蛋黃-殼式顆粒)。膜202可係多孔的(例如,若係顆粒之總成的話)。
當結合至包括電解質的電化學電池單元(例如,電池)中時,凹入部206a-206d可充當電解質的本地儲器位置,該電解質在電化學循環期間流入及流出陰極膜202之本體,如由箭頭205所指示。膜202具有如由208c所示的最大厚度。凹入部206a-206d不延伸穿過膜202之整個(最大)厚度。由於凹入部206a-206d的存在,因此進入的平均(或最大)質量輸送路徑可小於未圖案化膜的平均(或最大)質量輸送路徑,如大約由指向膜202之圓形區域207c的箭頭207a-207b表示,其中由於凹入部206b,箭頭207b短於箭頭207a。
圖2B示出圖示說明與圖2A相似的實施例,其中存在電解質212。電解質212至少部分地填充(在這種情況下完全填充)凹入部206a-206d。電解質212可係液體、凝膠、聚合物或固體。可(例如,與一或多種其他組分一起)添加隔板及陽極(例如,鋰陽極)或無陽極組態(例如,鋰原位沉積於其 上的集電器)以形成完整的電化學電池單元。圖2C圖示說明混合電解質實施例,其中固體電解質214 (例如,直接)接觸圖案化第二表面204b (在其最上部分處),同時凹入部206a-206d至少部分地填充有液體、凝膠或聚合物電解質212。圖2D圖示說明安置於圖案化第二表面204b上(例如,與該圖案化第二表面接觸) (在其最上部分處)的隔板216,同時凹入部206a-206d至少部分地填充有電解質212。在一些實施例中,在隔板216接觸膜202的地方形成不溶產物之夾層。
凹入部可跨陰極膜以規則或不規則圖案安置。例如,凹入部可以規則的一維或二維陣列安置或以隨機圖案安置。膜之圖案化表面可具有凹入部之重複幾何圖案,該重複幾何圖案例如保形於六方網格(例如,六方最密堆積配置)、等距網格或正方形網格。凹入部中之多個可跨膜之圖案化表面互連,例如溝槽可彼此相交,溝槽可與洞相交,或二者。互連凹入部可形成跨圖案化表面之範圍的網路。凹入部可一直延伸穿過陰極膜(例如,向下延伸至基材(諸如集電器))或僅部分地延伸至陰極膜中。
凹入部可具有長度、寬度及深度。若凹入部係洞,則各洞之長度尺寸及寬度尺寸(各洞之直徑)可係實質上相同的。在一些實施例中,延伸至膜中的洞之直徑對應於脈衝雷射之分辨率極限(例如,至少約20 nm)。在某些實施例中,延伸至膜中的洞之直徑在如下範圍內:約20 nm至約500 μm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm)。若凹入部係溝槽,則長度及寬度可不同。例如,寬度可係20 nm至500 µm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm),且長度可不同(例如,至少100 nm、至少1 µm、至少10 µm、至少50 µm、至少100 µm、至少250 µm、至少500 µm、至少750 µm或至少1 mm)。在一些實施例中,至少一些凹入部具有在如下範圍內的至少一個(例如,寬度、深度、或寬度及深度)尺寸:20 nm至500 µm (例如,自100 nm至200 µm或自50 nm至100 µm)。在一些實施例中,至少一些凹入部具有至少100 μm (例如,至少200 μm、至少500 μm或至少1 mm)的長度(例如,且凹入部中之其他具有至少50 μm、至少100 μm、至少200 μm或至少500 μm的長度)。至少一些(例如,所有)相鄰凹入部對之間的間距(例如,若跨圖案化表面以規則的一維或二維陣列安置)可係至少20 μm (例如,至少50 μm,在至少75 μm、至少100 μm、至少150 μm、至少200 μm或至少250 μm)。凹入部可係微結構(各微結構)。
在一些實施例中,凹入部具有一或多個豎直壁(無論係洞還係溝槽)。在一些實施例中,凹入部傾斜成使得凹入部之至少一個尺寸隨著延伸至陰極膜中的距離而變窄。在一些實施例中,凹入部各自所具有的深度係陰極膜之最大厚度之至少25%。例如,凹入部中之多個可具有延伸至陰極膜中的深度,該深度係膜之最大厚度之至少25% (例如,厚度之至少50%、至少75%、至少80%或至少90%)。凹入部中之多個可延伸穿過圖案化表面(例如,向下延伸至集電器)。在一些實施例中,膜係不連續的(例如,凹入部界定一或多個島狀物,該一或多個島狀物作為個別結構之總成之一部分各自包括電化學活性材料)。在一些實施例中,陰極膜係連續的(例如,膜之一部分安置於各凹入部下方)。在一些實施例中,至少一些凹入部完全延伸穿過膜(例如,向下延伸至膜安置於其上的基材,諸如集電器)。在一些實施例中,無凹入部完全延伸穿過膜。陰極膜可跨至少一個方向具有至少2個/mm (例如,至少4個/mm、至少5個/mm、至少6個/mm、至少8個/mm或至少10個/mm)的凹入部線密度。陰極膜可具有至少5/mm 2(例如,至少6/mm 2、至少8/mm 2、至少10/mm 2、至少15/mm 2或至少20/mm 2)的凹入部面密度(例如,在跨具有最大存在的凹入部的膜的平面中量測,諸如一旦與圖案化第二表面之最上部分重合)。陰極膜可具有此種線密度及此種種面密度二者。
陰極之膜可係多孔的(例如,在壓延之前及/或之後)。在一些實施例中,膜已被重度壓延,使得該膜幾乎不具有剩餘孔隙率,例如不大於壓延之前的初始孔隙率之40% (例如,不大於30%、不大於20%或不大於10%)。孔隙率的變化亦可使用壓延之前的初始膜厚度與壓延之後(例如,及圖案化之前)的膜厚度的比較量測,例如厚度可減小至不大於初始厚度之40% (例如,不大於30%、不大於20%或不大於10%)。初始厚度可係例如不大於1 mm (例如,不大於500 μm)且壓延之後的最終厚度可不大於200 μm (例如,不大於100 μm、不大於50 μm、不大於25 µm或不大於20 µm)。在一些實施例中,膜係包括電化學活性材料(例如,轉化材料)的個別結構(例如,奈米結構)的多孔總成。個別結構可係或可包括顆粒(例如,奈米顆粒)、纖維(例如,奈米纖維)、棒(例如,奈米棒)或其組合。在一些實施例中,個別結構具有不大於500 nm (例如,不大於250 nm、不大於100 nm或不大於50 nm)的至少一個尺寸(例如,直徑、長度、寬度、高度或其組合)。在一些實施例中,結構包括具有電化學活性材料的核的核-殼式顆粒(例如,奈米顆粒)或具有電化學活性材料的蛋黃的蛋黃-殼式顆粒(例如,奈米顆粒)。核-殼式顆粒或蛋黃-殼式顆粒之殼可係選擇性可滲透的。作為個別結構之多孔總成的膜可進一步包括散佈於總成中的(例如,分別促進電子轉移穿過總成及/或將個別結構黏合在一起的)導電添加劑及/或黏合劑(例如,聚合物黏合劑)。陰極可實質上不含碳(例如,不大於10重量%碳、不大於5重量%碳、不大於2重量%碳或不大於1重量%碳)。
陰極中的電化學活性材料可係或可包括硫屬化物(例如,S、Se及/或Te)。電化學活性材料可係電化學活性轉化材料(例如,S 8)。電化學活性轉化材料可係或可包括:(i)呈其S 8環狀八原子分子形式之硫,(ii)呈硫化鋰(例如,Li 2S 2及/或Li 2S)形式之硫,(iii)呈電化學活性有機硫化合物形式之硫,(iv)呈電化學活性含硫聚合物形式之硫[例如,碳-硫聚合物((C 2S x) n,其中x = 2.5至50且n≥2)],或(v) (i)-(iv)中之任意二者或更多者之組合。在一些實施例中,電化學活性材料包括金屬硫化物。在一些實施例中,電化學活性材料係嵌入材料。在一些實施例中,陰極膜包括嵌入材料,例如電化學活性嵌入材料。在一些實施例中,除第一電化學活性材料之外,陰極膜進一步包括一或多種金屬硫化物。膜可包括導電添加劑(例如,導電碳)、黏合劑(例如,聚合物黏合劑)或二者。在某些實施例中,電化學活性嵌入材料包括選自由以下各項組成之群組的一或多種組分:金屬氧化物、金屬硫化物、金屬磷酸鹽、金屬硒化物及其混合物及組合。在某些實施例中,電化學活性嵌入材料(例如,對於鋰離子)包括一或多種金屬硫化物。在某些實施例中,金屬硫化物選自由以下各項組成之群組:硫化釩(例如,VS 2)、硫化鉬(例如,MoS 2及/或Mo 6S 8)及硫化鈦(例如,TiS 2)。在某些實施例中,金屬硫化物選自由以下各項組成之群組:VS 2、MoS 2、Mo 6S 8及TiS 2。在某些實施例中,金屬硫化物係TiS 2。在某些實施例中,金屬硫化物係Mo 6S 8
