TW202423845A - Monitoring system, learning device, monitoring method, learning method, and program - Google Patents

Monitoring system, learning device, monitoring method, learning method, and program Download PDF

Info

Publication number
TW202423845A
TW202423845A TW112126289A TW112126289A TW202423845A TW 202423845 A TW202423845 A TW 202423845A TW 112126289 A TW112126289 A TW 112126289A TW 112126289 A TW112126289 A TW 112126289A TW 202423845 A TW202423845 A TW 202423845A
Authority
TW
Taiwan
Prior art keywords
image
solid
supernatant
separation tank
liquid separation
Prior art date
Application number
TW112126289A
Other languages
Chinese (zh)
Inventor
原田要
栗原信一
Original Assignee
日商栗田工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商栗田工業股份有限公司 filed Critical 日商栗田工業股份有限公司
Publication of TW202423845A publication Critical patent/TW202423845A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Image Processing (AREA)

Abstract

This monitoring system comprises: a determination unit that determines the internal state of a solid-liquid separation tank to be diagnosed from a supernatant water image representing the supernatant water inside the solid-liquid separation tank, using a first learning model that has learned the relationship between supernatant water images, which are images representing the supernatant water inside a solid-liquid separation tank for separating waste water into solid and liquid, and the internal state of the solid-liquid separation tank, on the basis of the supernatant water images and diagnostic results based on the supernatant water images; and an output unit that outputs information identifying the internal state of the solid-liquid separation tank to be diagnosed as determined by the determination unit using the supernatant water image of the solid-liquid separation tank and the first learning model.

Description

監控系統、學習裝置、監控方法、學習方法及程式Monitoring system, learning device, monitoring method, learning method and program

本發明是有關於一種監控系統、學習裝置、監控方法、學習方法及程式。 本申請案針對2022年7月28日在日本提出申請的日本專利特願2022-120673號主張優先權,並將其內容引用至本申請案中。 The present invention relates to a monitoring system, a learning device, a monitoring method, a learning method, and a program. This application claims priority to Japanese Patent Application No. 2022-120673 filed in Japan on July 28, 2022, and the contents thereof are cited in this application.

於廢水處理中,具有曝氣槽與沈澱槽的好氧性生物處理(活性污泥)是成熟的處理形態,作為設備,於工程學上基本完成。然而,廢水會伴隨生產物或生產步驟、生產量的變更而發生變化,於基於假定水質、水量進行設備設計時,流入條件(基質、濃度、流量)多數情況不同。另外,自向多品種製造的轉移起變動變多、變大的情況亦增加,成套設備的維持管理變得更複雜而越來越難。除此以外,對應於水質環境基準的重新審視而要求處理較迄今為止更穩定化的過程中,另一方面,請求削減處理成本,即削減電費或廢棄物費、藥品使用量。因此,需要如準確且迅速地掌握處理狀態並結合狀態而適當地調整般的高度管理,但此種測量監控並不容易。Aerobic biological treatment (activated sludge) with aeration tanks and sedimentation tanks is a mature treatment form and is basically completed in terms of engineering as a facility. However, wastewater changes with changes in products, production steps, and production volume. When designing facilities based on assumed water quality and water volume, the inflow conditions (substrate, concentration, flow rate) are often different. In addition, since the shift to multi-variety manufacturing, the number of changes has increased and the size of the changes has increased, making the maintenance and management of complete facilities more complex and increasingly difficult. In addition, in response to the review of water quality and environmental standards, there is a demand for more stable treatment than before, and on the other hand, there is a demand to reduce treatment costs, that is, to reduce electricity costs, waste costs, and the amount of chemicals used. Therefore, a high level of management is required, such as accurately and quickly understanding the processing status and making appropriate adjustments based on the status, but such measurement and monitoring is not easy.

關於對處理狀態進行監控的技術,已知有如下技術:基於相對於液面垂直地放射超音波脈衝並接收其反射脈衝所得的結果來測定由液中的浮游混濁物形成的界面的位置(界面深度)的技術(例如,參照專利文獻1)。 另外,已知有對固液分離槽等槽內的狀態進行監控的技術(例如,參照專利文獻2)。該技術包括:類比/數位(analogue digital,A/D)轉換器,將由發出超音波或光並接收在包含懸濁物堆積層的水中傳播來的超音波或光的感測器所得的接收訊號轉換為數位訊號;算出部,基於數位訊號來算出槽內的界面的位置;圖形轉換部,將數位訊號轉換為畫素資料;記憶體,儲存畫素資料及界面位置資料;及顯示部,顯示儲存於該記憶體中的畫素資料。 另外,已知有一種界面位準計,其可迅速且穩定地進行多個時間寬度的圖像資訊的切換顯示(例如,參照專利文獻3)。該界面位準計包括:超音波感測器;A/D轉換器,將由超音波感測器所得的接收訊號轉換為數位訊號;算出部,基於數位訊號來算出懸濁物堆積層與上清液的界面的位置;圖形轉換部,將數位訊號轉換為與規定的色灰階(color gradation)對應的畫素資料;記憶體,具有分別以不同的時間間隔進行包含多個畫素資料的畫素行資料的獲取及儲存的記憶區域;及顯示部,具有基於色灰階來顯示儲存於記憶區域中的任意一個中的多個畫素行資料的顯示區域及顯示由算出部算出的所述界面的位置的顯示區域。 As for the technology for monitoring the processing state, the following technology is known: the technology for measuring the position (interface depth) of the interface formed by the floating turbidity in the liquid based on the result obtained by radiating ultrasonic pulses vertically relative to the liquid surface and receiving the reflected pulses (for example, refer to Patent Document 1). In addition, there is a technology for monitoring the state in a tank such as a solid-liquid separation tank (for example, refer to Patent Document 2). The technology includes: an analog/digital (A/D) converter that converts a received signal obtained by a sensor that emits ultrasound or light and receives ultrasound or light propagated in water containing a suspended sediment layer into a digital signal; a calculation unit that calculates the position of the interface in the tank based on the digital signal; a graphic conversion unit that converts the digital signal into pixel data; a memory that stores the pixel data and interface position data; and a display unit that displays the pixel data stored in the memory. In addition, there is known an interface level meter that can quickly and stably switch and display image information of multiple time widths (for example, refer to patent document 3). The interface level meter includes: an ultrasonic sensor; an A/D converter that converts the received signal obtained by the ultrasonic sensor into a digital signal; a calculation unit that calculates the position of the interface between the sludge accumulation layer and the supernatant based on the digital signal; a graphic conversion unit that converts the digital signal into pixel data corresponding to a specified color gradation; a memory having a memory area that acquires and stores pixel row data containing a plurality of pixel data at different time intervals; and a display unit having a display area that displays a plurality of pixel row data stored in any one of the memory areas based on the color gradation and a display area that displays the position of the interface calculated by the calculation unit.

另外,已知有對沈澱狀態進行測量的技術(例如,參照專利文獻4)。該技術包括:超音波傳送/接收單元,自沈澱池的水面向垂直下方發送並接收超音波;及波形處理單元,對由超音波傳送/接收單元獲得的反射接收波進行處理。利用波形處理單元並基於反射接收波的強度變化來測量水面下浮游的物質量及/或沈澱物的濃度分佈。 另外,已知有對污泥堆積層內的層彼此的界面進行檢測的技術(例如,參照專利文獻5)。該技術中,使用在固液分離槽內的液中發出超音波或光並且接收在包含污泥堆積層的水中傳播來的超音波或光的感測器,基於來自該感測器的訊號來檢測污泥堆積層與上清液的界面的位置,並且檢測該污泥堆積層內的佔據最上層的自由沈降層與其下側的凝聚沈降層的界面。該技術中,將位於該污泥堆積層內的最上部且槽的深度方向上的感測器的接收訊號強度分佈一定的區域設為自由沈降層,將較該自由沈降層的接收訊號強度而言接收訊號強度分佈開始變大的位置設為自由沈降層與凝聚沈降層的界面。 [現有技術文獻] [專利文獻] In addition, there is a known technology for measuring the sedimentation state (for example, refer to patent document 4). The technology includes: an ultrasonic transmission/reception unit that transmits and receives ultrasound vertically downward from the water surface of the sedimentation tank; and a waveform processing unit that processes the reflected reception wave obtained by the ultrasonic transmission/reception unit. The waveform processing unit is used to measure the amount of floating matter under the water surface and/or the concentration distribution of sediment based on the intensity change of the reflected reception wave. In addition, there is a known technology for detecting the interface between layers in the sludge accumulation layer (for example, refer to patent document 5). In this technology, a sensor that emits ultrasound or light in the liquid in the solid-liquid separation tank and receives ultrasound or light propagated in the water containing the sludge accumulation layer is used to detect the position of the interface between the sludge accumulation layer and the supernatant based on the signal from the sensor, and detects the interface between the free sedimentation layer occupying the top layer in the sludge accumulation layer and the coagulation sedimentation layer below it. In this technology, the area where the received signal intensity distribution of the sensor located at the top of the sludge accumulation layer and in the depth direction of the tank is constant is set as the free sedimentation layer, and the position where the received signal intensity distribution begins to increase compared with the received signal intensity of the free sedimentation layer is set as the interface between the free sedimentation layer and the coagulation sedimentation layer. [Prior art literature] [Patent literature]

[專利文獻1]日本專利特開平3-274484號公報 [專利文獻2]日本專利特開2011-047761號公報 [專利文獻3]日本專利特開2011-13084號公報 [專利文獻4]日本專利特開平4-264235號公報 [專利文獻5]日本專利特開2011-47760號公報 [Patent Document 1] Japanese Patent Publication No. 3-274484 [Patent Document 2] Japanese Patent Publication No. 2011-047761 [Patent Document 3] Japanese Patent Publication No. 2011-13084 [Patent Document 4] Japanese Patent Publication No. 4-264235 [Patent Document 5] Japanese Patent Publication No. 2011-47760

[發明所欲解決之課題][The problem that the invention wants to solve]

於所述技術中,藉由對處理狀態進行監控而獲得的圖像(以下稱為「監控圖像」)由人進行解釋。人藉由對監控圖像進行解釋而診斷出現狀的處理狀態。另外,人會基於經驗來對診斷處理狀態所得的結果的原因進行診斷。進而,人亦對應對方法進行判斷。為了對監控圖像進行解釋,而需要經驗,有時因解釋的人不同而解釋結果產生差異。 本發明是鑒於所述情況而成者,其目的在於提供一種可對用以將廢水固液分離的固液分離槽的槽內狀態進行監控的監控系統、學習裝置、監控方法、學習方法及程式。 [解決課題之手段] In the above technology, images obtained by monitoring the processing state (hereinafter referred to as "monitoring images") are interpreted by humans. Humans diagnose the current processing state by interpreting the monitoring images. In addition, humans diagnose the cause of the result obtained by diagnosing the processing state based on experience. Furthermore, humans also judge the corresponding countermeasures. Experience is required to interpret the monitoring images, and sometimes the interpretation results differ depending on the person interpreting. The present invention is made in view of the above situation, and its purpose is to provide a monitoring system, learning device, monitoring method, learning method and program that can monitor the state inside the solid-liquid separation tank used to separate the solid and liquid of wastewater. [Means for solving the problem]

(1)本發明的一態樣是一種監控系統,其具有:判定部,基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態;及輸出部,輸出用於確定所述判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊。 (2)本發明的一態樣是一種監控系統,其具有:判定部,基於表示出用以將廢水固液分離的固液分離槽的內部的圖像即監控圖像與所述固液分離槽內部的根據所述監控圖像所得的診斷結果,並使用學習了監控圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的監控圖像來判定固液分離槽內部的狀態;及輸出部,輸出用於確定所述判定部使用作為診斷對象的所述固液分離槽的所述監控圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊,所述監控圖像不包含測定不良時的圖像即錯誤圖像。 (3)本發明的一態樣中,於如所述(1)所記載的監控系統中,所述上清液圖像不包含測定不良時的圖像即錯誤圖像。 (4)本發明的一態樣中,於如所述(1)所記載的監控系統中,具有原因判定部,所述原因判定部基於所述上清液圖像與用於確定形成根據所述上清液圖像所得的診斷結果的原因的資訊,並使用學習了上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊之間的關係的第二學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來判定用於確定形成固液分離槽內部的所述狀態的原因的資訊,所述輸出部進而輸出所述原因判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第二學習模型所判定的用於確定形成固液分離槽內部的所述狀態的原因的資訊。 (5)本發明的一態樣中,於如所述(1)所記載的監控系統中,具有應對方法判定部,所述應對方法判定部基於所述上清液圖像與用於確定對根據所述上清液圖像所得的診斷結果的應對方法的資訊,並使用學習了上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊之間的關係的第三學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來判定用於確定對固液分離槽內部的所述狀態的應對方法的資訊,所述輸出部進而輸出所述應對方法判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第三學習模型所判定的用於確定對固液分離槽內部的所述狀態的應對方法的資訊。 (6)本發明的一態樣中,於如所述(1)所記載的監控系統中,包括變化預兆導出部,所述變化預兆導出部基於所述上清液圖像與用於確定獲得所述上清液圖像後的固液分離槽內部的狀態的變化的資訊,並使用學習了上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊之間的關係的第四學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來檢測固液分離槽內部的所述狀態的變化的預兆,所述輸出部進而輸出用於確定所述變化預兆導出部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第四學習模型所檢測的固液分離槽內部的所述狀態的變化的預兆的資訊。 (7)本發明的一態樣中,於如所述(1)所記載的監控系統中,所述診斷結果是基於上清液圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成。 (8)本發明的一態樣中,於如所述(1)所記載的監控系統中,所述判定部根據表示出作為診斷對象的固液分離槽的內部的所述上清液圖像來判定固液分離槽內部的狀態是正常、失常及異常中的哪一者。 (9)本發明的一態樣中,於如所述(1)所記載的監控系統中,更具有通知部,所述通知部於所述判定部判定為固液分離槽內部的所述狀態是失常與異常中的任一者的情況下,通知固液分離槽內部的所述狀態是失常與異常中的任一狀態。 (1) One aspect of the present invention is a monitoring system comprising: a determination unit that determines the state of the interior of a solid-liquid separation tank as a diagnosis target based on a supernatant image representing the supernatant inside a solid-liquid separation tank for separating wastewater into solid and liquid, and a diagnosis result obtained based on the supernatant image, and uses a first learning model that has learned the relationship between the supernatant image and the state of the interior of the solid-liquid separation tank; and an output unit that outputs information for determining the state of the interior of the solid-liquid separation tank determined by the determination unit using the supernatant image of the solid-liquid separation tank as a diagnosis target and the first learning model. (2) One aspect of the present invention is a monitoring system comprising: a determination unit, based on an image representing the interior of a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a monitoring image, and a diagnosis result of the interior of the solid-liquid separation tank obtained based on the monitoring image, and using a first learning model that has learned the relationship between the monitoring image and the state of the interior of the solid-liquid separation tank; A monitoring image of the interior of the solid-liquid separation tank as a diagnostic object is used to determine the state of the interior of the solid-liquid separation tank; and an output unit that outputs information used to determine the state of the interior of the solid-liquid separation tank determined by the monitoring image of the solid-liquid separation tank as a diagnostic object and the first learning model, wherein the monitoring image does not include an image when the measurement is poor, that is, an error image. (3) In one embodiment of the present invention, in the monitoring system described in (1), the supernatant image does not include an image when the measurement is poor, that is, an error image. (4) In one aspect of the present invention, in the monitoring system described in (1), there is a cause determination unit, which is based on the supernatant image and the information for determining the cause of the diagnosis result obtained based on the supernatant image, and uses a second learning model that has learned the relationship between the supernatant image and the information for determining the cause of the diagnosis result inside the solid-liquid separation tank. , based on the supernatant image of the solid-liquid separation tank as the diagnosis object, the information used to determine the cause of the state inside the solid-liquid separation tank is determined, and the output unit further outputs the information used to determine the cause of the state inside the solid-liquid separation tank determined by the cause determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the second learning model. (5) In one aspect of the present invention, in the monitoring system described in (1), there is a response method determination unit, which is based on the supernatant image and the information for determining the response method for the diagnosis result obtained based on the supernatant image, and uses a third learning model that has learned the relationship between the supernatant image and the information for determining the response method for the diagnosis result inside the solid-liquid separation tank. The output unit further outputs the information used to determine the response method for the state inside the solid-liquid separation tank determined by the response method determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the third learning model. (6) In one aspect of the present invention, in the monitoring system described in (1), a change sign deriving unit is included, wherein the change sign deriving unit is based on the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and uses a fourth learning method that has learned the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank. The learning model detects the sign of the change of the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the diagnosis object, and the output unit further outputs information for determining the sign of the change of the state inside the solid-liquid separation tank detected by the supernatant image of the solid-liquid separation tank as the diagnosis object and the fourth learning model. (7) In one embodiment of the present invention, in the monitoring system described in (1), the diagnosis result is generated based on either or both of the accumulation state of the solid matter contained in the supernatant image and the floating state of the solid matter. (8) In one aspect of the present invention, in the monitoring system described in (1), the determination unit determines whether the state inside the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image showing the inside of the solid-liquid separation tank as the diagnosis object. (9) In one aspect of the present invention, in the monitoring system described in (1), there is further a notification unit, which notifies the state inside the solid-liquid separation tank that the state inside the solid-liquid separation tank is either abnormal or abnormal when the determination unit determines that the state inside the solid-liquid separation tank is either abnormal or abnormal.

(10)本發明的一態樣是一種學習裝置,其具有學習部,所述學習部基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與所述固液分離槽內部的狀態的根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型。 (11)本發明的一態樣是一種學習裝置,其具有學習部,所述學習部基於表示出用以將廢水固液分離的固液分離槽的內部的圖像即監控圖像與所述固液分離槽內部的狀態的根據所述監控圖像所得的診斷結果,並藉由學習來生成表示監控圖像與固液分離槽內部的狀態之間的關係的第一學習模型,所述監控圖像不包含測定不良時的圖像即錯誤圖像。 (12)本發明的一態樣中,於如所述(10)所記載的學習裝置中,所述上清液圖像不包含測定不良時的圖像即錯誤圖像。 (13)本發明的一態樣中,於如所述(10)所記載的學習裝置中,所述學習部基於所述上清液圖像與用於確定形成根據所述上清液圖像所得的診斷結果的原因的資訊,並藉由學習來生成表示上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊之間的關係的第二學習模型。 (14)本發明的一態樣中,於如所述(10)所記載的學習裝置中,所述學習部基於所述上清液圖像與用於確定對根據所述上清液圖像所得的診斷結果的應對方法的資訊,並藉由學習來生成表示出上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊之間的關係的第三學習模型。 (15)本發明的一態樣中,於如所述(10)所記載的學習裝置中,所述學習部基於所述上清液圖像與用於確定獲得所述上清液圖像後的固液分離槽內部的狀態的變化的資訊,來生成表示出上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊之間的關係的第四學習模型。 (16)本發明的一態樣中,於如所述(10)所記載的學習裝置中,所述診斷結果是基於上清液圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成。 (10) One aspect of the present invention is a learning device having a learning unit that generates a first learning model representing the relationship between the supernatant image and the state inside the solid-liquid separation tank based on an image representing a supernatant inside a solid-liquid separation tank for separating wastewater from solid and liquid, i.e., a supernatant image, and a diagnosis result obtained based on the supernatant image of the state inside the solid-liquid separation tank, and by learning. (11) One aspect of the present invention is a learning device having a learning unit, the learning unit generating a first learning model representing the relationship between the monitoring image and the state of the solid-liquid separation tank by learning based on an image representing the interior of a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a monitoring image, and a diagnosis result obtained from the monitoring image of the state of the interior of the solid-liquid separation tank, wherein the monitoring image does not include an image when the measurement is poor, i.e., an error image. (12) In one aspect of the present invention, in the learning device described in (10), the supernatant image does not include an image when the measurement is poor, i.e., an error image. (13) In one aspect of the present invention, in the learning device described in (10), the learning unit generates a second learning model representing the relationship between the supernatant image and the information for determining the cause of the diagnosis result formed based on the supernatant image by learning. (14) In one aspect of the present invention, in the learning device described in (10), the learning unit generates a third learning model that represents the relationship between the supernatant image and the information for determining the response method to the diagnosis result obtained based on the supernatant image, and the information for determining the response method to the diagnosis result inside the solid-liquid separation tank through learning. (15) In one aspect of the present invention, in the learning device described in (10), the learning unit generates a fourth learning model representing the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained. (16) In one aspect of the present invention, in the learning device described in (10), the diagnosis result is generated based on either or both of the accumulation state of the solid matter contained in the supernatant image and the floating state of the solid matter.

(17)本發明的一態樣是一種監控方法,其由監控系統執行,並具有如下步驟: 基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態的步驟;及輸出用於確定在所述判定步驟中使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊的步驟。 (17) One aspect of the present invention is a monitoring method, which is executed by a monitoring system and has the following steps: Based on an image of the supernatant liquid inside a solid-liquid separation tank for separating wastewater into solid and liquid, that is, a supernatant liquid image and a diagnosis result obtained based on the supernatant liquid image, and using a first learning model that has learned the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank, a step of determining the state inside the solid-liquid separation tank based on the supernatant liquid image that represents the supernatant liquid inside the solid-liquid separation tank as a diagnosis object; and a step of outputting information for determining the state inside the solid-liquid separation tank determined in the determination step using the supernatant liquid image of the solid-liquid separation tank as a diagnosis object and the first learning model.

(18)本發明的一態樣是一種學習方法,其由學習裝置執行,並具有如下步驟:基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型的步驟。(18) One aspect of the present invention is a learning method executed by a learning device and comprising the following steps: a step of generating a first learning model representing the relationship between the supernatant image and the state of the interior of the solid-liquid separation tank based on an image representing a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a supernatant image, and a diagnosis result obtained based on the supernatant image, and by learning.

(19)本發明的一態樣是一種程式,其使監控系統的電腦執行如下步驟:基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態的步驟;及輸出用於確定在所述判定步驟中使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊的步驟。(19) One aspect of the present invention is a program that causes a computer of a monitoring system to execute the following steps: based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solids from liquids in wastewater, that is, a supernatant liquid image and a diagnosis result obtained based on the supernatant liquid image, and using a first learning model that has learned the relationship between the supernatant liquid image and the state of the inside of the solid-liquid separation tank; type, a step of determining the state of the interior of the solid-liquid separation tank according to a supernatant image representing the supernatant inside the solid-liquid separation tank as a diagnosis object; and a step of outputting information used to determine the state of the interior of the solid-liquid separation tank determined by the supernatant image of the solid-liquid separation tank as a diagnosis object and the first learning model in the determination step.

(20)本發明的一態樣是一種程式,其使學習裝置的電腦執行如下步驟:基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與所述固液分離槽內部的根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型的步驟。 [發明的效果] (20) One aspect of the present invention is a program that causes a computer of a learning device to execute the following steps: a step of generating a first learning model representing the relationship between the supernatant image and the state of the interior of the solid-liquid separation tank based on an image representing the supernatant inside a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a supernatant image, and a diagnosis result of the interior of the solid-liquid separation tank obtained based on the supernatant image, by learning. [Effect of the Invention]

藉由本發明,有能提供一種可對用以將廢水固液分離的固液分離槽的槽內狀態進行監控的監控系統、學習裝置、監控方法、學習方法及程式的效果。The present invention has the effect of providing a monitoring system, a learning device, a monitoring method, a learning method and a program for monitoring the state inside a solid-liquid separation tank for separating solid and liquid from wastewater.

於參照圖式的同時對本實施形態的監控系統、監控方法及程式進行說明。以下說明的實施形態只不過是一例,應用本發明的實施形態並不限於以下實施形態。 再者,於用以說明實施形態的所有圖式中,具有相同功能的部分使用相同符號,並省略重複的說明。 另外,所謂本申請案中所述的「基於XX」,是指「至少基於XX」,亦包含除基於XX以外還基於其他要素的情況。另外,所謂「基於XX」,並不限定於直接使用XX的情況,亦包含基於對XX進行運算或加工所得者的情況。「XX」為任意要素(例如,任意資訊)。 The monitoring system, monitoring method and program of this embodiment are described with reference to the drawings. The embodiment described below is only an example, and the embodiment to which the present invention is applied is not limited to the following embodiment. Furthermore, in all the drawings used to illustrate the embodiments, the same symbols are used for parts with the same functions, and repeated descriptions are omitted. In addition, the so-called "based on XX" mentioned in this application means "at least based on XX", and also includes the case where it is based on other elements in addition to XX. In addition, the so-called "based on XX" is not limited to the case of directly using XX, but also includes the case of the case based on the calculation or processing of XX. "XX" is an arbitrary element (for example, arbitrary information).

[實施形態] (監控系統) 圖1是表示本發明實施形態的監控系統的結構例的圖。本實施形態的監控系統100對沈澱槽、濃縮槽等固液分離槽的污泥堆積狀態進行診斷。於本實施形態中,作為包括固液分離槽的設備的一例,對污水處理設備10繼續進行說明。 (污水處理設備10) 污水處理設備10的一例包括前沈澱槽11、濃縮槽12、貯存槽13、脫水機14、容器15、曝氣槽16、後沈澱槽17、泵18及設備控制裝置19。 前沈澱槽11藉由流路P1而與曝氣槽16連接。向前沈澱槽11導入原水。前沈澱槽11自所導入的原水中將初沈污泥(抽取污泥)沈降分離。沈降分離後的被處理水經由流路P1而導入至曝氣槽16。 曝氣槽16藉由流路P2而與後沈澱槽17連接。曝氣槽16藉由來自散氣管的空氣曝氣而對自前沈澱槽11導入的被處理水進行好氧性處理。於曝氣槽16中經好氧性處理的被處理水經由流路P2而導入至後沈澱槽17。 [Implementation] (Monitoring system) FIG. 1 is a diagram showing a configuration example of a monitoring system of an implementation of the present invention. The monitoring system 100 of the present implementation diagnoses the sludge accumulation state of a solid-liquid separation tank such as a settling tank and a concentration tank. In the present implementation, a sewage treatment facility 10 is described as an example of a facility including a solid-liquid separation tank. (Sewage treatment facility 10) An example of the sewage treatment facility 10 includes a front settling tank 11, a concentration tank 12, a storage tank 13, a dehydrator 14, a container 15, an aeration tank 16, a rear settling tank 17, a pump 18, and a facility control device 19. The front sedimentation tank 11 is connected to the aeration tank 16 via the flow path P1. Raw water is introduced into the front sedimentation tank 11. The front sedimentation tank 11 settles and separates the primary sludge (extracted sludge) from the introduced raw water. The treated water after settling and separation is introduced into the aeration tank 16 via the flow path P1. The aeration tank 16 is connected to the rear sedimentation tank 17 via the flow path P2. The aeration tank 16 aerobically treats the treated water introduced from the front sedimentation tank 11 by air aeration from the diffuser. The treated water aerobically treated in the aeration tank 16 is introduced into the rear sedimentation tank 17 via the flow path P2.

後沈澱槽17藉由流路P3而與泵18連接。泵18與流路P4連接。流路P4被分支為流路P5與流路P6。流路P5與濃縮槽12連接,流路P6與曝氣槽16連接。後沈澱槽17將自曝氣槽16導入的被處理水分離為沈降污泥(抽取污泥)與上清液。後沈澱槽17的上清液以排放水的形式排放至污水處理設備10外。另外,於後沈澱槽17中沈澱的污泥的一部分以剩餘污泥的形式經由泵18、流路P4及流路P5而導入至濃縮槽12。於後沈澱槽17中沈澱的污泥的剩餘部分以回送污泥的形式經由流路P4與配管P6而回送至曝氣槽16。藉由利用設備控制裝置19來控制泵18,而將於後沈澱槽17中沈澱的污泥中規定量的污泥導入至流路P4。 另外,前沈澱槽11藉由流路P7而與濃縮槽12連接。自前沈澱槽11經由流路P7而將抽取污泥導入至濃縮槽12。濃縮槽12藉由流路P8而與前沈澱槽11連接,藉由流路P9而與貯存槽13連接。 The post-sedimentation tank 17 is connected to the pump 18 via the flow path P3. The pump 18 is connected to the flow path P4. The flow path P4 is branched into the flow path P5 and the flow path P6. The flow path P5 is connected to the concentration tank 12, and the flow path P6 is connected to the aeration tank 16. The post-sedimentation tank 17 separates the treated water introduced from the aeration tank 16 into settled sludge (extracted sludge) and supernatant. The supernatant of the post-sedimentation tank 17 is discharged to the outside of the sewage treatment equipment 10 in the form of discharge water. In addition, a part of the sludge precipitated in the post-sedimentation tank 17 is introduced into the concentration tank 12 in the form of residual sludge via the pump 18, the flow path P4 and the flow path P5. The remaining part of the sludge precipitated in the rear sedimentation tank 17 is returned to the aeration tank 16 through the flow path P4 and the pipe P6 in the form of return sludge. By controlling the pump 18 using the equipment control device 19, a predetermined amount of sludge in the sludge precipitated in the rear sedimentation tank 17 is introduced into the flow path P4. In addition, the front sedimentation tank 11 is connected to the concentration tank 12 through the flow path P7. The extracted sludge from the front sedimentation tank 11 is introduced into the concentration tank 12 through the flow path P7. The concentration tank 12 is connected to the front sedimentation tank 11 through the flow path P8 and is connected to the storage tank 13 through the flow path P9.

於濃縮槽12中,所投入的污泥因重力而分離為上清液與濃縮污泥。上清液經由流路P8而回送至前沈澱槽11。濃縮污泥自濃縮槽12的底部抽出,並經由流路P9而導入至貯存槽13。 貯存槽13藉由流路P10而與脫水機14連接。貯存槽13臨時貯存自濃縮槽12導入的濃縮污泥。貯存於濃縮槽12中的濃縮污泥被導入至脫水機14。脫水機14藉由輸送帶P11而與容器15連接。脫水機14對自貯存槽13導入的濃縮污泥進行脫水處理。藉由脫水處理而產生的脫水濾餅經由輸送帶P11而導入至容器15。容器15收容由脫水機14導入的脫水濾餅,並搬出所收容的脫水濾餅。 In the concentration tank 12, the sludge introduced is separated into supernatant and concentrated sludge by gravity. The supernatant is returned to the front sedimentation tank 11 through the flow path P8. The concentrated sludge is extracted from the bottom of the concentration tank 12 and introduced into the storage tank 13 through the flow path P9. The storage tank 13 is connected to the dehydrator 14 through the flow path P10. The storage tank 13 temporarily stores the concentrated sludge introduced from the concentration tank 12. The concentrated sludge stored in the concentration tank 12 is introduced into the dehydrator 14. The dehydrator 14 is connected to the container 15 through the conveyor belt P11. The dehydrator 14 performs dehydration treatment on the concentrated sludge introduced from the storage tank 13. The dehydrated filter cakes produced by the dehydration treatment are introduced into the container 15 via the conveyor belt P11. The container 15 accommodates the dehydrated filter cakes introduced by the dehydrator 14 and carries out the accommodated dehydrated filter cakes.

(監控系統100) 監控系統100包括超音波感測器20、資料處理裝置30、閘道裝置31、資訊處理裝置40、終端裝置45及監控裝置50。 閘道裝置31、資訊處理裝置40、終端裝置45及監控裝置50是經由網路NW而連接。網路NW是基於無線或有線的通訊網。於該網路NW中包含網際網路或內部網路(intranet)等。具體而言,網路NW是包含廣域網路(Wide Area Network,WAN)、區域網路(Local Area Network,LAN)等的資訊通訊網路。於該WAN中包含例如行動電話網、個人手持電話系統(Personal Handy-phone System,PHS)網、公眾交換電話網(Public Switched Telephone Network,PSTN)、專用通訊線路網及虛擬專用網路(Virtual Private Network,VPN)等。 (Monitoring system 100) The monitoring system 100 includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40, a terminal device 45, and a monitoring device 50. The gateway device 31, the information processing device 40, the terminal device 45, and the monitoring device 50 are connected via a network NW. The network NW is a wireless or wired communication network. The network NW includes the Internet or an intranet. Specifically, the network NW is a communication network including a wide area network (WAN), a local area network (LAN), and the like. The WAN includes, for example, mobile phone networks, personal handy-phone systems (PHS) networks, public switched telephone networks (PSTN), dedicated communication line networks, and virtual private networks (VPN), etc.

超音波感測器20自超音波發送電路將脈衝電壓提供給超音波振動器而向水中發送超音波。於本實施形態中,作為一例,對超音波感測器20設置於後沈澱槽17並向後沈澱槽的內部發送超音波的情況繼續進行說明。此處,自電壓[V]變換為音壓[dB]。藉由振動器微小振動而產生超音波。振動器的一例是陶瓷元件。振動器接受到於水中被「某物」反射回來的反射波後起電,藉此產生電動勢,超音波接收電路對電壓進行檢測。 圖2是表示超音波感測器的一例的圖。如圖2所示,超音波感測器20包括作為傳送用的振動器2的振盪(發送)部21及作為接收用的振動器的接收部22。於圖2中,作為一例,對超音波感測器20包括振盪部21及接收部22此兩個振動器的情況進行說明。但是,亦可利用一個振動器來實現傳送用的振動器與接收用的振動器。 超音波感測器20藉由機構(未圖示)而安裝於用於貯存污泥等的懸濁物堆積層23與該懸濁物堆積層23的上清液24的後沈澱槽17(以下,亦稱為處理槽25)的規定的高度27處。藉由將超音波感測器20設置於要測量的處理槽25而深度不變,因此不會變更深度。例如,於深度為5 m的槽時,可以5 m分配200點來創建圖像資料庫。於該情況下,每一畫素為2.5 cm,顯示解析度為2.5 cm。例如,於測量設定時有輸入深度的設定項目,可基於該設定值來進行深度方向資料的縮減。亦可收納所有資料,並根據指示進行縮減顯示,或局部擴大顯示(全顯示),以可擴大某一部分。 振盪部21將由訊號生成電路(未圖示)生成的電訊號提供給超音波振動器並朝向處理槽25的下面傳送。 The ultrasonic sensor 20 provides a pulse voltage from the ultrasonic transmitting circuit to the ultrasonic vibrator to transmit ultrasound into the water. In this embodiment, as an example, the ultrasonic sensor 20 is set in the rear sedimentation tank 17 and transmits ultrasound into the interior of the rear sedimentation tank. Here, the self-voltage [V] is converted into sound pressure [dB]. Ultrasonic waves are generated by the tiny vibration of the vibrator. An example of a vibrator is a ceramic element. The vibrator receives the reflected wave reflected by "something" in the water and is electrified, thereby generating an electromotive force, and the ultrasonic receiving circuit detects the voltage. Figure 2 is a diagram showing an example of an ultrasonic sensor. As shown in FIG2 , the ultrasonic sensor 20 includes an oscillating (transmitting) part 21 as a vibrator for transmission and a receiving part 22 as a vibrator for reception. In FIG2 , as an example, the ultrasonic sensor 20 includes two vibrators, the oscillating part 21 and the receiving part 22. However, a vibrator for transmission and a vibrator for reception can also be realized by one vibrator. The ultrasonic sensor 20 is installed at a predetermined height 27 of a post-sedimentation tank 17 (hereinafter also referred to as a treatment tank 25) for a suspended sludge accumulation layer 23 for storing sludge, etc. and a supernatant 24 of the suspended sludge accumulation layer 23 by a mechanism (not shown). By setting the ultrasonic sensor 20 in the processing tank 25 to be measured without changing the depth, the depth will not be changed. For example, in a tank with a depth of 5 m, 200 points can be allocated to 5 m to create an image database. In this case, each pixel is 2.5 cm and the display resolution is 2.5 cm. For example, there is a setting item for inputting the depth during measurement settings, and the depth direction data can be reduced or reduced based on the setting value. All data can also be stored and displayed in a reduced or reduced manner according to instructions, or partially expanded (full display) to expand a certain part. The oscillating unit 21 provides the electrical signal generated by the signal generating circuit (not shown) to the ultrasonic oscillator and transmits it toward the bottom of the processing tank 25.

由振盪部21傳送的超音波被懸濁物堆積層23與其上清液24的界面26或界面26下的懸濁物或處理槽25的底部等反射。反射波一邊產生與經反射的物體的位置(距離、深度)成比例的時間差(到達時間),一邊逐個地返回。反射波的強度與該物體的性狀(≒密度)有關係,其資訊由音壓(dB)表示。反射波由接收部22接收。於接收部22中,音壓使振動器振動,產生與其強度相應的電壓。此處,自音壓[dB]變換為電壓[V]。接收部22將接收信號輸出至資料處理裝置30。資料處理裝置30接收接收部22所輸出的接收訊號,並將所接收的接收訊號轉換為圖像資料。The ultrasonic waves transmitted by the oscillation unit 21 are reflected by the interface 26 between the suspended sludge layer 23 and its supernatant 24, or the suspended sludge below the interface 26 or the bottom of the treatment tank 25. The reflected waves return one by one while generating a time difference (arrival time) proportional to the position (distance, depth) of the reflected object. The intensity of the reflected wave is related to the properties of the object (≒density), and its information is represented by sound pressure (dB). The reflected wave is received by the receiving unit 22. In the receiving unit 22, the sound pressure causes the oscillator to vibrate, generating a voltage corresponding to its intensity. Here, the sound pressure [dB] is converted into voltage [V]. The receiving unit 22 outputs the received signal to the data processing device 30. The data processing device 30 receives the reception signal output by the receiving unit 22 and converts the received reception signal into image data.

圖3是表示本實施形態的監控系統的資料處理裝置的一例的圖。於圖3所示的例子中,對利用一個振動器來實現傳送用的振動器與接收用的振動器的情況進行說明。 資料處理裝置30包括超音波發送/接收電路32、資料轉換電路33、資料運算部34及圖像資料儲存部35。 超音波發送/接收電路32生成用以傳送超音波的電訊號,並將所生成的電訊號輸出至超音波感測器20。超音波發送/接收電路32接收超音波感測器20所輸出的電訊號。超音波發送/接收電路32將所接收的電訊號輸出至資料轉換電路33。 資料轉換電路33獲取超音波發送/接收電路32所輸出的電訊號。資料轉換電路33將所獲取的電訊號放大。資料轉換電路33對所放大的電訊號進行屏蔽處理。資料轉換電路33藉由基於對所放大的電訊號進行屏蔽處理所得的結果來將訊號強度數位處理化,而轉換為數位訊號。例如,資料轉換電路33基於訊號強度來將電訊號轉換為例如256灰階。資料轉換電路33將數位訊號輸出至資料運算部34。 FIG3 is a diagram showing an example of a data processing device of the monitoring system of the present embodiment. In the example shown in FIG3, a case where a vibrator for transmission and a vibrator for reception are implemented by one vibrator is described. The data processing device 30 includes an ultrasonic transmission/reception circuit 32, a data conversion circuit 33, a data operation unit 34, and an image data storage unit 35. The ultrasonic transmission/reception circuit 32 generates an electrical signal for transmitting ultrasound and outputs the generated electrical signal to the ultrasonic sensor 20. The ultrasonic transmission/reception circuit 32 receives the electrical signal output by the ultrasonic sensor 20. The ultrasonic transmission/reception circuit 32 outputs the received electrical signal to the data conversion circuit 33. The data conversion circuit 33 obtains the electrical signal output by the ultrasonic transmitting/receiving circuit 32. The data conversion circuit 33 amplifies the obtained electrical signal. The data conversion circuit 33 performs shielding processing on the amplified electrical signal. The data conversion circuit 33 converts the signal intensity into a digital signal by digital processing based on the result of shielding processing on the amplified electrical signal. For example, the data conversion circuit 33 converts the electrical signal into, for example, 256 gray levels based on the signal intensity. The data conversion circuit 33 outputs the digital signal to the data operation unit 34.

資料運算部34獲取資料轉換電路33所輸出的數位訊號。另外,資料運算部34自設置於超音波感測器20的熱電偶(未圖示)獲取溫度資料。資料運算部34使用所獲取的溫度資料來進行在水中行進的音速的校正運算。另外,資料運算部34基於所獲取的數位訊號而以時間的函數表示訊號的位置(=距離)。另外,資料運算部34基於所獲取的數位訊號來對反射強度(訊號強度)伴隨超音波感測器20傳送超音波後的時間經過的變化進行運算。資料運算部34基於以時間的函數表示出訊號的位置(=距離)的結果與對反射強度(訊號強度)伴隨傳送超音波後的時間經過的變化進行運算所得的結果來將訊號強度與位置資訊相關聯。資料運算部34將訊號強度與位置資訊相關聯地暫時儲存(保存)。 資料運算部34算出懸濁物堆積層23與上清液24的界面26的位置(深度)。例如,資料運算部34基於超音波感測器20傳送超音波後的超音波的反射強度的時間經過來導出至反射強度超過規定臨限值地急劇變大的時機為止的經過時間。資料運算部34基於所導出的時間經過來算出至界面26為止的距離(界面26的位置)。資料運算部34將界面位準的數值的數位資料輸出至圖像資料儲存部35。 The data calculation unit 34 obtains the digital signal output by the data conversion circuit 33. In addition, the data calculation unit 34 obtains temperature data from a thermocouple (not shown) provided in the ultrasonic sensor 20. The data calculation unit 34 uses the obtained temperature data to perform a correction operation of the speed of sound traveling in water. In addition, the data calculation unit 34 represents the position (= distance) of the signal as a function of time based on the obtained digital signal. In addition, the data calculation unit 34 calculates the change in reflection intensity (signal intensity) accompanying the passage of time after the ultrasonic sensor 20 transmits the ultrasonic wave based on the obtained digital signal. The data calculation unit 34 associates the signal intensity with the position information based on the result of expressing the position (= distance) of the signal as a function of time and the result of calculating the change in the reflection intensity (signal intensity) with the passage of time after the transmission of the ultrasound. The data calculation unit 34 temporarily stores (saves) the signal intensity and the position information in association. The data calculation unit 34 calculates the position (depth) of the interface 26 between the suspended sediment accumulation layer 23 and the supernatant 24. For example, the data calculation unit 34 derives the time until the reflection intensity exceeds the specified critical value and increases sharply based on the time passage of the reflection intensity of the ultrasound after the ultrasound sensor 20 transmits the ultrasound. The data calculation unit 34 calculates the distance to the interface 26 (the position of the interface 26) based on the derived time. The data calculation unit 34 outputs the digital data of the numerical value of the interface level to the image data storage unit 35.

資料運算部34將所保存的訊號強度與位置資訊相關聯所得的資訊、及界面位準的數值的數位資料輸出至圖像資料儲存部35。此處,於無法判定界面位準的情況下,資料運算部34可將表示判定錯誤的資訊輸出至圖像資料儲存部35。資料運算部34可將使訊號強度與位置資訊相關聯所得的資訊、及使界面位準的數值的數位資料的各個與溫度資料相關聯所得的資訊輸出至圖像資料儲存部35。 圖4是表示本實施形態的監控系統的動作的一例的圖。圖4表示自資料運算部34向圖像資料儲存部35輸出的資料的一例。自資料運算部34向圖像資料儲存部35輸出的資料的一例由瞬時值表示。圖4是將自資料運算部34向圖像資料儲存部35輸出的瞬時值二維化並加以顯示的圖。 於資料處理裝置30中,資料運算部34經由閘道裝置31而將數位訊號傳送至監控裝置50。返回至圖1,繼續進行說明。 The data operation unit 34 outputs the information obtained by associating the stored signal strength with the position information and the digital data of the numerical value of the interface level to the image data storage unit 35. Here, when the interface level cannot be determined, the data operation unit 34 can output information indicating a determination error to the image data storage unit 35. The data operation unit 34 can output the information obtained by associating the signal strength with the position information and the digital data of the numerical value of the interface level with the temperature data to the image data storage unit 35. FIG. 4 is a diagram showing an example of the operation of the monitoring system of the present embodiment. FIG. 4 shows an example of data output from the data operation unit 34 to the image data storage unit 35. An example of data output from the data operation unit 34 to the image data storage unit 35 is represented by an instantaneous value. FIG. 4 is a diagram showing the instantaneous value output from the data operation unit 34 to the image data storage unit 35 in two dimensions. In the data processing device 30, the data operation unit 34 transmits the digital signal to the monitoring device 50 via the gate device 31. Return to FIG. 1 to continue the explanation.

(監控裝置50) 監控裝置50是藉由個人電腦、伺服器或產業用電腦等裝置來實現。監控裝置50包括通訊裝置51、記錄裝置52、資訊處理部53、及用以將各結構部件如圖1所示般電性連接的位址匯流排或資料匯流排等匯流線BL。 通訊裝置51是藉由通訊模組來實現。通訊裝置51經由網路NW而與資料處理裝置30、資訊處理裝置40等其他裝置進行通訊。通訊裝置51接收資料處理裝置30所傳送的數位訊號。例如,通訊裝置51每隔規定時間間隔接收在過去規定時間的期間內所測量的資料。 具體而言,通訊裝置51以1小時一次接收與過去1小時相應的資料。另外,通訊裝置51接收用以請求終端裝置45所傳送的監控圖像的監控圖像請求。此處,監控圖像為表示反射強度(接收強度)伴隨向固液分離槽傳送超音波後的時間經過的變化的圖像。通訊裝置51相對於所接收的監控圖像請求,將資訊處理部53所輸出的監控圖像響應傳送至終端裝置45。通訊裝置51相對於所傳送的監控圖像響應,接收終端裝置45所傳送的診斷結果通知。於診斷結果通知中包含表示監控圖像的資訊與表示固液分離槽內部的狀態的診斷結果的資訊。 另外,通訊裝置51接收資訊處理裝置40所傳送的槽內狀態資訊請求。通訊裝置51將資訊處理部53所輸出的槽內狀態資訊響應傳送至資訊處理裝置40。通訊裝置51獲取資訊處理部53所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40。 (Monitoring device 50) The monitoring device 50 is implemented by a device such as a personal computer, a server or an industrial computer. The monitoring device 50 includes a communication device 51, a recording device 52, an information processing unit 53, and a bus BL such as an address bus or a data bus for electrically connecting each structural component as shown in FIG. 1. The communication device 51 is implemented by a communication module. The communication device 51 communicates with other devices such as the data processing device 30 and the information processing device 40 via the network NW. The communication device 51 receives a digital signal transmitted by the data processing device 30. For example, the communication device 51 receives data measured during a specified time period in the past at a specified time interval. Specifically, the communication device 51 receives data corresponding to the past hour once an hour. In addition, the communication device 51 receives a monitoring image request for requesting the monitoring image transmitted by the terminal device 45. Here, the monitoring image is an image showing the change in reflection intensity (reception intensity) with the passage of time after the ultrasonic wave is transmitted to the solid-liquid separation tank. In response to the received monitoring image request, the communication device 51 transmits the monitoring image response output by the information processing unit 53 to the terminal device 45. In response to the transmitted monitoring image response, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45. The diagnosis result notification includes information indicating the monitoring image and information indicating the diagnosis result of the state inside the solid-liquid separation tank. In addition, the communication device 51 receives the tank state information request transmitted by the information processing device 40. The communication device 51 transmits the tank state information response output by the information processing unit 53 to the information processing device 40. The communication device 51 obtains the state notification information output by the information processing unit 53 and transmits the obtained state notification information to the information processing device 40.

記錄裝置52例如是藉由隨機存取記憶體(random access memory,RAM)、唯讀記憶體(read only memory,ROM)、硬式磁碟機(hard disk drive,HDD)、快閃記憶體或將該些中的多個組合而成的混合型記憶裝置等來實現。於記錄裝置52中記憶由監控裝置50執行的程式(監控應用)。另外,於記錄裝置52中記憶資訊處理部53所輸出的畫素資料。 於記錄裝置52中記憶將表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部(槽內)的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對上清液圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。此處,對監控圖像及監控圖像中所含的上清液圖像進行說明。 圖5表示監控圖像的一例。資料處理裝置30自超音波感測器20向水中下方(=底面方向)發送超音波,並接收觸碰到存在於超音波行進的範圍內的物體而返回的反射波,將所接收的反射波轉換為數位訊號。 資訊處理部53獲取資料處理裝置30所傳送的數位訊號。資訊處理部53基於所獲取的數位訊號來將反射波的強度轉換為色調,並將至反射波返回為止的時間轉換為距離來作為位置資訊提供,結合色調與距離而在縱向上取距感測器的距離(=水深)且在橫向上取經時(=時間序列)進行連續繪製。該連續繪製而成者是監控圖像。如圖5所示,於監控圖像中,看到與自固液分離槽的底面起的固液分離槽底面、沈澱色料、污泥堆積層、污泥界面、上清液相當的像。上清液圖像為監控圖像中所含的上清液的圖像。使用圖2進行說明,監控圖像是由超音波感測器20所得的懸濁物堆積層23與上清液24的測定結果,相對於此,上清液圖像是由超音波感測器20所得的僅上清液24的測定結果。 圖6是表示教師資料的一例的圖。圖6表示診斷結果的教師資料。診斷結果的教師資料是將上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的資料。於本實施形態中,作為一例,將多個上清液圖像的各個與作為診斷結果的「正常」、「異常」及「失常」中的任一者相關聯。於圖6的說明中,方便起見,藉由監控圖像來進行說明。於圖6中,(1)由於上清液具有充分的深度,因此診斷為正常。(2)由於上清液的深度淺,因此診斷為異常。(3)由於在上清液中看到堆積污泥的飛揚,因此診斷為失常。返回至圖1,繼續進行說明。 The recording device 52 is implemented by, for example, a random access memory (RAM), a read only memory (ROM), a hard disk drive (HDD), a flash memory, or a hybrid memory device combining multiple of these. The program (monitoring application) executed by the monitoring device 50 is stored in the recording device 52. In addition, the pixel data output by the information processing unit 53 is stored in the recording device 52. The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the supernatant image with the diagnosis result of the inside of the solid-liquid separation tank (inside the tank) obtained from the supernatant image, and a learning model of the diagnosis result obtained by machine learning the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. Here, the monitoring image and the supernatant image contained in the monitoring image are explained. FIG5 shows an example of a monitoring image. The data processing device 30 transmits ultrasound from the ultrasound sensor 20 to the bottom of the water (= bottom direction), receives the reflected wave that hits the object within the range of the ultrasound, and converts the received reflected wave into a digital signal. The information processing unit 53 obtains the digital signal transmitted by the data processing device 30. Based on the obtained digital signal, the information processing unit 53 converts the intensity of the reflected wave into a color tone, and converts the time until the reflected wave returns into a distance to provide as position information, and combines the color tone and distance to obtain the distance from the sensor in the vertical direction (= water depth) and to obtain the distance in the horizontal direction (= time series) for continuous drawing. The continuous drawing is a monitoring image. As shown in FIG5, in the monitoring image, there are images corresponding to the bottom of the solid-liquid separation tank, the precipitated colorant, the sludge accumulation layer, the sludge interface, and the supernatant liquid. The supernatant liquid image is an image of the supernatant liquid contained in the monitoring image. Using FIG2 for illustration, the monitoring image is the measurement result of the sludge accumulation layer 23 and the supernatant liquid 24 obtained by the ultrasonic sensor 20, while the supernatant liquid image is the measurement result of only the supernatant liquid 24 obtained by the ultrasonic sensor 20. FIG6 is a diagram showing an example of teacher data. FIG6 shows teacher data of the diagnosis result. The teacher data of the diagnosis result is data obtained by associating the supernatant image with the diagnosis result of the state of the inside of the solid-liquid separation tank obtained from the supernatant image. In this embodiment, as an example, each of the multiple supernatant images is associated with any one of "normal", "abnormal" and "abnormal" as the diagnosis result. In the description of Figure 6, for convenience, the description is made using monitoring images. In Figure 6, (1) Since the supernatant has a sufficient depth, it is diagnosed as normal. (2) Since the depth of the supernatant is shallow, it is diagnosed as abnormal. (3) Since the flying of accumulated sludge is seen in the supernatant, it is diagnosed as abnormal. Return to Figure 1 to continue the explanation.

資訊處理部53例如作為圖形化部54、現狀判定部55及學習部56發揮功能。 圖形化部54獲取通訊裝置51所接收的數位訊號。圖形化部54將所獲取的數位訊號的值轉換為畫素資料。圖形化部54使數位訊號的轉換後的畫素資料記憶於記錄裝置52中。 圖形化部54獲取通訊裝置51所接收的上清液圖像請求。圖形化部54基於所獲取的上清液圖像請求來獲取記錄裝置52中記憶的畫素資料。圖形化部54基於所獲取的畫素資料來創建監控圖像中所含的上清液的圖像。圖形化部54創建上清液圖像響應,所述上清液圖像響應包含表示所創建的上清液圖像的資訊並以資訊處理裝置40為目的地。圖形化部54將所創建的上清液圖像響應輸出至通訊裝置51。 圖形化部54例如根據監控圖像來檢測上清液與污泥堆積層的界面即污泥界面,並創建自污泥界面起的縱向上方(水深變淺的方向)的畫素資料作為上清液圖像。污泥界面為由資料運算部34算出的界面26。圖形化部54可將由資料運算部34算出的界面26的位置作為污泥界面。圖形化部54獲取通訊裝置51所接收的槽內狀態資訊請求。圖形化部54基於所獲取的槽內狀態資訊請求來獲取記錄裝置52中記憶的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。圖形化部54創建槽內狀態資訊響應,所述槽內狀態資訊響應包含表示所創建的上清液圖像的資訊並以資訊處理裝置40為目的地。圖形化部54將所創建的槽內狀態資訊響應輸出至通訊裝置51。 The information processing unit 53 functions as, for example, a graphics unit 54, a current state determination unit 55, and a learning unit 56. The graphics unit 54 obtains a digital signal received by the communication device 51. The graphics unit 54 converts the value of the obtained digital signal into pixel data. The graphics unit 54 stores the converted pixel data of the digital signal in the recording device 52. The graphics unit 54 obtains a supernatant image request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained supernatant image request. The graphics unit 54 creates an image of the supernatant contained in the monitoring image based on the obtained pixel data. The graphics unit 54 creates a supernatant liquid image response, which includes information representing the created supernatant liquid image and has the information processing device 40 as the destination. The graphics unit 54 outputs the created supernatant liquid image response to the communication device 51. The graphics unit 54 detects the interface between the supernatant liquid and the sludge accumulation layer, i.e., the sludge interface, based on the monitoring image, and creates pixel data in the vertical direction upward (in the direction where the water depth becomes shallower) from the sludge interface as the supernatant liquid image. The sludge interface is the interface 26 calculated by the data calculation unit 34. The graphics unit 54 can use the position of the interface 26 calculated by the data calculation unit 34 as the sludge interface. The graphics unit 54 obtains the tank status information request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained tank state information request, and creates a supernatant image based on the obtained pixel data. The graphics unit 54 creates a tank state information response, which includes information representing the created supernatant image and has the information processing device 40 as the destination. The graphics unit 54 outputs the created tank state information response to the communication device 51.

現狀判定部55獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。現狀判定部55獲取記憶於記錄裝置52中的診斷結果的學習模型。現狀判定部55基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。於固液分離槽內部的狀態的判定結果為失常或異常的情況下,現狀判定部55創建狀態通知資訊,所述狀態通知資訊包含表示固液分離槽內部的狀態的判定結果的資訊且以資訊處理裝置40為目的地。現狀判定部55將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取現狀判定部55所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40。 於創建上清液圖像的情況下,現狀判定部55可直接使用所測量的資料,亦可於藉由縮減而受限的顯示寬度中包含在長時間的期間內所測量的資料。藉由在受限的顯示寬度中包含在長時間的期間內所測量的資料,可監控更長時間的變化。若假設為靜止畫面,則可以任意適當的間隔拾取畫素資料並進行切換顯示,於本實施形態中,由於始終進行測量並不斷追加新的資料,因此於以任意適當的間隔拾取畫素資料並進行切換顯示的情況下,有給資料處理帶來延遲或阻礙的擔憂,為了圖像顯示而測量變得不穩定,從而本末倒置。因此,於本實施形態中,準備若干個預先預設的顯示時間寬度,並創建與多個顯示時間寬度分別對應的時間寬度用的資料儲存區域。於本實施形態中,指定用於追加新穎資料的間隔(區間(interval)),並創建與多個區間分別對應的圖像資料庫(資料儲存區域(位址))。 The current status determination unit 55 obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. The current status determination unit 55 obtains the learning model of the diagnosis result stored in the recording device 52. The current status determination unit 55 determines the state of the inside of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. When the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the current status determination unit 55 creates state notification information, which includes information indicating the determination result of the state inside the solid-liquid separation tank and has the information processing device 40 as the destination. The current state determination unit 55 outputs the created state notification information to the communication device 51. The communication device 51 obtains the state notification information output by the current state determination unit 55 and transmits the obtained state notification information to the information processing device 40. When creating a supernatant image, the current state determination unit 55 can directly use the measured data or include the data measured over a long period of time in the display width limited by reduction. By including the data measured over a long period of time in the limited display width, changes over a longer period of time can be monitored. If it is assumed to be a still picture, the pixel data can be picked up at any appropriate interval and switched for display. In this embodiment, since measurement is always performed and new data is continuously added, there is a concern that the data processing will be delayed or blocked when the pixel data is picked up at any appropriate interval and switched for display. The measurement becomes unstable for the image display, which puts the cart before the horse. Therefore, in this embodiment, a plurality of pre-set display time widths are prepared, and data storage areas for time widths corresponding to the plurality of display time widths are created. In this embodiment, the interval (interval) for appending new data is specified, and an image database (data storage area (address)) corresponding to each of the multiple intervals is created.

對監控裝置50進行切換顯示的操作,並且選擇顯示時間寬度。現狀判定部55自與所選擇的時間顯示寬度對應的資料庫獲取資料,使用所獲取的資料來創建上清液圖像。於假設進行了切換時間顯示寬度的操作的情況下,自與所選擇的時間顯示寬度對應的資料庫獲取資料,使用所獲取的資料來創建上清液圖像。藉由如此般構成,可於不對儲存有資料的資料庫的資料進行加工的情況下,亦不會產生創建上清液圖像的時滯且順暢地進行切換。 學習部56獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部(槽內)的狀態的診斷結果相關聯而得的診斷結果的教師資料記憶於記錄裝置52中。學習部56獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習(有教師的學習),而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。例如,學習部56使用卷積類神經網路(Convolutional neural network,CNN)來識別上清液圖像。藉由診斷結果的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為作為固液分離槽內部的狀態的正常、失常及異常中的任一者。學習部56使所生成的診斷結果的學習模型記憶於記錄裝置52中。 資訊處理部53的全部或一部分例如是藉由中央處理單元(Central Processing Unit,CPU)等處理器執行儲存於記錄裝置52中的監控應用等程式來實現的功能部(以下,稱為軟體功能部)。再者,資訊處理部53的全部或一部分可藉由大型積體電路(Large Scale Integration,LSI)、特定應用積體電路(Application Specific Integrated Circuit,ASIC)或現場可程式閘陣列(Field-Programmable Gate Array,FPGA)等硬體來實現,亦可藉由軟體功能部與硬體的組合來實現。 The monitoring device 50 is operated to switch the display, and the display time width is selected. The current state determination unit 55 obtains data from the database corresponding to the selected time display width, and uses the obtained data to create a supernatant image. Assuming that the operation of switching the time display width is performed, data is obtained from the database corresponding to the selected time display width, and the supernatant image is created using the obtained data. By configuring in this way, the switching can be performed smoothly without processing the data of the database storing the data, and without causing a time lag in creating the supernatant image. The learning section 56 obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the diagnosis result obtained by associating the information representing the supernatant image contained in the obtained diagnosis result notification with the diagnosis result of the state of the inside of the solid-liquid separation tank (inside the tank) obtained from the supernatant image in the recording device 52. The learning section 56 obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56 performs machine learning (teacher-assisted learning) on the supernatant image and the diagnosis result of the state of the inside of the solid-liquid separation tank obtained from the supernatant image based on the teacher data of the obtained diagnosis result, and generates a learning model of the diagnosis result that associates the supernatant image with the state of the inside of the solid-liquid separation tank. For example, the learning unit 56 uses a convolutional neural network (CNN) to recognize the supernatant image. The supernatant image is classified into any one of normal, abnormal, and abnormal as the state of the inside of the solid-liquid separation tank based on the learning model of the diagnosis result and the information representing the supernatant image. The learning unit 56 stores the generated learning model of the diagnosis result in the recording device 52. The whole or part of the information processing unit 53 is a functional unit (hereinafter referred to as a software functional unit) implemented by a processor such as a central processing unit (CPU) executing a program such as a monitoring application stored in the recording device 52. Furthermore, the whole or part of the information processing unit 53 can be implemented by hardware such as a large scale integration (LSI), an application specific integrated circuit (ASIC) or a field programmable gate array (FPGA), or can be implemented by a combination of a software functional unit and hardware.

(資訊處理裝置40) 資訊處理裝置40是藉由個人電腦、伺服器或產業用電腦等裝置來實現。資訊處理裝置40的一例設置於用於遠程監控污水處理設備10的監控中心。 於接收到監控裝置50所傳送的狀態資訊通知的情況下,資訊處理裝置40顯示所接收的狀態資訊通知中所含的固液分離槽的判定結果。 另外,資訊處理裝置40基於操作員獲取固液分離槽內的狀態的資訊的操作來創建槽內狀態資訊請求,所述槽內狀態資訊請求包含請求槽內的狀態的資訊且以監控裝置50為目的地。資訊處理裝置40將所創建的槽內狀態資訊請求傳送至通訊裝置51。 資訊處理裝置40相對於槽內狀態資訊請求,接收監控裝置50所傳送的槽內狀態資訊響應。資訊處理裝置40獲取所接收的槽內狀態資訊響應中所含的上清液圖像。資訊處理裝置40顯示所獲取的上清液圖像。 (Information processing device 40) The information processing device 40 is implemented by a device such as a personal computer, a server or an industrial computer. An example of the information processing device 40 is set in a monitoring center for remotely monitoring the sewage treatment equipment 10. When receiving the status information notification transmitted by the monitoring device 50, the information processing device 40 displays the judgment result of the solid-liquid separation tank contained in the received status information notification. In addition, the information processing device 40 creates a tank status information request based on the operator's operation of obtaining information on the status in the solid-liquid separation tank, and the tank status information request includes information on the status in the tank and has the monitoring device 50 as the destination. The information processing device 40 transmits the created tank status information request to the communication device 51. The information processing device 40 receives the tank status information response transmitted by the monitoring device 50 in response to the tank status information request. The information processing device 40 obtains the supernatant image contained in the received tank status information response. The information processing device 40 displays the obtained supernatant image.

(終端裝置45) 終端裝置45是藉由個人電腦、伺服器或產業用電腦等裝置來實現。終端裝置45的一例設置於用於監控污水處理設備10的監控中心。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45來創建上清液圖像請求,所述上清液圖像請求包含請求上清液圖像的資訊且以監控裝置50為目的地。終端裝置45基於用戶的操作來創建上清液圖像請求。終端裝置45將所創建的上清液圖像請求傳送至監控裝置50。 終端裝置45相對於傳送至監控裝置50的上清液圖像請求,接收監控裝置50所傳送的上清液圖像響應。終端裝置45顯示上清液圖像響應中所含的監控圖像。用戶參照終端裝置45所顯示的上清液圖像來診斷上清液圖像中所含的固液分離槽內部的狀態。 用戶藉由操作終端裝置45來創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果且以監控裝置50為目的地。終端裝置45基於用戶的操作來創建診斷結果通知。終端裝置45將所創建的診斷結果通知傳送至監控裝置50。 (Terminal device 45) The terminal device 45 is implemented by a device such as a personal computer, a server or an industrial computer. An example of the terminal device 45 is set in a monitoring center for monitoring the sewage treatment equipment 10. When diagnosing the state inside the solid-liquid separation tank, the user creates a supernatant image request by operating the terminal device 45, and the supernatant image request includes information requesting a supernatant image and has the monitoring device 50 as a destination. The terminal device 45 creates the supernatant image request based on the user's operation. The terminal device 45 transmits the created supernatant image request to the monitoring device 50. The terminal device 45 receives a supernatant image response transmitted by the monitoring device 50 in response to the supernatant image request transmitted to the monitoring device 50. The terminal device 45 displays the monitoring image contained in the supernatant image response. The user diagnoses the state of the inside of the solid-liquid separation tank contained in the supernatant image with reference to the supernatant image displayed by the terminal device 45. The user creates a diagnosis result notification by operating the terminal device 45, and the diagnosis result notification includes information representing the supernatant image and the diagnosis result of the state of the inside of the solid-liquid separation tank and has the monitoring device 50 as the destination. The terminal device 45 creates the diagnosis result notification based on the user's operation. The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.

(監控系統的動作) 圖7是表示本實施形態的監控系統的動作的例1的圖。參照圖7,對如下處理進行說明:監控裝置50將終端裝置45所傳送的診斷結果通知中所含的固液分離槽內部的狀態的診斷結果累積,並基於所累積的固液分離槽內部的狀態的診斷結果來進行機器學習,而生成診斷結果的學習模型。 (步驟S1-1) 於資料處理裝置30中,超音波發送/接收電路32生成用以傳送超音波的電訊號,並將所生成的電訊號輸出至超音波感測器20。 (步驟S2-1) 於資料處理裝置30中,超音波發送/接收電路32接收超音波感測器20所輸出的電訊號。 (步驟S3-1) 於資料處理裝置30中,超音波發送/接收電路32將所接收的電訊號輸出至資料轉換電路33。資料轉換電路33獲取超音波發送/接收電路32所輸出的電訊號。資料轉換電路33將所獲取的電訊號放大。資料轉換電路33對所放大的電訊號進行屏蔽處理。資料轉換電路33藉由基於對所放大的電訊號進行屏蔽處理所得的結果來將訊號強度數位處理化,而轉換為數位訊號。資料運算部34自資料轉換電路33獲取數位訊號,對所獲取的數位訊號進行與位置(距離)資訊有關的溫度校正運算、界面位準的判定運算。 (步驟S4-1) 於資料處理裝置30中,資料運算部34經由閘道裝置31而將進行與位置(距離)資訊有關的溫度校正運算、界面位準的判定運算所得的數位訊號傳送至監控裝置50。 (步驟S5-1) 於監控裝置50中,通訊裝置51接收資料處理裝置30所傳送的數位訊號。圖形化部54獲取通訊裝置51所接收的數位訊號。圖形化部54將所獲取的數位訊號的值轉換為畫素資料。 (步驟S6-1) 於監控裝置50中,圖形化部54使轉換為數位訊號後的畫素資料記憶於記錄裝置52中。 (步驟S7-1) 終端裝置45創建上清液圖像請求。 (Operation of the monitoring system) FIG. 7 is a diagram showing Example 1 of the operation of the monitoring system of the present embodiment. Referring to FIG. 7 , the following processing is described: the monitoring device 50 accumulates the diagnosis results of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45, and performs machine learning based on the accumulated diagnosis results of the state inside the solid-liquid separation tank to generate a learning model of the diagnosis results. (Step S1-1) In the data processing device 30, the ultrasonic transmission/reception circuit 32 generates an electrical signal for transmitting ultrasound, and outputs the generated electrical signal to the ultrasonic sensor 20. (Step S2-1) In the data processing device 30, the ultrasonic transmitting/receiving circuit 32 receives the electrical signal output by the ultrasonic sensor 20. (Step S3-1) In the data processing device 30, the ultrasonic transmitting/receiving circuit 32 outputs the received electrical signal to the data conversion circuit 33. The data conversion circuit 33 obtains the electrical signal output by the ultrasonic transmitting/receiving circuit 32. The data conversion circuit 33 amplifies the obtained electrical signal. The data conversion circuit 33 performs shielding processing on the amplified electrical signal. The data conversion circuit 33 converts the signal intensity into a digital signal by digitally processing the signal intensity based on the result of shielding processing on the amplified electrical signal. The data operation unit 34 obtains the digital signal from the data conversion circuit 33, and performs temperature correction operation and interface level determination operation on the obtained digital signal in accordance with the position (distance) information. (Step S4-1) In the data processing device 30, the data operation unit 34 transmits the digital signal obtained by performing temperature correction operation and interface level determination operation on the position (distance) information to the monitoring device 50 via the gate device 31. (Step S5-1) In the monitoring device 50, the communication device 51 receives the digital signal transmitted by the data processing device 30. The graphics unit 54 obtains the digital signal received by the communication device 51. The graphics unit 54 converts the value of the acquired digital signal into pixel data. (Step S6-1) In the monitoring device 50, the graphics unit 54 stores the pixel data converted into the digital signal in the recording device 52. (Step S7-1) The terminal device 45 creates a supernatant image request.