凹入部可跨膜之圖案化表面分佈,使得膜內(例如,在膜之本體中)任何點與凹入部中之至少一個之至少一個邊緣相距皆不大於500 μm (例如,大於200 µm、大於100 µm、大於50 µm、大於25 µm或大於20 µm)。在一些實施例中,凹入部跨膜之圖案化表面分佈,使得膜內之任何點在凹入部中之最近一個之距離內,該距離不大於膜之最大厚度的三倍(例如,不大於兩倍、不大於1.5倍或不大於該最大厚度)。最大厚度可係膜之圖案化表面之最上部分與膜之(例如,接觸基材的)相反表面之間的最小直線距離(例如,如圖2A中的箭頭208c)。凹入部可佔與膜之圖案化表面之最上部分重合的平面與(例如,未圖案化的) (例如,與集電器接觸的)相反表面之間所含的總體積之至少5% (例如,至少10%、至少15%、至少20%、至少25%、至少33%或至少50%)。
在一些實施例中,凹入部之總體積對應(例如,匹配)於在電化學循環期間(例如,在陰極中所含的電活性材料完全放電時)自陰極之本體移位的電解質之預期體積。可根據經驗估計或數值計算將被移位的電解質之預期體積。以此方式,凹入部可充當本地儲器以防止電解質之永久損耗(例如,至電化學電池單元之外周邊)及/或可以其他方式由電化學循環引起的壓力積聚及/或電化學電池單元潤脹之有害影響,而與可在減少進入陰極(例如,陰極之本體)中的平均質量輸送路徑方面達成的任何益處無關。因此,在一些實施例中,在電化學循環之一個階段期間與在另一階段期間相比,凹入部更多地被填充有電解質。例如,在其中硫係陰極膜中的電化學活性轉化材料的鋰-硫電池中,硫在放電期間轉化為硫化鋰且經歷體積膨脹,這可使電解質移位。若陰極膜之表面被圖案化,則可將電解質移位至圖案化表面中之凹入部中。
在一些實施例中,延伸至膜中的凹入部之表面(例如,圖案化表面之由凹入部界定的部分)塗佈有固體材料,該固體材料具有與膜中的本體陰極之組成物不同的組成物。凹入部之表面可塗佈有固體磊晶材料(例如,在形成凹入部之後藉由原子層沉積形成)。
圖案化膜可安置(例如,形成)於基材(例如,集電器)上。在一些實施例中,各別膜安置於基材(例如,集電器)之兩個相反側之各者上,且視情況,膜中之一或二者可具有帶有延伸至膜中的凹入部的圖案化表面。一或多個膜安置於其上的基材可係多孔的。安置於多孔基材上的圖案化膜中的凹入部可完全延伸穿過膜,使得該等凹入部與基材中的(例如,完全延伸穿過基材的)孔相交。在一些實施例中,安置於多孔基材的相反側上的各個各別圖案化膜中的凹入部可完全延伸穿過膜,使得該等凹入部與穿過基材的孔相互相交,從而界定完全穿過陰極的孔(例如,以用於液體電解質之自由流動)。
在一些實施例中,在已將膜施加至基材(例如,集電器)之後,膜被圖案化。在一些實施例中,膜已藉由將濕漿液施加至基材且隨後乾燥該漿液,之後進行圖案化來產生。在一些實施例中,在對膜之表面進行圖案化之前已對膜進行壓延。在一些實施例中,膜之表面已藉由雷射剝蝕圖案化。藉由雷射剝蝕的圖案化可使用脈衝雷射。脈衝雷射可已施加不大於1000飛秒(例如,不大於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的持續時間的脈衝。雷射剝蝕對於圖案化膜之表面而言係一個有吸引力製程,因為實驗已示出在圖案化時,形態及孔隙率可實質上在形成於膜中的凹入部附近得以保留(參見下面的實例)。
在一些實施例中,通往結構化陰極(例如,包含圖案化膜的陰極)中的電化學活性材料的平均質量輸送路徑短於通往不具有凹入部的在其他方面等同的陰極(例如,包含未圖案化膜或平滑膜的陰極)中的電化學活性材料的平均質量輸送路徑。同樣,在一些實施例中,替代地或另外,與不具有凹入部的在其他方面等同的陰極之彎曲度相比,結構化陰極之彎曲度減小。在一些實施例中,例如由於在電化學循環期間本體中的電化學活性材料的更高利用率,因此在相同電流密度下,結構化陰極之容量大於不具有凹入部的在其他方面等同的陰極之容量。例如,在相同循環速率(電流密度)下,與在其他方面等同的陰極相比,結構化陰極之容量可大至少5% (例如,大至少10%、大至少20%、大至少30%或更大)。在一些實施例中,陰極具有高體積容量。實際體積容量可視循環速率、電極厚度、溫度、電解質化學物質或其組合而定。
膜可僅包括一個材料層或可包括多個層。裝配成多孔膜的個別結構可係僅一種類型(例如,分別包括電化學活性材料(諸如轉化材料)的核或蛋黃的核-殼式或蛋黃-殼式顆粒)或多種類型(例如,一或多種電化學活性嵌入材料及一或多種電化學活性轉化材料之混合物)。多層結構可包括不同電化學活性材料之離散層,例如電化學活性轉化材料層上的電化學活性嵌入材料層,或反之亦然。多層膜之圖案化表面中的凹入部可延伸至多個層中之僅一個層中或可延伸至多個層中之多於一個層中。因此,可實現顯著縮短通往多層結構中非表面層的一或多個層(例如,由電化學活性轉化材料層覆蓋的電化學活性嵌入材料層)的質量輸送路徑之長度的優點。多層陰極膜之一或多個層(例如,各層)可係多孔的。
在某些實施例中,基材(例如,集電器)包括選自金屬箔、金屬化聚合物膜及碳組成物的組分。在一些實施例中,集電器包括鋁箔、銅箔、鎳箔、不銹鋼箔、鈦箔、鋯箔、鉬箔、泡沫鎳、泡沫銅、碳紙或纖維片材、塗佈有導電金屬的聚合物基材及/或其組合。在某些實施例中,集電器包括金屬箔。在某些實施例中,集電器包括金屬化聚合物膜。在某些實施例中,集電器包括碳組成物。在某些實施例中,陰極包括位於集電器與包括鋰離子嵌入活性材料的第二活性層之間的導電碳塗層。
在某些實施例中,陰極膜包括促進電子在陰極內移動之導電添加劑。例如,在某些實施例中,導電添加劑選自由以下各項組成之群組:碳基材料、石墨基材料、導電聚合物、金屬鹽、氧化物或硫屬化物及其組合。在某些實施例中,導電添加劑包括碳基材料。在某些實施例中,導電添加劑包括石墨基材料。例如,在某些實施例中,導電添加劑選自由以下各項組成之群組:導電碳粉(諸如碳黑、Super P ®、C-NERGY™ Super C65、Ensaco ®黑、Ketjenblack ®、乙炔黑)、合成石墨(諸如Timrex ®SFG-6、Timrex ®SFG-15、Timrex ®SFG-44、Timrex ®KS-6、Timrex ®KS-15、Timrex ®KS-44)、天然片狀石墨、石墨烯、石墨烯氧化物、碳奈米管、富勒烯、硬碳、中間相微碳球及類似者。在某些實施例中,導電添加劑包括一或多種導電聚合物。例如,在某些實施例中,導電聚合物選自由以下各項組成之群組:聚苯胺、聚噻吩、聚乙炔、聚吡咯及類似者。在某些實施例中,單一導電添加劑被單獨使用。在某些實施例中,多種導電添加劑被一起使用。
在某些實施例中,陰極包括黏合劑(例如,將個別結構(例如,顆粒)黏合在一起且/或將個別結構黏著至基材(諸如集電器)的物質)。典型的黏合劑包括聚偏二氟乙烯(PVDF)、聚(偏二氟乙烯-共-六氟丙烯) (PVDF/HFP)、聚四氟乙烯(PTFE)、Kynar Flex ®2801、Kynar ®Powerflex LBG、Kynar ®HSV 900、Teflon ®、羧甲基纖維素、苯乙烯-丁二烯橡膠(SBR)、聚氧化乙烯、聚氧化丙烯、聚乙烯、聚丙烯、聚丙烯酸酯、聚乙烯基吡咯啶酮、聚(甲基丙烯酸甲酯)、聚丙烯酸乙酯、聚四氟乙烯、聚氯乙烯、聚丙烯腈、聚己內醯胺、聚對苯二甲酸乙二醇酯、聚丁二烯、聚異戊二烯或聚丙烯酸或此等聚合物中任一者之衍生物、混合物或共聚物。在一些實施例中,黏合劑係水溶性黏合劑,諸如海藻酸鈉或羧甲基纖維素。一般而言,黏合劑將活性材料保持在一起並與集電器(例如鋁箔或銅箔)接觸。在某些實施例中,黏合劑選自由以下各項組成之群組:聚(乙酸乙烯酯)、聚乙烯醇、聚氧化乙烯、聚乙烯基吡咯啶酮、烷基化聚氧化乙烯、交聯聚氧化乙烯、聚乙烯醚、聚(甲基丙烯酸甲酯)、聚偏二氟乙烯、聚六氟丙烯及聚偏二氟乙烯之共聚物、聚丙烯酸乙酯、聚四氟乙烯、聚氯乙烯、聚丙烯腈、聚乙烯基吡啶、聚苯乙烯及其衍生物、混合物及共聚物。