(步驟S8-1) 終端裝置45將所創建的上清液圖像請求傳送至監控裝置50。 (步驟S9-1) 於監控裝置50中,通訊裝置51接收終端裝置45所傳送的上清液圖像請求。圖形化部54獲取通訊裝置51所接收的上清液圖像請求。圖形化部54基於所獲取的上清液圖像請求來獲取記錄裝置52中記憶的畫素資料。圖形化部54基於所獲取的畫素資料來創建上清液圖像。圖形化部54創建上清液圖像響應,所述上清液圖像響應包含表示所創建的上清液圖像的資訊且以終端裝置45為目的地。 (步驟S10-1) 於監控裝置50中,圖形化部54將所創建的上清液圖像響應輸出至通訊裝置51。通訊裝置51獲取圖形化部54所輸出的上清液圖像響應,並將所獲取的上清液圖像響應傳送至終端裝置45。 (步驟S11-1) 終端裝置45接收監控裝置50所傳送的上清液圖像響應。終端裝置45藉由對所接收的上清液圖像響應中所含的表示上清液圖像的資訊進行圖像處理來顯示上清液圖像。終端裝置45創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊與診斷上清液圖像所得的結果。 (步驟S12-1) 終端裝置45將所創建的診斷結果通知傳送至監控裝置50。 (步驟S13-1) 於監控裝置50中,通訊裝置51接收終端裝置45所傳送的診斷結果通知。學習部56獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部(槽內)的狀態的診斷結果相關聯而得的診斷結果的教師資料記憶於記錄裝置52中。 (步驟S14-1) 於監控裝置50中,學習部56獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習,而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。 (步驟S15-1) 於監控裝置50中,學習部56使所生成的診斷結果的學習模型記憶於記錄裝置52中。 (Step S8-1) The terminal device 45 transmits the created supernatant image request to the monitoring device 50. (Step S9-1) In the monitoring device 50, the communication device 51 receives the supernatant image request transmitted by the terminal device 45. The graphics unit 54 obtains the supernatant image request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained supernatant image request. The graphics unit 54 creates a supernatant image based on the obtained pixel data. The graphics unit 54 creates a supernatant image response, which includes information indicating the created supernatant image and has the terminal device 45 as a destination. (Step S10-1) In the monitoring device 50, the graphics unit 54 outputs the created supernatant image response to the communication device 51. The communication device 51 obtains the supernatant image response output by the graphics unit 54 and transmits the obtained supernatant image response to the terminal device 45. (Step S11-1) The terminal device 45 receives the supernatant image response transmitted by the monitoring device 50. The terminal device 45 displays the supernatant image by performing image processing on the information representing the supernatant image contained in the received supernatant image response. The terminal device 45 creates a diagnosis result notification, which includes the information representing the supernatant image and the result of diagnosing the supernatant image. (Step S12-1) The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50. (Step S13-1) In the monitoring device 50, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45. The learning unit 56 obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the diagnosis result obtained by associating the information representing the supernatant image contained in the obtained diagnosis result notification with the diagnosis result of the state of the inside of the solid-liquid separation tank (inside the tank) obtained from the supernatant image in the recording device 52. (Step S14-1) In the monitoring device 50, the learning unit 56 obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56 performs machine learning on the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image by using the teacher data of the obtained diagnosis result, thereby generating a learning model of the diagnosis result that associates the supernatant image with the state inside the solid-liquid separation tank. (Step S15-1) In the monitoring device 50, the learning unit 56 stores the generated learning model of the diagnosis result in the recording device 52.

再者,診斷結果通知亦可為基於監控圖像而非上清液圖像進行診斷所得的結果。即,可為,於步驟S7-1中,終端裝置45創建監控圖像請求,於步驟S8-1中,將終端裝置45所創建的監控圖像請求傳送至監控裝置50,於步驟S9-1中,監控裝置50創建監控圖像,於步驟S10-1中,監控裝置50將監控圖像響應傳送至終端裝置45。Furthermore, the diagnosis result notification may also be the result of diagnosis based on the monitoring image instead of the supernatant image. That is, in step S7-1, the terminal device 45 creates a monitoring image request, in step S8-1, the monitoring image request created by the terminal device 45 is transmitted to the monitoring device 50, in step S9-1, the monitoring device 50 creates a monitoring image, and in step S10-1, the monitoring device 50 transmits the monitoring image response to the terminal device 45.

圖8是表示本實施形態的監控系統的動作的例2的圖。參照圖8,對如下處理進行說明:監控裝置50獲取資料處理裝置30所傳送的數位訊號,並基於所獲取的數位訊號來創建上清液圖像;監控裝置50基於所創建的上清液圖像來判定固液分離槽內部的狀態。 步驟S1-2至步驟S6-2可應用圖7的步驟S1-1至步驟S6-1,因此省略此處的說明。 (步驟S7-2) 於監控裝置50中,現狀判定部55獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。 (步驟S8-2) 於監控裝置50中,現狀判定部55獲取記憶於記錄裝置52中的診斷結果的學習模型。 (步驟S9-2) 於監控裝置50中,現狀判定部55基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。 (步驟S10-2) 於監控裝置50中,現狀判定部55判定固液分離槽內部的狀態的判定結果是否為失常或異常。於現狀判定部55判定為固液分離槽內部的狀態的判定結果既非失常亦非異常即為正常的情況下結束。 (步驟S11-2) 於監控裝置50中,於判定為固液分離槽內部的狀態的判定結果為失常或異常的情況下,現狀判定部55創建狀態通知資訊,所述狀態通知資訊包含表示固液分離槽內部的狀態的判定結果的資訊且以資訊處理裝置40為目的地。 (步驟S12-2) 於監控裝置50中,現狀判定部55將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取現狀判定部55所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40。 FIG8 is a diagram showing Example 2 of the operation of the monitoring system of the present embodiment. Referring to FIG8 , the following processing is described: the monitoring device 50 obtains the digital signal transmitted by the data processing device 30, and creates a supernatant image based on the obtained digital signal; the monitoring device 50 determines the state inside the solid-liquid separation tank based on the created supernatant image. Steps S1-2 to S6-2 can apply steps S1-1 to S6-1 of FIG7 , so the description here is omitted. (Step S7-2) In the monitoring device 50, the current state determination unit 55 obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. (Step S8-2) In the monitoring device 50, the current state determination unit 55 obtains the learning model of the diagnosis result stored in the recording device 52. (Step S9-2) In the monitoring device 50, the current state determination unit 55 determines the state of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. (Step S10-2) In the monitoring device 50, the current state determination unit 55 determines whether the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal. When the current state determination unit 55 determines that the determination result of the state inside the solid-liquid separation tank is neither abnormal nor abnormal, that is, normal, the process ends. (Step S11-2) In the monitoring device 50, when the determination result of the state inside the solid-liquid separation tank is determined to be abnormal or abnormal, the current state determination unit 55 creates state notification information, which includes information indicating the determination result of the state inside the solid-liquid separation tank and has the information processing device 40 as the destination. (Step S12-2) In the monitoring device 50, the current status determination unit 55 outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the current status determination unit 55, and transmits the obtained status notification information to the information processing device 40.

再者,於步驟S7-2中,監控裝置50創建上清液圖像,但只不過是一例。例如,監控裝置50只要基於畫素資料來創建監控圖像,並於之後的步驟中藉由忽略較污泥界面而言深的部分等來著眼於上清液圖像即可。Furthermore, in step S7-2, the monitoring device 50 creates a supernatant image, but this is only an example. For example, the monitoring device 50 only needs to create a monitoring image based on the pixel data, and in the subsequent steps, focus on the supernatant image by ignoring the portion deeper than the sludge interface.

圖9是表示本實施形態的監控系統的動作的例3的圖。參照圖9,對如下處理進行說明:監控裝置50基於資訊處理裝置40所傳送的槽內狀態資訊請求來傳送表示上清液圖像的資訊。 步驟S1-3至步驟S6-3可應用圖7的步驟S1-1至步驟S6-1,因此省略此處的說明。 (步驟S7-3) 資訊處理裝置40基於用戶的操作來創建槽內狀態資訊請求。 (步驟S8-3) 資訊處理裝置40將所創建的槽內狀態資訊請求傳送至監控裝置50。 (步驟S9-3) 於監控裝置50中,通訊裝置51接收資訊處理裝置40所傳送的槽內狀態資訊請求。圖形化部54獲取通訊裝置51所接收的槽內狀態資訊請求。圖形化部54基於所獲取的槽內狀態資訊請求來獲取記錄裝置52中記憶的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。 (步驟S10-3) 於監控裝置50中,圖形化部54創建槽內狀態資訊響應,所述槽內狀態資訊響應包含表示所創建的上清液圖像的資訊且以資訊處理裝置40為目的地。 (步驟S11-3) 於監控裝置50中,圖形化部54將所創建的槽內狀態資訊響應輸出至通訊裝置51。通訊裝置51獲取圖形化部54所輸出的槽內狀態資訊響應,並將所獲取的槽內狀態資訊響應傳送至資訊處理裝置40。 於步驟S11-3後,資訊處理裝置40接收監控裝置50所傳送的槽內狀態資訊響應,並獲取所接收的槽內狀態資訊響應中所含的表示上清液圖像的資訊。資訊處理裝置40藉由對所獲取的表示上清液圖像的資訊進行圖像處理來顯示上清液圖像。藉由如此般構成,資訊處理裝置40的用戶可確認固液分離槽內部的狀態。 再者,監控裝置50可創建監控圖像而非上清液圖像,槽內狀態資訊響應可包含表示監控圖像的資訊,資訊處理裝置40可藉由對所獲取的表示監控圖像的資訊進行圖像處理來顯示監控圖像。 FIG9 is a diagram showing Example 3 of the operation of the monitoring system of the present embodiment. Referring to FIG9, the following processing is described: the monitoring device 50 transmits information representing the image of the supernatant based on the tank state information request transmitted by the information processing device 40. Steps S1-3 to S6-3 can be applied to steps S1-1 to S6-1 of FIG7, so the description here is omitted. (Step S7-3) The information processing device 40 creates a tank state information request based on the user's operation. (Step S8-3) The information processing device 40 transmits the created tank state information request to the monitoring device 50. (Step S9-3) In the monitoring device 50, the communication device 51 receives the tank state information request transmitted by the information processing device 40. The graphics unit 54 obtains the tank state information request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained tank state information request, and creates a supernatant image based on the obtained pixel data. (Step S10-3) In the monitoring device 50, the graphics unit 54 creates a tank state information response, the tank state information response includes information indicating the created supernatant image and has the information processing device 40 as the destination. (Step S11-3) In the monitoring device 50, the graphics unit 54 outputs the created tank state information response to the communication device 51. The communication device 51 obtains the tank state information response output by the graphics unit 54, and transmits the obtained tank state information response to the information processing device 40. After step S11-3, the information processing device 40 receives the tank state information response transmitted by the monitoring device 50, and obtains the information representing the supernatant image contained in the received tank state information response. The information processing device 40 displays the supernatant image by performing image processing on the obtained information representing the supernatant image. By configuring in this way, the user of the information processing device 40 can confirm the state inside the solid-liquid separation tank. Furthermore, the monitoring device 50 can create a monitoring image instead of a supernatant image, and the tank state information response can include information representing the monitoring image. The information processing device 40 can display the monitoring image by performing image processing on the acquired information representing the monitoring image.

於所述實施形態中,作為一例,對在後沈澱槽17設置超音波感測器20來判定後沈澱槽17內部的狀態的情況進行了說明,但並不限於該例。例如,可於前沈澱槽11設置超音波感測器20來判定前沈澱槽11內部的狀態,亦可於濃縮槽12設置超音波感測器20來判定濃縮槽12內部的狀態。即,於後沈澱槽17、前沈澱槽11及濃縮槽12中的至少一者設置超音波感測器20來判定內部的狀態。 於所述實施形態中,對在一個污水處理設備10連接有監控系統100的情況進行了說明,但並不限於該例。例如,可於多個污水處理設備10連接有監控系統100,亦可於一個污水處理設備10連接有多個監控系統100。於假設在多個污水處理設備10連接有監控系統100的情況下,當於A的設備中產生無經驗的非穩定狀態時,若於B的設備中有產生該非穩定狀態的經驗,則判斷為「異常」,輸出的可能性高。即,監控裝置50能夠進行更多的學習,因此可增加能用於判定的事例數。因此,可增加能判斷為異常或失常的非穩定狀態。 於所述實施形態中,對監控裝置50進行機器學習的情況進行了說明,但並不限於該例。例如,可利用獨立於監控裝置50的裝置來實現進行機器學習的裝置。於該情況下,學習裝置自監控裝置50獲取表示出用以將廢水固液分離的固液分離槽的內部的圖像即上清液圖像與固液分離槽內部的基於上清液圖像所得的診斷結果。學習裝置具有學習部,所述學習部基於所獲取的上清液圖像與固液分離槽內部的狀態的根據上清液圖像所得的診斷結果,並藉由機器學習(有教師的機器學習)來生成表示上清液圖像與固液分離槽內部的狀態的關係的診斷結果的學習模型。 於所述實施形態中,對基於上清液圖像來判定固液分離槽內部的狀態的判定結果是正常、異常及失常中的哪一者的情況進行了說明,但並不限於該例。例如,可基於上清液圖像來判定固液分離槽內部的狀態的判定結果是正常與異常中的哪一者,亦可基於上清液圖像來將固液分離槽內部的狀態的判定結果分類為四種以上。 In the embodiment, as an example, the case where an ultrasonic sensor 20 is provided in the rear sedimentation tank 17 to determine the state inside the rear sedimentation tank 17 is described, but it is not limited to this example. For example, an ultrasonic sensor 20 can be provided in the front sedimentation tank 11 to determine the state inside the front sedimentation tank 11, and an ultrasonic sensor 20 can also be provided in the concentration tank 12 to determine the state inside the concentration tank 12. That is, an ultrasonic sensor 20 is provided in at least one of the rear sedimentation tank 17, the front sedimentation tank 11 and the concentration tank 12 to determine the internal state. In the embodiment, the case where a monitoring system 100 is connected to a sewage treatment equipment 10 is described, but it is not limited to this example. For example, a monitoring system 100 may be connected to multiple sewage treatment equipment 10, or multiple monitoring systems 100 may be connected to one sewage treatment equipment 10. Assuming that multiple sewage treatment equipment 10 are connected to the monitoring system 100, when an unstable state for which there is no experience occurs in equipment A, if there is experience of the unstable state occurring in equipment B, it is judged as "abnormal" and the possibility of output is high. That is, the monitoring device 50 can learn more, thereby increasing the number of cases that can be used for judgment. Therefore, the unstable state that can be judged as abnormal or abnormal can be increased. In the above-described embodiment, the case where the monitoring device 50 performs machine learning is described, but the present invention is not limited to this example. For example, a device independent of the monitoring device 50 may be used to implement a device that performs machine learning. In this case, the learning device obtains an image representing the interior of a solid-liquid separation tank for separating solid and liquid wastewater, that is, a supernatant image, and a diagnosis result of the interior of the solid-liquid separation tank obtained based on the supernatant image from the monitoring device 50. The learning device has a learning unit that generates a learning model of a diagnosis result representing the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank obtained based on the supernatant image by machine learning (machine learning with a teacher). In the embodiment, the case where the determination result of determining whether the state inside the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image is described, but it is not limited to this example. For example, the determination result of the state inside the solid-liquid separation tank can be determined based on the supernatant image, whether it is normal or abnormal, and the determination result of the state inside the solid-liquid separation tank can be classified into four or more types based on the supernatant image.

於所述實施形態中,於判定為將所創建的上清液圖像與過去正常狀態的上清液圖像比較所得的結果有變化的情況下,現狀判定部55可使用記憶於記錄裝置52中的診斷結果的學習模型來判定固液分離槽內部的狀態。 於所述實施形態中,可於資料處理裝置30中包括顯示切換操作部36及圖像資料顯示部37。 圖10是表示本實施形態的資料處理裝置的另一例的圖。顯示切換操作部36的一例包含顯示切換按鈕。圖像資料顯示部37的一例是顯示器。可使圖像資料顯示部37直接顯示所測量的資料,亦可於藉由縮減所測量的資料而受限的顯示寬度中顯示長時間的資料。藉由在受限的顯示寬度中顯示長時間的資料,可監控長時間的時間變化。 於假設使圖像資料顯示部37顯示靜止畫面的情況下,可以任意適當的間隔拾取畫素資料並進行切換顯示,於如本實施形態般始終進行測量並不斷追加新的資料的情況下,當拾取畫素資料並進行切換顯示時,有於資料處理中產生延遲或阻礙的擔憂,為了圖像顯示而測量變得不穩定,從而本末倒置。 因此,於本實施形態中,準備若干個預先預設的顯示時間寬度,並創建與多個顯示時間寬度分別對應的時間寬度用的資料儲存區域,指定用於追加新穎資料的間隔(區間),並創建與多個顯示時間寬度分別對應的圖像資料庫。於假設圖像資料顯示部37在縱向(=深度方向)上包含200畫素、在橫向(=時間序列)上包含240畫素時,於每隔1秒儲存資料的情況下,在橫向上形成4分鐘的顯示資料,於每隔10秒儲存的情況下,在橫向上形成40分鐘的顯示資料。藉由在追加新穎資料的同時刪除一個最早的資料,可於受限的資料區域中運用。另外,亦可設置用於保存顯示寬度所需的240資料以上的資料的區域,並進行滾動顯示,藉此如動態影像般觀察宛如自過去的變化。於本實施形態中,能夠進行此兩個資料儲存與顯示。 In the embodiment, when it is determined that the result of comparing the created supernatant image with the supernatant image of the past normal state has changed, the current state determination unit 55 can use the learning model of the diagnosis result stored in the recording device 52 to determine the state inside the solid-liquid separation tank. In the embodiment, the data processing device 30 can include a display switching operation unit 36 and an image data display unit 37. FIG. 10 is a diagram showing another example of the data processing device of the present embodiment. An example of the display switching operation unit 36 includes a display switching button. An example of the image data display unit 37 is a display. The image data display unit 37 can directly display the measured data, or can display the data for a long time in the display width limited by reducing the measured data. By displaying the data for a long time in the limited display width, the time change over a long time can be monitored. If the image data display unit 37 is assumed to display a still picture, the pixel data can be picked up at any appropriate interval and switched for display. In the case where the measurement is always performed and new data is continuously added as in the present embodiment, when the pixel data is picked up and switched for display, there is a concern that a delay or obstruction will occur in the data processing, and the measurement becomes unstable for the image display, which is putting the cart before the horse. Therefore, in this embodiment, a plurality of preset display time widths are prepared, and data storage areas for time widths corresponding to the plurality of display time widths are created, and intervals (intervals) for adding new data are specified, and image databases corresponding to the plurality of display time widths are created. Assuming that the image data display unit 37 includes 200 pixels in the vertical direction (=depth direction) and 240 pixels in the horizontal direction (=time sequence), when data is stored every 1 second, 4 minutes of display data are formed in the horizontal direction, and when data is stored every 10 seconds, 40 minutes of display data are formed in the horizontal direction. By deleting the oldest data while adding new data, it can be used in a limited data area. In addition, an area for storing data above 240 data required for display width can be set and displayed in a scrolling manner, so that changes from the past can be observed like a dynamic image. In this embodiment, these two data storage and display can be performed.

於所述實施形態中,可自外部終端對資料處理裝置30的圖像資料儲存部35進行存取來取出儲存於圖像資料儲存部35中的資料。 於所述實施形態中,可自外部終端對資料處理裝置30的資料運算部34進行存取。於該情況下,可根據來自外部終端的指令來取出儲存於資料運算部34中的資料並輸出至外部終端。藉由如此般構成,可使外部終端顯示資料運算部34所輸出的資料,因此能夠進行線上監視。 另外,於該情況下,可根據外部終端的指令,自資料運算部34將最新資料輸出至外部終端。輸出資料的區間能夠藉由外部終端來設定。藉由如此般構成,可使外部終端依次顯示資料,因此可藉由遠程型的現場直播來進行圖像監控。具體而言,藉由安裝於外部終端中的專用軟體,依次在資料運算部與外部終端之間進行對資料運算部34賦予的固有的識別號碼(=密碼)的檢查。由於在外部終端與資料運算部之間能夠進行一對一通訊,因此可防止由訊號分配器等的設置所致的竊聽性資料偷取。 In the embodiment, the image data storage unit 35 of the data processing device 30 can be accessed from an external terminal to retrieve data stored in the image data storage unit 35. In the embodiment, the data operation unit 34 of the data processing device 30 can be accessed from an external terminal. In this case, the data stored in the data operation unit 34 can be retrieved and output to the external terminal according to the instruction from the external terminal. By configuring in this way, the external terminal can display the data output by the data operation unit 34, so that online monitoring can be performed. In addition, in this case, the latest data can be output from the data operation unit 34 to the external terminal according to the instruction of the external terminal. The range of output data can be set by the external terminal. By such a configuration, the external terminal can display data in sequence, so image monitoring can be performed by remote live broadcast. Specifically, by installing dedicated software in the external terminal, the inherent identification number (= password) assigned to the data operation unit 34 is checked in sequence between the data operation unit and the external terminal. Since one-to-one communication can be performed between the external terminal and the data operation unit, eavesdropping data theft caused by the setting of the signal distributor, etc. can be prevented.

於所述實施形態中,可對資料處理裝置30的資料運算部34進行用於向外部終端傳送資料的設定。資料運算部34可基於用於傳送資料的設定來向外部終端傳送資料。藉由如此般構成,可將外部終端用於污水處理設備10的遠程監控。 於所述實施形態中,可對資料處理裝置30的資料運算部34進行用於向外部的資料伺服器或記錄媒體輸出資料的設定。資料運算部34基於設定來向外部的資料伺服器或記錄媒體輸出資料。外部的資料伺服器基於資料運算部34所輸出的資料來創建資料庫。外部的資料伺服器可基於所創建的資料庫來顯示圖像,亦可對資料進行加工。 於所述實施形態中,於資料處理裝置30的資料運算部34向外部終端傳送資料的情況下,例如可依據RS232C規格的方式來傳送。另外,於資料處理裝置30的資料運算部34向外部終端傳送資料的情況下,在與外部端子之間可直接傳輸,亦可設置訊號轉換器而轉換為RS422、RS485規格或通用串列匯流排(Universal Serial Bus,USB)、LAN、光纖的傳輸協定來傳送。另外,亦可自外部終端向伺服器定期或不定期地傳送資料。於該情況下,可自中央監控裝置向外部終端(小型PC等)請求資料,並使外部終端輸出資料。 於該情況下,可使外部終端具有所述監控裝置50的功能。外部終端可獲取資料運算部34所輸出的資料,基於所獲取的資料來判定由上清液圖像所得的固液分離槽內部的狀態,並將其判定結果輸出至伺服器。另外,亦可使伺服器具有所述監控裝置的現狀判定部55的功能。外部終端獲取資料運算部34所輸出的資料,並將所獲取的資料傳送至伺服器。伺服器獲取外部裝置所傳送的資料,並基於所獲取的資料來判定由上清液圖像所得的固液分離槽內部的狀態。 In the embodiment, the data operation unit 34 of the data processing device 30 can be set to transmit data to an external terminal. The data operation unit 34 can transmit data to an external terminal based on the setting for transmitting data. By configuring in this way, the external terminal can be used for remote monitoring of the sewage treatment equipment 10. In the embodiment, the data operation unit 34 of the data processing device 30 can be set to output data to an external data server or recording medium. The data operation unit 34 outputs data to an external data server or recording medium based on the setting. The external data server creates a database based on the data output by the data operation unit 34. The external data server can display images based on the created database, and can also process the data. In the embodiment, when the data operation unit 34 of the data processing device 30 transmits data to the external terminal, for example, the data can be transmitted in accordance with the RS232C specification. In addition, when the data operation unit 34 of the data processing device 30 transmits data to the external terminal, the data can be directly transmitted between the external terminal, or a signal converter can be provided to convert the data into RS422, RS485 specifications or Universal Serial Bus (USB), LAN, or optical fiber transmission protocols for transmission. In addition, data can also be transmitted from the external terminal to the server regularly or irregularly. In this case, the central monitoring device can request data from the external terminal (small PC, etc.), and the external terminal can output the data. In this case, the external terminal can have the function of the monitoring device 50. The external terminal can obtain the data output by the data calculation unit 34, determine the state of the solid-liquid separation tank obtained from the supernatant image based on the obtained data, and output the determination result to the server. In addition, the server can also have the function of the current status determination unit 55 of the monitoring device. The external terminal obtains the data output by the data calculation unit 34 and transmits the obtained data to the server. The server obtains the data transmitted by the external device and determines the state of the interior of the solid-liquid separation tank obtained from the supernatant image based on the obtained data.

根據本實施形態的監控系統100,監控裝置50具有:作為現狀判定部55的判定部,基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與固液分離槽內部的根據上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態的關係的作為診斷結果的學習模型的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態;及輸出部,輸出用於確定判定部使用作為診斷對象的固液分離槽的上清液圖像與第一學習模型所判定的固液分離槽內部的狀態的資訊。 藉由如此般構成,監控裝置50可使用學習了上清液圖像與固液分離槽內部的診斷結果的關係的第一學習模型,並根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態,因此可監控固液分離槽的槽內狀態。藉由可使用第一學習模型,並根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態,與人基於經驗來診斷固液分離槽內部的情況相比較,不需要人的經驗,亦可減少診斷結果的偏差。另外,於人基於經驗來診斷固液分離槽內部的情況下,由於主要是觀看上清液來進行診斷,因此與根據包含固液分離槽的上清液與污泥堆積層的圖像來診斷固液分離槽內部的狀態相比,監控裝置50可進行更接近由人進行的診斷的診斷。 於假設設為現場完結型的系統結構的情況下,由於槽的尺寸或特性不會改變,因此可簡單地進行過去與現在的比較,因此可容易地區分穩定時與非穩定狀態或異常產生。藉由自外部獲取(線上/離線均可)事例集、最新事例等,並更新所獲取的事例集、最新事例等,於檢測到異常時,即便於無過去產生的經驗且無學習歷程的情況下,亦可輸出對該異常為哪種狀態的判別及對其應對措施的提示。藉由在產生了異常時可參照能夠存取的資料庫,可推定其狀態是哪種狀態,從而能夠獲取應對措施。另外,可減少做出於現場(設備)不可能發生的判斷的失誤。因此,可降低錯誤判定的風險,另外,亦可縮短判定所需的時間。可降低資料遭駭、攻擊系統的風險。 According to the monitoring system 100 of the present embodiment, the monitoring device 50 has: a determination unit as a current status determination unit 55, based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, that is, a supernatant liquid image and a diagnosis result of the inside of the solid-liquid separation tank obtained based on the supernatant liquid image, and using a relationship between the supernatant liquid image and the state of the inside of the solid-liquid separation tank learned A first learning model as a learning model of the diagnosis result determines the state of the inside of the solid-liquid separation tank according to the supernatant image representing the supernatant inside the solid-liquid separation tank as the diagnosis object; and an output unit outputs information for determining the state of the inside of the solid-liquid separation tank determined by the determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the first learning model. By configuring in this way, the monitoring device 50 can use the first learning model that has learned the relationship between the supernatant image and the diagnosis result of the inside of the solid-liquid separation tank, and can determine the state of the inside of the solid-liquid separation tank based on the supernatant image representing the supernatant inside the solid-liquid separation tank as the diagnosis object, thereby monitoring the state of the inside of the solid-liquid separation tank. By using the first learning model, and determining the state of the inside of the solid-liquid separation tank based on the supernatant image representing the supernatant inside the solid-liquid separation tank as the diagnosis object, compared with the situation where people diagnose the inside of the solid-liquid separation tank based on experience, human experience is not required, and the deviation of the diagnosis result can be reduced. In addition, when a person diagnoses the inside of the solid-liquid separation tank based on experience, since the diagnosis is mainly made by observing the supernatant, the monitoring device 50 can make a diagnosis closer to the diagnosis made by a person than diagnosing the state of the inside of the solid-liquid separation tank based on an image including the supernatant and sludge accumulation layer of the solid-liquid separation tank. In the case of a system structure assuming a field completion type, since the size or characteristics of the tank will not change, the past and the present can be easily compared, so it is easy to distinguish between the stable state and the unstable state or abnormality. By acquiring case collections, latest cases, etc. from the outside (online/offline), and updating the acquired case collections, latest cases, etc., when an abnormality is detected, even if there is no past experience and no learning process, it is possible to output the judgment of what state the abnormality is in and the prompts for its response measures. By referring to the accessible database when an abnormality occurs, it is possible to infer what state it is in, so that the response measures can be obtained. In addition, it is possible to reduce the error of making judgments that are impossible to occur on site (equipment). Therefore, the risk of erroneous judgments can be reduced, and the time required for judgment can also be shortened. The risk of data hacking and system attacks can be reduced.

進而,基於監控圖像所得的診斷結果是基於監控圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成。藉由如此般構成,監控裝置50可使用第一學習模型,並根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態,所述第一學習模型學習了上清液圖像與基於包含該上清液圖像的監控圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成的診斷結果的關係。 進而,判定部根據表示出作為診斷對象的固液分離槽的內部的上清液圖像來判定固液分離槽內部的狀態是正常、失常及異常中的哪一者。藉由如此般構成,監控裝置50可基於上清液圖像與固液分離槽內部的根據上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的診斷結果的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液圖像來判定固液分離槽內部的狀態是正常、失常及異常中的哪一者。 進而,更具有通知部,所述通知部於判定部判定為固液分離槽內部的狀態是失常與異常中的任一者的情況下,通知固液分離槽內部的狀態是失常與異常中的任一狀態。藉由如此般構成,於判定為固液分離槽內部的狀態是失常與異常中的任一者的情況下,可通知固液分離槽內部的狀態是失常與異常中的任一狀態,因此可告知用戶需要應對固液分離槽內部的狀態。 Furthermore, the diagnosis result obtained based on the monitoring image is generated based on either or both of the accumulation state of the solid matter and the floating state of the solid matter contained in the monitoring image. By configuring in this way, the monitoring device 50 can use the first learning model to determine the state inside the solid-liquid separation tank based on the supernatant image representing the supernatant inside the solid-liquid separation tank as the diagnosis object, wherein the first learning model learns the relationship between the supernatant image and the diagnosis result generated based on either or both of the accumulation state of the solid matter and the floating state of the solid matter contained in the monitoring image including the supernatant image. Furthermore, the determination unit determines whether the state of the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image showing the inside of the solid-liquid separation tank as the object of diagnosis. By configuring in this way, the monitoring device 50 can determine whether the state of the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image showing the inside of the solid-liquid separation tank as the object of diagnosis, based on the supernatant image and the diagnosis result of the inside of the solid-liquid separation tank obtained based on the supernatant image, and using the first learning model that has learned the relationship between the supernatant image and the diagnosis result of the inside of the solid-liquid separation tank. Furthermore, there is a notification unit, which notifies that the state inside the solid-liquid separation tank is either abnormal or abnormal when the determination unit determines that the state inside the solid-liquid separation tank is either abnormal or abnormal. By configuring in this way, when it is determined that the state inside the solid-liquid separation tank is either abnormal or abnormal, it can be notified that the state inside the solid-liquid separation tank is either abnormal or abnormal, so that the user can be informed that the state inside the solid-liquid separation tank needs to be dealt with.

[實施形態的變形例1] (監控系統) 圖11是表示本發明實施形態的變形例1的監控系統的結構例的圖。實施形態的變形例1的監控系統100a對沈澱槽、濃縮槽等固液分離槽的污泥堆積狀態進行診斷。於實施形態的變形例1中,與實施形態同樣地應用污水處理設備10作為包括固液分離槽的設備的一例。 [Variant 1 of the embodiment] (Monitoring system) FIG. 11 is a diagram showing a configuration example of a monitoring system of a variant 1 of the embodiment of the present invention. The monitoring system 100a of the variant 1 of the embodiment diagnoses the sludge accumulation state of a solid-liquid separation tank such as a sedimentation tank and a concentration tank. In the variant 1 of the embodiment, the sewage treatment equipment 10 is applied as an example of equipment including a solid-liquid separation tank in the same manner as in the embodiment.

(監控系統100a) 監控系統100a包括超音波感測器20、資料處理裝置30、閘道裝置31、資訊處理裝置40a、終端裝置45a及監控裝置50a。 閘道裝置31、資訊處理裝置40a、終端裝置45a及監控裝置50a是經由網路NW而連接。 於資料處理裝置30中,資料運算部34經由閘道裝置31而將數位訊號傳送至監控裝置50a。 (監控裝置50a) 監控裝置50a是藉由個人電腦、伺服器或產業用電腦等裝置來實現。監控裝置50a包括通訊裝置51、記錄裝置52、資訊處理部53a、及用以將各結構部件如圖11所示般電性連接的位址匯流排或資料匯流排等匯流線BL。 於記錄裝置52中記憶由監控裝置50a執行的程式(監控應用)。另外,於記錄裝置52中記憶資訊處理部53a所輸出的畫素資料。 於記錄裝置52中記憶將表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對上清液圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的資訊相關聯而得的原因的教師資料、及藉由基於原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊的關係進行機器學習而獲得的原因的學習模型。 (Monitoring system 100a) The monitoring system 100a includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40a, a terminal device 45a, and a monitoring device 50a. The gateway device 31, the information processing device 40a, the terminal device 45a, and the monitoring device 50a are connected via a network NW. In the data processing device 30, the data operation unit 34 transmits a digital signal to the monitoring device 50a via the gateway device 31. (Monitoring device 50a) The monitoring device 50a is implemented by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50a includes a communication device 51, a recording device 52, an information processing unit 53a, and a bus line BL such as an address bus or a data bus for electrically connecting each structural component as shown in FIG. 11. The program (monitoring application) executed by the monitoring device 50a is stored in the recording device 52. In addition, the pixel data output by the information processing unit 53a is stored in the recording device 52. The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the supernatant image with the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and a learning model of the diagnosis result obtained by machine learning the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. The recording device 52 stores the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and the learning model of the cause obtained by machine learning the relationship between the supernatant image and the information for determining the cause of the state inside the solid-liquid separation tank based on the teacher data of the cause.

圖12是表示教師資料的一例的圖。於圖12中表示診斷結果的教師資料與原因的教師資料。診斷結果的教師資料是將上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的資料。原因的教師資料是將上清液圖像與用於確定形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的資訊相關聯而得的資料。於圖12的說明中,方便起見,藉由監控圖像來進行說明。 於實施形態的變形例1中,作為一例,與實施形態同樣地將多個上清液圖像的各個與作為診斷結果的「正常」、「異常」及「失常」中的任一者相關聯。進而,基於診斷結果來將多個上清液圖像的各個與形成診斷結果的原因的推定結果相關聯。 於圖12中,(1)由於上清液具有充分的深度,因此診斷為正常。於診斷為正常的情況下,不記憶形成診斷結果的原因的推定結果。 (2)由於上清液的深度淺,因此診斷為異常。於該情況下,記憶膨脹作為形成診斷結果的原因的推定結果的一例。所謂膨脹,是指污泥的沈降性惡化而難以獲得上清液的現象。 (3)由於在上清液中看到堆積污泥的飛揚,因此診斷為失常。於該情況下,記憶污泥投入速度快、污泥投入量多、污泥界面高作為形成診斷結果的原因的推定結果的一例。返回至圖11,繼續進行說明。 FIG. 12 is a diagram showing an example of teacher data. FIG. 12 shows teacher data of diagnosis results and teacher data of causes. The teacher data of diagnosis results is data obtained by associating a supernatant image with a diagnosis result of the state of the inside of the solid-liquid separation tank obtained from the supernatant image. The teacher data of causes is data obtained by associating a supernatant image with information for determining the cause of the diagnosis result of the state of the inside of the solid-liquid separation tank obtained from the supernatant image. In the description of FIG. 12, for convenience, the description is made by using monitoring images. In variation 1 of the embodiment, as an example, each of the plurality of supernatant images is associated with any one of "normal", "abnormal" and "abnormal" as a diagnosis result in the same manner as in the embodiment. Furthermore, each of the plurality of supernatant images is associated with an estimated result of the cause of the diagnosis result based on the diagnosis result. In FIG. 12 , (1) Since the supernatant has a sufficient depth, it is diagnosed as normal. In the case of a normal diagnosis, the estimated result of the cause of the diagnosis result is not memorized. (2) Since the depth of the supernatant is shallow, it is diagnosed as abnormal. In this case, the memory expansion is an example of the estimated result of the cause of the diagnosis result. The so-called expansion refers to the phenomenon that the sedimentation of sludge deteriorates and it is difficult to obtain the supernatant. (3) Since the accumulated sludge is seen flying in the supernatant, the diagnosis is abnormal. In this case, the memory is an example of the estimated result of the cause of the diagnosis result that the sludge input speed is fast, the sludge input amount is large, and the sludge interface is high. Return to Figure 11 and continue the explanation.