在某些實施例中,陰極進一步包括塗層。例如,在某些實施例中,塗層包括聚合物、無機材料或其混合物。在某些此類實施例中,聚合物選自由以下各項組成之群組:聚偏二氟乙烯、聚偏二氟乙烯及六氟丙烯的共聚物、聚(乙酸乙烯酯)、聚(乙烯醇縮丁醛-共-乙烯醇-共-乙酸乙烯酯)、聚(甲基丙烯酸甲酯-丙烯酸乙酯)、聚丙烯腈、聚氯乙烯-乙酸乙烯酯、聚乙烯醇、聚(1-乙烯基吡咯烷酮-乙酸乙烯酯)、乙酸纖維素、聚乙烯吡咯烷酮、聚丙烯酸酯、聚甲基丙烯酸酯、聚烯烴、聚氨酯、聚乙烯醚、丙烯腈-丁二烯橡膠、苯乙烯丁二烯橡膠、丙烯腈-丁二烯苯乙烯、磺化苯乙烯/乙烯-丁烯/苯乙烯三嵌段共聚物、聚環氧乙烷及其衍生物、混合物及共聚物。在某些此類實施例中,無機材料包括例如膠體二氧化矽、無定形二氧化矽、表面處理二氧化矽、膠體氧化鋁、無定形氧化鋁、氧化錫、氧化鈦、硫化鈦(TiS 2)、氧化釩、氧化鋯(ZrO 2)、氧化鐵、硫化鐵(FeS)、鈦酸鐵(FeTiO 3)、鈦酸鋇(BaTiO 3)及其組合。在某些實施例中,有機材料包括導電碳。在某些實施例中,有機材料包括石墨烯、氮化石墨烯或氧化石墨烯。
在某些實施例中,用於所提供的結構化陰極的前驅物可在不具有黏合劑的情況下調配,該黏合劑可在製造陰極膜期間被添加(例如,溶解於用於由所提供的混合物形成漿液的溶劑中)。在其中黏合劑包括於所提供的陰極膜中的實施例中,當將混合物製成漿液以製造陰極膜時,黏合劑可被活化。
用於在所提供的結構化陰極中使用的適宜材料包括揭示於以下中的彼等: Cathode Materials for Lithium Sulfur Batteries: Design, Synthesis, and Electrochemical Performance,Lianfeng等人,Interchopen.com,2016年6月1日出版;及 The Strategies of Advanced Cathode Composites for Lithium-Sulfur Batteries Zhou等人,《中國科學:技術科學》,第60卷,第2期:175-185(2017),其中之各者之全部揭露以引用方式特此併入本文中。 製作結構化陰極之方法
結構化陰極可使用適當調適的習知製程來大規模製造陰極而形成。例如,許多陰極使用捲式加工製成。可將一或多個附加步驟添加至捲式製程或另一或多個製程,以形成結構化陰極。作為一個實例,具有適當形狀的模具的狹縫式塗佈可在陰極膜被塗佈時在該陰極膜中形成某些凹入部,例如具有可變深度的並行溝槽。一般而言,製作結構化陰極之方法包括提供(例如,形成)包含電化學活性材料(例如,轉化材料)的膜;及在膜之表面中形成延伸至膜中(例如,僅部分或完全延伸穿過膜)的凹入部。凹入部及膜可同時形成(例如,對於狹縫式塗佈可能正是這種情況)或凹入部可在膜產生之後形成。初始膜可(例如,藉由狹縫式塗佈) (例如,在基材(諸如集電器)上)形成,且然後被壓延。在一些實施例中,僅在壓延已發生之後,在膜中形成凹入部,以形成膜之圖案化表面。可耤由將材料自膜移除、或藉由重新配置膜中的材料(例如,藉由使膜之一部分凹陷,諸如例如壓實、沖印及/或壓印)、藉由圖案化沉積材料(例如,使用特殊狹縫或模具)或藉由其任意組合來形成凹入部。雷射剝蝕係用於形成凹入部之較佳方法。
圖3係根據本揭露之說明性實施例的方法300之流程圖。在步驟302中,將漿液(例如,藉由狹縫式塗佈)沉積至集電器上以形成初始陰極膜。在步驟304中,將初始陰極膜壓延。壓延可係「重度」的——實質上降低膜中的初始孔隙率。例如,在漿液包括個別結構(例如,奈米結構),諸如顆粒、棒、纖維或其組合的情況下,與初始沉積相比,壓延可顯著地壓實結構,從而降低孔隙率。在步驟306中,移除壓延膜之一部分以在膜之表面上形成凹入部。雷射剝蝕可用於執行移除。
可藉由雷射剝蝕在(例如,已經被壓延的)膜中形成凹入部。雷射剝蝕一般將起作用來將材料自膜移除。雷射剝蝕係所要的,部分地因為該雷射剝蝕高度係可控的。脈衝雷射可用於精確地控制剝蝕。在一些實施例中,脈衝雷射向膜(例如,已壓延膜)施加小於1000飛秒(例如,小於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的持續時間的脈衝。
例如藉由雷射剝蝕的凹入部形成可線上執行(例如,在電池之製造期間)。亦即,在某些實施例中,習知陰極生產線可被修改以將陰極膜表面圖案化為具有凹入部,而無需顯著再加工。例如,在一些實施例中,在電池製造期間,在捲式生產製程中的適當位置處簡單地添加雷射剝蝕裝置以在陰極膜表面上形成凹入部。
在一些實施例中,提供(例如,形成)的膜被壓延。可將膜壓延於基材(例如,集電器)上。基材可係多孔的。可將不同膜壓延至基材之不同側上(例如,兩個相反側上各一個)。若存在兩個此類膜,則各膜可例如藉由向二側施加雷射剝蝕而具有圖案化表面。凹入部之形成可僅在壓延初始膜之後發生。以此方式,可避免原本可能由壓延陰極膜引起的對凹入部之形態或大小的有害變化。壓延可施加至不大於壓延之前的陰極膜中所存在的初始孔隙率的40% (例如,不大於30%、不大於20%或不大於10%)的程度。替代地或另外,壓延可使陰極膜之最大厚度不大於壓延之前的初始厚度的40% (例如,不大於30%、不大於20%或不大於10%)。
在一些實施例中,在陰極膜中形成凹入部包含移除材料(例如,電化學活性材料、及黏合劑及/或導電添加劑(若存在的話))。移除材料可包括對材料進行雷射剝蝕。移除材料可包括刮削、切割及/或刮擦(例如,利用一或多個刀片)。在一些實施例中,在陰極膜中形成凹入部包括使膜凹陷(例如,壓實、沖印及/或壓印)。
在一些實施例中,提供陰極膜包含形成膜。形成膜可包括裝配包括電化學活性材料(諸如例如轉化材料)的個別結構(例如,顆粒諸如奈米顆粒)。此種總成可由漿液鑄造而成。裝配可包括漿液塗佈、狹縫式塗佈、旋轉塗佈、噴霧乾燥、洩降塗佈、刮刀塗佈、噴墨列印、逗點式塗佈及反向逗點式塗佈中之一或多種。初始總成可係多孔的(例如,高度多孔的)且可在壓延之後保持一定孔隙率。 電化學電池單元
在一些實施例中,本文所揭示的結構化陰極包括於電化學電池單元中。電化學電池單元可係電池,諸如二次電池。電池中所包括的陰極諸如在鋰-硫電池或鈉-硫電池中可係轉化陰極,包括電化學活性轉化材料。在一些實施例中,電化學電池單元包括本文所揭示的結構化陰極、電解質、陽極及視情況隔板。結構化陰極可係多孔的,使得電解質可安置於陰極膜之本體中,其中膜之圖案化表面的凹入部為電解質的在電化學循環期間自膜之本體移位的部分提供本地儲器。電解質可至少部分地填充結構化陰極之膜中的凹入部。電解質可係液體、凝膠、聚合物或固體。電解質亦可例如在未凹入的地方直接接觸膜之圖案化表面。電池可包括至少部分地填充結構化陰極之圖案化表面中的凹入部的固體、聚合物或凝膠電解質(例如,聚合物凝膠電解質)。電池可包括至少部分地填充結構化陰極之圖案化表面中的凹入部的液體電解質。電池可包括混合電解質,諸如固體電解質及液體電解質。例如,液體電解質可至少部分地填充陰極膜之圖案化表面中的凹入部,且固體電解質可接觸圖案化表面(例如,至少在圖案化表面之非凹入部分處)。此種電池可同時利用固體電解質及液體電解質二者之益處。
在一些實施例中,電池包括接觸陰極膜之圖案化表面(例如,在膜之非凹入部分處)的非導電隔板。此種接觸可由此界定隔板-陰極界面。一或多種不溶產物(例如,非平衡不溶產物)可在隔板-陰極界面處與在圖案化表面中的凹入部中相比以更高濃度安置(例如,沉澱)於膜之圖案化表面上。不與非導電隔板接觸的凹入部可實質上沒有不溶產物。
在一些實施例中,電池包括與本文所揭示的結構化陰極接觸的受保護鋰金屬陽極。在一些實施例中,電池具有無陽極組態(例如,其中在第一電化學循環期間鋰沉積於集電器上)。
本文所揭示的結構化陰極可與不包括磺醯胺鹽(例如LiTFSI)的電解質一起使用,從而藉由避免為達成高效能原本可能需要的昂貴電解質來達成更低成本。在一些實施例中,電池具有低(例如,極低)電解質對硫(E/S)比率,例如不大於10、不大於7、不大於5、不大於3或低於3。
本揭露提供包括本文所述之陰極及組成物的二次硫電池。在某些實施例中,此類電池包括藉由鋰導電電解質耦合至所提供的陰極組成物的含鋰陽極組成物。在一些實施例中,此類電池亦包括附加組件,諸如位於陽極與陰極之間的隔板、陽極及陰極集電器、電池單元可藉由其耦合至外部負載的端子、及包裝件諸如柔性袋或剛性金屬容器。在一些實施例中,本揭露係關於一種種鋰-硫電池,其包括含硫陰極、含鋰陽極及離子耦合陽極及陰極的電解質。進一步設想關於二次硫電池之本揭露可適用於鈉-硫電池組,且此類電池亦視為在本揭露之某些實施例之範圍內。