資訊處理部53a例如作為圖形化部54、現狀判定部55a、學習部56a及原因判定部57發揮功能。 現狀判定部55a獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。現狀判定部55a獲取記憶於記錄裝置52中的診斷結果的學習模型。現狀判定部55a基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。 學習部56a除具有學習部56的功能以外,還具有以下功能。學習部56a獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示上清液圖像的資訊與形成診斷結果的原因的推定結果相關聯所得的原因的教師資料記憶於記錄裝置52中。學習部56a獲取記憶於記錄裝置52中的原因的教師資料。學習部56a藉由基於所獲取的原因的教師資料來對上清液圖像與形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的推定結果進行機器學習(有教師的學習),而生成將上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊相關聯所得的原因的學習模型。例如,學習部56a使用卷積類神經網路來識別上清液圖像。藉由原因的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為用於確定形成固液分離槽內部的狀態的原因的資訊中的任一者。學習部56a使所生成的原因的學習模型記憶於記錄裝置52中。 The information processing unit 53a functions as, for example, a graphics unit 54, a current state determination unit 55a, a learning unit 56a, and a cause determination unit 57. The current state determination unit 55a obtains pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. The current state determination unit 55a obtains a learning model of the diagnosis result stored in the recording device 52. The current state determination unit 55a determines the state of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. The learning unit 56a has the following functions in addition to the functions of the learning unit 56. The learning unit 56a obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the cause obtained by associating the information representing the supernatant image contained in the obtained diagnosis result notification with the estimated result of the cause forming the diagnosis result in the recording device 52. The learning unit 56a obtains the teacher data of the cause stored in the recording device 52. The learning unit 56a performs machine learning (teacher-assisted learning) on the supernatant image and the inferred result of the cause of the diagnosis result of the state of the inside of the solid-liquid separation tank formed by the supernatant image based on the acquired teacher data of the cause, and generates a learning model of the cause that associates the supernatant image with information for determining the cause of the state formed inside the solid-liquid separation tank. For example, the learning unit 56a uses a convolutional neural network to recognize the supernatant image. The supernatant image is classified into any one of the information for determining the cause of the state formed inside the solid-liquid separation tank based on the information representing the supernatant image by the learning model of the cause. The learning unit 56a stores the generated cause learning model in the recording device 52.

原因判定部57自現狀判定部55a獲取表示上清液圖像的資訊與固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57獲取記憶於記錄裝置52中的原因的學習模型。原因判定部57基於所獲取的原因的學習模型來判定用於確定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因的資訊。原因判定部57創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、表示固液分離槽內部的狀態的資訊、及表示用於確定形成固液分離槽內部的狀態的原因的資訊的判定結果的資訊且以資訊處理裝置40a為目的地。原因判定部57將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取原因判定部57所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40a。 資訊處理部53a的全部或一部分例如是藉由CPU等處理器執行儲存於記錄裝置52中的監控應用等程式來實現的功能部(以下,稱為軟體功能部)。再者,資訊處理部53a的全部或一部分可藉由LSI、ASIC或FPGA等硬體來實現,亦可藉由軟體功能部與硬體的組合來實現。 資訊處理裝置40a可應用資訊處理裝置40。 The cause determination unit 57 obtains information representing the supernatant image and the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. When the determination result of the state inside the solid-liquid separation tank obtained is abnormal or abnormal, the cause determination unit 57 obtains the learning model of the cause stored in the recording device 52. The cause determination unit 57 determines the information used to determine the cause of the state inside the solid-liquid separation tank that forms the obtained supernatant image based on the obtained learning model of the cause. The cause determination unit 57 creates status notification information, which includes information indicating a supernatant image, information indicating the state inside the solid-liquid separation tank, and information indicating a determination result of information indicating the cause of the state inside the solid-liquid separation tank, and is destined for the information processing device 40a. The cause determination unit 57 outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the cause determination unit 57, and transmits the obtained status notification information to the information processing device 40a. All or part of the information processing unit 53a is a functional unit (hereinafter referred to as a software functional unit) implemented by, for example, a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. Furthermore, all or part of the information processing unit 53a can be implemented by hardware such as LSI, ASIC or FPGA, or by a combination of software functional units and hardware. The information processing device 40a can apply the information processing device 40.

(終端裝置45a) 終端裝置45a是藉由個人電腦、伺服器或產業用電腦等裝置來實現。終端裝置45a的一例設置於用於監控污水處理設備10的監控中心。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45a來創建上清液圖像請求,所述上清液圖像請求包含請求上清液圖像的資訊且以監控裝置50a為目的地。終端裝置45a基於用戶的操作來創建上清液圖像請求。終端裝置45a將所創建的上清液圖像請求傳送至監控裝置50a。 終端裝置45a相對於傳送至監控裝置50a的上清液圖像請求,接收監控裝置50a所傳送的上清液圖像響應。終端裝置45a顯示上清液圖像響應中所含的上清液圖像。用戶參照終端裝置45a所顯示的上清液圖像來診斷上清液圖像中所含的固液分離槽內部的狀態,進而推定形成固液分離槽內部的狀態的原因。用戶藉由操作終端裝置45a來創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、及用於確定形成該診斷結果的原因的資訊且以監控裝置50a為目的地。終端裝置45a基於用戶的操作來創建診斷結果通知。終端裝置45a將所創建的診斷結果通知傳送至監控裝置50a。 (Terminal device 45a) Terminal device 45a is implemented by a device such as a personal computer, a server or an industrial computer. An example of terminal device 45a is set in a monitoring center for monitoring sewage treatment equipment 10. When diagnosing the state inside the solid-liquid separation tank, the user creates a supernatant image request by operating terminal device 45a, and the supernatant image request includes information requesting a supernatant image and has monitoring device 50a as a destination. Terminal device 45a creates a supernatant image request based on the user's operation. Terminal device 45a transmits the created supernatant image request to monitoring device 50a. The terminal device 45a receives the supernatant image response transmitted by the monitoring device 50a in response to the supernatant image request transmitted to the monitoring device 50a. The terminal device 45a displays the supernatant image contained in the supernatant image response. The user diagnoses the state of the inside of the solid-liquid separation tank contained in the supernatant image with reference to the supernatant image displayed by the terminal device 45a, and further infers the cause of the state of the inside of the solid-liquid separation tank. The user creates a diagnosis result notification by operating the terminal device 45a, and the diagnosis result notification includes information representing the image of the supernatant, the diagnosis result of the state inside the solid-liquid separation tank, and information for determining the cause of the diagnosis result and has the monitoring device 50a as the destination. The terminal device 45a creates the diagnosis result notification based on the user's operation. The terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.

(監控系統的動作) 圖13是表示實施形態的變形例1的監控系統的動作的例1的圖。參照圖13,對如下處理進行說明:監控裝置50a將終端裝置45a所傳送的診斷結果通知中所含的固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊累積,並基於所累積的固液分離槽內部的狀態的診斷結果與用於確定形成該診斷結果的原因的資訊來進行機器學習,而生成診斷結果的學習模型與原因的學習模型。 步驟S1-4至步驟S10-4可應用圖7的步驟S1-1至步驟S10-1,因此省略此處的說明。 (步驟S11-4) 終端裝置45a接收監控裝置50a所傳送的上清液圖像響應。終端裝置45a藉由對所接收的上清液圖像響應中所含的表示上清液圖像的資訊進行圖像處理來顯示上清液圖像。終端裝置45a創建診斷結果通知,所述診斷結果通知包含固液分離槽內部的狀態的診斷結果與用於確定形成該診斷結果的原因的資訊且以監控裝置50a為目的地。 (步驟S12-4) 終端裝置45a將所創建的診斷結果通知傳送至監控裝置50a。 (Operation of the monitoring system) FIG. 13 is a diagram showing Example 1 of the operation of the monitoring system of Modification 1 of the implementation form. Referring to FIG. 13 , the following processing is explained: the monitoring device 50a accumulates the diagnosis result of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45a and the information for determining the cause of the diagnosis result, and performs machine learning based on the accumulated diagnosis result of the state inside the solid-liquid separation tank and the information for determining the cause of the diagnosis result, thereby generating a learning model of the diagnosis result and a learning model of the cause. Steps S1-4 to S10-4 can apply steps S1-1 to S10-1 of FIG. 7, so the description here is omitted. (Step S11-4) The terminal device 45a receives the supernatant image response transmitted by the monitoring device 50a. The terminal device 45a displays the supernatant image by performing image processing on the information representing the supernatant image contained in the received supernatant image response. The terminal device 45a creates a diagnosis result notification, which includes the diagnosis result of the state inside the solid-liquid separation tank and information for determining the cause of the diagnosis result and is destined for the monitoring device 50a. (Step S12-4) The terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.

(步驟S13-4) 於監控裝置50a中,通訊裝置51接收終端裝置45a所傳送的診斷結果通知。學習部56a獲取通訊裝置51所接收的診斷結果通知,並獲取所獲取的診斷結果通知中所含的表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、及用於確定形成該診斷結果的原因的資訊。 學習部56a使將所獲取的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果相關聯所得的診斷結果的教師資料記憶於記錄裝置52中。學習部56a使將所獲取的表示上清液圖像的資訊與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的教師資料記憶於記錄裝置52中。 (步驟S14-4) 於監控裝置50a中,學習部56a獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56a藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習,而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。 學習部56a獲取記憶於記錄裝置52中的原因的教師資料。學習部56a藉由基於所獲取的原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊進行機器學習,而生成將上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的學習模型。 (步驟S15-4) 於監控裝置50a中,學習部56a使所生成的診斷結果的學習模型記憶於記錄裝置52中。學習部56a使所生成的原因的學習模型記憶於記錄裝置52中。 (Step S13-4) In the monitoring device 50a, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45a. The learning unit 56a obtains the diagnosis result notification received by the communication device 51, and obtains the information representing the supernatant image contained in the obtained diagnosis result notification, the diagnosis result of the state inside the solid-liquid separation tank, and the information used to determine the cause of the formation of the diagnosis result. The learning unit 56a stores the teacher data of the diagnosis result obtained by associating the obtained information representing the supernatant image with the diagnosis result of the state inside the solid-liquid separation tank in the recording device 52. The learning unit 56a stores the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank in the recording device 52. (Step S14-4) In the monitoring device 50a, the learning unit 56a obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56a performs machine learning on the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image by using the teacher data based on the obtained diagnosis result, thereby generating a learning model of the diagnosis result obtained by associating the supernatant image with the state inside the solid-liquid separation tank. The learning unit 56a obtains the teacher data of the cause stored in the recording device 52. The learning unit 56a performs machine learning on the supernatant image and the information of the cause of the diagnosis result for determining the state inside the solid-liquid separation tank based on the acquired teacher data of the cause, and generates a learning model of the cause by associating the supernatant image with the information of the cause of the diagnosis result for determining the state inside the solid-liquid separation tank. (Step S15-4) In the monitoring device 50a, the learning unit 56a stores the generated learning model of the diagnosis result in the recording device 52. The learning unit 56a stores the generated learning model of the cause in the recording device 52.

再者,診斷結果通知亦可為基於監控圖像而非上清液圖像進行診斷所得的結果。即,可為,於步驟S7-4中,終端裝置45a創建監控圖像請求,於步驟S8-4中,將終端裝置45a所創建的監控圖像請求傳送至監控裝置50a,於步驟S9-4中,監控裝置50a創建監控圖像,於步驟S10-4中,監控裝置50a將監控圖像響應傳送至終端裝置45a。Furthermore, the diagnosis result notification may also be the result of diagnosis based on the monitoring image instead of the supernatant image. That is, in step S7-4, the terminal device 45a creates a monitoring image request, in step S8-4, the monitoring image request created by the terminal device 45a is transmitted to the monitoring device 50a, in step S9-4, the monitoring device 50a creates a monitoring image, and in step S10-4, the monitoring device 50a transmits the monitoring image response to the terminal device 45a.

圖14是表示實施形態的變形例1的監控系統的動作的例2的圖。參照圖14,對如下處理進行說明:監控裝置50a獲取資料處理裝置30所傳送的數位訊號,並基於所獲取的數位訊號來創建上清液圖像;監控裝置50a基於所創建的上清液圖像來判定固液分離槽內部的狀態。 步驟S1-5至步驟S6-5可應用圖7的步驟S1-1至步驟S6-1,因此省略此處的說明。 (步驟S7-5) 於監控裝置50a中,現狀判定部55a獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。 (步驟S8-5) 於監控裝置50a中,現狀判定部55a獲取記憶於記錄裝置52中的診斷結果的學習模型。 (步驟S9-5) 於監控裝置50a中,現狀判定部55a基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。 (步驟S10-5) 於監控裝置50a中,原因判定部57自現狀判定部55a獲取固液分離槽內部的狀態的判定結果。原因判定部57判定所獲取的固液分離槽內部的狀態的判定結果是失常還是異常。於原因判定部57判定為所獲取的固液分離槽內部的狀態的判定結果既非失常亦非異常的情況下結束。 FIG. 14 is a diagram of Example 2 showing the operation of the monitoring system of Modification 1 of the embodiment. Referring to FIG. 14 , the following processing is described: the monitoring device 50a obtains the digital signal transmitted by the data processing device 30, and creates a supernatant image based on the obtained digital signal; the monitoring device 50a determines the state inside the solid-liquid separation tank based on the created supernatant image. Steps S1-5 to S6-5 can apply steps S1-1 to S6-1 of FIG. 7 , so the description here is omitted. (Step S7-5) In the monitoring device 50a, the current state determination unit 55a obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. (Step S8-5) In the monitoring device 50a, the current state determination unit 55a obtains the learning model of the diagnosis result stored in the recording device 52. (Step S9-5) In the monitoring device 50a, the current state determination unit 55a determines the state of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. (Step S10-5) In the monitoring device 50a, the cause determination unit 57 obtains the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. The cause determination unit 57 determines whether the determination result of the state inside the solid-liquid separation tank obtained is abnormal or abnormal. The process ends when the cause determination unit 57 determines that the determination result of the state inside the solid-liquid separation tank obtained is neither abnormal nor abnormal.

(步驟S11-5) 於監控裝置50a中,於判定為所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57獲取記憶於記錄裝置52中的原因的學習模型。 (步驟S12-5) 於監控裝置50a中,原因判定部57基於所獲取的原因的學習模型來判定用於確定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因的資訊。 (步驟S13-5) 於監控裝置50a中,原因判定部57創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、表示固液分離槽內部的狀態的判定結果的資訊、及表示形成固液分離槽內部的狀態的原因的判定結果的資訊且以資訊處理裝置40a為目的地。 (步驟S14-5) 於監控裝置50a中,原因判定部57將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取原因判定部57所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40a。 再者,於步驟S7-5中,監控裝置50創建上清液圖像,但只不過是一例。例如,監控裝置50只要基於畫素資料來創建監控圖像,並於之後的步驟中藉由忽略較污泥界面而言深的部分等來著眼於上清液圖像即可。 關於監控裝置50a基於資訊處理裝置40a所傳送的槽內狀態資訊請求來傳送表示上清液圖像的資訊的處理,由於可應用圖9,因此省略說明。 (Step S11-5) In the monitoring device 50a, when the determination result of the state of the interior of the solid-liquid separation tank is determined to be abnormal or abnormal, the cause determination unit 57 obtains the learning model of the cause stored in the recording device 52. (Step S12-5) In the monitoring device 50a, the cause determination unit 57 determines information for determining the cause of the state of the interior of the solid-liquid separation tank that forms the obtained supernatant image based on the obtained learning model of the cause. (Step S13-5) In the monitoring device 50a, the cause determination unit 57 creates status notification information, which includes information indicating a supernatant image, information indicating a determination result of the state inside the solid-liquid separation tank, and information indicating a determination result of the cause of the state inside the solid-liquid separation tank, and has the information processing device 40a as a destination. (Step S14-5) In the monitoring device 50a, the cause determination unit 57 outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the cause determination unit 57, and transmits the obtained status notification information to the information processing device 40a. Furthermore, in step S7-5, the monitoring device 50 creates a supernatant image, but this is only an example. For example, the monitoring device 50 only needs to create a monitoring image based on pixel data, and in subsequent steps, focus on the supernatant image by ignoring the portion deeper than the sludge interface. The processing of the monitoring device 50a transmitting information representing the supernatant image based on the tank status information request transmitted by the information processing device 40a is omitted because Figure 9 can be applied.

於所述實施形態的變形例1中,對在一個污水處理設備10連接有監控系統100a的情況進行了說明,但並不限於該例。例如,可於多個污水處理設備10連接有監控系統100a,亦可於一個污水處理設備10連接有多個監控系統100a。於假設在多個污水處理設備10連接有監控系統100a的情況下,當於A的設備中產生無經驗的非穩定狀態時,若於B的設備中有產生該非穩定狀態的經驗,則判斷為「異常」,判定並輸出用於確定該異常的原因的資訊的可能性高。即,監控裝置50a能夠進行更多的學習,因此可增加能用於判定的事例數。因此,可增加能判斷為異常或失常的非穩定狀態。 於所述實施形態的變形例1中,對監控裝置50a進行機器學習的情況進行了說明,但並不限於該例。例如,可利用獨立於監控裝置50a的裝置來實現進行機器學習的裝置。於該情況下,關於學習裝置,於實施形態中說明的學習裝置中,學習裝置自監控裝置50a獲取上清液圖像與用於確定形成基於上清液圖像所得的診斷結果的原因的資訊。學習裝置的學習部基於上清液圖像與用於確定形成根據上清液圖像所得的診斷結果的原因的資訊,並藉由機器學習(有教師的機器學習)來生成表示上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊的關係的第二學習模型。 於所述實施形態的變形例1中,對如下情況進行了說明,但並不限於該例,所述情況:基於上清液圖像來判定固液分離槽內部的狀態的判定結果是正常、異常及失常中的哪一者,進而,基於固液分離槽內部的狀態的判定結果是異常與失常中的哪一者來記憶膨脹、污泥投入速度快、污泥投入量多、污泥界面高。例如,可基於固液分離槽內部的狀態的判定結果是異常與失常中的哪一者而分類為一個或多個原因。 In the variant 1 of the embodiment, the case where the monitoring system 100a is connected to one sewage treatment equipment 10 is described, but the present invention is not limited to this example. For example, the monitoring system 100a may be connected to a plurality of sewage treatment equipment 10, or a plurality of monitoring systems 100a may be connected to one sewage treatment equipment 10. Assuming that a plurality of sewage treatment equipment 10 are connected to the monitoring system 100a, when an unstable state with no experience occurs in the equipment of A, if there is experience that the unstable state occurs in the equipment of B, it is judged as "abnormal", and it is highly likely that information for determining the cause of the abnormality will be judged and output. That is, the monitoring device 50a can perform more learning, thereby increasing the number of cases that can be used for judgment. Therefore, the unstable state that can be judged as abnormal or abnormal can be increased. In the variant example 1 of the embodiment, the case where the monitoring device 50a performs machine learning is described, but it is not limited to this example. For example, a device independent of the monitoring device 50a can be used to implement a device that performs machine learning. In this case, regarding the learning device, in the learning device described in the embodiment, the learning device obtains the supernatant image and the information used to determine the cause of the diagnosis result obtained based on the supernatant image from the monitoring device 50a. The learning unit of the learning device generates a second learning model representing the relationship between the supernatant image and the information for determining the cause of the state inside the solid-liquid separation tank by machine learning (machine learning with a teacher) based on the supernatant image and the information for determining the cause of the diagnosis result obtained based on the supernatant image. In the variant 1 of the embodiment, the following situation is described, but not limited to this example: the determination result of the state inside the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image, and further, based on whether the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the expansion, fast sludge input speed, large sludge input amount, and high sludge interface are memorized. For example, it can be classified into one or more causes based on whether the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal.

根據實施形態的變形例1的監控系統100a,於實施形態的監控裝置50中,監控裝置50a包括原因判定部57,所述原因判定部57基於上清液圖像與用於確定形成根據上清液圖像所得的診斷結果的原因的資訊,並使用學習了上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊的關係的作為原因的學習模型的第二學習模型,根據作為診斷對象的固液分離槽的上清液圖像來判定用於確定形成固液分離槽內部的狀態的原因的資訊。輸出部進而輸出原因判定部使用作為診斷對象的固液分離槽的上清液圖像與第二學習模型所判定的用於確定形成固液分離槽內部的狀態的原因的資訊。 藉由如此般構成,監控裝置50a可使用學習了上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊的關係的第二學習模型,並根據作為診斷對象的固液分離槽的上清液圖像來判定用於確定形成固液分離槽內部的狀態的原因的資訊,因此可監控形成固液分離槽內部的狀態的原因。藉由可使用第二學習模型,並根據表示出作為診斷對象的固液分離槽的內部的上清液圖像來判定形成固液分離槽內部的狀態的原因,與人基於經驗來診斷固液分離槽內部的狀態的原因的情況相比較,不需要人的經驗,亦可減少診斷結果的偏差。 According to the monitoring system 100a of the variant example 1 of the implementation form, in the monitoring device 50 of the implementation form, the monitoring device 50a includes a cause determination unit 57, and the cause determination unit 57 is based on the supernatant image and the information for determining the cause of the diagnosis result obtained according to the supernatant image, and uses a second learning model as a cause learning model that has learned the relationship between the supernatant image and the information for determining the cause of the diagnosis result formed inside the solid-liquid separation tank. The cause determination unit 57 determines the information for determining the cause of the state formed inside the solid-liquid separation tank according to the supernatant image of the solid-liquid separation tank as the diagnosis object. The output unit further outputs the information for determining the cause of the state inside the solid-liquid separation tank determined by the cause determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the second learning model. By configuring in this way, the monitoring device 50a can use the second learning model that has learned the relationship between the supernatant image and the information for determining the cause of the diagnosis result inside the solid-liquid separation tank, and determine the information for determining the cause of the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the diagnosis object, thereby monitoring the cause of the state inside the solid-liquid separation tank. By using the second learning model, the cause of the state inside the solid-liquid separation tank can be determined based on the supernatant image showing the inside of the solid-liquid separation tank as the diagnosis object. Compared with the case where a person diagnoses the cause of the state inside the solid-liquid separation tank based on experience, human experience is not required and the deviation of the diagnosis result can be reduced.

[實施形態的變形例2] (監控系統) 圖15是表示本發明實施形態的變形例2的監控系統的結構例的圖。實施形態的變形例2的監控系統100b對沈澱槽、濃縮槽等固液分離槽的污泥堆積狀態進行診斷。於實施形態的變形例2中,與實施形態同樣地應用污水處理設備10作為包括固液分離槽的設備的一例。 [Variant 2 of the embodiment] (Monitoring system) FIG. 15 is a diagram showing a configuration example of a monitoring system of a variant 2 of the embodiment of the present invention. The monitoring system 100b of the variant 2 of the embodiment diagnoses the sludge accumulation state of a solid-liquid separation tank such as a sedimentation tank and a concentration tank. In the variant 2 of the embodiment, the sewage treatment equipment 10 is applied as an example of equipment including a solid-liquid separation tank in the same manner as in the embodiment.

(監控系統100b) 監控系統100b包括超音波感測器20、資料處理裝置30、閘道裝置31、資訊處理裝置40b、終端裝置45b及監控裝置50b。 閘道裝置31、資訊處理裝置40b、終端裝置45b及監控裝置50b是經由網路NW而連接。 於資料處理裝置30中,資料運算部34經由閘道裝置31而將數位訊號傳送至監控裝置50b。 (Monitoring system 100b) The monitoring system 100b includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40b, a terminal device 45b, and a monitoring device 50b. The gateway device 31, the information processing device 40b, the terminal device 45b, and the monitoring device 50b are connected via a network NW. In the data processing device 30, the data operation unit 34 transmits a digital signal to the monitoring device 50b via the gateway device 31.

(監控裝置50b) 監控裝置50b是藉由個人電腦、伺服器或產業用電腦等裝置來實現。監控裝置50b包括通訊裝置51、記錄裝置52、資訊處理部53b、及用以將各結構部件如圖15所示般電性連接的位址匯流排或資料匯流排等匯流線BL。 於記錄裝置52中記憶由監控裝置50b執行的程式(監控應用)。另外,於記錄裝置52中記憶資訊處理部53b所輸出的畫素資料。 於記錄裝置52中記憶將表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對上清液圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。 於記錄裝置52中記憶將表示監控圖像的資訊與用於確定形成由該上清液圖像所得的固液分離槽內部的診斷結果的原因的資訊相關聯而得的原因的教師資料、及藉由基於原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊的關係進行機器學習而獲得的原因的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定對由該上清液圖像所得的固液分離槽的診斷結果的應對方法的資訊相關聯而得的應對方法的教師資料、及藉由基於應對方法的教師資料來對上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊的關係進行機器學習而獲得的應對方法的學習模型。 (Monitoring device 50b) The monitoring device 50b is implemented by a device such as a personal computer, a server or an industrial computer. The monitoring device 50b includes a communication device 51, a recording device 52, an information processing unit 53b, and a bus BL such as an address bus or a data bus for electrically connecting each structural component as shown in FIG. 15. The program (monitoring application) executed by the monitoring device 50b is stored in the recording device 52. In addition, the pixel data output by the information processing unit 53b is stored in the recording device 52. The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the supernatant image with the diagnosis result of the inside of the solid-liquid separation tank obtained from the supernatant image, and a learning model of the diagnosis result obtained by machine learning the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. The recording device 52 stores the teacher data of the cause obtained by associating the information representing the monitoring image with the information for determining the cause of the diagnosis result of the inside of the solid-liquid separation tank obtained from the supernatant image, and the learning model of the cause obtained by machine learning the relationship between the supernatant image and the information for determining the cause of the state inside the solid-liquid separation tank based on the teacher data of the cause. The recording device 52 stores teacher data of a response method obtained by associating information representing a supernatant image with information for determining a response method for a diagnosis result of the solid-liquid separation tank obtained from the supernatant image, and a learning model of a response method obtained by machine learning the relationship between the supernatant image and the information for determining a response method for the state inside the solid-liquid separation tank based on the teacher data of the response method.

圖16是表示教師資料的一例的圖。於圖16中表示診斷結果的教師資料、原因的教師資料及應對方法的教師資料。診斷結果的教師資料是將上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的資料。原因的教師資料是將上清液圖像與用於確定形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的資訊相關聯而得的資料。應對方法的教師資料是將上清液圖像與用於確定對由該上清液圖像所得的固液分離槽內部的狀態的應對方法的資訊相關聯而得的資料。於圖16的說明中,方便起見,藉由監控圖像來進行說明。 於實施形態的變形例2中,作為一例,與實施形態同樣地將多個監控圖像的各個與作為診斷結果的「正常」、「異常」及「失常」中的任一者相關聯。進而,基於診斷結果來將多個監控圖像的各個與形成診斷結果的原因的推定結果相關聯。進而,基於診斷結果來將多個監控圖像的各個與用於確定對診斷結果的應對方法的資訊相關聯。 於圖16中,(1)由於上清液具有充分的深度,因此診斷為正常。於診斷為正常的情況下,不記憶形成診斷結果的原因的推定結果與應對方法。 (2)由於上清液的深度淺,因此診斷為異常。於該情況下,記憶膨脹作為形成診斷結果的原因的推定結果。進而,記憶污泥抽取的促進、污泥沈降劑等的投入作為對形成診斷結果的原因的推定結果的應對方法。 (3)由於在上清液中看到堆積污泥的飛揚,因此診斷為失常。於該情況下,記憶污泥投入速度快、污泥投入量多、污泥界面高作為形成診斷結果的原因的推定結果的一例。進而,記憶投入速度的降低、投入量的削減及污泥抽取的促進作為對形成診斷結果的原因的推定結果的應對方法的一例。返回至圖15,繼續進行說明。 FIG16 is a diagram showing an example of teacher data. FIG16 shows teacher data of diagnosis results, teacher data of causes, and teacher data of countermeasures. The teacher data of diagnosis results is data obtained by associating a supernatant image with a diagnosis result of the state of the inside of a solid-liquid separation tank obtained from the supernatant image. The teacher data of causes is data obtained by associating a supernatant image with information for determining the cause of the diagnosis result of the state of the inside of a solid-liquid separation tank obtained from the supernatant image. The teacher data of countermeasures is data obtained by associating a supernatant image with information for determining a countermeasure to the state of the inside of a solid-liquid separation tank obtained from the supernatant image. In the description of FIG. 16 , for convenience, the description is made using monitoring images. In variant 2 of the embodiment, as an example, each of the plurality of monitoring images is associated with any one of “normal”, “abnormal” and “abnormal” as the diagnosis result in the same manner as the embodiment. Furthermore, each of the plurality of monitoring images is associated with the estimated result of the cause of the diagnosis result based on the diagnosis result. Furthermore, each of the plurality of monitoring images is associated with information for determining the response method to the diagnosis result based on the diagnosis result. In FIG. 16 , (1) since the supernatant has a sufficient depth, it is diagnosed as normal. In the case of a normal diagnosis, the presumed result and the countermeasures of the cause of the diagnosis are not memorized. (2) Since the depth of the supernatant is shallow, the diagnosis is abnormal. In this case, swelling is memorized as the presumed result of the cause of the diagnosis. Furthermore, the promotion of sludge extraction and the addition of sludge settling agents are memorized as the countermeasures to the presumed result of the cause of the diagnosis. (3) Since the flying of accumulated sludge is seen in the supernatant, the diagnosis is abnormal. In this case, the fast sludge addition speed, large sludge addition amount, and high sludge interface are memorized as an example of the presumed result of the cause of the diagnosis. Furthermore, the reduction of the input speed, the reduction of the input amount, and the promotion of sludge extraction are recorded as an example of a method of coping with the estimated result of the cause of the diagnosis result. Return to Figure 15 to continue the explanation.

資訊處理部53b例如作為圖形化部54、現狀判定部55a、學習部56b、原因判定部57b及應對方法判定部58發揮功能。 學習部56b除具有學習部56a的功能以外,還具有以下功能。學習部56b獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示上清液圖像的資訊與用於確定對診斷結果的應對方法的資訊相關聯所得的應對方法的教師資料記憶於記錄裝置52中。 學習部56b獲取記憶於記錄裝置52中的應對方法的教師資料。學習部56b藉由基於所獲取的應對方法的教師資料來對上清液圖像與用於確定對由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的應對方法的資訊進行機器學習(有教師的學習),而生成將上清液圖像與對固液分離槽內部的狀態的應對方法相關聯所得的應對方法的學習模型。例如,學習部56b使用卷積類神經網路來識別上清液圖像。藉由應對方法的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為用於確定對固液分離槽內部的狀態的應對方法的資訊中的任一者。學習部56b使所生成的應對方法的學習模型記憶於記錄裝置52中。 The information processing unit 53b functions as, for example, a graphics unit 54, a current state determination unit 55a, a learning unit 56b, a cause determination unit 57b, and a response method determination unit 58. The learning unit 56b has the following functions in addition to the functions of the learning unit 56a. The learning unit 56b obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the response method obtained by associating the information representing the supernatant image contained in the obtained diagnosis result notification with the information used to determine the response method for the diagnosis result in the recording device 52. The learning unit 56b obtains the teacher data of the response method stored in the recording device 52. The learning unit 56b performs machine learning (teacher-assisted learning) on the supernatant image and the information on the countermeasure for determining the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image based on the teacher data of the countermeasure, thereby generating a learning model of the countermeasure that associates the supernatant image with the countermeasure for the state inside the solid-liquid separation tank. For example, the learning unit 56b uses a convolutional neural network to recognize the supernatant image. The supernatant image is classified into any one of the information on the countermeasure for determining the state inside the solid-liquid separation tank based on the information representing the supernatant image by the learning model of the countermeasure. The learning unit 56b stores the generated learning model of the response method in the recording device 52.

原因判定部57b自現狀判定部55a獲取表示上清液圖像的資訊與固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57b獲取記憶於記錄裝置52中的原因的學習模型。原因判定部57b基於所獲取的原因的學習模型來判定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因。 應對方法判定部58自現狀判定部55a獲取表示上清液圖像的資訊與固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,應對方法判定部58獲取記憶於記錄裝置52中的應對方法的學習模型。應對方法判定部58基於所獲取的應對方法的學習模型來判定對所獲取的上清液圖像的固液分離槽內部的狀態的應對方法。 應對方法判定部58自原因判定部57b獲取用於確定形成上清液圖像的固液分離槽內部的狀態的原因的資訊。應對方法判定部58創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、用於確定形成固液分離槽內部的狀態的原因的資訊、及用於確定對固液分離槽內部的狀態的應對方法的資訊且以資訊處理裝置40b為目的地。應對方法判定部58將所創建的狀態通知資訊輸出至通訊裝置51。 通訊裝置51獲取原因判定部57b所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40b。 資訊處理部53b的全部或一部分例如是藉由CPU等處理器執行儲存於記錄裝置52中的監控應用等程式來實現的功能部(以下,稱為軟體功能部)。再者,資訊處理部53b的全部或一部分可藉由LSI、ASIC或FPGA等硬體來實現,亦可藉由軟體功能部與硬體的組合來實現。 資訊處理裝置40b可應用資訊處理裝置40。 The cause determination unit 57b obtains information representing the supernatant image and the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. When the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the cause determination unit 57b obtains the learning model of the cause stored in the recording device 52. The cause determination unit 57b determines the cause of the state inside the solid-liquid separation tank that forms the obtained supernatant image based on the learned model of the cause. The response method determination unit 58 obtains information representing the supernatant image and the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. When the result of the determination of the state of the interior of the solid-liquid separation tank is abnormal or abnormal, the response method determination unit 58 obtains the learning model of the response method stored in the recording device 52. The response method determination unit 58 determines the response method for the state of the interior of the solid-liquid separation tank of the obtained supernatant image based on the obtained learning model of the response method. The response method determination unit 58 obtains information for determining the cause of the state of the interior of the solid-liquid separation tank that forms the supernatant image from the cause determination unit 57b. The response method determination unit 58 creates state notification information, which includes information representing the supernatant image, information for determining the cause of the state inside the solid-liquid separation tank, and information for determining the response method for the state inside the solid-liquid separation tank, and is destined for the information processing device 40b. The response method determination unit 58 outputs the created state notification information to the communication device 51. The communication device 51 obtains the state notification information output by the cause determination unit 57b, and transmits the obtained state notification information to the information processing device 40b. All or part of the information processing unit 53b is a functional unit (hereinafter referred to as a software functional unit) implemented by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. Furthermore, all or part of the information processing unit 53b can be implemented by hardware such as LSI, ASIC or FPGA, or by a combination of software function units and hardware. The information processing device 40b can apply the information processing device 40.