圖4圖示說明根據本揭露之示範性實施例的電化學電池單元500之橫截面。電化學電池單元500包括負電極502、正電極504、插置於負電極502與正電極504之間的隔板506、容器510、及分別與負電極502及正電極504接觸的流體電解質512。此類電池單元視情況包括電極及隔板502a、502b、504a、504b、506a及506b之附加層。圖5圖示說明穿過代表性電池單元堆之另一橫截面視圖,其示出負電極502、正電極504及插置於負電極502與正電極504之間的隔板506。圖5亦示出包括電極504的層。具體而言,該等層包括集電器504-1、包括鋰嵌入活性材料的陰極層504-2、及包括轉化活性材料的陰極層504-3。如圖所示,鋰嵌入活性材料504-2插置於集電器504-1與陰極層504-3之間。
負電極502 (在本文中有時亦稱為陽極)包括可接受陽離子之負電極活性材料。用於鋰基電化學電池單元的負電極活性材料之非限制性實例包括Li金屬、Li合金(諸如Si、Sn、Bi、In及/或Al合金中之彼等)、Li 4Ti 5O 12、硬碳、石墨碳、金屬硫屬化物及/或無定形碳。根據本揭露之一些實施例,當初始地製作電化學電池單元500時,大部分(例如,大於90重量%)的陽極活性材料可初始地包括於放電正電極504 (在本文中有時亦稱為陰極)中,以使得電極活性材料在電化學電池單元500之第一次充電期間形成第一電極502之一部分。
用於將電活性材料沉積於負電極502之一部分上之技術描述於美國專利公開案第2016/0172660號及相似地美國專利公開案第2016/0172661號中,該等公開案中之各者之內容以引用方式特此併入本文中,只要該等內容與本揭露不衝突。
負電極502及正電極504可進一步包括如本文所述之一或多種導電添加劑。根據本揭露之一些實施例,負電極502及/或正電極504進一步包括如下所述之一或多種聚合物黏合劑。
圖6圖示說明根據下文所述之各種實施例的電池之實例。出於說明之目的在此顯示圓柱形電池,但亦可視需要使用其他類型之配置,包括柱狀或袋形(積層型)電池。實例Li電池600包括負陽極602、正陰極604、插置於陽極602與陰極604之間的隔板606、浸漬隔板606之電解質(未示出)、電池外殼605及密封電池外殼605之密封構件608。應瞭解,實例電池600可在各種設計中同時體現本揭露之多個態樣。
在一些實施例中,本揭露之鋰-硫電池包括鋰陽極、硫基陰極及允許在陽極及陰極之間進行離子輸送的電解質。在本文所述之某些實施例中,電池之陽極部分包括陽極及電解質之與其接觸的部分。相似地,在本文所述之某些實施例中,電池之陰極部分包括陰極及電解質之與其接觸的部分。在某些實施例中,電池包括界定陽極部分與陰極部分之間的邊界的鋰離子可滲透隔板。在某些實施例中,電池包括封閉陽極部分及陰極部分二者的外殼。在某些實施例中,電池外殼包括與陽極電連通之導電陽極端蓋及與陰極電連通之導電陰極端蓋,以促進經由外部電路充電及放電。 陽極
在某些實施例中,鋰電池(例如,鋰-硫電池)包括鋰陽極。可使用適於鋰-硫電池單元之任何鋰陽極。在某些實施例中,鋰-硫電池之陽極包括選自以下之負活性材料:可逆地發生鋰嵌入之材料、與鋰離子反應以形成含鋰化合物之材料、金屬鋰、鋰合金及其組合。在某些實施例中,陽極包括金屬鋰。在某些實施例中,含鋰陽極組成物包括碳基化合物。在某些實施例中,碳基化合物選自由以下各項組成之群組:結晶碳、無定形碳、石墨及其混合物。在某些實施例中,與鋰離子反應以形成含鋰化合物之材料選自由以下各項組成之群組:氧化錫(SnO 2)、硝酸鈦及矽。在某些實施例中,鋰合金包括鋰與另一鹼金屬(例如鈉、鉀、銣或銫)之合金。在某些實施例中,鋰合金包括鋰與過渡金屬之合金。在某些實施例中,鋰合金包括鋰及選自由以下各項組成之群組的金屬之合金:Na、K、Rb、Cs、Fr、Be、Mg、Ca、Sr、Ba、Ra、Al、Sn及其組合。在某些實施例中,鋰合金包括鋰與銦之合金。在某些實施例中,陽極包括鋰-矽合金。適宜鋰-矽合金之實例包括:Li 15Si 4、Li 12Si 7、Li 7Si 3、Li 13Si 4及Li 21Si 5/Li 22Si 5。在某些實施方案中,鋰金屬或鋰合金作為與另一材料的複合物存在。在某些實施例中,此類複合物包括諸如石墨、石墨烯、金屬硫化物或氧化物、或導電聚合物之材料。
藉由此項技術中所報導之任一方法、例如藉由藉助於化學鈍化或聚合在陽極之表面上產生保護層來保護陽極免於氧化還原穿梭反應及危險的失控反應。例如,在某些實施例中,陽極在鋰金屬之表面上包括無機保護層、有機保護層或其混合物。在某些實施例中,無機保護層包括Mg、Al、B、Sn、Pb、Cd、Si、In、Ga、矽酸鋰、硼酸鋰、磷酸鋰、氮化磷鋰、矽硫化鋰、硼硫化鋰、鋁硫化鋰、磷硫化鋰、氟化鋰或其組合。在某些實施例中,有機保護層包括導電單體、低聚物或選自以下之聚合物:聚( 伸苯基)、聚乙炔、聚( 伸苯基伸乙烯基)、聚苯胺、聚吡咯、聚噻吩、聚(2,5-乙烯伸乙烯基)、乙炔、聚(環萘)、聚并苯及聚(萘-2,6-二羧酸二甲酯)或其組合。
另外,在某些實施例中,在鋰-硫電池之充電及放電期間自陰極之電活性硫材料產生之無活性硫材料連接至陽極表面。如本文所用之術語「無活性硫」係指對重複電化學及化學反應不具活性、使得其無法參與陰極之電化學反應之硫。在某些實施例中,陽極表面上之無活性硫充當該電極上之保護層。在某些實施例中,無活性硫係硫化鋰。
亦設想無陽極(例如,免陽極)組態。在無陽極組態中,提供集電器代替陽極,且電化學活性物種(諸如鋰-硫電池中的鋰)在第一電化學循環(或第一幾個電化學循環)期間沉積於集電器之表面上。此種鋰可源自電化學電池單元中的電解質及/或一或多種添加劑。然後集電器之表面在進一步電化學循環期間充當鋰源。
進一步設想本揭露可適用於在鈉-硫電池中使用。此類鈉-硫電池包括鈉基陽極,且涵蓋於本揭露之範圍內。 電極之製備
存在用於製造電極以供在鋰電池(例如,鋰-硫電池)中使用之多種方法。一種製程(諸如「濕製程」)涉及將正活性材料、黏合劑及導電材料(即,陰極混合物)添加至液體以製備漿液組成物。此等漿液通常呈經調配以促進下游塗佈操作之黏性液體形式。漿液之徹底混合對於塗佈操作及乾燥操作可係重要的,這影響電極之效能及品質。適宜混合裝置包括球磨機、磁力攪拌器、音振、行星混合器、高速混合器、均質機、通用型混合器及靜態混合器。用於製作漿液之液體可係均勻地分散正活性材料、黏合劑、導電材料及任何添加劑且容易蒸發之液體。適宜漿液液體包括例如N-甲基吡咯啶酮、乙腈、甲醇、乙醇、丙醇、丁醇、四氫呋喃、水、異丙醇、二甲基吡咯啶酮及類似者。
在一些實施例中,將所製備組成物塗佈於集電器上且乾燥以形成電極。特定而言,藉由將漿液均勻地散佈至導體上來將漿液用於塗佈電導體以形成電極,然後在某些實施例中將該電極輥壓(例如,壓延)且加熱,如此項技術中已知。一般而言,正活性材料及導電材料之基質藉由黏合劑保持在一起且保持於導體上。在某些實施例中,基質包括鋰導電的聚合物黏合劑,諸如聚偏二氟乙烯(PVDF)、聚(偏二氟乙烯-共-六氟丙烯) (PVDF/HFP)、聚四氟乙烯(PTFE)、Kynar Flex ®2801、Kynar ®Powerflex LBG、Kynar ®HSV 900、Teflon ®、苯乙烯丁二烯橡膠(SBR)、聚氧化乙烯(PEO)或聚四氟乙烯(PTFE)。在某些實施例中,將附加碳顆粒、碳奈米纖維、碳奈米管分散在基質中以改良導電性。替代地或另外,在某些實施例中,將鋰離子分散於基質中以改良鋰導電性。
在某些實施例中,集電器選自由以下各項組成之群組:鋁箔、銅箔、鎳箔、不銹鋼箔、鈦箔、鋯箔、鉬箔、泡沫鎳、泡沫銅、碳紙或纖維片材、塗佈有導電金屬的聚合物基材及/或其組合。
PCT公開案第WO2015/003184號、PCT公開案第WO2014/074150號及PCT公開案第WO2013/040067號闡述多種製造電極及電化學電池之方法,該等PCT公開案之全部揭露皆以引用方式特此併入本文中。 隔板