(終端裝置45b) 終端裝置45b是藉由個人電腦、伺服器或產業用電腦等裝置來實現。終端裝置45b的一例設置於用於監控污水處理設備10的監控中心。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45b來創建上清液圖像請求,所述上清液圖像請求包含請求上清液圖像的資訊且以監控裝置50b為目的地。終端裝置45b基於用戶的操作來創建上清液圖像請求。終端裝置45b將所創建的上清液圖像請求傳送至監控裝置50b。 終端裝置45a相對於傳送至監控裝置50b的上清液圖像請求,接收監控裝置50b所傳送的上清液圖像響應。終端裝置45b顯示上清液圖像響應中所含的上清液圖像。用戶參照終端裝置45b所顯示的上清液圖像來診斷上清液圖像中所含的固液分離槽內部的狀態,進而推定形成固液分離槽內部的狀態的原因。用戶藉由操作終端裝置45b來創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、及用於確定對該診斷結果的應對方法的資訊且以監控裝置50b為目的地。終端裝置45b基於用戶的操作來創建診斷結果通知。終端裝置45b將所創建的診斷結果通知傳送至監控裝置50b。 (Terminal device 45b) Terminal device 45b is implemented by a device such as a personal computer, a server or an industrial computer. An example of terminal device 45b is set in a monitoring center for monitoring sewage treatment equipment 10. When diagnosing the state inside the solid-liquid separation tank, the user creates a supernatant image request by operating terminal device 45b, and the supernatant image request includes information requesting a supernatant image and has monitoring device 50b as a destination. Terminal device 45b creates a supernatant image request based on the user's operation. Terminal device 45b transmits the created supernatant image request to monitoring device 50b. The terminal device 45a receives the supernatant image response transmitted by the monitoring device 50b in response to the supernatant image request transmitted to the monitoring device 50b. The terminal device 45b displays the supernatant image contained in the supernatant image response. The user diagnoses the state of the inside of the solid-liquid separation tank contained in the supernatant image with reference to the supernatant image displayed by the terminal device 45b, and further infers the cause of the state of the inside of the solid-liquid separation tank. The user creates a diagnosis result notification by operating the terminal device 45b, and the diagnosis result notification includes information representing the image of the supernatant, the diagnosis result of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis result, and information for determining the response method to the diagnosis result, and has the monitoring device 50b as the destination. The terminal device 45b creates the diagnosis result notification based on the user's operation. The terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.

(監控系統的動作) 圖17是表示實施形態的變形例2的監控系統的動作的例1的圖。參照圖17,對如下處理進行說明:監控裝置50b將終端裝置45b所傳送的診斷結果通知中所含的固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、及用於確定對診斷結果的應對方法的資訊累積。對如下處理進行說明:監控裝置50b基於所累積的固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、及用於確定對診斷結果的應對方法的資訊來進行機器學習,而生成診斷結果的學習模型、原因的學習模型及應對方法的學習模型。 步驟S1-6至步驟S10-6可應用圖7的步驟S1-1至步驟S10-1,因此省略此處的說明。 (步驟S11-6) 終端裝置45b接收監控裝置50b所傳送的上清液圖像響應。終端裝置45b藉由對所接收的上清液圖像響應中所含的表示上清液圖像的資訊進行圖像處理來顯示上清液圖像。終端裝置45b創建診斷結果通知,所述診斷結果通知包含固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、及用於確定對該診斷結果的應對方法的資訊且以監控裝置50b為目的地。 (步驟S12-6) 終端裝置45b將所創建的診斷結果通知傳送至監控裝置50b。 (Operation of the monitoring system) FIG. 17 is a diagram showing Example 1 of the operation of the monitoring system of Modification 2 of the implementation form. Referring to FIG. 17 , the following processing is explained: the monitoring device 50b accumulates the diagnosis result of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45b, information for determining the cause of the diagnosis result, and information for determining the response method to the diagnosis result. The following processing is described: the monitoring device 50b performs machine learning based on the accumulated diagnosis results of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis results, and information for determining the response method to the diagnosis results, and generates a learning model of the diagnosis results, a learning model of the cause, and a learning model of the response method. Steps S1-6 to S10-6 can apply steps S1-1 to S10-1 of Figure 7, so the description here is omitted. (Step S11-6) The terminal device 45b receives the supernatant image response transmitted by the monitoring device 50b. The terminal device 45b displays the supernatant image by performing image processing on the information representing the supernatant image contained in the received supernatant image response. The terminal device 45b creates a diagnosis result notification, which includes the diagnosis result of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis result, and information for determining the response method to the diagnosis result and has the monitoring device 50b as the destination. (Step S12-6) The terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.

(步驟S13-6) 於監控裝置50b中,通訊裝置51接收終端裝置45b所傳送的診斷結果通知。學習部56b獲取通訊裝置51所接收的診斷結果通知,並獲取所獲取的診斷結果通知中所含的表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、及用於確定對該診斷結果的應對方法的資訊。 學習部56b使將所獲取的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果相關聯所得的診斷結果的教師資料、將表示上清液圖像的資訊與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的教師資料、及將表示上清液圖像的資訊與用於確定對診斷結果的應對方法的資訊相關聯所得的應對方法的教師資料記憶於記錄裝置52中。 (步驟S14-6) 於監控裝置50b中,學習部56b獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56b藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習,而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。 學習部56b獲取記憶於記錄裝置52中的原因的教師資料。學習部56b藉由基於所獲取的原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊進行機器學習,而生成將上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的學習模型。 學習部56b獲取記憶於記錄裝置52中的應對方法的教師資料。學習部56b藉由基於所獲取的應對方法的教師資料來對上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊進行機器學習,而生成將上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊相關聯所得的應對方法的學習模型。 (步驟S15-6) 於監控裝置50b中,學習部56b使所生成的診斷結果的學習模型、原因的學習模型及應對方法的學習模型記憶於記錄裝置52中。 再者,診斷結果通知亦可為基於監控圖像而非上清液圖像進行診斷所得的結果。即,可為,於步驟S7-6中,終端裝置45b創建監控圖像請求,於步驟S8-1中,將終端裝置45b所創建的監控圖像請求傳送至監控裝置50b,於步驟S9-1中,監控裝置50b創建監控圖像,於步驟S10-1中,監控裝置50b將監控圖像響應傳送至終端裝置45b。 (Step S13-6) In the monitoring device 50b, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45b. The learning unit 56b obtains the diagnosis result notification received by the communication device 51, and obtains the information representing the image of the supernatant liquid contained in the obtained diagnosis result notification, the diagnosis result of the state inside the solid-liquid separation tank, and the information for determining the response method to the diagnosis result. The learning unit 56b stores in the recording device 52 the teacher data of the diagnosis result obtained by associating the information representing the supernatant image with the diagnosis result of the state inside the solid-liquid separation tank, the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank, and the teacher data of the response method obtained by associating the information representing the supernatant image with the information for determining the response method to the diagnosis result. (Step S14-6) In the monitoring device 50b, the learning unit 56b obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image by using the teacher data based on the obtained diagnosis result, thereby generating a learning model of the diagnosis result obtained by associating the supernatant image with the state inside the solid-liquid separation tank. The learning unit 56b obtains the teacher data of the cause stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant image and the information on the cause of the diagnosis result for determining the state inside the solid-liquid separation tank based on the acquired teacher data of the cause, thereby generating a learning model of the cause that associates the supernatant image with the information on the cause of the diagnosis result for determining the state inside the solid-liquid separation tank. The learning unit 56b acquires the teacher data of the coping method stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant image and the information on the countermeasure for determining the state inside the solid-liquid separation tank based on the obtained teacher data of the countermeasure, thereby generating a learning model of the countermeasure by associating the supernatant image with the information on the countermeasure for determining the state inside the solid-liquid separation tank. (Step S15-6) In the monitoring device 50b, the learning unit 56b stores the generated learning model of the diagnosis result, the learning model of the cause, and the learning model of the countermeasure in the recording device 52. Furthermore, the diagnosis result notification may also be the result of the diagnosis based on the monitoring image instead of the supernatant image. That is, in step S7-6, the terminal device 45b creates a monitoring image request, in step S8-1, the monitoring image request created by the terminal device 45b is transmitted to the monitoring device 50b, in step S9-1, the monitoring device 50b creates a monitoring image, and in step S10-1, the monitoring device 50b transmits the monitoring image response to the terminal device 45b.

圖18是表示實施形態的變形例2的監控系統的動作的例2的圖。參照圖18,對如下處理進行說明:監控裝置50b獲取資料處理裝置30所傳送的數位訊號,並基於所獲取的數位訊號來創建上清液圖像;監控裝置50b基於所創建的上清液圖像來判定固液分離槽內部的狀態。 步驟S1-7至步驟S6-7可應用圖7的步驟S1-1至步驟S6-1,因此省略此處的說明。 (步驟S7-7) 於監控裝置50b中,現狀判定部55a獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。 (步驟S8-7) 於監控裝置50b中,現狀判定部55a獲取記憶於記錄裝置52中的診斷結果的學習模型。 (步驟S9-7) 於監控裝置50b中,現狀判定部55a基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。 (步驟S10-7) 於監控裝置50b中,原因判定部57b自現狀判定部55a獲取固液分離槽內部的狀態的判定結果。原因判定部57b判定所獲取的固液分離槽內部的狀態的判定結果是失常還是異常。於原因判定部57b判定為所獲取的固液分離槽內部的狀態的判定結果既非失常亦非異常的情況下結束。 FIG. 18 is a diagram of Example 2 showing the operation of the monitoring system of Modification 2 of the embodiment. Referring to FIG. 18 , the following processing is described: the monitoring device 50b obtains the digital signal transmitted by the data processing device 30 and creates a supernatant image based on the obtained digital signal; the monitoring device 50b determines the state inside the solid-liquid separation tank based on the created supernatant image. Steps S1-7 to S6-7 can apply steps S1-1 to S6-1 of FIG. 7 , so the description here is omitted. (Step S7-7) In the monitoring device 50b, the current state determination unit 55a obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. (Step S8-7) In the monitoring device 50b, the current state determination unit 55a obtains the learning model of the diagnosis result stored in the recording device 52. (Step S9-7) In the monitoring device 50b, the current state determination unit 55a determines the state of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. (Step S10-7) In the monitoring device 50b, the cause determination unit 57b obtains the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. The cause determination unit 57b determines whether the determination result of the state inside the solid-liquid separation tank obtained is abnormal or abnormal. The process ends when the cause determination unit 57b determines that the determination result of the state inside the solid-liquid separation tank obtained is neither abnormal nor abnormal.

(步驟S11-7) 於監控裝置50b中,於判定為所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57b獲取記憶於記錄裝置52中的原因的學習模型。 (步驟S12-7) 於監控裝置50b中,原因判定部57b基於所獲取的原因的學習模型來判定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因。 (步驟S13-7) 於監控裝置50b中,應對方法判定部58自現狀判定部55a獲取表示上清液圖像的資訊與圖像固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,應對方法判定部58獲取記憶於記錄裝置52中的應對方法的學習模型。 (步驟S14-7) 於監控裝置50b中,應對方法判定部58基於所獲取的應對方法的學習模型來判定對所獲取的上清液圖像的固液分離槽內部的狀態的應對方法。 (步驟S15-7) 於監控裝置50b中,應對方法判定部58自原因判定部57b獲取用於確定形成上清液圖像的固液分離槽內部的狀態的原因的資訊。應對方法判定部58創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、用於確定形成固液分離槽內部的狀態的原因的資訊、及用於確定對固液分離槽內部的狀態的應對方法的資訊且以資訊處理裝置40b為目的地。 (步驟S16-7) 於監控裝置50b中,應對方法判定部58將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取應對方法判定部58所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40b。 再者,於步驟S7-7中,監控裝置50創建上清液圖像,但只不過是一例。例如,監控裝置50只要基於畫素資料來創建監控圖像,並於之後的步驟中藉由忽略較污泥界面而言深的部分等來著眼於上清液圖像即可。 關於監控裝置50b基於資訊處理裝置40b所傳送的槽內狀態資訊請求來傳送表示上清液圖像的資訊的處理,由於可應用圖9,因此省略說明。 (Step S11-7) In the monitoring device 50b, when the judgment result of the state of the solid-liquid separation tank is determined to be abnormal or abnormal, the cause judgment unit 57b obtains the learning model of the cause stored in the recording device 52. (Step S12-7) In the monitoring device 50b, the cause judgment unit 57b judges the cause of the state of the solid-liquid separation tank that forms the obtained supernatant image based on the learned model of the cause. (Step S13-7) In the monitoring device 50b, the response method judgment unit 58 obtains the information representing the supernatant image and the judgment result of the state of the solid-liquid separation tank from the current state judgment unit 55a. When the result of the determination of the state of the interior of the solid-liquid separation tank is abnormal or abnormal, the response method determination unit 58 obtains the learning model of the response method stored in the recording device 52. (Step S14-7) In the monitoring device 50b, the response method determination unit 58 determines the response method for the state of the interior of the solid-liquid separation tank of the obtained supernatant image based on the obtained learning model of the response method. (Step S15-7) In the monitoring device 50b, the response method determination unit 58 obtains information for determining the cause of the state of the interior of the solid-liquid separation tank that forms the supernatant image from the cause determination unit 57b. The response method determination unit 58 creates state notification information, which includes information indicating a supernatant image, information for determining the cause of the state inside the solid-liquid separation tank, and information for determining a response method for the state inside the solid-liquid separation tank, and has the information processing device 40b as a destination. (Step S16-7) In the monitoring device 50b, the response method determination unit 58 outputs the created state notification information to the communication device 51. The communication device 51 obtains the state notification information output by the response method determination unit 58, and transmits the obtained state notification information to the information processing device 40b. Furthermore, in step S7-7, the monitoring device 50 creates a supernatant image, but this is only an example. For example, the monitoring device 50 only needs to create a monitoring image based on the pixel data, and in the subsequent steps, focus on the supernatant image by ignoring the portion deeper than the sludge interface. The processing of the monitoring device 50b transmitting information representing the supernatant image based on the tank status information request transmitted by the information processing device 40b is omitted because Figure 9 can be applied.

於所述實施形態的變形例2中,對在一個污水處理設備10連接有監控系統100b的情況進行了說明,但並不限於該例。例如,可於多個污水處理設備10連接有監控系統100b,亦可於一個污水處理設備10連接有多個監控系統100b。於假設在多個污水處理設備10連接有監控系統100b的情況下,當於A的設備中產生無經驗的非穩定狀態時,若於B的設備中有產生該非穩定狀態的經驗,則判斷為「異常」,判定並輸出用於確定該異常的原因的資訊與用於確定應對方法的資訊的可能性高。即,監控裝置50b能夠進行更多的學習,因此可增加能用於判定的事例數。因此,可增加能判斷為異常或失常的非穩定狀態。 於所述實施形態的變形例2中,對監控裝置50b進行機器學習的情況進行了說明,但並不限於該例。例如,可利用獨立於監控裝置50b的裝置來實現進行機器學習的裝置。於該情況下,關於學習裝置,於實施形態的變形例1中說明的學習裝置中,學習裝置自監控裝置50b獲取上清液圖像與用於確定對基於上清液圖像所得的診斷結果的應對方法的資訊。學習裝置的學習部基於上清液圖像與用於確定對根據上清液圖像所得的診斷結果的應對方法的資訊,並藉由機器學習(有教師的機器學習)來生成表示出上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊的關係的第三學習模型。 於實施形態的變形例2中,資訊處理裝置40b可將狀態通知中所含的應對方法通知給污水處理設備10的操作員,亦可創建用以使設備控制裝置19執行應對方法的控制資訊,並將所創建的控制資訊傳送至設備控制裝置19。 於所述實施形態的變形例2中,對如下情況進行了說明,但並不限於該例,所述情況:基於上清液圖像來判定固液分離槽內部的狀態的判定結果是正常、異常及失常中的哪一者,進而,基於固液分離槽內部的狀態的判定結果是異常與失常中的哪一者來記憶污泥抽取的促進、污泥沈降劑等的投入、投入速度的降低、投入量的削減、污泥抽取的促進。例如,可基於固液分離槽內部的狀態的判定結果是異常與失常中的哪一者而分類為一個或多個應對方法。 於所述實施形態的變形例2中,對如下情況進行了說明,但並不限於該例,所述情況:於實施形態的變形例1中更具有根據固液分離槽的上清液圖像來判定用於確定對固液分離槽內部的狀態的應對方法的資訊的處理。例如,可於實施形態中更具有根據固液分離槽的上清液圖像來判定用於確定對固液分離槽內部的狀態的應對方法的資訊的處理。 In the variation 2 of the embodiment, the case where the monitoring system 100b is connected to one sewage treatment equipment 10 is described, but it is not limited to this example. For example, the monitoring system 100b may be connected to a plurality of sewage treatment equipment 10, or a plurality of monitoring systems 100b may be connected to one sewage treatment equipment 10. In the case where the monitoring system 100b is connected to a plurality of sewage treatment equipment 10, when an unstable state with no experience occurs in the equipment of A, if there is experience that the unstable state occurs in the equipment of B, it is judged as "abnormal", and it is judged that there is a high possibility that information for determining the cause of the abnormality and information for determining the response method will be output. That is, the monitoring device 50b can perform more learning, thereby increasing the number of cases that can be used for judgment. Therefore, the number of unstable states that can be judged as abnormal or abnormal can be increased. In the variant example 2 of the embodiment, the case where the monitoring device 50b performs machine learning is described, but it is not limited to this example. For example, a device independent of the monitoring device 50b can be used to implement a device that performs machine learning. In this case, regarding the learning device, in the learning device described in the variant example 1 of the embodiment, the learning device obtains the supernatant image and information for determining the response method to the diagnosis result obtained based on the supernatant image from the monitoring device 50b. The learning unit of the learning device generates a third learning model that represents the relationship between the supernatant image and the information for determining the response method to the diagnosis result obtained based on the supernatant image by machine learning (machine learning with a teacher). In variant example 2 of the implementation form, the information processing device 40b can notify the operator of the sewage treatment equipment 10 of the response method contained in the status notification, and can also create control information for the equipment control device 19 to execute the response method, and transmit the created control information to the equipment control device 19. In the variant 2 of the embodiment, the following situation is described, but not limited to this example: the determination result of the state inside the solid-liquid separation tank is determined based on the supernatant image, whether it is normal, abnormal, or malfunction, and further, based on whether the determination result of the state inside the solid-liquid separation tank is abnormal or malfunction, the promotion of sludge extraction, the addition of sludge settling agents, etc., the reduction of the input speed, the reduction of the input amount, and the promotion of sludge extraction are memorized. For example, it can be classified into one or more coping methods based on whether the determination result of the state inside the solid-liquid separation tank is abnormal or malfunction. In the variant 2 of the embodiment, the following situation is described, but not limited to this example: in the variant 1 of the embodiment, there is further processing of determining information for determining a method for dealing with the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank. For example, in the embodiment, there may be further processing of determining information for determining a method for dealing with the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank.

根據實施形態的變形例2的監控系統100b,於實施形態的監控裝置50a中,監控裝置50b包括應對方法判定部58,所述應對方法判定部58基於上清液圖像與用於確定對根據上清液圖像所得的診斷結果的應對方法的資訊,並使用學習了上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊的關係的作為應對方法的學習模型的第三學習模型,根據作為診斷對象的固液分離槽的上清液圖像來判定用於確定對固液分離槽內部的狀態的應對方法的資訊。輸出部進而輸出應對方法判定部58使用作為診斷對象的固液分離槽的上清液圖像與第三學習模型所判定的用於確定對固液分離槽內部的狀態的應對方法的資訊。 藉由如此般構成,監控裝置50b可使用學習了上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊的關係的第三學習模型,並根據作為診斷對象的固液分離槽的上清液圖像來判定用於確定對固液分離槽內部的狀態的應對方法的資訊,因此可監控對固液分離槽內部的狀態的應對方法。藉由可使用第三學習模型,並根據作為診斷對象的固液分離槽的上清液圖像來判定對固液分離槽內部的狀態的應對方法,與人基於經驗來診斷對固液分離槽內部的狀態的應對方法的情況相比較,不需要人的經驗,亦可減少診斷結果的偏差。 According to the monitoring system 100b of the variant example 2 of the implementation form, in the monitoring device 50a of the implementation form, the monitoring device 50b includes a response method determination unit 58, and the response method determination unit 58 is based on the supernatant image and the information for determining the response method for the diagnosis result obtained according to the supernatant image, and uses the third learning model as a learning model of the response method that has learned the relationship between the supernatant image and the information for determining the response method for the diagnosis result inside the solid-liquid separation tank. The response method determination unit 58 determines the information for determining the response method for the state inside the solid-liquid separation tank according to the supernatant image of the solid-liquid separation tank as the diagnosis object. The output unit further outputs the information of the response method determination unit 58 for determining the response method for the state inside the solid-liquid separation tank determined by the third learning model using the supernatant image of the solid-liquid separation tank as the diagnosis object. By configuring in this way, the monitoring device 50b can use the third learning model that has learned the relationship between the supernatant image and the information for determining the response method for the diagnosis result inside the solid-liquid separation tank, and determine the information for determining the response method for the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the diagnosis object, thereby monitoring the response method for the state inside the solid-liquid separation tank. By using the third learning model and determining the response method to the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the diagnosis object, compared with the case where a person diagnoses the response method to the state inside the solid-liquid separation tank based on experience, human experience is not required and the deviation of the diagnosis result can be reduced.

[實施形態的變形例3] (監控系統) 圖19是表示本發明實施形態的變形例3的監控系統的結構例的圖。實施形態的變形例3的監控系統100c除對沈澱槽、濃縮槽等固液分離槽的污泥堆積狀態進行診斷以外,還對變化的預兆進行檢測。於實施形態的變形例3中,與實施形態同樣地應用污水處理設備10作為包括固液分離槽的設備的一例。 [Variant 3 of the embodiment] (Monitoring system) FIG. 19 is a diagram showing a configuration example of a monitoring system of variant 3 of the embodiment of the present invention. The monitoring system 100c of variant 3 of the embodiment not only diagnoses the sludge accumulation state of a solid-liquid separation tank such as a sedimentation tank and a concentration tank, but also detects signs of changes. In variant 3 of the embodiment, the sewage treatment equipment 10 is applied as an example of equipment including a solid-liquid separation tank in the same manner as in the embodiment.

(監控系統100c) 監控系統100c包括超音波感測器20、資料處理裝置30、閘道裝置31、資訊處理裝置40c、終端裝置45c及監控裝置50c。 閘道裝置31、資訊處理裝置40c、終端裝置45c及監控裝置50c是經由網路NW而連接。 於資料處理裝置30中,資料運算部34經由閘道裝置31而將數位訊號傳送至監控裝置50c。 (Monitoring system 100c) The monitoring system 100c includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40c, a terminal device 45c, and a monitoring device 50c. The gateway device 31, the information processing device 40c, the terminal device 45c, and the monitoring device 50c are connected via a network NW. In the data processing device 30, the data operation unit 34 transmits a digital signal to the monitoring device 50c via the gateway device 31.

(監控裝置50c) 監控裝置50c是藉由個人電腦、伺服器或產業用電腦等裝置來實現。監控裝置50c包括通訊裝置51、記錄裝置52、資訊處理部53c、及用以將各結構部件如圖19所示般電性連接的位址匯流排或資料匯流排等匯流線BL。 於記錄裝置52中記憶由監控裝置50c執行的程式(監控應用)。另外,於記錄裝置52中記憶資訊處理部53c所輸出的畫素資料。 於記錄裝置52中記憶將表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對上清液圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的資訊相關聯而得的原因的教師資料、及藉由基於原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊的關係進行機器學習而獲得的原因的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定對由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的應對方法的資訊相關聯而得的應對方法的教師資料、及藉由基於應對方法的教師資料來對上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊的關係進行機器學習而獲得的應對方法的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯而得的變化的教師資料、及藉由基於變化的教師資料來對上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊的關係進行機器學習而獲得的變化的學習模型。 (Monitoring device 50c) The monitoring device 50c is implemented by a device such as a personal computer, a server or an industrial computer. The monitoring device 50c includes a communication device 51, a recording device 52, an information processing unit 53c, and a bus BL such as an address bus or a data bus for electrically connecting each structural component as shown in FIG. 19. The program (monitoring application) executed by the monitoring device 50c is stored in the recording device 52. In addition, the pixel data output by the information processing unit 53c is stored in the recording device 52. The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the supernatant image with the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and a learning model of the diagnosis result obtained by machine learning the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. The recording device 52 stores the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and the learning model of the cause obtained by machine learning the relationship between the supernatant image and the information for determining the cause of the state inside the solid-liquid separation tank based on the teacher data of the cause. The recording device 52 stores teacher data of a response method obtained by associating information representing a supernatant image with information for determining a response method for a diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and a learning model of a response method obtained by machine learning the relationship between the supernatant image and the information for determining a response method for the state inside the solid-liquid separation tank based on the teacher data of the response method. The recording device 52 stores the changed teacher data obtained by associating the information representing the supernatant image with the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and the changed learning model obtained by machine learning the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank based on the changed teacher data.

資訊處理部53c例如作為圖形化部54、現狀判定部55a、學習部56c、原因判定部57b、應對方法判定部58c及變化預兆導出部59發揮功能。 學習部56c除具有學習部56b的功能以外,還具有以下功能。學習部56c獲取記憶於記錄裝置52中的變化的教師資料。學習部56c藉由基於所獲取的變化的教師資料來對上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊進行機器學習(有教師的學習),而生成將上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯所得的變化的學習模型。例如,學習部56c使用卷積類神經網路來識別上清液圖像。藉由變化的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊中的任一者。學習部56c使所生成的變化的學習模型記憶於記錄裝置52中。 應對方法判定部58c自現狀判定部55a獲取表示上清液圖像的資訊與圖像固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,應對方法判定部58c獲取記憶於記錄裝置52中的應對方法的學習模型。應對方法判定部58c基於所獲取的應對方法的學習模型來判定對所獲取的上清液圖像的固液分離槽內部的狀態的應對方法。 變化預兆導出部59自現狀判定部55a獲取表示上清液圖像的資訊。變化預兆導出部59獲取記憶於記錄裝置52中的變化的學習模型。變化預兆導出部59基於所獲取的變化的學習模型來導出所獲取的上清液圖像的固液分離槽的變化的預兆。 資訊處理部53c的全部或一部分例如是藉由CPU等處理器執行儲存於記錄裝置52中的監控應用等程式來實現的功能部(以下,稱為軟體功能部)。再者,資訊處理部53c的全部或一部分可藉由LSI、ASIC或FPGA等硬體來實現,亦可藉由軟體功能部與硬體的組合來實現。 資訊處理裝置40c可應用資訊處理裝置40。 The information processing unit 53c functions as, for example, a graphics unit 54, a current state determination unit 55a, a learning unit 56c, a cause determination unit 57b, a response method determination unit 58c, and a change sign derivation unit 59. The learning unit 56c has the following functions in addition to the functions of the learning unit 56b. The learning unit 56c obtains the teacher data of the changes stored in the recording device 52. The learning unit 56c performs machine learning (teacher-assisted learning) on the supernatant image and the information for determining the change of the state of the inside of the solid-liquid separation tank after the supernatant image is obtained based on the obtained change teacher data, and generates a change learning model that associates the supernatant image with the information for determining the change of the state of the inside of the solid-liquid separation tank after the supernatant image is obtained. For example, the learning unit 56c uses a convolutional neural network to recognize the supernatant image. The supernatant image is classified into any one of the change information for determining the state of the inside of the solid-liquid separation tank after the supernatant image is obtained based on the change learning model and the information representing the supernatant image. The learning unit 56c stores the generated learning model of the change in the recording device 52. The response method determination unit 58c obtains information representing the supernatant image and the determination result of the state of the solid-liquid separation tank inside the image from the current state determination unit 55a. When the determination result of the state of the solid-liquid separation tank inside the obtained solid-liquid separation tank is abnormal or abnormal, the response method determination unit 58c obtains the learning model of the response method stored in the recording device 52. The response method determination unit 58c determines the response method for the state of the solid-liquid separation tank inside the obtained supernatant image based on the obtained learning model of the response method. The change sign derivation unit 59 obtains information representing the supernatant image from the current state determination unit 55a. The change sign deriving unit 59 obtains the learning model of the change stored in the recording device 52. The change sign deriving unit 59 derives the sign of the change of the solid-liquid separation tank of the obtained supernatant image based on the obtained learning model of the change. All or part of the information processing unit 53c is a functional unit (hereinafter referred to as a software functional unit) implemented by, for example, a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. Furthermore, all or part of the information processing unit 53c can be implemented by hardware such as LSI, ASIC or FPGA, or by a combination of software functional units and hardware. The information processing device 40c can apply the information processing device 40.

(終端裝置45c) 終端裝置45c是藉由個人電腦、伺服器或產業用電腦等裝置來實現。終端裝置45c的一例設置於用於監控污水處理設備10的監控中心。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45c來創建上清液圖像請求,所述上清液圖像請求包含請求上清液圖像的資訊且以監控裝置50c為目的地。終端裝置45c基於用戶的操作來創建上清液圖像請求。終端裝置45c將所創建的上清液圖像請求傳送至監控裝置50c。 終端裝置45c相對於傳送至監控裝置50c的上清液圖像請求,接收監控裝置50c所傳送的上清液圖像響應。終端裝置45c顯示上清液圖像響應中所含的上清液圖像。用戶參照終端裝置45c所顯示的上清液圖像來診斷上清液圖像中所含的固液分離槽內部的狀態,進而推定形成固液分離槽內部的狀態的原因,確定對固液分離槽內部的狀態的應對方法,推測獲得該上清液圖像後的固液分離槽內部的狀態,並確定其變化。 用戶藉由操作終端裝置45c來創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對固液分離槽內部的狀態的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊且以監控裝置50c為目的地。終端裝置45c基於用戶的操作來創建診斷結果通知。終端裝置45c將所創建的診斷結果通知傳送至監控裝置50c。 (Terminal device 45c) The terminal device 45c is implemented by a device such as a personal computer, a server or an industrial computer. An example of the terminal device 45c is set in a monitoring center for monitoring the sewage treatment equipment 10. When diagnosing the state inside the solid-liquid separation tank, the user creates a supernatant image request by operating the terminal device 45c, and the supernatant image request includes information requesting a supernatant image and has the monitoring device 50c as a destination. The terminal device 45c creates the supernatant image request based on the user's operation. The terminal device 45c transmits the created supernatant image request to the monitoring device 50c. The terminal device 45c receives the supernatant image response transmitted by the monitoring device 50c in response to the supernatant image request transmitted to the monitoring device 50c. The terminal device 45c displays the supernatant image contained in the supernatant image response. The user refers to the supernatant image displayed by the terminal device 45c to diagnose the state of the solid-liquid separation tank contained in the supernatant image, and then infers the cause of the state inside the solid-liquid separation tank, determines the response method to the state inside the solid-liquid separation tank, infers the state of the solid-liquid separation tank after obtaining the supernatant image, and determines its change. The user creates a diagnosis result notification by operating the terminal device 45c, and the diagnosis result notification includes information representing the supernatant image, the diagnosis result of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis result, information for determining the response method to the state inside the solid-liquid separation tank, and information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and has the monitoring device 50c as the destination. The terminal device 45c creates the diagnosis result notification based on the user's operation. The terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c.

(監控系統的動作) 圖20是表示實施形態的變形例3的監控系統的動作的例1的圖。參照圖20,對如下處理進行說明:監控裝置50c將終端裝置45c所傳送的診斷結果通知中所含的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對診斷結果的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊累積,並基於所累積的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對診斷結果的應對方法的資訊、及用於確定獲得該監控圖像後的固液分離槽內部的狀態的變化的資訊來進行機器學習,而生成診斷結果的學習模型、原因的學習模型、應對方法的學習模型及變化的學習模型。 步驟S1-8至步驟S10-8可應用圖7的步驟S1-1至步驟S10-1,因此省略此處的說明。 (步驟S11-8) 終端裝置45c接收監控裝置50c所傳送的上清液圖像響應。終端裝置45c藉由對所接收的上清液圖像響應中所含的表示上清液圖像的資訊進行圖像處理來顯示上清液圖像。終端裝置45c創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對該診斷結果的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊且以監控裝置50c為目的地。 (Operation of the monitoring system) FIG. 20 is a diagram of Example 1 of the operation of the monitoring system of Modification 3 of the implementation form. Referring to FIG. 20, the following processing is explained: the monitoring device 50c accumulates the information representing the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45c, the information for determining the cause of the diagnosis result, the information for determining the response method to the diagnosis result, and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and based on The accumulated information representing the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank, the information used to determine the cause of the diagnosis result, the information used to determine the response method to the diagnosis result, and the information used to determine the change of the state inside the solid-liquid separation tank after the monitoring image is obtained are used for machine learning to generate a learning model of the diagnosis result, a learning model of the cause, a learning model of the response method, and a learning model of the change. Steps S1-8 to S10-8 can apply steps S1-1 to S10-1 of Figure 7, so the description here is omitted. (Step S11-8) The terminal device 45c receives the supernatant image response transmitted by the monitoring device 50c. The terminal device 45c displays the supernatant image by performing image processing on the information representing the supernatant image contained in the received supernatant image response. The terminal device 45c creates a diagnosis result notification, which includes information representing the supernatant image, the diagnosis result of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis result, information for determining the response method to the diagnosis result, and information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and has the monitoring device 50c as the destination.