在某些實施例中,電化學電池單元(例如,鋰-硫電池)包括隔板,該隔板實體地分隔陽極及陰極。在某些實施例中,隔板係對電解質實質上或完全不可滲透之不可滲透材料。在某些實施例中,隔板對溶解於電解質中之多硫化物離子不可滲透。在某些實施例中,隔板作為整體對電解質不可滲透,使得阻止電解質可溶性硫化物之通過。在一些實施例中,例如經由此種隔板中的孔口提供跨隔板的一定程度之離子電導率。在某些此類實施例中,隔板作為整體因其不可滲透性而抑制或限制電解質可溶硫化物在電池之陽極部分與陰極部分之間通過。在某些實施例中,不可滲透材料之隔板經組配來在電池單元之充電及放電期間允許在電池之陽極與陰極之間進行鋰離子輸送。在一些此類實施例中,隔板不將陽極及陰極彼此完全隔離。應提供繞過或穿透隔板之不可滲透面中的孔口的一或多個電解質可滲透通道,以允許在電池之陽極部分與陰極部分之間存在足夠的鋰離子通量。在一些實施例中,在隔板本身係完全不可滲透的情況下,提供穿過位於隔板之周邊與電池外殼之壁之間的環狀空間的通道。
熟悉此項技術者將瞭解,隔板之最佳尺寸應平衡相互競爭的必要條件:對多硫化物遷移的最大阻抗,同時允許足夠的鋰離子通量。除這種考慮之外,隔板之形狀及取向沒有特別限制,且部分視電池組態而定。例如,隔板在鈕扣型電池單元中可係實質上圓形的,且在袋型電池單元中可係實質上矩形的。如本文所述,隔板之表面可沒有孔口,使得鋰離子通量排他地發生在不可滲透片材之邊緣周圍。然而,亦設想某些實施例,其中所需鋰離子通量中之一些或全部經由隔板中的孔口來提供。在一些實施例中,隔板係實質上平坦的。然而,不排除可使用彎曲組態或其他非平面組態。
隔板可具有任何適宜厚度。為了最大化電池之能量密度,一般優選隔板儘可能薄且輕。然而,隔板應足夠厚以提供足夠的機械穩健性並確保適宜不可滲透性。在某些實施例中,隔板具有約1微米至約200微米、較佳地約5微米至約100微米、更佳地約10微米至約30微米之厚度。 電解質
在某些實施例中,鋰-硫電池包括電解質,該電解質包括電解鹽。電解鹽之實例包括例如三氟甲磺醯亞胺鋰、三氟甲磺酸鋰、過氯酸酸、LiPF 6、LiBF 4、四烷基銨鹽(例如,四丁基四氟硼酸銨、TBABF 4)、室溫下之液態鹽(例如咪唑鎓鹽諸如l-乙基-3-甲基咪唑鎓雙-(全氟乙基磺醯基)醯亞胺、EMIBeti)及類似者。
在某些實施例中,電解質包括一或多種鹼金屬鹽。在某些實施例中,此類鹽包括鋰鹽,諸如LiCF 3SO 3、LiClO 4、LiNO 3、LiPF 6及雙(三氟甲磺醯基)亞胺鋰(LiTFSI)、或其組合。在某些實施例中,電解質包括離子液體,諸如1-乙基-3-甲基咪唑鎓-TFSI、 N-丁基- N-甲基-哌啶鎓-TFSI、 N-甲基- 丁基吡咯烷鎓-TFSI、及 N-甲基- N-丙基哌啶鎓-TFSI、或其組合。在某些實施例中,電解質包括超離子導體,諸如硫化物、氧化物及磷酸鹽(例如,五硫化二磷)、或其組合。
在某些實施例中,電解質係液體。例如,在某些實施例中,電解質包括有機溶劑。在某些實施例中,電解質僅包括一種有機溶劑。在一些實施例中,電解質包括二或更多種有機溶劑之混合物。在某些實施例中,有機溶劑之混合物包括來自選自弱極性溶劑群組、強極性溶劑群組及鋰保護溶劑的至少兩個群組的有機溶劑。
如本文所使用的術語「弱極性溶劑」定義為能夠溶解元素硫且具有小於15的介電係數的溶劑。在一些實施例中,弱極性溶劑選自芳基化合物、雙環醚及非環碳酸酯化合物。弱極性溶劑之非限制性實例包括二甲苯、二甲氧基乙烷、2-甲基四氫呋喃、碳酸二乙酯、碳酸二甲酯、甲苯、二甲醚、乙醚、二甘二甲醚、四甘二甲醚及類似者。如本文所使用的術語「強極性溶劑」定義為能夠溶解多硫化鋰且具有大於15的介電係數的溶劑。在一些實施例中,強極性溶劑選自雙環碳酸酯化合物、亞碸化合物、內酯化合物、酮化合物、酯化合物、硫酸酯化合物及亞硫酸酯化合物。強極性溶劑之非限制性實例包括六甲基磷三醯胺、γ-丁內酯、乙腈、碳酸亞乙酯、碳酸亞丙酯、N-甲基吡咯烷酮、3-甲基-2-噁唑烷酮、二甲基甲醯胺、環丁碸、二甲基乙醯胺、二甲基亞碸、硫酸二甲酯、乙二醇二乙酸酯、亞硫酸二甲酯、乙二醇亞硫酸酯及類似者。如本文所使用的術語「鋰保護溶劑」被定義為在鋰表面上形成良好保護層,即穩定固體電解質介面(solid-electrolyte interface,SEI)層,且示出至少50%的循環效率的溶劑。在一些實施例中,鋰保護溶劑選自飽和醚化合物、不飽和醚化合物、及包括選自由以下各項組成之群組的一或多個雜原子的雜環化合物:N、O及/或S。鋰保護溶劑之非限制性實例包括四氫呋喃、1,3-二氧戊環、3,5-二甲基異噁唑、2,5-二甲基呋喃、呋喃、2-甲基呋喃、1,4-氧雜環己烷、4-甲基二氧戊環及類似者。
在某些實施例中,電解質係液體(例如,有機溶劑)。在一些實施例中,液體選自由以下各項組成之群組:有機碳酸酯、醚、碸、水、醇、氟碳或此等中任意者之組合。在某些實施例中,電解質包括醚溶劑。
在某些實施例中,有機溶劑包括醚。在某些實施例中,有機溶劑選自由以下各項組成之群組:1,3-二氧戊環、二甲氧基乙烷、二甘二甲醚、三甘二甲醚、γ-丁內酯、γ-戊內酯及其組合。在某些實施例中,有機溶劑包括1,3-二氧戊環及二甲氧基乙烷之混合物。在某些實施例中,有機溶劑包括1,3-二氧戊環及二甲氧基乙烷之1:1 v/v混合物。在某些實施例中,有機溶劑選自由以下各項組成之群組:二甘二甲醚、三甘二甲醚、γ-丁內酯、γ-戊內酯及其組合。在某些實施例中,電解質包括環丁碸、環丁烯碸、二甲碸或甲基乙基碸。在一些實施例中,電解質包括碳酸亞乙酯、碳酸亞丙酯、碳酸二甲酯、碳酸二乙酯或碳酸甲乙酯。
在某些實施例中,電解質包括液體(例如,有機溶劑)。在一些實施例中,液體選自由以下各項組成之群組:有機碳酸酯、醚、碸、水、醇、氟碳或此等中任意者之組合。在某些實施例中,電解質包括醚溶劑。在某些實施例中,電解質包括選自由以下各項組成之群組的液體:環丁碸、環丁烯碸、二甲碸及甲基乙基碸。在某些實施例中,電解質包括選自由以下各項組成之群組的液體:碳酸亞乙酯、碳酸亞丙酯、碳酸二甲酯、碳酸二乙酯及碳酸甲乙酯。
在某些實施例中,電解質係固體。在某些實施例中,固體電解質包括聚合物。在某些實施例中,固體電解質包括玻璃、陶瓷、無機複合物或其組合。在某些實施例中,固體電解質包括具有玻璃、陶瓷、無機複合物或其組合的聚合物複合物。在某些實施例中,此類固體電解質包括一或多種液體組分作為塑化劑或形成「凝膠電解質」。 實例
為了完全地理解本申請案,對以下實例進行闡述。應當理解,此等實例僅用於說明性目的且不應被解釋為以任何方式進行限制。
適於在鋰-硫電池中使用的結構化轉化陰極已被構造,且其微結構藉由SEM進行評估。圖8A至圖8B示出包括陰極膜的結構化陰極之實例,該陰極膜包括電化學活性材料,該陰極膜具有凹入至膜之圖案化表面中、跨圖案化表面具有一致寬度及/或一致間距的溝槽。膜所具有的電化學活性轉化材料之個別結構對導電碳對黏合劑之比率為約10:5:4,例如約55%硫、約25%導電碳及約20%黏合劑。總體上,測試的陰極具有約3-3.5 mg/cm 2的電化學活性硫含量。使用雷射剝蝕,可視需要調諧溝槽寬度及間距。例如,具有由在~400-600 µs下35 µm圓表徵的功率的雷射可用於形成溝槽。例如,圖8A示出結構化陰極,該結構化陰極包括寬度為約80 μm且間隔開約165 μm的溝槽。作為另一實例,圖8B示出結構化陰極,該結構化陰極包括寬度為約70 μm且間隔開約185 μm的溝槽。可使用更寬或更窄溝槽及/或溝槽之間更遠或更近間距。
與具有相似組成物之(未圖案化的)對照陰極相比,對(包括圖案化表面的)3D結構化陰極樣品進行測試。在第3次循環及第5次循環時在圖8B所示的特定樣品(「3D結構化陰極」)與對照項(「對照項」)之間的比較提供於表1中。
循環3 循環5
速率 (mA/g) 容量 (mAh/g S) 速率(mA/g) 容量(mAh/g S)
3D 結構化陰極 438.2 936.6 134.8 1079.5
對照項 387.2 863.3 119.1 996
表1
圖9示出適於在鋰-硫電池中使用的結構化轉化陰極,該結構化轉化陰極在延伸至陰極膜之表面中的溝槽內部與其在陰極之表面之最上部分處具有一致形態。溝槽已藉由雷射剝蝕形成。左側面板示出租借放大圖。紅色框內部之區域被擴展以形成中心面板之視圖,且紅色框內部之區域進一步擴展以形成最右側面板之視圖。如藉由仔細檢查此實例之漸進放大可見,溝槽之表面與陰極之尚未被剝蝕的最上部分(例如,及因此大概亦陰極膜之本體)呈現相似(例如,相同)形態及孔隙率。