(步驟S12-8) 終端裝置45c將所創建的診斷結果通知傳送至監控裝置50c。 (步驟S13-8) 於監控裝置50c中,通訊裝置51接收終端裝置45c所傳送的診斷結果通知。學習部56c獲取通訊裝置51所接收的診斷結果通知,並獲取所獲取的診斷結果通知中所含的表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、用於確定對該診斷結果的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊。 學習部56c使將所獲取的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果相關聯所得的診斷結果的教師資料、將表示上清液圖像的資訊與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的教師資料、將表示上清液圖像的資訊與用於確定對診斷結果的應對方法的資訊相關聯所得的應對方法的教師資料、及將表示上清液圖像的資訊與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯所得的變化的教師資料記憶於記錄裝置52中。 (步驟S14-8) 於監控裝置50c中,學習部56c獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56c藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習,而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。 學習部56c獲取記憶於記錄裝置52中的原因的教師資料。學習部56c藉由基於所獲取的原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊進行機器學習,而生成將上清液圖像與用於確定形成固液分離槽內部的狀態的診斷結果的原因的資訊相關聯所得的原因的學習模型。 學習部56c獲取記憶於記錄裝置52中的應對方法的教師資料。學習部56c藉由基於所獲取的應對方法的教師資料來對上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊進行機器學習,而生成將上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊相關聯所得的應對方法的學習模型。 學習部56c獲取記憶於記錄裝置52中的變化的教師資料。學習部56c藉由基於所獲取的變化的教師資料來對上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊進行機器學習,而生成將上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯所得的變化的學習模型。 (Step S12-8) The terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c. (Step S13-8) In the monitoring device 50c, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45c. The learning unit 56c obtains the diagnosis result notification received by the communication device 51, and obtains information indicating the supernatant image contained in the obtained diagnosis result notification, the diagnosis result of the state inside the solid-liquid separation tank, information for determining the response method to the diagnosis result, and information for determining the change of the state inside the solid-liquid separation tank after obtaining the supernatant image. The learning unit 56c stores in the recording device 52 the teacher data of the diagnosis result obtained by associating the information representing the supernatant image with the diagnosis result of the state inside the solid-liquid separation tank, the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank, the teacher data of the response method obtained by associating the information representing the supernatant image with the information for determining the response method to the diagnosis result, and the teacher data of the change obtained by associating the information representing the supernatant image with the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained. (Step S14-8) In the monitoring device 50c, the learning unit 56c obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56c performs machine learning on the diagnosis result of the supernatant image and the state of the inside of the solid-liquid separation tank obtained from the supernatant image based on the teacher data of the obtained diagnosis result, and generates a learning model of the diagnosis result obtained by associating the supernatant image with the state of the inside of the solid-liquid separation tank. The learning unit 56c obtains the teacher data of the cause stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant image and the information on the cause of the diagnosis result for determining the state inside the solid-liquid separation tank based on the acquired teacher data of the cause, thereby generating a learning model of the cause that associates the supernatant image with the information on the cause of the diagnosis result for determining the state inside the solid-liquid separation tank. The learning unit 56c acquires the teacher data of the coping method stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant image and the information on the countermeasure for determining the state inside the solid-liquid separation tank based on the obtained teacher data on the countermeasure, thereby generating a learning model of the countermeasure by associating the supernatant image with the information on the countermeasure for determining the state inside the solid-liquid separation tank. The learning unit 56c obtains the teacher data of the changes stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained based on the obtained change teacher data, thereby generating a change learning model that associates the supernatant image with the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained.

(步驟S15-8) 於監控裝置50c中,學習部56c使所生成的診斷結果的學習模型、原因的學習模型、應對方法的學習模型及變化的學習模型記憶於記錄裝置52中。 (Step S15-8) In the monitoring device 50c, the learning unit 56c stores the generated learning model of the diagnosis result, the learning model of the cause, the learning model of the response method, and the learning model of the change in the recording device 52.

再者,診斷結果通知亦可為基於監控圖像而非上清液圖像進行診斷所得的結果。即,可為,於步驟S7-8中,終端裝置45c創建監控圖像請求,於步驟S8-8中,將終端裝置45c所創建的監控圖像請求傳送至監控裝置50c,於步驟S9-8中,監控裝置50c創建監控圖像,於步驟S10-8中,監控裝置50c將監控圖像響應傳送至終端裝置45c。Furthermore, the diagnosis result notification may also be the result of diagnosis based on the monitoring image instead of the supernatant image. That is, in step S7-8, the terminal device 45c creates a monitoring image request, in step S8-8, the monitoring image request created by the terminal device 45c is transmitted to the monitoring device 50c, in step S9-8, the monitoring device 50c creates a monitoring image, and in step S10-8, the monitoring device 50c transmits the monitoring image response to the terminal device 45c.

圖21是表示實施形態的變形例3的監控系統的動作的例2的圖。參照圖21,對如下處理進行說明:監控裝置50c獲取資料處理裝置30所傳送的數位訊號,並基於所獲取的數位訊號來創建上清液圖像;監控裝置50c基於所創建的上清液圖像來判定固液分離槽內部的狀態。 步驟S1-9至步驟S6-9可應用圖7的步驟S1-1至步驟S6-1,因此省略此處的說明。 (步驟S7-9) 於監控裝置50c中,現狀判定部55a獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。 (步驟S8-9) 於監控裝置50c中,現狀判定部55a獲取記憶於記錄裝置52中的診斷結果的學習模型。 (步驟S9-9) 於監控裝置50c中,現狀判定部55a基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。 (步驟S10-9) 於監控裝置50c中,原因判定部57b自現狀判定部55a獲取固液分離槽內部的狀態的判定結果。原因判定部57b判定所獲取的固液分離槽內部的狀態的判定結果是失常還是異常。於原因判定部57b判定為所獲取的固液分離槽內部的狀態的判定結果既非失常亦非異常的情況下,轉移至步驟S15-9。 (步驟S11-9) 於監控裝置50c中,於判定為所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57b獲取記憶於記錄裝置52中的原因的學習模型。 (步驟S12-9) 於監控裝置50c中,原因判定部57b基於所獲取的原因的學習模型來判定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因。 (步驟S13-9) 於監控裝置50c中,應對方法判定部58c自現狀判定部55a獲取表示上清液圖像的資訊與圖像固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,應對方法判定部58c獲取記憶於記錄裝置52中的應對方法的學習模型。 FIG. 21 is a diagram of Example 2 of the operation of the monitoring system of Modification 3 of the implementation form. Referring to FIG. 21 , the following processing is explained: the monitoring device 50c obtains the digital signal transmitted by the data processing device 30, and creates a supernatant image based on the obtained digital signal; the monitoring device 50c determines the state inside the solid-liquid separation tank based on the created supernatant image. Steps S1-9 to S6-9 can apply steps S1-1 to S6-1 of FIG. 7, so the explanation here is omitted. (Step S7-9) In the monitoring device 50c, the current state determination unit 55a obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. (Step S8-9) In the monitoring device 50c, the current state determination unit 55a obtains the learning model of the diagnosis result stored in the recording device 52. (Step S9-9) In the monitoring device 50c, the current state determination unit 55a determines the state of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. (Step S10-9) In the monitoring device 50c, the cause determination unit 57b obtains the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55a. The cause determination unit 57b determines whether the determination result of the state inside the solid-liquid separation tank obtained is abnormal or abnormal. When the cause determination unit 57b determines that the determination result of the state inside the solid-liquid separation tank obtained is neither abnormal nor abnormal, the process proceeds to step S15-9. (Step S11-9) In the monitoring device 50c, when the judgment result of the state of the inside of the solid-liquid separation tank is judged to be abnormal or abnormal, the cause judgment unit 57b obtains the learning model of the cause stored in the recording device 52. (Step S12-9) In the monitoring device 50c, the cause judgment unit 57b judges the cause of the state of the inside of the solid-liquid separation tank that forms the obtained supernatant image based on the learned model of the cause. (Step S13-9) In the monitoring device 50c, the response method judgment unit 58c obtains the information representing the supernatant image and the judgment result of the state of the inside of the image solid-liquid separation tank from the current state judgment unit 55a. When the obtained determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the response method determination unit 58c obtains the learning model of the response method stored in the recording device 52.

(步驟S14-9) 於監控裝置50c中,應對方法判定部58c基於所獲取的應對方法的學習模型來判定對所獲取的上清液圖像的固液分離槽內部的狀態的應對方法。 (步驟S15-9) 於監控裝置50c中,變化預兆導出部59獲取記憶於記錄裝置52中的變化的學習模型。於監控裝置50c中,變化預兆導出部59基於所獲取的變化的學習模型來檢測所獲取的上清液圖像的固液分離槽內部的狀態的變化的預兆。 (步驟S16-9) 於監控裝置50c中,變化預兆導出部59自現狀判定部55a獲取表示上清液圖像的資訊與圖像固液分離槽內部的狀態的判定結果。變化預兆導出部59自原因判定部57b獲取用於確定形成上清液圖像的固液分離槽內部的狀態的原因的資訊。變化預兆導出部59創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、圖像固液分離槽內部的狀態的判定結果、用於確定形成固液分離槽內部的狀態的原因的資訊、用於確定對固液分離槽內部的狀態的應對方法的資訊、及固液分離槽內部的狀態的變化的預兆的檢測結果且以資訊處理裝置40c為目的地。 (步驟S17-9) 於監控裝置50c中,變化預兆導出部59將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取應對方法判定部58c所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40c。 再者,於步驟S7-9中,監控裝置50創建上清液圖像,但只不過是一例。例如,監控裝置50只要基於畫素資料來創建監控圖像,並於之後的步驟中藉由忽略較污泥界面而言深的部分等來著眼於上清液圖像即可。 關於監控裝置50c基於資訊處理裝置40c所傳送的槽內狀態資訊請求來傳送表示上清液圖像的資訊的處理,由於可應用圖9,因此省略說明。 (Step S14-9) In the monitoring device 50c, the response method determination unit 58c determines the response method for the state of the solid-liquid separation tank inside the obtained supernatant image based on the obtained learning model of the response method. (Step S15-9) In the monitoring device 50c, the change sign derivation unit 59 obtains the learning model of the change stored in the recording device 52. In the monitoring device 50c, the change sign derivation unit 59 detects the sign of the change of the state of the solid-liquid separation tank inside the obtained supernatant image based on the obtained learning model of the change. (Step S16-9) In the monitoring device 50c, the change sign deriving unit 59 obtains information representing the supernatant image and the determination result of the state inside the image solid-liquid separation tank from the current state determination unit 55a. The change sign deriving unit 59 obtains information for determining the cause of the state inside the solid-liquid separation tank that forms the supernatant image from the cause determination unit 57b. The change sign output unit 59 creates status notification information, which includes information representing the supernatant image, the determination result of the state inside the solid-liquid separation tank of the image, information for determining the cause of the state inside the solid-liquid separation tank, information for determining the response method to the state inside the solid-liquid separation tank, and the detection result of the sign of the change of the state inside the solid-liquid separation tank, and the information processing device 40c is used as the destination. (Step S17-9) In the monitoring device 50c, the change sign output unit 59 outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the response method determination unit 58c, and transmits the obtained status notification information to the information processing device 40c. Furthermore, in step S7-9, the monitoring device 50 creates a supernatant image, but this is only an example. For example, the monitoring device 50 only needs to create a monitoring image based on pixel data, and in subsequent steps, focus on the supernatant image by ignoring the portion deeper than the sludge interface. The processing of the monitoring device 50c transmitting information representing the supernatant image based on the tank status information request transmitted by the information processing device 40c is omitted because Figure 9 can be applied.

於所述實施形態的變形例3中,對在一個污水處理設備10連接有監控系統100c的情況進行了說明,但並不限於該例。例如,可於多個污水處理設備10連接有監控系統100c,亦可於一個污水處理設備10連接有多個監控系統100c。於假設在多個污水處理設備10連接有監控系統100c的情況下,當於A的設備中產生無經驗的非穩定狀態時,若於B的設備中有產生該非穩定狀態的經驗,則判斷為「異常」,判定並輸出用於確定該異常的原因的資訊、用於確定應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊的可能性高。即,監控裝置50c能夠進行更多的學習,因此可增加能用於判定的事例數。因此,可增加能判斷為異常或失常的非穩定狀態。 於所述實施形態的變形例3中,對監控裝置50c進行機器學習的情況進行了說明,但並不限於該例。例如,可利用獨立於監控裝置50c的裝置來實現進行機器學習的裝置。於該情況下,關於學習裝置,於實施形態的變形例2中說明的學習裝置中,學習裝置自監控裝置50c獲取上清液圖像與用於確定獲得上清液圖像後的固液分離槽內部的狀態的變化的資訊。學習裝置的學習部基於上清液圖像與用於確定獲得上清液圖像後的固液分離槽內部的狀態的變化的資訊,並藉由機器學習(有教師的機器學習)來生成表示出上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊的關係的第四學習模型。 於實施形態的變形例3中,資訊處理裝置40c可將狀態通知中所含的用於確定固液分離槽內部的狀態的變化的資訊通知給污水處理設備10的操作員。 In the modification 3 of the embodiment, the case where the monitoring system 100c is connected to one sewage treatment equipment 10 is described, but the present invention is not limited to this example. For example, the monitoring system 100c may be connected to a plurality of sewage treatment equipments 10, or a plurality of monitoring systems 100c may be connected to one sewage treatment equipment 10. Assuming that multiple sewage treatment equipment 10 are connected to the monitoring system 100c, when an unstable state that has no experience occurs in equipment A, if there is experience that the unstable state occurs in equipment B, it is judged as "abnormal", and it is highly likely that information for determining the cause of the abnormality, information for determining the response method, and information for determining the change in the state inside the solid-liquid separation tank after the supernatant image is obtained will be judged and output. That is, the monitoring device 50c can learn more, so the number of cases that can be used for judgment can be increased. Therefore, the unstable state that can be judged as abnormal or abnormal can be increased. In the modification example 3 of the embodiment, the case where the monitoring device 50c performs machine learning is described, but the present invention is not limited to this example. For example, a device independent of the monitoring device 50c can be used to implement a device that performs machine learning. In this case, regarding the learning device, in the learning device described in the modification example 2 of the embodiment, the learning device obtains the supernatant image from the monitoring device 50c and the information used to determine the change of the state of the inside of the solid-liquid separation tank after the supernatant image is obtained. The learning unit of the learning device generates a fourth learning model that represents the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained by machine learning (machine learning with a teacher). In variant example 3 of the implementation form, the information processing device 40c can notify the operator of the sewage treatment equipment 10 of the information for determining the change of the state inside the solid-liquid separation tank contained in the state notification.

根據實施形態的變形例3的監控系統100c,於實施形態的監控裝置50b中,監控裝置50c包括變化預兆導出部59,所述變化預兆導出部59基於上清液圖像與用於確定獲得上清液圖像後的固液分離槽內部的狀態的變化的資訊,並使用學習了上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊的關係的作為變化的學習模型的第四學習模型,根據作為診斷對象的固液分離槽的上清液圖像來檢測固液分離槽內部的狀態的變化的預兆。輸出部進而輸出用於確定變化預兆導出部使用作為診斷對象的固液分離槽的上清液圖像與第四學習模型所檢測的固液分離槽內部的狀態的變化的預兆的資訊。 藉由如此般構成,監控裝置50c可使用學習了上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊的關係的第四學習模型,並根據作為診斷對象的固液分離槽的上清液圖像來檢測固液分離槽內部的狀態的變化的預兆,因此可監控固液分離槽內部的狀態的變化。藉由可使用第四學習模型,並根據作為診斷對象的固液分離槽的上清液圖像來檢測固液分離槽內部的狀態的變化的預兆,與人基於經驗來檢測固液分離槽內部的狀態的變化的預兆的情況相比較,不需要人的經驗,亦可減少診斷結果的偏差。 According to the monitoring system 100c of the variant example 3 of the implementation form, in the monitoring device 50b of the implementation form, the monitoring device 50c includes a change sign deriving unit 59, and the change sign deriving unit 59 is based on the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and uses the fourth learning model as a change learning model that has learned the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank, and detects the sign of the change of the state inside the solid-liquid separation tank according to the supernatant image of the solid-liquid separation tank as the diagnosis object. The output unit further outputs information for determining a sign of a change in the state of the solid-liquid separation tank detected by the fourth learning model using the supernatant image of the solid-liquid separation tank as the object of diagnosis. By configuring in this way, the monitoring device 50c can detect a sign of a change in the state of the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the object of diagnosis, thereby monitoring the change in the state of the solid-liquid separation tank. By using the fourth learning model, the signs of changes in the state inside the solid-liquid separation tank can be detected based on the supernatant image of the solid-liquid separation tank as the diagnosis object. Compared with the case where humans detect the signs of changes in the state inside the solid-liquid separation tank based on experience, human experience is not required and the deviation of the diagnosis result can be reduced.

[實施形態的變形例4] (監控系統) 圖22是表示本發明實施形態的變形例4的監控系統的結構例的圖。於實施形態的變形例3中,實施形態的變形例4的監控系統100d不經由網路NW地將監控裝置50d連接於資料處理裝置30d與閘道裝置31之間。實施形態的變形例4的監控系統100d對沈澱槽、濃縮槽等固液分離槽的污泥堆積狀態進行診斷並檢測變化的預兆。於實施形態的變形例4中,與實施形態同樣地應用污水處理設備10作為包括固液分離槽的設備的一例。於圖22中,省略了污水處理設備10。 [Variant 4 of the embodiment] (Monitoring system) FIG. 22 is a diagram showing a structural example of a monitoring system of a variant 4 of the embodiment of the present invention. In variant 3 of the embodiment, a monitoring system 100d of variant 4 of the embodiment connects a monitoring device 50d between a data processing device 30d and a gate device 31 without passing through a network NW. The monitoring system 100d of variant 4 of the embodiment diagnoses the sludge accumulation state of a solid-liquid separation tank such as a sedimentation tank and a concentration tank and detects signs of changes. In variant 4 of the embodiment, a sewage treatment device 10 is applied as an example of a device including a solid-liquid separation tank in the same manner as in the embodiment. In Figure 22, the sewage treatment equipment 10 is omitted.

(監控系統100d) 監控系統100d包括超音波感測器20、資料處理裝置30d、監控裝置50d、閘道裝置31、資訊處理裝置40d及終端裝置45d。 閘道裝置31、資訊處理裝置40d及終端裝置45d是經由網路NW而連接。 於資料處理裝置30d中,資料運算部34將數位訊號傳送至監控裝置50d。 (Monitoring system 100d) The monitoring system 100d includes an ultrasonic sensor 20, a data processing device 30d, a monitoring device 50d, a gateway device 31, an information processing device 40d, and a terminal device 45d. The gateway device 31, the information processing device 40d, and the terminal device 45d are connected via a network NW. In the data processing device 30d, the data operation unit 34 transmits a digital signal to the monitoring device 50d.

(監控裝置50d) 圖23是表示本實施形態的變形例4的監控系統的監控裝置的一例的圖。監控裝置50d是藉由個人電腦、伺服器或產業用電腦等裝置來實現。監控裝置50d包括通訊裝置51、記錄裝置52、資訊處理部53d、及用以將各結構部件如圖23所示般電性連接的位址匯流排或資料匯流排等匯流線BL。 於記錄裝置52中記憶由監控裝置50d執行的程式(監控應用)。另外,於記錄裝置52中記憶資訊處理部53d所輸出的畫素資料。 於記錄裝置52中記憶將表示監控圖像的資訊與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對上清液圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定形成由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的原因的資訊相關聯而得的原因的教師資料、及藉由基於原因的教師資料來對上清液圖像與用於確定形成固液分離槽內部的狀態的原因的資訊的關係進行機器學習而獲得的原因的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定對由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的應對方法的資訊相關聯而得的應對方法的教師資料、及藉由基於應對方法的教師資料來對上清液圖像與用於確定對固液分離槽內部的狀態的應對方法的資訊的關係進行機器學習而獲得的應對方法的學習模型。 於記錄裝置52中記憶將表示上清液圖像的資訊與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯而得的變化的教師資料、及藉由基於變化的教師資料來對上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊的關係進行機器學習而獲得的變化的學習模型。 (Monitoring device 50d) FIG. 23 is a diagram showing an example of a monitoring device of a monitoring system of variation 4 of the present embodiment. The monitoring device 50d is implemented by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50d includes a communication device 51, a recording device 52, an information processing unit 53d, and a bus BL such as an address bus or a data bus for electrically connecting each structural component as shown in FIG. 23. The program (monitoring application) executed by the monitoring device 50d is stored in the recording device 52. In addition, the pixel data output by the information processing unit 53d is stored in the recording device 52. The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the monitoring image with the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and a learning model of the diagnosis result obtained by machine learning the relationship between the supernatant image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. The recording device 52 stores the teacher data of the cause obtained by associating the information representing the supernatant image with the information for determining the cause of the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and the learning model of the cause obtained by machine learning the relationship between the supernatant image and the information for determining the cause of the state inside the solid-liquid separation tank based on the teacher data of the cause. The recording device 52 stores teacher data of a response method obtained by associating information representing a supernatant image with information for determining a response method for a diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image, and a learning model of a response method obtained by machine learning the relationship between the supernatant image and the information for determining a response method for the state inside the solid-liquid separation tank based on the teacher data of the response method. The recording device 52 stores the changed teacher data obtained by associating the information representing the supernatant image with the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and the changed learning model obtained by machine learning the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank based on the changed teacher data.

資訊處理部53d例如作為圖形化部54d、現狀判定部55d、學習部56d、原因判定部57d、應對方法判定部58d及變化預兆導出部59d發揮功能。 圖形化部54d獲取通訊裝置51所接收的數位訊號。圖形化部54d將所獲取的數位訊號的值轉換為畫素資料。圖形化部54d使數位訊號的轉換後的畫素資料記憶於記錄裝置52中。 圖形化部54d獲取通訊裝置51所接收的上清液圖像請求。圖形化部54d基於所獲取的上清液圖像請求來獲取記錄裝置52中記憶的畫素資料。圖形化部54d基於所獲取的畫素資料來創建上清液圖像。圖形化部54d創建上清液圖像響應,所述上清液圖像響應包含表示所創建的上清液圖像的資訊且以資訊處理裝置40d為目的地。圖形化部54d將所創建的上清液圖像響應輸出至通訊裝置51。 圖形化部54d獲取通訊裝置51所接收的槽內狀態資訊請求。圖形化部54d基於所獲取的槽內狀態資訊請求來獲取記錄裝置52中記憶的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。圖形化部54d創建槽內狀態資訊響應,所述槽內狀態資訊響應包含表示所創建的上清液圖像的資訊且以資訊處理裝置40d為目的地。圖形化部54d將所創建的槽內狀態資訊響應輸出至通訊裝置51。 The information processing unit 53d functions as, for example, a graphics unit 54d, a current state determination unit 55d, a learning unit 56d, a cause determination unit 57d, a response method determination unit 58d, and a change sign derivation unit 59d. The graphics unit 54d obtains a digital signal received by the communication device 51. The graphics unit 54d converts the value of the obtained digital signal into pixel data. The graphics unit 54d stores the converted pixel data of the digital signal in the recording device 52. The graphics unit 54d obtains a supernatant image request received by the communication device 51. The graphics unit 54d obtains the pixel data stored in the recording device 52 based on the obtained supernatant image request. The graphics unit 54d creates a supernatant image based on the acquired pixel data. The graphics unit 54d creates a supernatant image response, which includes information representing the created supernatant image and has the information processing device 40d as a destination. The graphics unit 54d outputs the created supernatant image response to the communication device 51. The graphics unit 54d obtains the tank status information request received by the communication device 51. The graphics unit 54d obtains the pixel data stored in the recording device 52 based on the acquired tank status information request, and creates a supernatant image based on the acquired pixel data. The graphics unit 54d creates a tank state information response, which includes information representing the created supernatant image and has the information processing device 40d as the destination. The graphics unit 54d outputs the created tank state information response to the communication device 51.

現狀判定部55d獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建上清液圖像。現狀判定部55d獲取記憶於記錄裝置52中的診斷結果的學習模型。現狀判定部55d基於所獲取的診斷結果的學習模型來判定所創建的上清液圖像的固液分離槽內部的狀態。於固液分離槽內部的狀態的判定結果為失常或異常的情況下,現狀判定部55d創建狀態通知資訊,所述狀態通知資訊包含表示固液分離槽內部的狀態的判定結果的資訊且以資訊處理裝置40d為目的地。現狀判定部55d將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取現狀判定部55d所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40d。 於創建上清液圖像的情況下,現狀判定部55d可直接使用所測量的資料,亦可於藉由縮減而受限的顯示寬度中包含在長時間的期間內所測量的資料。藉由在受限的顯示寬度中包含在長時間的期間內所測量的資料,可監控更長時間的變化。若假設為靜止畫面,則可以任意適當的間隔拾取畫素資料並進行切換顯示,於本實施形態的變形例4中,由於始終進行測量並不斷追加新的資料,因此於以任意適當的間隔拾取畫素資料並進行切換顯示的情況下,有給資料處理帶來延遲或阻礙的擔憂,為了圖像顯示而測量變得不穩定,從而本末倒置。因此,於本實施形態的變形例4中,準備若干個預先預設的顯示時間寬度,並創建與多個顯示時間寬度分別對應的時間寬度用的資料儲存區域。於本實施形態中,指定用於追加新穎資料的間隔(區間),並創建與多個區間分別對應的圖像資料庫(資料儲存區域(位址))。 The current status determination unit 55d obtains the pixel data stored in the recording device 52, and creates a supernatant image based on the obtained pixel data. The current status determination unit 55d obtains the learning model of the diagnosis result stored in the recording device 52. The current status determination unit 55d determines the state of the inside of the solid-liquid separation tank of the created supernatant image based on the learning model of the obtained diagnosis result. When the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the current status determination unit 55d creates state notification information, which includes information indicating the determination result of the state inside the solid-liquid separation tank and has the information processing device 40d as the destination. The current state determination unit 55d outputs the created state notification information to the communication device 51. The communication device 51 obtains the state notification information output by the current state determination unit 55d and transmits the obtained state notification information to the information processing device 40d. When creating a supernatant image, the current state determination unit 55d can directly use the measured data, or can include the data measured over a long period of time in the display width limited by reduction. By including the data measured over a long period of time in the limited display width, changes over a longer period of time can be monitored. If it is assumed to be a still picture, pixel data can be picked up at any appropriate interval and switched for display. In the fourth variant of the present embodiment, since measurement is always performed and new data is continuously added, there is a concern that the data processing may be delayed or blocked when pixel data is picked up at any appropriate interval and switched for display. The measurement becomes unstable for the image display, which puts the cart before the horse. Therefore, in the fourth variant of the present embodiment, a plurality of pre-set display time widths are prepared, and data storage areas for time widths corresponding to the plurality of display time widths are created. In this embodiment, the interval (interval) for appending new data is specified, and an image database (data storage area (address)) corresponding to each of the multiple intervals is created.

對監控裝置50d進行切換顯示的操作,並且選擇顯示時間寬度。現狀判定部55d自與所選擇的時間顯示寬度對應的資料庫獲取資料,使用所獲取的資料來創建上清液圖像。於假設進行了切換時間顯示寬度的操作的情況下,自與所選擇的時間顯示寬度對應的資料庫獲取資料,使用所獲取的資料來創建上清液圖像。藉由如此般構成,可於不對儲存有資料的資料庫的資料進行加工的情況下,亦不會產生創建上清液圖像的時滯且順暢地進行切換。 學習部56d獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示上清液圖像的資訊與由該上清液圖像所得的固液分離槽內部(槽內)的狀態的診斷結果相關聯而得的診斷結果的教師資料記憶於記錄裝置52中。學習部56d獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56d藉由基於所獲取的診斷結果的教師資料來對上清液圖像與由該上清液圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習(有教師的學習),而生成將上清液圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。例如,學習部56d使用卷積類神經網路來識別上清液圖像。藉由診斷結果的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為作為固液分離槽內部的狀態的正常、失常及異常中的任一者。學習部56d使所生成的診斷結果的學習模型記憶於記錄裝置52中。 學習部56d獲取記憶於記錄裝置52中的應對方法的教師資料。學習部56d藉由基於所獲取的應對方法的教師資料來對上清液圖像與用於確定對由該上清液圖像所得的固液分離槽內部的狀態的診斷結果的應對方法的資訊進行機器學習(有教師的學習),而生成將上清液圖像與對固液分離槽內部的狀態的應對方法相關聯所得的應對方法的學習模型。例如,學習部56d使用卷積類神經網路來識別上清液圖像。藉由應對方法的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為用於確定對固液分離槽內部的狀態的應對方法的資訊中的任一者。學習部56d使所生成的應對方法的學習模型記憶於記錄裝置52中。 The monitoring device 50d is operated to switch the display, and the display time width is selected. The current state determination unit 55d obtains data from the database corresponding to the selected time display width, and uses the obtained data to create a supernatant image. Assuming that the operation of switching the time display width is performed, data is obtained from the database corresponding to the selected time display width, and the supernatant image is created using the obtained data. By configuring in this way, the switching can be performed smoothly without processing the data in the database storing the data, and there will be no time lag in creating the supernatant image. The learning unit 56d obtains the diagnosis result notification received by the communication device 51, and causes the teacher data of the diagnosis result obtained by associating the information representing the supernatant image contained in the obtained diagnosis result notification with the diagnosis result of the state of the inside of the solid-liquid separation tank (inside the tank) obtained from the supernatant image to be stored in the recording device 52. The learning unit 56d obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56d performs machine learning (teacher-assisted learning) on the supernatant image and the diagnosis result of the state of the inside of the solid-liquid separation tank obtained from the supernatant image based on the teacher data of the obtained diagnosis result, and generates a learning model of the diagnosis result that associates the supernatant image with the state of the inside of the solid-liquid separation tank. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant image. The supernatant image is classified into any one of normal, abnormal, and abnormal as the state of the inside of the solid-liquid separation tank based on the learning model of the diagnosis result and the information representing the supernatant image. The learning unit 56d stores the generated learning model of the diagnosis result in the recording device 52. The learning unit 56d obtains the teacher data of the response method stored in the recording device 52. The learning unit 56d performs machine learning (teacher-led learning) on the supernatant image and the information of the response method for determining the diagnosis result of the state inside the solid-liquid separation tank obtained from the supernatant image based on the obtained teacher data of the response method, and generates a learning model of the response method that associates the supernatant image with the response method for the state inside the solid-liquid separation tank. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant image. The supernatant image is classified into any one of the information for determining the countermeasure method for the state inside the solid-liquid separation tank based on the information representing the supernatant image by using the countermeasure method learning model. The learning unit 56d stores the generated countermeasure method learning model in the recording device 52.

學習部56d獲取記憶於記錄裝置52中的變化的教師資料。學習部56d藉由基於所獲取的變化的教師資料來對上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊進行機器學習(有教師的學習),而生成將上清液圖像與用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊相關聯所得的變化的學習模型。例如,學習部56d使用卷積類神經網路來識別上清液圖像。藉由變化的學習模型,並基於表示上清液圖像的資訊來將上清液圖像分類為用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊中的任一者。學習部56d使所生成的變化的學習模型記憶於記錄裝置52中。The learning unit 56d obtains the teacher data of the changes stored in the recording device 52. The learning unit 56d performs machine learning (teacher-assisted learning) on the supernatant image and the information for determining the changes in the state of the solid-liquid separation tank after the supernatant image is obtained based on the obtained teacher data of the changes, thereby generating a learning model of the changes that associates the supernatant image with the information for determining the changes in the state of the solid-liquid separation tank after the supernatant image is obtained. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant image. The learning unit 56d stores the generated changing learning model in the recording device 52, based on the information representing the supernatant image, to classify the supernatant image into any of the changing information for determining the state of the inside of the solid-liquid separation tank after the supernatant image is obtained.

原因判定部57d自現狀判定部55d獲取表示上清液圖像的資訊與固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,原因判定部57d獲取記憶於記錄裝置52中的原因的學習模型。原因判定部57d基於所獲取的原因的學習模型來判定用於確定形成所獲取的上清液圖像的固液分離槽內部的狀態的原因的資訊。原因判定部57d創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、表示固液分離槽內部的狀態的資訊、及表示用於確定形成固液分離槽內部的狀態的原因的資訊的判定結果的資訊且以資訊處理裝置40d為目的地。原因判定部57d將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取原因判定部57d所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40d。The cause determination unit 57d obtains the information representing the supernatant image and the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55d. When the determination result of the state inside the solid-liquid separation tank obtained is abnormal or abnormal, the cause determination unit 57d obtains the learning model of the cause stored in the recording device 52. The cause determination unit 57d determines the information for determining the cause of the state inside the solid-liquid separation tank that forms the obtained supernatant image based on the obtained learning model of the cause. The cause determination unit 57d creates status notification information, which includes information indicating a supernatant image, information indicating the state of the interior of the solid-liquid separation tank, and information indicating a determination result of information for determining the cause of the state of the interior of the solid-liquid separation tank, and is destined for the information processing device 40d. The cause determination unit 57d outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the cause determination unit 57d, and transmits the obtained status notification information to the information processing device 40d.

應對方法判定部58d自現狀判定部55d獲取表示上清液圖像的資訊與固液分離槽內部的狀態的判定結果。於所獲取的固液分離槽內部的狀態的判定結果為失常或異常的情況下,應對方法判定部58d獲取記憶於記錄裝置52中的應對方法的學習模型。應對方法判定部58d基於所獲取的應對方法的學習模型來判定對所獲取的上清液圖像的固液分離槽內部的狀態的應對方法。 應對方法判定部58d自原因判定部57d獲取用於確定形成上清液圖像的固液分離槽內部的狀態的原因的資訊。應對方法判定部58d創建狀態通知資訊,所述狀態通知資訊包含表示上清液圖像的資訊、用於確定形成固液分離槽內部的狀態的原因的資訊、及用於確定對固液分離槽內部的狀態的應對方法的資訊且以資訊處理裝置40d為目的地。應對方法判定部58d將所創建的狀態通知資訊輸出至通訊裝置51。 The response method determination unit 58d obtains information representing the supernatant image and the determination result of the state inside the solid-liquid separation tank from the current state determination unit 55d. When the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal, the response method determination unit 58d obtains the learning model of the response method stored in the recording device 52. The response method determination unit 58d determines the response method for the state inside the solid-liquid separation tank of the obtained supernatant image based on the obtained learning model of the response method. The response method determination unit 58d obtains information for determining the cause of the state inside the solid-liquid separation tank that forms the supernatant image from the cause determination unit 57d. The response method determination unit 58d creates status notification information, which includes information indicating a supernatant image, information for determining the cause of the state inside the solid-liquid separation tank, and information for determining a response method for the state inside the solid-liquid separation tank, and has the information processing device 40d as a destination. The response method determination unit 58d outputs the created status notification information to the communication device 51.

變化預兆導出部59d自現狀判定部55d獲取表示上清液圖像的資訊。變化預兆導出部59d獲取記憶於記錄裝置52中的變化的學習模型。變化預兆導出部59d基於所獲取的變化的學習模型來導出所獲取的上清液圖像的固液分離槽的變化的預兆。 資訊處理部53d的全部或一部分例如是藉由CPU等處理器執行儲存於記錄裝置52中的監控應用等程式來實現的功能部(以下,稱為軟體功能部)。再者,資訊處理部53c的全部或一部分可藉由LSI、ASIC或FPGA等硬體來實現,亦可藉由軟體功能部與硬體的組合來實現。 資訊處理裝置40d可應用資訊處理裝置40。 The change sign deriving unit 59d obtains information representing the supernatant image from the current state determination unit 55d. The change sign deriving unit 59d obtains the learning model of the change stored in the recording device 52. The change sign deriving unit 59d derives the sign of the change of the solid-liquid separation tank of the obtained supernatant image based on the obtained learning model of the change. The whole or part of the information processing unit 53d is, for example, a functional unit (hereinafter referred to as a software functional unit) implemented by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. Furthermore, the whole or part of the information processing unit 53c can be implemented by hardware such as LSI, ASIC or FPGA, or by a combination of software functional units and hardware. The information processing device 40d can apply the information processing device 40.