圖10至圖13示出結構化陰極之附加構造實例。結構化陰極包括具有電化學活性轉化材料的膜,其中作為溝槽的凹入部使用雷射剝蝕已在膜之表面中形成。凹入部延伸至膜中但未完全延伸穿過膜(例如,未暴露膜下方的集電器)。此等結構化陰極適於在鋰-硫電池中使用。
圖14至圖23C示出結構化陰極之附加構造實例。該等實例包括陰極膜,該陰極膜包括電化學活性材料,該陰極膜具有凹入至膜之圖案化表面中、跨圖案化表面具有一致直徑及/或一致間距的洞。膜所具有的組成物為:(i) 80重量%的硫及金屬硫化物添加劑之共混物;(ii) 10重量%碳(例如,C65及科琴黑);(iii) 10重量%黏合劑(例如,Na-PAA)。圖14至圖19示出壓延膜(圖14至圖16)及未壓延膜(圖17至圖19)之頂視圖。圖20至圖23C示出壓延膜(圖20至圖22)及未壓延膜(圖23A至圖23C)之橫截面圖。洞圖案對應於相似於面心立方(face centered cubic;FCC)結構之(111)平面之六方最密堆積(hexagonal close-packed;HCP)配置特性的六方網格。圖14至圖19示出結構化陰極,該結構化陰極包括寬度為約50 μm且間隔開約100 μm的洞(例如,洞1602、1604及1606)。可使用更寬或更窄洞及/或洞之間更遠或更近間距。
諸如圖18所呈現之高放大倍率SEM影像展示雷射剝蝕產生之界限分明的洞。用於壓延膜(圖20至圖22)及未壓延膜(圖23A至圖23C)二者的橫截面影像展示雷射剝蝕在膜中產生了一致的洞,例如圖20中的洞2002及2004、圖21中的洞2102及圖22中的洞2202。圖23A至圖23C展示在一些情況下,洞(例如,洞2304、2306、2308)並未延伸至基材2302。另外,觀察到洞與陰極膜中的結構之孔相交。
在第3次循環及第5次循環時在圖17至圖19及圖23A至圖23C所示的特定樣品(包括洞的未壓延的「3D結構化陰極」)之間的比較提供於表2中。
循環3 循環5
速率 (mA/g) 容量 (mAh/g S) 速率(mA/g) 容量(mAh/g S)
3D 結構化陰極 333 1029.92 100 1067.5
對照項 333 990.653 100 1029.50
表2
與對照陰極對比,亦以相同電流密度(mA/cm 2)對結構化陰極進行測試。對於實驗結構化陰極,材料速率(mA/g活性)增加。不希望受任何特定理論之束縛,所增加的材料速率可至少部分地由被移除以在實驗結構化陰極之圖案化表面中形成凹入部的材料來解釋。
設想本揭露之系統、裝置、方法及製程涵蓋使用來自本文所述實施例之資訊開發之變化及改編。本文所述之系統、裝置、方法及製程之改編及/或修改可由熟習相關技術者執行。
在整個說明書中,在物品、裝置及系統闡述為具有、包括或包含特定組分的情況下,或在製程及方法闡述為具有、包括或包含特定步驟的情況下,設想另外存在基本上由所列舉組分組成或由其組成的根據本揭露之某些實施例之物品、裝置及系統,且存在基本上由所列舉處理步驟組成或由其組成的根據本揭露之某些實施例之製程及方法。
應當理解,步驟之順序或實施某些動作之順序並不重要,只要不喪失可操作性即可。另外,可同時進行二或更多個步驟或動作。如熟習此項技術者所理解,術語「在……上方」、「在……下方」、「在……上面」、「在……下面」、「在……下」及「在……上」係相對術語,且可參考本揭露中所包括之層、元件及基材之不同取向進行互換。例如,在一些實施例中,第二層上之第一層意謂第一層直接在第二層上且與第二層接觸。在其他實施例中,第二層上之第一層可包括其間之另一層。
標題被提供以供方便讀者,且並不旨在關於所主張之標的進行限制。先前技術部分中作出的陳述不應被解釋為承認它們係先前技術。
本揭露之某些實施例在上文進行描述。然而,明確指出,本揭露並不限於彼等實施例,而係對本揭露中明確描述內容之添加及修改亦欲包括於本揭露之範圍內。另外,應當理解,在不背離本揭露之精神及範圍的情況下,本揭露中所描述之各個實施例之特徵並不相互排斥且可以多個組合及排列存在,即使此類組合或排列不夠明確亦如此。已具體參考本揭露之某些實施例詳細闡述了本揭露,但應當理解,可在所主張發明之精神及範圍內實現變化及修改。
100:陰極 102:陰極膜 104:最上部分 106a~106d:溝槽 200:陰極 202:圖案化膜 204a:未圖案化第一表面 204b:圖案化第二表面 205:箭頭 206a~206d:凹入部 207a:箭頭 207b:箭頭 207c:圓形區域 208a:寬度 208b:深度 208c:箭頭 210:集電器 212:電解質 214:固體電解質 216:隔板 300:方法 302:步驟 304:步驟 306:步驟 500:電化學電池單元 502:負電極 502a~502b:負電極 504-3:陰極層 504-2:鋰嵌入活性材料/陰極層 504-1:集電器 504:正電極 504a~504b:正電極 506:隔板 506a~506b:隔板 510:容器 512:流體電解質 600: i電池 602:負陽極 604:正陰極 605:電池外殼 606:隔板 608:密封構件 1602:洞 1604:洞 1606:洞 2002:洞 2004:洞 2102:洞 2202:洞 2302:基材 2304:洞 2306:洞 2308:洞
本文所呈現的圖式係為了說明目的,而不係為了限制。藉由參考結合隨附圖式進行之以下描述,本揭露之前述及其他目標、態樣、特徵及優點將變得更加明顯且可更好地理解,在圖式中: 圖1係根據本揭露之說明性實施例的結構化轉化陰極的掃描電子顯微鏡(scanning electron microscopy;SEM)顯微照片; 圖2A至圖2D係根據本揭露之說明性實施例的結構化轉化陰極之橫截面示意圖; 圖3係根據本揭露之說明性實施例的用於形成結構化轉化陰極的方法之流程圖; 圖4係根據本揭露之說明性實施例的電化學電池單元之橫截面圖; 圖5係根據本揭露之說明性實施例的電化學電池單元之橫截面圖; 圖6係根據本揭露之說明性實施例的圓柱形電池之透視圖; 圖7係根據本揭露之說明性實施例的鈕扣電池單元總成之透視圖;且 圖8A至圖23C係根據本揭露之說明性實施例的結構化轉化陰極的構造實例之SEM顯微照片。
示意圖未必按比例繪製。
100:陰極
102:陰極膜
104:最上部分
106a~106d:溝槽

Claims (80)

  1. 一種用於一二次鋰電池(例如,鋰-硫電池)的轉化陰極,該陰極包含一膜,該膜包含一電化學活性轉化材料,該膜具有與一基材(例如,集電器)接觸的一第一表面及位於該膜之與該第一表面相反的一側上的一圖案化第二表面(例如,不與該基材接觸),其中該圖案化第二表面包含朝向該基材(例如,在實質上垂直於該第一表面的一方向上)延伸至該膜中的凹入部。
  2. 如請求項1之轉化陰極,其中該膜之該圖案化第二表面具有該等凹入部之一重複幾何圖案。
  3. 如請求項2之轉化陰極,其中該重複幾何圖案保形於一六方網格。
  4. 如請求項2之轉化陰極,其中該重複幾何圖案保形於一等距網格或一正方形網格。
  5. 如前述請求項中任一項之轉化陰極,其中該等凹入部中之至少一部分(例如,全部)跨該第二表面互連(例如,跨該第二表面之一範圍形成該等凹入部之一網路)。
  6. 如前述請求項中任一項之轉化陰極,其中該膜之該第二表面中之該等凹入部包含洞。
  7. 如請求項6之轉化陰極,其中該等洞的橫截面係實質上圓形的。
  8. 如請求項7之轉化陰極,其中該等洞之一直徑係至少20 nm且不大於500 µm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm)。
  9. 如請求項6至8中任一項之轉化陰極,其中該等洞各自具有係該陰極膜之一厚度之至少25%的一深度(例如,係該陰極膜之該厚度之至少50%、至少75%、至少80%或至少90%的一深度)或其中該等洞自該第二表面完全穿過該膜延伸至該第一表面。
  10. 如前述請求項中任一項之轉化陰極,其中該等凹入部包含溝槽。
  11. 如請求項10之轉化陰極,其中該等溝槽跨該第二表面具有一寬度及一長度,該寬度小於該長度,且該寬度係至少20 nm且不大於500 µm (例如,20 nm至50 µm、20 nm至100 µm、20 nm至200 µm、20 nm至300 µm、100 nm至100 µm、100 nm至200 µm、1 µm至100 µm、1 µm至200 µm、10 µm至100 µm、10 µm至200 µm、50 µm至100 µm、50 µm至200 µm或100 µm至200 µm)。
  12. 如請求項10或請求項11之轉化陰極,其中該等溝槽各自具有係該陰極膜之一厚度之至少25%的一深度(例如,係該陰極膜之該厚度之至少50%、至少75%、至少80%或至少90%的一深度)或其中該等溝槽自該第二表面完全穿過該膜延伸至該第一表面。
  13. 如前述請求項中任一項之轉化陰極,其中該等凹入部至少部分地填充有電解質。
  14. 如請求項13之轉化陰極,其中該電解質係一液體。
  15. 如請求項13之轉化陰極,其中該電解質包含一聚合物。
  16. 如請求項13或請求項15之轉化陰極,其中該電解質係一固體。
  17. 如前述請求項中任一項之轉化陰極,其中該等凹入部跨該膜之該第二表面以一規則圖案分佈。
  18. 如前述請求項中任一項之轉化陰極,其中該等凹入部跨該第二表面分佈,使得該膜內任何點與該等凹入部中之至少一個之至少一個邊緣相距皆不大於500 μm (例如,不大於200 µm、不大於100 µm、不大於50 µm、不大於25 µm或不大於20 µm)。
  19. 如前述請求項中任一項之轉化陰極,其中該等凹入部跨該第二表面分佈,使得該膜內之任何點在該等凹入部中之一最近一個之一距離內,該距離不大於該膜之一最大厚度的三倍(例如,不大於兩倍或不大於1.5倍)。
  20. 如請求項19之轉化陰極,其中該距離不大於該膜之該最大厚度。
  21. 如前述請求項中任一項之轉化陰極,其中該等凹入部佔與該第二表面之一最上部分重合的一平面與該第一表面之間所含的總體積之至少5% (例如,至少10%、至少15%、至少20%、至少25%、至少33%或至少50%)。
  22. 如前述請求項中任一項之轉化陰極,該等凹入部之表面(例如,該第二表面之由該等凹入部界定的部分)塗佈有一固體材料,該固體材料具有與該膜中之本體陰極之組成物不同的一組成物。
  23. 如請求項22之轉化陰極,其中該等凹入部之該等表面塗佈有一固體磊晶材料(例如,在形成該等凹入部之後藉由原子層沉積形成)。
  24. 如前述請求項中任一項之轉化陰極,其中該膜係一第一膜且該轉化陰極進一步包含一第二膜,該第二膜安置於該基材之與該第一膜相反的一側上。
  25. 如請求項24之轉化陰極,其中該第二膜具有一圖案化第二表面,該圖案化第二表面包含延伸至該第二膜中的凹入部;及一第一表面,該第一表面與該第二表面相反,其中該第二膜之該第一表面與該基材接觸。
  26. 如請求項24或請求項25之轉化陰極,其中該基材係多孔的。
  27. 如請求項26之轉化陰極,其中該第一膜中的該等凹入部完全延伸穿過該第一膜且與該基材中的孔相交。
  28. 如請求項25至27中任一項之轉化陰極,其中該第二膜中的該等凹入部完全延伸穿過該第二膜且與該基材中的孔相交。
  29. 如請求項27或請求項28之轉化陰極,其中該基材中的該等孔完全延伸穿過該基材(例如,從而界定完全穿過該陰極的孔)。
  30. 如前述請求項中任一項之轉化陰極,其中在該膜已被施加至該基材之後,該膜之該第二表面已被圖案化。
  31. 如請求項30之轉化陰極,其中該膜已藉由將濕漿液施加至該基材且隨後乾燥該漿液,之後進行圖案化來產生。
  32. 如請求項30或請求項31之轉化陰極,其中該膜在圖案化該第二表面之前已被壓延。
  33. 如前述請求項中任一項之轉化陰極,其中該第二表面已藉由雷射剝蝕進行圖案化。
  34. 如請求項33之轉化陰極,其中該雷射剝蝕使用一脈衝雷射圖案化該第二表面。
  35. 如請求項34之轉化陰極,其中該脈衝雷射施加小於1000飛秒(例如,小於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的一持續時間的脈衝。
  36. 如前述請求項中任一項之轉化陰極,其中該膜係多孔的[例如,係個別結構(例如,顆粒) (例如,奈米顆粒) (例如,核-殼式或蛋黃-殼式顆粒)之一多孔總成]。
  37. 如前述請求項中任一項之轉化陰極,其中該電化學活性轉化材料包含:(i)元素硫(例如,呈其S 8環狀八原子分子形式),(ii)呈硫化鋰(例如,Li 2S 2及/或Li 2S)形式之硫,(iii)呈電化學活性有機硫化合物形式之硫,(iv)呈電化學活性含硫聚合物形式之硫,或(v) (i)-(iv)中之任意二者或更多者之一組合。
  38. 如前述請求項中任一項之轉化陰極,其中該陰極膜進一步包含一或多種金屬硫化物。
  39. 如請求項38之轉化陰極,其中該一或多種金屬硫化物中之至少一者係一嵌入電化學活性材料。
  40. 如前述請求項中任一項之轉化陰極,其進一步包含一導電添加劑(例如,導電碳)。
  41. 如前述請求項中任一項之轉化陰極,其進一步包含一聚合物黏合劑。
  42. 如前述請求項中任一項之轉化陰極,其中該陰極實質上不含碳(例如,不大於10重量%碳、不大於5重量%碳、不大於2重量%碳或不大於1重量%碳)。
  43. 如前述請求項中任一項之轉化陰極,其中: (i) 通往該電化學活性轉化材料的一平均質量輸送路徑短於通往不具有該等凹入部的一在其他方面等同的陰極中的電化學活性轉化材料的一平均質量輸送路徑; (ii) 與不具有該等凹入部的一在其他方面等同的陰極之一彎曲度相比,該陰極之一彎曲度減小;或 (iii) (i)及(ii)二者。
  44. 如前述請求項中任一項之轉化陰極,其中: (i) 在一相同電流密度下,該陰極之一容量大於不具有該等凹入部的一在其他方面等同的陰極之一容量; (ii) 該陰極具有一高體積容量;或 (iii) (i)及(ii)二者。
  45. 如前述請求項中任一項之轉化陰極,其中該等凹入部中之至少一些(例如,全部)完全延伸穿過該膜。
  46. 如前述請求項中任一項之轉化陰極,其中該等凹入部中之至少一些(例如,全部)不完全延伸穿過該膜。
  47. 一種(例如,鋰-硫)二次電池,其包含如請求項1至46中任一項之轉化陰極。
  48. 請求項47之電池,其進一步包含一電解質,該電解質安置於該膜中,其中該等凹入部係用於該電解質的在該電池之電化學循環期間自該膜之本體移位的部分的本地儲器。
  49. 如請求項46或請求項48之電池,其進一步包含一液體電解質,該液體電解質至少部分地填充該等凹入部(例如,其中該液體電解質亦直接接觸未凹入的該第二表面)。
  50. 如請求項47之電池,其進一步包含一固體、聚合物或凝膠電解質(例如,聚合物凝膠電解質),該固體、聚合物或凝膠電解質至少部分地填充該等凹入部。
  51. 如請求項50之電池,其進一步包含一液體電解質,該液體電解質與該固體、聚合物或凝膠電解質接觸(例如,其中該液體電解質安置於該等凹入部中且該固體、聚合物或凝膠電解質直接接觸該第二表面)。
  52. 如請求項47至51中任一項之電池,其進一步包含一非導電隔板,其中該膜之該第二表面與該非導電隔板接觸(例如,在該第二表面之非凹入部分處) [例如,從而界定一隔板-陰極界面,且其中與在該等凹入部中相比,非平衡不溶產物在該隔板-陰極界面處以一更高濃度安置(例如,沉澱)於該膜之該表面上]。
  53. 如請求項47至51中任一項之電池,其進一步包含一固體電解質,其中該膜之該第二表面與該固體電解質接觸(例如,在該第二表面之非凹入部分處)。
  54. 如請求項47至51中任一項之電池,其進一步包含一受保護鋰陽極,其中該膜之該第二表面與該受保護鋰陽極接觸。
  55. 如請求項47至53中任一項之電池,其中該電池具有一無陽極組態(例如,其中該電池包含一集電器且鋰在一第一電化學循環期間沉積於該集電器上)。
  56. 如請求項48至55中任一項之電池,其中該電解質不包括磺醯胺鹽(例如,雙(三氟甲烷磺醯)亞胺鋰(LiTFSI))。