(終端裝置45d) 終端裝置45d是藉由個人電腦、伺服器或產業用電腦等裝置來實現。終端裝置45d的一例設置於用於監控污水處理設備10的監控中心。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45d來創建上清液圖像請求,所述上清液圖像請求包含請求上清液圖像的資訊且以監控裝置50d為目的地。終端裝置45d基於用戶的操作來創建上清液圖像請求。終端裝置45d將所創建的上清液圖像請求傳送至監控裝置50d。 終端裝置45d相對於傳送至監控裝置50d的上清液圖像請求,接收監控裝置50d所傳送的上清液圖像響應。終端裝置45d顯示上清液圖像響應中所含的上清液圖像。用戶參照終端裝置45d所顯示的上清液圖像來診斷上清液圖像中所含的固液分離槽內部的狀態,進而推定形成固液分離槽內部的狀態的原因,確定對固液分離槽內部的狀態的應對方法,推測獲得該上清液圖像後的固液分離槽內部的狀態,並確定其變化。 用戶藉由操作終端裝置45d來創建診斷結果通知,所述診斷結果通知包含表示上清液圖像的資訊、固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對固液分離槽內部的狀態的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊且以監控裝置50d為目的地。終端裝置45d基於用戶的操作來創建診斷結果通知。終端裝置45d將所創建的診斷結果通知傳送至監控裝置50d。 (Terminal device 45d) The terminal device 45d is implemented by a device such as a personal computer, a server or an industrial computer. An example of the terminal device 45d is set in a monitoring center for monitoring the sewage treatment equipment 10. When diagnosing the state inside the solid-liquid separation tank, the user creates a supernatant image request by operating the terminal device 45d, and the supernatant image request includes information requesting a supernatant image and has the monitoring device 50d as a destination. The terminal device 45d creates the supernatant image request based on the user's operation. The terminal device 45d transmits the created supernatant image request to the monitoring device 50d. The terminal device 45d receives the supernatant image response transmitted by the monitoring device 50d in response to the supernatant image request transmitted to the monitoring device 50d. The terminal device 45d displays the supernatant image contained in the supernatant image response. The user refers to the supernatant image displayed by the terminal device 45d to diagnose the state of the inside of the solid-liquid separation tank contained in the supernatant image, and then infers the cause of the state inside the solid-liquid separation tank, determines the response method to the state inside the solid-liquid separation tank, infers the state of the inside of the solid-liquid separation tank after obtaining the supernatant image, and determines its change. The user creates a diagnosis result notification by operating the terminal device 45d, and the diagnosis result notification includes information representing the supernatant image, the diagnosis result of the state inside the solid-liquid separation tank, information for determining the cause of the diagnosis result, information for determining the response method to the state inside the solid-liquid separation tank, and information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and has the monitoring device 50d as the destination. The terminal device 45d creates the diagnosis result notification based on the user's operation. The terminal device 45d transmits the created diagnosis result notification to the monitoring device 50d.

(監控系統的動作) 圖24是表示實施形態的變形例4的監控系統的動作的例1的圖。參照圖24,對如下處理進行說明:監控裝置50d將終端裝置45d所傳送的診斷結果通知中所含的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對診斷結果的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊累積,並基於所累積的表示上清液圖像的資訊與固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊、用於確定對診斷結果的應對方法的資訊、及用於確定獲得該上清液圖像後的固液分離槽內部的狀態的變化的資訊來進行機器學習,而生成診斷結果的學習模型、原因的學習模型、應對方法的學習模型及變化的學習模型。 步驟S1-10至步驟S10-10可應用圖7的步驟S1-1至步驟S10-1,步驟S11-10至步驟S15-10可應用圖20的步驟S11-8至步驟S15-8,因此省略此處的說明。 (Operation of the monitoring system) FIG. 24 is a diagram of Example 1 of the operation of the monitoring system of the variant 4 of the implementation form. Referring to FIG. 24, the following processing is explained: the monitoring device 50d accumulates the information representing the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45d, the information for determining the cause of the diagnosis result, the information for determining the response method to the diagnosis result, and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and based on The accumulated information representing the supernatant image and the diagnosis result of the state inside the solid-liquid separation tank, the information used to determine the cause of the diagnosis result, the information used to determine the response method to the diagnosis result, and the information used to determine the change of the state inside the solid-liquid separation tank after the supernatant image is obtained are used for machine learning to generate a learning model of the diagnosis result, a learning model of the cause, a learning model of the response method, and a learning model of the change. Steps S1-10 to S10-10 can apply steps S1-1 to S10-1 in Figure 7, and steps S11-10 to S15-10 can apply steps S11-8 to S15-8 in Figure 20, so the description here is omitted.

圖25是表示實施形態的變形例4的監控系統的動作的例2的圖。參照圖25,對如下處理進行說明:監控裝置50d獲取資料處理裝置30d所傳送的數位訊號,並基於所獲取的數位訊號來創建上清液圖像;監控裝置50d基於所創建的上清液圖像來判定固液分離槽內部的狀態。 步驟S1-11至步驟S6-11可應用圖7的步驟S1-1至步驟S6-1,步驟S7-11至步驟S17-11可應用圖21的步驟S7-9至步驟S17-9,因此省略此處的說明。 關於監控裝置50d基於資訊處理裝置40d所傳送的槽內狀態資訊請求來傳送表示上清液圖像的資訊的處理,由於可應用圖9,因此省略說明。 FIG. 25 is a diagram of Example 2 of the operation of the monitoring system of Modification 4 of the implementation form. Referring to FIG. 25 , the following processing is explained: the monitoring device 50d obtains the digital signal transmitted by the data processing device 30d, and creates a supernatant image based on the obtained digital signal; the monitoring device 50d determines the state inside the solid-liquid separation tank based on the created supernatant image. Steps S1-11 to S6-11 can apply steps S1-1 to S6-1 of FIG. 7 , and steps S7-11 to S17-11 can apply steps S7-9 to S17-9 of FIG. 21 , so the explanation here is omitted. Regarding the processing of the monitoring device 50d transmitting information representing the supernatant image based on the tank status information request transmitted by the information processing device 40d, since Figure 9 can be applied, the description is omitted.

於所述實施形態的變形例4中,對在實施形態的變形例3中不經由網路NW地將監控裝置50d連接於資料處理裝置30d與閘道裝置31之間的情況進行了連接,但並不限於該例。例如,亦可應用於在實施形態中不經由網路NW地將監控裝置50連接於資料處理裝置30與閘道裝置31之間的情況。亦可應用於在實施形態的變形例1中不經由網路NW地將監控裝置50a連接於資料處理裝置30與閘道裝置31之間的情況。亦可應用於在實施形態的變形例2中不經由網路NW地將監控裝置50b連接於資料處理裝置30與閘道裝置31之間的情況。In the modification 4 of the embodiment, the monitoring device 50d is connected between the data processing device 30d and the gateway device 31 without passing through the network NW in the modification 3 of the embodiment, but the present invention is not limited to this example. For example, it can also be applied to the case where the monitoring device 50 is connected between the data processing device 30 and the gateway device 31 without passing through the network NW in the embodiment. It can also be applied to the case where the monitoring device 50a is connected between the data processing device 30 and the gateway device 31 without passing through the network NW in the modification 1 of the embodiment. The present invention can also be applied to the case where the monitoring device 50b is connected between the data processing device 30 and the gateway device 31 without passing through the network NW in the variation example 2 of the implementation form.

根據實施形態的變形例4的監控系統100d,藉由不經由網路NW地將監控裝置50d連接於資料處理裝置30與閘道裝置31之間,可將監控裝置50d設置於設置有污水處理設備10的現場。因此,與經由網路NW而將監控裝置50d設置於遠離設置有污水處理設備10的現場的位置的情況相比較,可實時監控資料處理裝置30d的資料。 由於可實時進行利用監控裝置50d的判定、導出,因此可縮短判定、導出所需的時間。由於可縮短判定、導出所需的時間,因此可立即進行被判定為異常、失常時的狀態通知。 由於可將監控裝置50d設置於設置有污水處理設備10的現場,因此與經由網路NW而將監控裝置50d設置於遠離設置有污水處理設備10的現場的位置的情況相比較,可減少資料遭駭、攻擊系統的風險。 由於可將監控裝置50d設置於設置有污水處理設備10的現場,因此與經由網路NW而將監控裝置50d設置於遠離設置有污水處理設備10的現場的位置的情況相比較,容易進行該現場(設備)特有的狀況的判定、原因判定、應對方法判定、預兆的導出。 設置於監控中心的資訊處理裝置40d可經由網路NW、閘道裝置31而遠程更新記錄於現場所設置的監控裝置50d的記錄裝置52中的資訊(程式、監控應用、學習模型、圖像資料、AI解析結果)。 記錄於現場所設置的監控裝置50d的記錄裝置52中的資訊(主要為畫素資料、AI解析結果)可經由閘道裝置31、網路NW而於遠程設置的資訊處理裝置40d中進行更新。 According to the monitoring system 100d of the variation 4 of the embodiment, the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed by connecting the monitoring device 50d between the data processing device 30 and the gate device 31 without going through the network NW. Therefore, compared with the case where the monitoring device 50d is installed at a location far away from the site where the sewage treatment equipment 10 is installed through the network NW, the data of the data processing device 30d can be monitored in real time. Since the judgment and derivation using the monitoring device 50d can be performed in real time, the time required for the judgment and derivation can be shortened. Since the time required for the judgment and derivation can be shortened, the status notification when it is judged to be abnormal or abnormal can be immediately performed. Since the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, the risk of data hacking and system attack can be reduced compared to the case where the monitoring device 50d is installed at a location far away from the site where the sewage treatment equipment 10 is installed via the network NW. Since the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, it is easier to determine the conditions unique to the site (equipment), determine the causes, determine the response methods, and derive the signs compared to the case where the monitoring device 50d is installed at a location far away from the site where the sewage treatment equipment 10 is installed via the network NW. The information processing device 40d installed in the monitoring center can remotely update the information (program, monitoring application, learning model, image data, AI analysis results) recorded in the recording device 52 of the monitoring device 50d installed on site via the network NW and the gateway device 31. The information (mainly pixel data, AI analysis results) recorded in the recording device 52 of the monitoring device 50d installed on site can be updated in the remotely installed information processing device 40d via the gateway device 31 and the network NW.

以下,對另一實施形態的監控系統進行說明。另一實施形態的監控系統的結構與圖1所示的監控系統相同,但以下方面不同。Next, another monitoring system according to another embodiment will be described. The configuration of the monitoring system according to another embodiment is the same as that of the monitoring system shown in FIG1 , but is different in the following aspects.

於記錄裝置52中記憶將表示監控圖像的資訊與由該監控圖像所得的固液分離槽內部(槽內)的診斷結果相關聯而得的診斷結果的教師資料、及藉由基於診斷結果的教師資料來對監控圖像與固液分離槽內部的狀態的關係進行機器學習而獲得的診斷結果的學習模型。 診斷結果的教師資料是將監控圖像與由該監控圖像所得的固液分離槽內部的狀態的診斷結果相關聯而得的資料。於本實施形態中,作為一例,將多個監控圖像的各個與作為診斷結果的「正常」、「異常」及「失常」中的任一者相關聯。使用圖6進行說明,(1)由於是上清液與污泥堆積層分離且固液分離良好的狀態,因此診斷為正常。(2)由於是污泥的沈降性惡化且污泥上浮的狀態,因此診斷為異常。(3)由於看到堆積污泥的飛揚,因此診斷為失常。 The recording device 52 stores teacher data of the diagnosis result obtained by associating information representing the monitoring image with the diagnosis result of the inside of the solid-liquid separation tank (inside the tank) obtained from the monitoring image, and a learning model of the diagnosis result obtained by machine learning the relationship between the monitoring image and the state inside the solid-liquid separation tank based on the teacher data of the diagnosis result. The teacher data of the diagnosis result is data obtained by associating the monitoring image with the diagnosis result of the state inside the solid-liquid separation tank obtained from the monitoring image. In this embodiment, as an example, each of the plurality of monitoring images is associated with any one of "normal", "abnormal" and "abnormal" as a diagnostic result. Using FIG6 for illustration, (1) since the supernatant and the sludge accumulation layer are separated and the solid-liquid separation is good, the diagnosis is normal. (2) since the sludge settling property is deteriorated and the sludge floats, the diagnosis is abnormal. (3) since the accumulated sludge is seen to be flying, the diagnosis is abnormal.

圖形化部54獲取通訊裝置51所接收的監控圖像請求。圖形化部54基於所獲取的監控圖像請求來獲取記錄裝置52中記憶的畫素資料。圖形化部54基於所獲取的畫素資料來創建監控圖像。圖形化部54創建監控圖像響應,所述監控圖像響應包含表示所創建的監控圖像的資訊並以資訊處理裝置40為目的地。 圖形化部54判定所創建的監控圖像是否為錯誤圖像。圖形化部54將包含判定為並非錯誤圖像的監控圖像的監控圖像響應輸出至通訊裝置51。 圖26是錯誤圖像的一例。錯誤圖像是於因超音波感測器20發生故障或埋於污泥中等原因而無法測定處理槽25時所創建的監控圖像。錯誤圖像為訊號強度不論是於縱向還是於橫向均弱的圖像。例如於訊號強度在一定時間內自規定深度起為規定大小以下時,圖形化部54將該監控圖像判定為錯誤圖像。 The graphics unit 54 obtains the monitoring image request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained monitoring image request. The graphics unit 54 creates a monitoring image based on the obtained pixel data. The graphics unit 54 creates a monitoring image response, which includes information representing the created monitoring image and has the information processing device 40 as the destination. The graphics unit 54 determines whether the created monitoring image is an error image. The graphics unit 54 outputs the monitoring image response including the monitoring image determined to be not an error image to the communication device 51. FIG26 is an example of an error image. An error image is a monitoring image created when the ultrasonic sensor 20 fails or is buried in sludge and cannot measure the treatment tank 25. An error image is an image in which the signal strength is weak both in the vertical direction and in the horizontal direction. For example, when the signal strength is less than a specified value from a specified depth within a certain period of time, the graphics unit 54 determines the monitoring image as an error image.

圖形化部54基於所獲取的槽內狀態資訊請求來獲取記錄裝置52中記憶的畫素資料,並基於所獲取的畫素資料來創建監控圖像。圖形化部54創建槽內狀態資訊響應,所述槽內狀態資訊響應包含表示所創建的監控圖像的資訊並以資訊處理裝置40為目的地。The graphics unit 54 acquires the pixel data stored in the recording device 52 based on the acquired slot status information request, and creates a monitoring image based on the acquired pixel data. The graphics unit 54 creates a slot status information response, which includes information indicating the created monitoring image and has the information processing device 40 as the destination.

現狀判定部55獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建監控圖像。現狀判定部55判定所創建的監控圖像是否為錯誤圖像。判定方法與利用圖形化部54的判定方法相同。於判定為並非錯誤圖像的情況下,現狀判定部55基於所獲取的診斷結果的學習模型來判定所創建的監控圖像的固液分離槽內部的狀態。The current status determination unit 55 obtains the pixel data stored in the recording device 52, and creates a monitoring image based on the obtained pixel data. The current status determination unit 55 determines whether the created monitoring image is an error image. The determination method is the same as the determination method using the graphics unit 54. When it is determined that it is not an error image, the current status determination unit 55 determines the state of the inside of the solid-liquid separation tank of the created monitoring image based on the learning model of the obtained diagnosis result.

學習部56獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示監控圖像的資訊與由該監控圖像所得的固液分離槽內部(槽內)的狀態的診斷結果相關聯而得的診斷結果的教師資料記憶於記錄裝置52中。學習部56藉由基於所獲取的診斷結果的教師資料來對監控圖像與由該監控圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習(有教師的學習),而生成將監控圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。例如,學習部56使用卷積類神經網路(Convolutional neural network,CNN)來識別監控圖像。藉由診斷結果的學習模型,並基於表示監控圖像的資訊來將監控圖像分類為作為固液分離槽內部的狀態的正常、失常及異常中的任一者。The learning unit 56 obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the diagnosis result obtained by associating the information representing the monitoring image contained in the obtained diagnosis result notification with the diagnosis result of the state of the inside of the solid-liquid separation tank (inside the tank) obtained from the monitoring image in the recording device 52. The learning unit 56 performs machine learning (teacher-assisted learning) on the monitoring image and the diagnosis result of the state inside the solid-liquid separation tank obtained from the monitoring image based on the teacher data of the obtained diagnosis result, and generates a learning model of the diagnosis result that associates the monitoring image with the state inside the solid-liquid separation tank. For example, the learning unit 56 uses a convolutional neural network (CNN) to recognize the monitoring image. The monitoring image is classified into any one of normal, abnormal, and abnormal as the state inside the solid-liquid separation tank based on the learning model of the diagnosis result and information representing the monitoring image.

資訊處理裝置40獲取所接收的槽內狀態資訊響應中所含的監控圖像。資訊處理裝置40顯示所獲取的監控圖像。 於對固液分離槽內部的狀態進行診斷的情況下,用戶藉由操作終端裝置45來創建監控圖像請求,所述監控圖像請求包含請求監控圖像的資訊且以監控裝置50為目的地。終端裝置45基於用戶的操作來創建監控圖像請求。終端裝置45將所創建的監控圖像請求傳送至監控裝置50。 終端裝置45相對於傳送至監控裝置50的監控圖像請求,接收監控裝置50所傳送的監控圖像響應。終端裝置45顯示監控圖像響應中所含的監控圖像。用戶參照終端裝置45所顯示的監控圖像來診斷監控圖像中所含的固液分離槽內部的狀態。 用戶藉由操作終端裝置45來創建診斷結果通知,所述診斷結果通知包含表示監控圖像的資訊與固液分離槽內部的狀態的診斷結果且以監控裝置50為目的地。 The information processing device 40 obtains the monitoring image contained in the received tank status information response. The information processing device 40 displays the obtained monitoring image. In the case of diagnosing the state inside the solid-liquid separation tank, the user creates a monitoring image request by operating the terminal device 45, and the monitoring image request includes information requesting a monitoring image and has the monitoring device 50 as the destination. The terminal device 45 creates the monitoring image request based on the user's operation. The terminal device 45 transmits the created monitoring image request to the monitoring device 50. The terminal device 45 receives a monitoring image response transmitted by the monitoring device 50 in response to the monitoring image request transmitted to the monitoring device 50. The terminal device 45 displays the monitoring image contained in the monitoring image response. The user diagnoses the state of the inside of the solid-liquid separation tank contained in the monitoring image with reference to the monitoring image displayed by the terminal device 45. The user creates a diagnosis result notification by operating the terminal device 45, and the diagnosis result notification includes information representing the monitoring image and the diagnosis result of the state inside the solid-liquid separation tank and has the monitoring device 50 as the destination.

即,另一實施形態中,監控系統使用監控圖像而非上清液圖像。另外,判定監控圖像是否為錯誤圖像。再者,於監控系統中,可於判定監控圖像是否為錯誤圖像後,根據監控圖像來創建上清液圖像。即,是否為錯誤圖像的判定能夠併入所述說明的實施形態及其變形例中。That is, in another embodiment, the monitoring system uses a monitoring image instead of a supernatant image. In addition, it is determined whether the monitoring image is an error image. Furthermore, in the monitoring system, after determining whether the monitoring image is an error image, a supernatant image can be created based on the monitoring image. That is, the determination of whether it is an error image can be incorporated into the embodiment described above and its variants.

(監控系統的動作) 圖27是表示另一實施形態的監控系統的動作的例1的圖。參照圖27,對如下處理進行說明:監控裝置50將終端裝置45所傳送的診斷結果通知中所含的固液分離槽內部的狀態的診斷結果、用於確定形成該診斷結果的原因的資訊累積,並基於所累積的固液分離槽內部的狀態的診斷結果與用於確定形成該診斷結果的原因的資訊來進行機器學習,而生成診斷結果的學習模型與原因的學習模型。 (Operation of the monitoring system) FIG. 27 is a diagram showing Example 1 of the operation of the monitoring system of another embodiment. Referring to FIG. 27, the following processing is described: the monitoring device 50 accumulates the diagnosis result of the state inside the solid-liquid separation tank contained in the diagnosis result notification transmitted by the terminal device 45 and the information for determining the cause of the diagnosis result, and performs machine learning based on the accumulated diagnosis result of the state inside the solid-liquid separation tank and the information for determining the cause of the diagnosis result, thereby generating a learning model of the diagnosis result and a learning model of the cause.

(步驟S1-12) 於資料處理裝置30中,超音波發送/接收電路32生成用以傳送超音波的電訊號,並將所生成的電訊號輸出至超音波感測器20。 (步驟S2-12) 於資料處理裝置30中,超音波發送/接收電路32接收超音波感測器20所輸出的電訊號。 (步驟S3-12) 於資料處理裝置30中,超音波發送/接收電路32將所接收的電訊號輸出至資料轉換電路33。資料轉換電路33獲取超音波發送/接收電路32所輸出的電訊號。資料轉換電路33將所獲取的電訊號放大。資料轉換電路33對所放大的電訊號進行屏蔽處理。資料轉換電路33藉由基於對所放大的電訊號進行屏蔽處理所得的結果來將訊號強度數位處理化,而轉換為數位訊號。資料運算部34自資料轉換電路33獲取數位訊號,對所獲取的數位訊號進行與位置(距離)資訊有關的溫度校正運算、界面位準的判定運算。 (步驟S4-12) 於資料處理裝置30中,資料運算部34經由閘道裝置31而將進行與位置(距離)資訊有關的溫度校正運算、界面位準的判定運算所得的數位訊號傳送至監控裝置50。 (步驟S5-12) 於監控裝置50中,通訊裝置51接收資料處理裝置30所傳送的數位訊號。圖形化部54獲取通訊裝置51所接收的數位訊號。圖形化部54將所獲取的數位訊號的值轉換為畫素資料。 (步驟S6-12) 於監控裝置50中,圖形化部54使轉換為數位訊號後的畫素資料記憶於記錄裝置52中。 (步驟S7-12) 終端裝置45創建監控圖像請求。 (Step S1-12) In the data processing device 30, the ultrasonic transmitting/receiving circuit 32 generates an electrical signal for transmitting ultrasound, and outputs the generated electrical signal to the ultrasonic sensor 20. (Step S2-12) In the data processing device 30, the ultrasonic transmitting/receiving circuit 32 receives the electrical signal output by the ultrasonic sensor 20. (Step S3-12) In the data processing device 30, the ultrasonic transmitting/receiving circuit 32 outputs the received electrical signal to the data conversion circuit 33. The data conversion circuit 33 obtains the electrical signal output by the ultrasonic transmitting/receiving circuit 32. The data conversion circuit 33 amplifies the obtained electrical signal. The data conversion circuit 33 performs shielding processing on the amplified electrical signal. The data conversion circuit 33 converts the signal intensity into a digital signal by digital processing based on the result of shielding processing on the amplified electrical signal. The data operation unit 34 obtains the digital signal from the data conversion circuit 33, and performs temperature correction operation related to the position (distance) information and interface level determination operation on the obtained digital signal. (Step S4-12) In the data processing device 30, the data operation unit 34 transmits the digital signal obtained by performing temperature correction operation related to the position (distance) information and interface level determination operation to the monitoring device 50 via the gate device 31. (Step S5-12) In the monitoring device 50, the communication device 51 receives the digital signal transmitted by the data processing device 30. The graphics unit 54 obtains the digital signal received by the communication device 51. The graphics unit 54 converts the value of the obtained digital signal into pixel data. (Step S6-12) In the monitoring device 50, the graphics unit 54 stores the pixel data converted into the digital signal in the recording device 52. (Step S7-12) The terminal device 45 creates a monitoring image request.

(步驟S8-12) 終端裝置45將所創建的監控圖像請求傳送至監控裝置50。 (步驟S9-12) 於監控裝置50中,通訊裝置51接收終端裝置45所傳送的監控圖像請求。圖形化部54獲取通訊裝置51所接收的監控圖像請求。圖形化部54基於所獲取的監控圖像請求來獲取記錄裝置52中記憶的畫素資料。圖形化部54基於所獲取的畫素資料來創建監控圖像。圖形化部54創建監控圖像響應,所述監控圖像響應包含表示所創建的監控圖像的資訊且以終端裝置45為目的地。 (步驟S9a-12) 圖形化部54判定所創建的監控圖像是否為錯誤圖像。 (步驟S9b-12) 於所創建的監控圖像為錯誤圖像的情況下,圖形化部54結束運作。藉此,可使教師資料不包含錯誤圖像。於所創建的監控圖像為錯誤圖像的情況下,圖形化部54可通知給終端裝置45監控圖像為錯誤圖像。 (步驟S10-12) 於監控裝置50中,於所創建的監控圖像並非錯誤圖像的情況下,圖形化部54將所創建的監控圖像響應輸出至通訊裝置51。通訊裝置51獲取圖形化部54所輸出的監控圖像響應,並將所獲取的監控圖像響應傳送至終端裝置45。 (步驟S11-12) 終端裝置45接收監控裝置50所傳送的監控圖像響應。終端裝置45藉由對所接收的監控圖像響應中所含的表示監控圖像的資訊進行圖像處理來顯示監控圖像。終端裝置45創建診斷結果通知,所述診斷結果通知包含表示監控圖像的資訊與診斷監控圖像所得的結果。 (步驟S12-12) 終端裝置45將所創建的診斷結果通知傳送至監控裝置50。 (步驟S13-12) 於監控裝置50中,通訊裝置51接收終端裝置45所傳送的診斷結果通知。學習部56獲取通訊裝置51所接收的診斷結果通知,並使將所獲取的診斷結果通知中所含的表示監控圖像的資訊與由該監控圖像所得的固液分離槽內部(槽內)的狀態的診斷結果相關聯而得的診斷結果的教師資料記憶於記錄裝置52中。 (步驟S14-12) 於監控裝置50中,學習部56獲取記憶於記錄裝置52中的診斷結果的教師資料。學習部56藉由基於所獲取的診斷結果的教師資料來對監控圖像與由該監控圖像所得的固液分離槽內部的狀態的診斷結果進行機器學習,而生成將監控圖像與固液分離槽內部的狀態相關聯所得的診斷結果的學習模型。 (步驟S15-12) 於監控裝置50中,學習部56使所生成的診斷結果的學習模型記憶於記錄裝置52中。 (Step S8-12) The terminal device 45 transmits the created monitoring image request to the monitoring device 50. (Step S9-12) In the monitoring device 50, the communication device 51 receives the monitoring image request transmitted by the terminal device 45. The graphics unit 54 obtains the monitoring image request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained monitoring image request. The graphics unit 54 creates a monitoring image based on the obtained pixel data. The graphics unit 54 creates a monitoring image response, which includes information indicating the created monitoring image and has the terminal device 45 as the destination. (Step S9a-12) The graphics unit 54 determines whether the created monitoring image is an error image. (Step S9b-12) If the created monitoring image is an error image, the graphics unit 54 ends the operation. In this way, the teacher data does not include an error image. If the created monitoring image is an error image, the graphics unit 54 can notify the terminal device 45 that the monitoring image is an error image. (Step S10-12) In the monitoring device 50, when the created monitoring image is not an error image, the graphics unit 54 outputs the created monitoring image response to the communication device 51. The communication device 51 obtains the monitoring image response output by the graphics unit 54, and transmits the obtained monitoring image response to the terminal device 45. (Step S11-12) The terminal device 45 receives the monitoring image response transmitted by the monitoring device 50. The terminal device 45 displays the monitoring image by performing image processing on the information representing the monitoring image contained in the received monitoring image response. The terminal device 45 creates a diagnosis result notification, which includes the information representing the monitoring image and the result of diagnosing the monitoring image. (Step S12-12) The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50. (Step S13-12) In the monitoring device 50, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45. The learning unit 56 obtains the diagnosis result notification received by the communication device 51, and stores the teacher data of the diagnosis result obtained by associating the information representing the monitoring image contained in the obtained diagnosis result notification with the diagnosis result of the state of the inside of the solid-liquid separation tank (inside the tank) obtained from the monitoring image in the recording device 52. (Step S14-12) In the monitoring device 50, the learning unit 56 obtains the teacher data of the diagnosis result stored in the recording device 52. The learning unit 56 performs machine learning on the monitoring image and the diagnosis result of the state inside the solid-liquid separation tank obtained from the monitoring image by using the teacher data of the obtained diagnosis result, and generates a learning model of the diagnosis result obtained by associating the monitoring image with the state inside the solid-liquid separation tank. (Step S15-12) In the monitoring device 50, the learning unit 56 stores the generated learning model of the diagnosis result in the recording device 52.

圖28是表示另一實施形態的監控系統的動作的例2的圖。參照圖28,對如下處理進行說明:監控裝置50獲取資料處理裝置30所傳送的數位訊號,並基於所獲取的數位訊號來創建監控圖像;監控裝置50基於所創建的監控圖像來判定固液分離槽內部的狀態。 步驟S1-13至步驟S6-13可應用圖27的步驟S1-12至步驟S6-12,因此省略此處的說明。 (步驟S7-13) 於監控裝置50中,現狀判定部55獲取記憶於記錄裝置52中的畫素資料,並基於所獲取的畫素資料來創建監控圖像。 (步驟S8-13) 於監控裝置50中,現狀判定部55獲取記憶於記錄裝置52中的診斷結果的學習模型。 (步驟S8a-13) 現狀判定部55判定所創建的監控圖像是否為錯誤圖像。 (步驟S9b-12) 於所創建的監控圖像為錯誤圖像的情況下,現狀判定部55結束運作。於所創建的監控圖像為錯誤圖像的情況下,現狀判定部55經由通訊裝置51而將監控圖像為錯誤圖像的狀態通知輸出至資訊處理裝置40。 (步驟S9-13) 於監控裝置50中,現狀判定部55基於所獲取的診斷結果的學習模型來判定所創建的監控圖像的固液分離槽內部的狀態。 (步驟S10-13) 於監控裝置50中,現狀判定部55判定固液分離槽內部的狀態的判定結果是否為失常或異常。於現狀判定部55判定為固液分離槽內部的狀態的判定結果既非失常亦非異常即為正常的情況下結束。 (步驟S11-13) 於監控裝置50中,於判定為固液分離槽內部的狀態的判定結果為失常或異常的情況下,現狀判定部55創建狀態通知資訊,所述狀態通知資訊包含表示固液分離槽內部的狀態的判定結果的資訊且以資訊處理裝置40為目的地。 (步驟S12-13) 於監控裝置50中,現狀判定部55將所創建的狀態通知資訊輸出至通訊裝置51。通訊裝置51獲取現狀判定部55所輸出的狀態通知資訊,並將所獲取的狀態通知資訊傳送至資訊處理裝置40。 FIG28 is a diagram showing Example 2 of the operation of another embodiment of the monitoring system. Referring to FIG28, the following processing is described: the monitoring device 50 obtains the digital signal transmitted by the data processing device 30, and creates a monitoring image based on the obtained digital signal; the monitoring device 50 determines the state inside the solid-liquid separation tank based on the created monitoring image. Steps S1-13 to S6-13 can apply steps S1-12 to S6-12 of FIG27, so the description here is omitted. (Step S7-13) In the monitoring device 50, the current state determination unit 55 obtains the pixel data stored in the recording device 52, and creates a monitoring image based on the obtained pixel data. (Step S8-13) In the monitoring device 50, the current state determination unit 55 obtains the learning model of the diagnosis result stored in the recording device 52. (Step S8a-13) The current state determination unit 55 determines whether the created monitoring image is an error image. (Step S9b-12) In the case where the created monitoring image is an error image, the current state determination unit 55 ends the operation. When the created monitoring image is an error image, the current status determination unit 55 outputs the status notification that the monitoring image is an error image to the information processing device 40 via the communication device 51. (Step S9-13) In the monitoring device 50, the current status determination unit 55 determines the state of the solid-liquid separation tank inside the created monitoring image based on the learning model of the obtained diagnosis result. (Step S10-13) In the monitoring device 50, the current status determination unit 55 determines whether the determination result of the state inside the solid-liquid separation tank is abnormal or abnormal. The process ends when the status determination unit 55 determines that the status of the inside of the solid-liquid separation tank is neither abnormal nor abnormal, that is, normal. (Step S11-13) In the monitoring device 50, when the status determination unit 55 determines that the status of the inside of the solid-liquid separation tank is abnormal or abnormal, the status determination unit 55 creates status notification information, which includes information indicating the status determination result of the inside of the solid-liquid separation tank and has the information processing device 40 as the destination. (Step S12-13) In the monitoring device 50, the status determination unit 55 outputs the created status notification information to the communication device 51. The communication device 51 obtains the status notification information output by the current status determination unit 55, and transmits the obtained status notification information to the information processing device 40.

圖29是表示本實施形態的監控系統的動作的例3的圖。參照圖9,對如下處理進行說明:監控裝置50基於資訊處理裝置40所傳送的槽內狀態資訊請求來傳送表示監控圖像的資訊。 步驟S1-14至步驟S6-14可應用圖7的步驟S1-12至步驟S6-12,因此省略此處的說明。 (步驟S7-14) 資訊處理裝置40基於用戶的操作來創建槽內狀態資訊請求。 (步驟S8-14) 資訊處理裝置40將所創建的槽內狀態資訊請求傳送至監控裝置50。 (步驟S9-14) 於監控裝置50中,通訊裝置51接收資訊處理裝置40所傳送的槽內狀態資訊請求。圖形化部54獲取通訊裝置51所接收的槽內狀態資訊請求。圖形化部54基於所獲取的槽內狀態資訊請求來獲取記錄裝置52中記憶的畫素資料,並基於所獲取的畫素資料來創建監控圖像。 (步驟S9a-14) 圖形化部54判定所創建的監控圖像是否為錯誤圖像。 (步驟S9b-14) 於所創建的監控圖像為錯誤圖像的情況下,圖形化部54結束運作。於所創建的監控圖像為錯誤圖像的情況下,圖形化部54經由通訊裝置51而將包含監控圖像為錯誤圖像的資訊的槽內狀態資訊響應輸出至資訊處理裝置40。 (步驟S10-14) 於監控裝置50中,圖形化部54創建槽內狀態資訊響應,所述槽內狀態資訊響應包含表示所創建的監控圖像的資訊且以資訊處理裝置40為目的地。 (步驟S11-3) 於監控裝置50中,圖形化部54將所創建的槽內狀態資訊響應輸出至通訊裝置51。通訊裝置51獲取圖形化部54所輸出的槽內狀態資訊響應,並將所獲取的槽內狀態資訊響應傳送至資訊處理裝置40。 於步驟S11-3後,資訊處理裝置40接收監控裝置50所傳送的槽內狀態資訊響應,並獲取所接收的槽內狀態資訊響應中所含的表示監控圖像的資訊。資訊處理裝置40藉由對所獲取的表示監控圖像的資訊進行圖像處理來顯示監控圖像。藉由如此般構成,資訊處理裝置40的用戶可確認固液分離槽內部的狀態。 FIG. 29 is a diagram showing Example 3 of the operation of the monitoring system of the present embodiment. Referring to FIG. 9 , the following processing is described: the monitoring device 50 transmits information representing the monitoring image based on the slot state information request transmitted by the information processing device 40. Steps S1-14 to S6-14 can apply steps S1-12 to S6-12 of FIG. 7 , so the description here is omitted. (Step S7-14) The information processing device 40 creates a slot state information request based on the user's operation. (Step S8-14) The information processing device 40 transmits the created slot state information request to the monitoring device 50. (Step S9-14) In the monitoring device 50, the communication device 51 receives the slot status information request transmitted by the information processing device 40. The graphics unit 54 obtains the slot status information request received by the communication device 51. The graphics unit 54 obtains the pixel data stored in the recording device 52 based on the obtained slot status information request, and creates a monitoring image based on the obtained pixel data. (Step S9a-14) The graphics unit 54 determines whether the created monitoring image is an error image. (Step S9b-14) When the created monitoring image is an error image, the graphics unit 54 terminates the operation. When the created monitoring image is an error image, the graphics unit 54 outputs the slot state information response including information that the monitoring image is an error image to the information processing device 40 via the communication device 51. (Step S10-14) In the monitoring device 50, the graphics unit 54 creates a slot state information response, which includes information indicating the created monitoring image and has the information processing device 40 as the destination. (Step S11-3) In the monitoring device 50, the graphics unit 54 outputs the created slot state information response to the communication device 51. The communication device 51 obtains the slot state information response output by the graphics unit 54, and transmits the obtained slot state information response to the information processing device 40. After step S11-3, the information processing device 40 receives the slot state information response transmitted by the monitoring device 50, and obtains the information representing the monitoring image contained in the received slot state information response. The information processing device 40 displays the monitoring image by performing image processing on the obtained information representing the monitoring image. By configuring in this way, the user of the information processing device 40 can confirm the state inside the solid-liquid separation tank.

監控裝置50不將作為錯誤圖像的監控圖像用於創建學習模型。另外,監控裝置50不對錯誤圖像進行使用學習模型的判定。藉此,可防止藉由學習模型而將錯誤圖像誤診斷為正常。另外,於根據監控圖像來創建上清液圖像的情況下,當監控圖像為錯誤圖像時,錯誤圖像中訊號強度小的部分被創建為上清液圖像,並用於學習模型的創建或使用學習模型的判定,有可能形成誤診斷。因此,藉由將錯誤圖像去除,可防止根據錯誤圖像來創建不基於上清液的測定結果的虛假的上清液圖像。The monitoring device 50 does not use the monitoring image, which is an error image, for creating a learning model. In addition, the monitoring device 50 does not make a judgment on the error image using the learning model. This prevents the error image from being misdiagnosed as normal by the learning model. In addition, in the case of creating a supernatant image based on the monitoring image, when the monitoring image is an error image, a portion of the error image with a small signal intensity is created as a supernatant image and used for the creation of the learning model or the judgment using the learning model, which may result in a misdiagnosis. Therefore, by removing the error image, it is possible to prevent the creation of a false supernatant image based on the error image that is not based on the supernatant measurement results.

以上,參照圖式對本發明的實施形態進行了詳細敘述,但具體的結構並不限於該實施形態,亦包含不脫離本發明的主旨的範圍內的設計變更等。 例如,亦可將用以實現所述各裝置的功能的電腦程式記錄於電腦可讀取的記錄媒體中,並使電腦系統讀入並執行記錄於該記錄媒體中的程式。再者,所謂此處所述的「電腦系統」亦可包含操作系統(Operating System,OS)或周邊機器等硬體。 另外,所謂「電腦可讀取的記錄媒體」,是指軟碟、磁光碟、ROM、快閃記憶體等可寫入的非揮發性記憶體、數位化多功能光碟(Digital Versatile Disc,DVD)等可攜帶媒體、內置於電腦系統中的硬碟等記憶裝置。 The above is a detailed description of the implementation form of the present invention with reference to the drawings, but the specific structure is not limited to the implementation form, and also includes design changes within the scope of the subject matter of the present invention. For example, a computer program for realizing the functions of each device can be recorded in a computer-readable recording medium, and the computer system can read and execute the program recorded in the recording medium. Furthermore, the so-called "computer system" mentioned here can also include an operating system (OS) or hardware such as peripheral machines. In addition, the so-called "computer-readable recording media" refers to writable non-volatile memories such as floppy disks, magneto-optical disks, ROMs, flash memories, portable media such as digital versatile discs (DVDs), and storage devices such as hard disks built into computer systems.

進而,所謂「電腦可讀取的記錄媒體」,亦包含如經由網際網路等網路或電話線路等通訊線路來傳送程式時的作為伺服器或用戶端的電腦系統內部的揮發性記憶體(例如,動態隨機存取記憶體(Dynamic Random Access Memory,DRAM))般在一定時間內保持程式者。 另外,所述程式亦可自將該程式儲存於記憶裝置等的電腦系統經由傳輸媒體或藉由傳輸媒體中的傳輸波來傳送至其他電腦系統。此處,傳輸程式的「傳輸媒體」是指如網際網絡等網路(通訊網)或電話線路等通訊線路(通訊線)般具有傳輸資訊的功能的媒體。 另外,所述程式亦可用以實現所述功能的一部分。進而,亦可為能藉由與已經記錄於電腦系統中的程式的組合來實現所述功能者、所謂的差分文件(差分程式)。 [產業上的可利用性] Furthermore, the so-called "computer-readable recording medium" also includes a volatile memory (e.g., dynamic random access memory (DRAM)) inside a computer system that serves as a server or client and retains the program for a certain period of time when the program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, the program can also be transmitted from a computer system that stores the program in a memory device, etc., to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the "transmission medium" for transmitting the program refers to a medium that has the function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. In addition, the program can also be used to implement a part of the function. Furthermore, it can also be a so-called differential file (differential program) that can implement the function by combining with a program already recorded in a computer system. [Industrial Availability]

藉由本發明,有能提供一種可對用以將廢水固液分離的固液分離槽的槽內狀態進行監控的監控系統、學習裝置、監控方法、學習方法及程式的效果。The present invention has the effect of providing a monitoring system, a learning device, a monitoring method, a learning method and a program for monitoring the state inside a solid-liquid separation tank for separating solid and liquid from wastewater.

2:振動器 10:污水處理設備 11:前沈澱槽 12:濃縮槽 13:貯存槽 14:脫水機 15:容器 16:曝氣槽 17:後沈澱槽 18:泵 19:設備控制裝置 20:超音波感測器 21:振盪(發送)部 22:接收部 23:懸濁物堆積層 24:上清液 25:處理槽 26:界面 27:高度 30、30d:資料處理裝置 31:閘道裝置 32:超音波發送/接收電路 33:資料轉換電路 34:資料運算部 35:圖像資料儲存部 36:顯示切換操作部 37:圖像資料顯示部 40、40a、40b、40c、40d:資訊處理裝置 45、45a、45b、45c、45d:終端裝置 50、50a、50b、50c、50d:監控裝置 51:通訊裝置 52:記錄裝置 53、53a、53b、53c、53d:資訊處理部 54、54d:圖形化部 55、55a、55d:現狀判定部 56、56a、56b、56c、56d:學習部 57、57b、57d:原因判定部 58、58c、58d:應對方法判定部 59、59d:變化預兆導出部 100、100a、100b、100c、100d:監控系統 BL:匯流線 NW:網路 P1、P2、P3、P4、P5、P6、P7、P8、P9、P10:流路 P11:輸送帶 S1-1、S2-1、S3-1、S4-1、S5-1、S6-1、S7-1、S8-1、S9-1、S10-1、S11-1、S12-1、S13-1、S14-1、S15-1、S1-2、S2-2、S3-2、S4-2、S5-2、S6-2、S7-2、S8-2、S9-2、S10-2、S11-2、S12-2、S1-3、S2-3、S3-3、S4-3、S5-3、S6-3、S7-3、S8-3、S9-3、S10-3、S11-3、S1-4、S2-4、S3-4、S4-4、S5-4、S6-4、S7-4、S8-4、S9-4、S10-4、S11-4、S12-4、S13-4、S14-4、S15-4、S1-5、S2-5、S3-5、S4-5、S5-5、S6-5、S7-5、S8-5、S9-5、S10-5、S11-5、S12-5、S13-5、S14-5、S1-6、S2-6、S3-6、S4-6、S5-6、S6-6、S7-6、S8-6、S9-6、S10-6、S11-6、S12-6、S13-6、S14-6、S15-6、S1-7、S2-7、S3-7、S4-7、S5-7、S6-7、S7-7、S8-7、S9-7、S10-7、S11-7、S12-7、S13-7、S14-7、S15-7、S16-7、S1-8、S2-8、S3-8、S4-8、S5-8、S6-8、S7-8、S8-8、S9-8、S10-8、S11-8、S12-8、S13-8、S14-8、S15-8、S1-9、S2-9、S3-9、S4-9、S5-9、S6-9、S7-9、S8-9、S9-9、S10-9、S11-9、S12-9、S13-9、S14-9、S15-9、S16-9、S17-9、S1-10、S2-10、S3-10、S4-10、S5-10、S6-10、S7-10、S8-10、S9-10、S10-10、S11-10、S12-10、S13-10、S14-10、S15-10、S1-11、S2-11、S3-11、S4-11、S5-11、S6-11、S7-11、S8-11、S9-11、S10-11、S11-11、S12-11、S13-11、S14-11、S15-11、S16-11、S17-11、S1-12、S2-12、S3-12、S4-12、S5-12、S6-12、S7-12、S8-12、S9-12、S9a-12、S9b-12、S10-12、S11-12、S12-12、S13-12、S14-12、S15-12、S1-13、S2-13、S3-13、S4-13、S5-13、S6-13、S7-13、S8-13、S8a-13、S9-13、S10-13、S11-13、S12-13、S1-14、S2-14、S3-14、S4-14、S5-14、S6-14、S7-14、S8-14、S9-14、S9a-14、S9b-14、S10-14:步驟 2: vibrator 10: sewage treatment equipment 11: front sedimentation tank 12: concentration tank 13: storage tank 14: dehydrator 15: container 16: aeration tank 17: rear sedimentation tank 18: pump 19: equipment control device 20: ultrasonic sensor 21: oscillation (transmission) unit 22: receiving unit 23: suspended sediment accumulation layer 24: supernatant 25: treatment tank 26: interface 27: height 30, 30d: data processing device 31: gate device 32: ultrasonic transmission/reception circuit 33: data conversion circuit 34: data calculation unit 35: Image data storage unit 36: Display switching operation unit 37: Image data display unit 40, 40a, 40b, 40c, 40d: Information processing device 45, 45a, 45b, 45c, 45d: Terminal device 50, 50a, 50b, 50c, 50d: Monitoring device 51: Communication device 52: Recording device 53, 53a, 53b, 53c, 53d: Information processing unit 54, 54d: Graphical unit 55, 55a, 55d: Current status determination unit 56, 56a, 56b, 56c, 56d: Learning unit 57, 57b, 57d: Cause determination unit 58, 58c, 58d: Response method determination unit 59, 59d: Change sign output unit 100, 100a, 100b, 100c, 100d: Monitoring system BL: Bus line NW: Network P1, P2, P3, P4, P5, P6, P7, P8, P9, P10: Flow path P11: Conveyor belt S1-1, S2-1, S3-1, S4-1, S5-1, S6-1, S7-1, S8-1, S9-1, S10-1, S11-1, S12-1, S13-1, S14-1, S15-1, S1-2, S2-2, S3-2, S4-2, S5-2, S6-2, S7-2, S8-2, S 9-2, S10-2, S11-2, S12-2, S1 -3, S2-3, S3-3, S4-3, S5-3, S6-3, S7-3, S8-3, S9-3, S10-3, S11-3, S1-4, S2-4, S3-4, S4-4, S5-4, S6-4, S7-4, S8-4, S9-4, S10-4, S11-4, S12-4, S13- 4. S14-4, S15-4, S1-5, S2-5, S 3-5, S4-5, S5-5, S6-5, S7-5, S8-5, S9-5, S10-5, S11-5, S12-5, S13-5, S14-5, S1-6, S2-6, S3-6, S4-6, S5-6, S6-6, S7-6, S8-6, S9-6, S10-6, S11-6, S12-6, S13-6, S14-6, S15-6, S1 -7, S2-7, S3-7, S4-7, S5-7, S6-7, S7-7, S8-7, S9-7, S10-7, S11-7, S12-7, S13-7, S14-7, S15-7, S16-7, S1-8, S2-8, S3-8, S4-8, S5-8, S6-8, S7-8, S8- 8. S9-8, S10-8, S11-8, S12-8 , S13-8, S14-8, S15-8, S1-9, S2-9, S3-9, S4-9, S5-9, S6-9, S7-9, S8-9, S9-9, S10-9, S11-9, S12-9, S13-9, S14-9, S15-9, S16-9, S17-9, S1-10, S2-1 0, S3-10, S4-10, S5-10, S6-10 , S7-10, S8-10, S9-10, S10-10, S11-10, S12-10, S13-10, S14-10, S15-10, S1-11, S2-11, S3-11, S4-11, S5-11, S6-11, S7-11, S8-11, S9-11, S10-11, S11-11, S12-11, S13-11, S14- 11. S15-11, S16-11, S17-11, S1-12, S2-12, S3-12, S4-12, S5-12, S6-12, S7-12, S8-12, S9-12, S9a-12, S9b-12, S10-12, S11-12, S12-12, S13-12, S 14-12, S15-12, S1-13, S2-13, S 3-13, S4-13, S5-13, S6-13, S7-13, S8-13, S8a-13, S9-13, S10-13, S11-13, S12-13, S1-14, S2-14, S3-14, S4-14, S5-14, S6-14, S7-14, S8-14, S9-14, S9a-14, S9b-14, S10-14: Steps

圖1是表示本發明實施形態的監控系統的結構例的圖。 圖2是表示超音波感測器的一例的圖。 圖3是表示本實施形態的監控系統的資料處理裝置的一例的圖。 圖4是表示本實施形態的監控系統的動作的一例的圖。 圖5是表示監控圖像的一例的圖。 圖6是表示教師資料的一例的圖。 圖7是表示本實施形態的監控系統的動作的例1的圖。 圖8是表示本實施形態的監控系統的動作的例2的圖。 圖9是表示本實施形態的監控系統的動作的例3的圖。 圖10是表示本實施形態的資料處理裝置的另一例的圖。 圖11是表示本發明實施形態的變形例1的監控系統的結構例的圖。 圖12是表示教師資料的一例的圖。 圖13是表示實施形態的變形例1的監控系統的動作的例1的圖。 圖14是表示實施形態的變形例1的監控系統的動作的例2的圖。 圖15是表示本發明實施形態的變形例2的監控系統的結構例的圖。 圖16是表示教師資料的一例的圖。 圖17是表示實施形態的變形例2的監控系統的動作的例1的圖。 圖18是表示實施形態的變形例2的監控系統的動作的例2的圖。 圖19是表示本發明實施形態的變形例3的監控系統的結構例的圖。 圖20是表示實施形態的變形例3的監控系統的動作的例1的圖。 圖21是表示實施形態的變形例3的監控系統的動作的例2的圖。 圖22是表示本發明實施形態的變形例4的監控系統的結構例的圖。 圖23是表示本實施形態的變形例4的監控系統的監控裝置的一例的圖。 圖24是表示實施形態的變形例4的監控系統的動作的例1的圖。 圖25是表示實施形態的變形例4的監控系統的動作的例2的圖。 圖26是錯誤圖像的一例。 圖27是表示另一實施形態的監控系統的動作的例1的圖。 圖28是表示另一實施形態的監控系統的動作的例2的圖。 圖29是表示本實施形態的監控系統的動作的例3的圖。 FIG. 1 is a diagram showing an example of the structure of a monitoring system according to an embodiment of the present invention. FIG. 2 is a diagram showing an example of an ultrasonic sensor. FIG. 3 is a diagram showing an example of a data processing device of the monitoring system according to the present embodiment. FIG. 4 is a diagram showing an example of the operation of the monitoring system according to the present embodiment. FIG. 5 is a diagram showing an example of a monitoring image. FIG. 6 is a diagram showing an example of teacher data. FIG. 7 is a diagram showing an example 1 of the operation of the monitoring system according to the present embodiment. FIG. 8 is a diagram showing an example 2 of the operation of the monitoring system according to the present embodiment. FIG. 9 is a diagram showing an example 3 of the operation of the monitoring system according to the present embodiment. FIG. 10 is a diagram showing another example of the data processing device according to the present embodiment. FIG. 11 is a diagram showing a structural example of a monitoring system of a variant 1 of an implementation form of the present invention. FIG. 12 is a diagram showing an example of teacher data. FIG. 13 is a diagram showing an example 1 of the operation of the monitoring system of the variant 1 of the implementation form. FIG. 14 is a diagram showing an example 2 of the operation of the monitoring system of the variant 1 of the implementation form. FIG. 15 is a diagram showing a structural example of a monitoring system of a variant 2 of an implementation form of the present invention. FIG. 16 is a diagram showing an example of teacher data. FIG. 17 is a diagram showing an example 1 of the operation of the monitoring system of the variant 2 of the implementation form. FIG. 18 is a diagram showing an example 2 of the operation of the monitoring system of the variant 2 of the implementation form. FIG. 19 is a diagram showing a structural example of a monitoring system of a variant 3 of an embodiment of the present invention. FIG. 20 is a diagram showing an example 1 of an action of a monitoring system of a variant 3 of an embodiment. FIG. 21 is a diagram showing an example 2 of an action of a monitoring system of a variant 3 of an embodiment. FIG. 22 is a diagram showing a structural example of a monitoring system of a variant 4 of an embodiment of the present invention. FIG. 23 is a diagram showing an example of a monitoring device of a monitoring system of a variant 4 of the present embodiment. FIG. 24 is a diagram showing an example 1 of an action of a monitoring system of a variant 4 of an embodiment. FIG. 25 is a diagram showing an example 2 of an action of a monitoring system of a variant 4 of an embodiment. FIG. 26 is an example of an error image. FIG. 27 is a diagram showing example 1 of the operation of a monitoring system of another embodiment. FIG. 28 is a diagram showing example 2 of the operation of a monitoring system of another embodiment. FIG. 29 is a diagram showing example 3 of the operation of the monitoring system of this embodiment.

10:污水處理設備 10: Sewage treatment equipment

11:前沈澱槽 11: Front sedimentation tank

12:濃縮槽 12: Concentration tank

13:貯存槽 13: Storage tank

14:脫水機 14: Dehydrator

15:容器 15:Container

16:曝氣槽 16: Aeration tank

17:後沈澱槽 17: Rear sedimentation tank

18:泵 18: Pump

19:設備控制裝置 19: Equipment control device

20超音波感測器 20 Ultrasonic sensors

30資料處理裝置 30Data processing devices

31:閘道裝置 31: Gate device

40:資訊處理裝置 40: Information processing device

45:終端裝置 45: Terminal device

50:監控裝置 50: Monitoring device

51:通訊裝置 51: Communication device

52:記錄裝置 52: Recording device

53:資訊處理部 53: Information Processing Department

54:圖形化部 54: Graphics Department

55:現狀判定部 55: Current situation assessment department

56:學習部 56: Study Department

100:監控系統 100: Monitoring system

BL:匯流線 BL: Busbar

NW:網路 NW: Network

P1、P2、P3、P4、P5、P6、P7、P8、P9、P10:流路 P1, P2, P3, P4, P5, P6, P7, P8, P9, P10: flow path

P11:輸送帶 P11: Conveyor belt

Claims (20)

一種監控系統,具有: 判定部,基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態;及 輸出部,輸出用於確定所述判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊。 A monitoring system comprises: a determination unit, based on an image of a supernatant liquid inside a solid-liquid separation tank for separating wastewater into solid and liquid, i.e., a supernatant liquid image, and a diagnosis result obtained based on the supernatant liquid image, and using a first learning model that has learned the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank, to determine the state inside the solid-liquid separation tank based on the supernatant liquid image representing the supernatant liquid inside the solid-liquid separation tank as a diagnosis object; and an output unit, outputting information for determining the state inside the solid-liquid separation tank determined by the determination unit using the supernatant liquid image of the solid-liquid separation tank as a diagnosis object and the first learning model. 一種監控系統,具有: 判定部,基於表示出用以將廢水固液分離的固液分離槽的內部的圖像即監控圖像與所述固液分離槽內部的根據所述監控圖像所得的診斷結果,並使用學習了監控圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的監控圖像來判定固液分離槽內部的狀態;及 輸出部,輸出用於確定所述判定部使用作為診斷對象的所述固液分離槽的所述監控圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊, 所述監控圖像不包含測定不良時的圖像即錯誤圖像。 A monitoring system comprises: a determination unit, based on an image representing the interior of a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a monitoring image, and a diagnosis result of the interior of the solid-liquid separation tank obtained based on the monitoring image, and using a first learning model that has learned the relationship between the monitoring image and the state of the interior of the solid-liquid separation tank, to determine the state of the interior of the solid-liquid separation tank based on the monitoring image representing the interior of the solid-liquid separation tank as a diagnosis object; and an output unit, outputting information for determining the state of the interior of the solid-liquid separation tank determined by the determination unit using the monitoring image of the solid-liquid separation tank as a diagnosis object and the first learning model, The monitoring image does not include images of poor measurement, i.e., error images. 如請求項1所述的監控系統,其中, 所述上清液圖像不包含測定不良時的圖像即錯誤圖像。 A monitoring system as described in claim 1, wherein the supernatant image does not include an image of a poor measurement, i.e., an error image. 如請求項1所述的監控系統,具有: 原因判定部,基於所述上清液圖像與用於確定形成根據所述上清液圖像所得的診斷結果的原因的資訊,並使用學習了上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊之間的關係的第二學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來判定用於確定形成固液分離槽內部的所述狀態的原因的資訊, 所述輸出部進而輸出所述原因判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第二學習模型所判定的用於確定形成固液分離槽內部的所述狀態的原因的資訊。 The monitoring system as described in claim 1 has: A cause determination unit, based on the supernatant image and the information for determining the cause of the diagnosis result obtained based on the supernatant image, and using a second learning model that has learned the relationship between the supernatant image and the information for determining the cause of the diagnosis result formed inside the solid-liquid separation tank, determines the information for determining the cause of the state formed inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as the diagnosis object, The output unit further outputs the information for determining the cause of the state formed inside the solid-liquid separation tank determined by the cause determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the second learning model. 如請求項1所述的監控系統,具有: 應對方法判定部,基於所述上清液圖像與用於確定對根據所述上清液圖像所得的診斷結果的應對方法的資訊,並使用學習了上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊之間的關係的第三學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來判定用於確定對固液分離槽內部的所述狀態的應對方法的資訊, 所述輸出部進而輸出所述應對方法判定部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第三學習模型所判定的用於確定對固液分離槽內部的所述狀態的應對方法的資訊。 The monitoring system as described in claim 1 has: A response method determination unit, based on the supernatant image and information for determining a response method for a diagnosis result obtained based on the supernatant image, and using a third learning model that has learned the relationship between the supernatant image and information for determining a response method for a diagnosis result inside the solid-liquid separation tank, determines the information for determining a response method for determining the state inside the solid-liquid separation tank based on the supernatant image of the solid-liquid separation tank as a diagnosis object, The output unit further outputs information used to determine the response method for the state inside the solid-liquid separation tank determined by the response method determination unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the third learning model. 如請求項1所述的監控系統,包括: 變化預兆導出部,基於所述上清液圖像與用於確定獲得所述上清液圖像後的固液分離槽內部的狀態的變化的資訊,並使用學習了上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊之間的關係的第四學習模型,根據作為診斷對象的所述固液分離槽的所述上清液圖像來檢測固液分離槽內部的所述狀態的變化的預兆, 所述輸出部進而輸出用於確定所述變化預兆導出部使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第四學習模型所檢測的固液分離槽內部的所述狀態的變化的預兆的資訊。 The monitoring system as described in claim 1 comprises: A change sign deriving unit, based on the supernatant image and information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, and using a fourth learning model that has learned the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank, detects the sign of the change of the state inside the solid-liquid separation tank according to the supernatant image of the solid-liquid separation tank as the diagnosis object, The output unit further outputs the information for determining the sign of the change of the state inside the solid-liquid separation tank detected by the change sign deriving unit using the supernatant image of the solid-liquid separation tank as the diagnosis object and the fourth learning model. 如請求項1所述的監控系統,其中,所述診斷結果是基於上清液圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成。A monitoring system as described in claim 1, wherein the diagnosis result is generated based on either or both of the accumulation state of solid matter and the floating state of solid matter contained in the supernatant image. 如請求項1所述的監控系統,其中,所述判定部根據表示出作為診斷對象的固液分離槽的內部的所述上清液圖像來判定固液分離槽內部的狀態是正常、失常及異常中的哪一者。A monitoring system as described in claim 1, wherein the determination unit determines whether the state of the interior of the solid-liquid separation tank is normal, abnormal, or abnormal based on the supernatant image representing the interior of the solid-liquid separation tank as a diagnosis object. 如請求項1所述的監控系統,更具有: 通知部,於所述判定部判定為固液分離槽內部的所述狀態是失常與異常中的任一者的情況下,通知固液分離槽內部的所述狀態是失常與異常中的任一狀態。 The monitoring system as described in claim 1 further comprises: A notification unit for notifying that the state inside the solid-liquid separation tank is either abnormal or abnormal when the determination unit determines that the state inside the solid-liquid separation tank is either abnormal or abnormal. 一種學習裝置,具有: 學習部,基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與所述固液分離槽內部的狀態的根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型。 A learning device comprises: A learning unit that generates a first learning model representing the relationship between the supernatant image and the state inside the solid-liquid separation tank based on an image representing the supernatant inside a solid-liquid separation tank for separating wastewater from solid and liquid, i.e., a supernatant image and a diagnosis result obtained based on the supernatant image of the state inside the solid-liquid separation tank, and by learning. 一種學習裝置,具有: 學習部,基於表示出用以將廢水固液分離的固液分離槽的內部的圖像即監控圖像與所述固液分離槽內部的狀態的根據所述監控圖像所得的診斷結果,並藉由學習來生成表示監控圖像與固液分離槽內部的狀態之間的關係的第一學習模型, 所述監控圖像不包含測定不良時的圖像即錯誤圖像。 A learning device comprises: A learning unit, based on a monitoring image representing an image of the interior of a solid-liquid separation tank for separating solid and liquid wastewater and a diagnosis result obtained from the monitoring image and the state of the interior of the solid-liquid separation tank, generates a first learning model representing the relationship between the monitoring image and the state of the interior of the solid-liquid separation tank by learning, The monitoring image does not include an image when the measurement is poor, that is, an error image. 如請求項10所述的學習裝置,其中, 所述上清液圖像不包含測定不良時的圖像即錯誤圖像。 A learning device as described in claim 10, wherein the supernatant image does not include an image when the measurement is poor, i.e., an error image. 如請求項10所述的學習裝置,其中, 所述學習部基於所述上清液圖像與用於確定形成根據所述上清液圖像所得的診斷結果的原因的資訊,並藉由學習來生成表示上清液圖像與用於確定形成固液分離槽內部的診斷結果的原因的資訊之間的關係的第二學習模型。 A learning device as described in claim 10, wherein, the learning unit generates a second learning model representing the relationship between the supernatant image and the information for determining the cause of the diagnosis result formed based on the supernatant image, and the information for determining the cause of the diagnosis result formed inside the solid-liquid separation tank through learning. 如請求項10所述的學習裝置,其中, 所述學習部基於所述上清液圖像與用於確定對根據所述上清液圖像所得的診斷結果的應對方法的資訊,並藉由學習來生成表示出上清液圖像與用於確定對固液分離槽內部的診斷結果的應對方法的資訊之間的關係的第三學習模型。 A learning device as described in claim 10, wherein, the learning unit generates a third learning model that represents the relationship between the supernatant image and the information for determining the response method to the diagnosis result obtained based on the supernatant image, and the information for determining the response method to the diagnosis result inside the solid-liquid separation tank through learning. 如請求項10所述的學習裝置,其中,所述學習部基於所述上清液圖像與用於確定獲得所述上清液圖像後的固液分離槽內部的狀態的變化的資訊,來生成表示出上清液圖像與用於確定固液分離槽內部的狀態的變化的資訊之間的關係的第四學習模型。A learning device as described in claim 10, wherein the learning unit generates a fourth learning model representing the relationship between the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank after the supernatant image is obtained, based on the supernatant image and the information for determining the change of the state inside the solid-liquid separation tank. 如請求項10所述的學習裝置,其中,所述診斷結果是基於上清液圖像中所含的固體物的堆積狀態與固體物的浮游狀態中的任意一者或兩者而生成。The learning device according to claim 10, wherein the diagnosis result is generated based on either or both of a state of accumulation of solid matter and a state of floating of solid matter contained in the supernatant image. 一種監控方法,由監控系統執行,並具有如下步驟: 基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態的步驟;及 輸出用於確定在所述判定步驟中使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊的步驟。 A monitoring method is performed by a monitoring system and has the following steps: Based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, that is, a supernatant liquid image and a diagnosis result obtained based on the supernatant liquid image, and using a first learning model that has learned the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank, a step of determining the state inside the solid-liquid separation tank based on the supernatant liquid image representing the supernatant liquid inside the solid-liquid separation tank as a diagnosis object; and A step of outputting information for determining the state of the solid-liquid separation tank interior determined by the first learning model using the supernatant image of the solid-liquid separation tank as the object of diagnosis in the determination step. 一種學習方法,由學習裝置執行,並具有如下步驟: 基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型的步驟。 A learning method is performed by a learning device and comprises the following steps: Based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a supernatant liquid image, and a diagnosis result obtained based on the supernatant liquid image, a first learning model representing the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank is generated by learning. 一種程式,使監控系統的電腦執行如下步驟: 基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與根據所述上清液圖像所得的診斷結果,並使用學習了上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型,根據表示出作為診斷對象的固液分離槽的內部的上清液的上清液圖像來判定固液分離槽內部的狀態的步驟;及 輸出用於確定在所述判定步驟中使用作為診斷對象的所述固液分離槽的所述上清液圖像與所述第一學習模型所判定的所述固液分離槽內部的狀態的資訊的步驟。 A program that causes a computer of a monitoring system to execute the following steps: Based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, that is, a supernatant liquid image, and a diagnosis result obtained based on the supernatant liquid image, and using a first learning model that has learned the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank, a step of determining the state inside the solid-liquid separation tank based on a supernatant liquid image representing the supernatant liquid inside the solid-liquid separation tank as a diagnosis object; and A step of outputting information for determining the state of the solid-liquid separation tank interior determined by the first learning model using the supernatant image of the solid-liquid separation tank as the object of diagnosis in the determination step. 一種程式,使學習裝置的電腦執行如下步驟: 基於表示出用以將廢水固液分離的固液分離槽的內部的上清液的圖像即上清液圖像與所述固液分離槽內部的根據所述上清液圖像所得的診斷結果,並藉由學習來生成表示上清液圖像與固液分離槽內部的狀態之間的關係的第一學習模型的步驟。 A program causes a computer of a learning device to execute the following steps: Based on an image of a supernatant liquid inside a solid-liquid separation tank for separating solid and liquid wastewater, i.e., a supernatant liquid image, and a diagnosis result of the inside of the solid-liquid separation tank obtained based on the supernatant liquid image, a step of generating a first learning model representing the relationship between the supernatant liquid image and the state inside the solid-liquid separation tank by learning.
TW112126289A 2022-07-28 2023-07-14 Monitoring system, learning device, monitoring method, learning method, and program TW202423845A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120673A JP7439865B2 (en) 2022-07-28 2022-07-28 Monitoring systems, learning devices, monitoring methods, learning methods and programs
JP2022-120673 2022-07-28

Publications (1)

Publication Number Publication Date
TW202423845A true TW202423845A (en) 2024-06-16

Family

ID=89706132

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112126289A TW202423845A (en) 2022-07-28 2023-07-14 Monitoring system, learning device, monitoring method, learning method, and program

Country Status (3)

Country Link
JP (1) JP7439865B2 (en)
TW (1) TW202423845A (en)
WO (1) WO2024024444A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021960A1 (en) 2010-08-18 2012-02-23 Alberta Innovates - Technology Futures Flocculation method
CN107741738A (en) 2017-10-20 2018-02-27 重庆华绿环保科技发展有限责任公司 A kind of sewage disposal process monitoring intelligent early warning cloud system and sewage disposal monitoring and pre-alarming method
JP2019175409A (en) 2018-03-30 2019-10-10 国立大学法人横浜国立大学 Operation control device and operation control method of water treatment facility
JP7076356B2 (en) 2018-10-23 2022-05-27 水ing株式会社 Wastewater treatment method
JP2021041338A (en) 2019-09-11 2021-03-18 株式会社クボタ Control method and control device of water treatment process

Also Published As

Publication number Publication date
JP7439865B2 (en) 2024-02-28
JP2024017788A (en) 2024-02-08
WO2024024444A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
JP7012484B2 (en) Sludge evaluation system and sludge evaluation index acquisition system
JP2011047760A (en) Detection method of interface level, and management method of solid-liquid separation tank
CN103575810A (en) Measurement frequency variable ultrasonic imaging device
TW202423845A (en) Monitoring system, learning device, monitoring method, learning method, and program
TWI264663B (en) High-resolution intelligent rotor machine diagnostic system and method
RU2516200C2 (en) Device to analyse contamination of motor oil of internal combustion engine by disperse particles
WO2019087976A1 (en) Information processing device, information processing method, and information processing program
JP2016156832A (en) Sediment assessment
JP2024026106A (en) Information processor, water treatment system, water treatment method and program
JP5564356B2 (en) Remote water purification system
JP2022110327A (en) Monitoring system, learning device, monitoring method, learning method and program
CN109879129A (en) Cable swing detecting device
JP2002253905A (en) Coagulation monitoring system
JP2022073083A (en) Image processing method, image processing device, x-ray diffraction device, and program
Chakraborti et al. Settling velocity analysis of natural suspended particles using fractal approach
JP5501146B2 (en) Flock formation state determination method, flock formation state determination device, agglomeration reaction tank, pH adjustment tank, and abnormality occurrence notification system
CN114602216A (en) Automatic monitoring system for red mud settling tank
JP7439853B2 (en) Control device, turbidity meter, determination method, and learning method
JP3235501B2 (en) Sludge interface measuring device
JP2628085B2 (en) Turbidity display device
JPH06174530A (en) Ultrasonic distance measuring apparatus
JP2023030684A (en) Water purification treatment monitoring system, water purification treatment monitoring device, information processing device, program and water purification treatment monitoring method
JP7507034B2 (en) Information processing device, water treatment system, information processing method and program
US20240317609A1 (en) Sludge treatment facility operation assistance navigation system and sludge treatment facility oepration assistance method
JP4830909B2 (en) Particle measuring device