  57. 如請求項47至56中任一項之電池,其中該電池具有一低電解質對硫(E/S)比率。
  58. 一種操作以下各項之方法:(i)包含一如請求項1至46中任一項之陰極及一電解質的一電池(例如,鋰-硫電池),或(ii)一如請求項47至57中任一項之電池,該方法包含:在該電池之電化學循環期間(例如,在對該電池放電時)使該膜膨脹[例如,由於裝配於該膜中的個別結構(例如,顆粒)之膨脹] (例如,由於該膜中之減小的孔隙率),使得該電解質之一部分自該膜之本體移位至該等凹入部中。
  59. 如請求項58之方法,其進一步包含:在該電池之進一步電化學循環期間(例如,在對該電池放電時)將該電解質之該部分移位回至該膜之該本體中(例如,由於該膜之收縮)。
  60. 如請求項58或請求項59之方法,其中該電池進一步包含一隔板,該隔板與該膜之該第二表面接觸,從而界定一隔板-陰極界面,且該方法包含: 在電化學循環期間形成非平衡不溶產物;及 將該非平衡不溶產物在該隔板-陰極界面處安置(例如,沉澱)於該膜之該表面上。
  61. 如請求項60之方法,其中與該非平衡不溶產物安置於該等凹入部中相比,該非平衡不溶產物在該隔板-陰極界面處以更高濃度安置於該膜之該表面上。
  62. 如請求項61之方法,其中該非平衡不溶產物不安置於該等凹入部中。
  63. 如請求項60至62中任一項之方法,其包含在電化學循環期間經由該等凹入部將鋰(例如,呈多硫化物的形式)可逆地輸送至該陰極中。
  64. 如請求項63之方法,其中該經由該等凹入部將鋰輸送至該陰極中發生的一速率及/或一程度(例如,基於所輸送的鋰之量)與經由其上安置有該非平衡不溶產物的表面輸送鋰同時發生的一速率及/或一程度相比更大。
  65. 如請求項58至64中任一項之方法,其中在電化學循環期間向一電池單元堆及/或該電池之一或多個空隙中的電解質移位由於向該等凹入部中的該移位而減少。
  66. 一種製作用於一電池(例如,一鋰-硫電池)之一陰極之方法,該方法包含: 提供(例如,形成)包含電化學活性轉化材料的一膜;及 在該膜之一表面中形成延伸至該膜中的凹入部。
  67. 如請求項66之方法,其中該形成包含移除該膜之一部分。
  68. 如請求項67之方法,其中該移除包含雷射剝蝕該膜。
  69. 如請求項68之方法,其中該雷射剝蝕包含向該膜施加一脈衝雷射。
  70. 如請求項69之方法,該脈衝雷射施加小於1000飛秒(例如,小於500 fs、400 fs、300 fs、200 fs、150 fs、100 fs、50 fs、25 fs、15 fs、10 fs、5 fs、4 fs、3 fs、2 fs或1 fs)的一持續時間的脈衝。
  71. 如請求項68至70中任一項之方法,其中該雷射剝蝕線上執行(例如,在一電池之製造期間)。
  72. 如請求項66至71中任一項之方法,其包含將該膜壓延[例如,在一基材(例如,集電器)上]。
  73. 如請求項72之方法,其中該形成發生在該壓延之後。
  74. 如請求項73之方法,其中(i)該壓延已剩下的該膜之孔隙率不大於壓延之前的該膜之一初始孔隙率的40% (例如,不大於30%、不大於20%或不大於10%),(ii)該膜之一最大厚度不大於壓延之前的一初始厚度的40% (例如,不大於30%、不大於20%或不大於10%),或(iii) (i)及(ii)二者。
  75. 如請求項66至74中任一項之方法,其中該形成包含刮削、切割及/或刮擦(例如,利用一或多個刀片)。
  76. 如請求項66至75中任一項之方法,其中該形成包含使該膜凹陷(例如,壓實、壓印及/或衝印)。
  77. 如請求項66至76中任一項之方法,其中該提供包含形成該膜,其中形成該膜包含裝配包含該電化學活性材料的個別結構(例如,顆粒)。
  78. 如請求項77之方法,其中該裝配包含選自由以下各項組成之群組的一或多個成員:漿液塗佈、狹縫式塗佈、旋轉塗佈、噴霧乾燥、洩降塗佈、刮刀塗佈、噴墨列印、逗點式塗佈及反向逗點式塗佈。
  79. 如請求項66至78中任一項之方法,其中該方法作為一捲式製造製程(例如,一捲式陰極製造製程或捲式電池製造製程)之一部分執行。
  80. 如請求項66至79中任一項之方法,其中該陰極係如請求項1至46中任一項之陰極。
TW112135983A 2022-09-23 2023-09-21 用於電化學電池單元之3d結構化電極 TW202431685A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US63/409,688 2022-09-23

Publications (1)

Publication Number Publication Date
TW202431685A true TW202431685A (zh) 2024-08-01

Family

ID=

Similar Documents

Publication Publication Date Title
US8148009B2 (en) Reticulated and controlled porosity battery structures
KR101628901B1 (ko) 플렉시블 전극, 그의 제조 방법 및 그를 이용한 이차 전지
KR20160062025A (ko) 비수 전해액 이차 전지용 부극, 비수 전해액 이차 전지 및 비수 전해액 이차 전지용 부극의 제조 방법
US20210050599A1 (en) High loading electrodes having high areal capacity and energy storage devices including the same
CN113169313A (zh) 包括弹性可压缩功能层的电池及其制造工艺
KR102470559B1 (ko) 금속 전극을 구비하는 금속이차전지
KR20220071227A (ko) 배터리 애플리케이션을 위한 작용화된 폴리머
KR102625579B1 (ko) 리튬 복합 음극, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
US20220247039A1 (en) Long-life lithium-sulfur battery using a novel flexible bi-layer solid state electrolyte
KR20220130199A (ko) 황 이차 전지용 염 첨가제
US20230253567A1 (en) Microgradient patterned carbon coated current collector for alkali metal battery and method of preparation thereof
US20230104437A1 (en) High-energy electrodes with controlled microstructures for electrochemical devices and method for preparing the same
TW202431685A (zh) 用於電化學電池單元之3d結構化電極
US20230207822A1 (en) Coated sulfur particles with no gap
WO2024064268A2 (en) 3d structured electrodes for electrochemical cells
US20240297295A1 (en) Battery cathodes
TW202406188A (zh) 用於鋰硫電池組之無碳陰極
KR20230033349A (ko) 리튬 이차 전지용 음극, 이를 포함하는 이차 전지 및 이의 제조 방법
KR20240144818A (ko) 건식 전극 필름, 이를 포함하는 건식 전극 및 리튬전지
KR20230021670A (ko) 이차 전지용 다공성 캐소드
KR20180106807A (ko) 리튬 전지 및 그 제조 방법
KR20030047040A (ko) 리튬 전지