JPH06174530A - Ultrasonic distance measuring apparatus - Google Patents

Ultrasonic distance measuring apparatus

Info

Publication number
JPH06174530A
JPH06174530A JP4352645A JP35264592A JPH06174530A JP H06174530 A JPH06174530 A JP H06174530A JP 4352645 A JP4352645 A JP 4352645A JP 35264592 A JP35264592 A JP 35264592A JP H06174530 A JPH06174530 A JP H06174530A
Authority
JP
Japan
Prior art keywords
ultrasonic
sediment
ultrasonic sensor
floating sludge
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4352645A
Other languages
Japanese (ja)
Inventor
Masaaki Terada
昌章 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzuki Motor Corp
Original Assignee
Suzuki Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzuki Motor Corp filed Critical Suzuki Motor Corp
Priority to JP4352645A priority Critical patent/JPH06174530A/en
Publication of JPH06174530A publication Critical patent/JPH06174530A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure the level of sediment having heavy specific gravity and the level of floating sludge having light specific gravity at the same time. CONSTITUTION:The apparatus for measuring the levels of sediment and floating sludge has the parts performing the functions as follows. An ultrasonic sensor 4 transmits the ultrasonic wave of the frequency of 200KHz toward the lower side from the upper side in the liquid in a sediment tank 3. An ultrasonic sensor 5 transmits the ultrasonic wave of the frequency of 400KHz toward the lower part from the upper side in the liquid in the sediment tank 3. A time measuring part 17 measures the times until the ultrasonic waves transmitted to the surface of the sediment 1 and the surface of the floating sludge 2 are reflected and returned based on the detected signals from the ultrasonic sensors 4 and 5. An operating part 18 measures the distances to the sediment 1 and the floating sludge 2 based on the measured times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超音波式距離測定装置
に係り、特に沈殿槽内の沈殿物レベルの測定、各種液状
原料・燃料等備蓄タンク内のスラッジレベルの測定、粒
材洗浄槽内のレベルの測定等を行う場合に好適な超音波
式距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic distance measuring device, and more particularly to measuring sediment level in a sedimentation tank, sludge level in a storage tank for various liquid raw materials and fuels, and granular material cleaning tank. The present invention relates to an ultrasonic distance measuring device suitable for measuring internal levels.

【0002】[0002]

【従来の技術】従来、固形物や浮遊物の沈殿が発生する
タンクや汚水処理施設等の沈殿槽において、当該固形物
の沈殿物レベルを測定する場合は、通常、1基の沈殿槽
に対し1個のセンサを配置して沈殿物レベルを測定する
場合が一般的である。他方、大型の沈殿槽においては、
当該沈殿槽内の各部分における沈殿物レベルを測定可能
とすべく、1基の沈殿槽内に複数個の同一規格センサを
配置して沈殿物レベルを測定する場合も有る。
2. Description of the Related Art Conventionally, in a settling tank such as a tank or a sewage treatment facility where solids or suspended solids are settled, when measuring the settling level of the solids, one settling tank is usually used. It is common to deploy one sensor to measure sediment levels. On the other hand, in a large settling tank,
In order to be able to measure the sediment level in each part in the sedimentation tank, there is a case where a plurality of sensors of the same standard are arranged in one sedimentation tank to measure the sediment level.

【0003】図3は、超音波センサ50及びレベル計5
1を使用し、沈殿槽52内の沈殿物53のレベルを測定
する場合の原理図であり、沈殿槽52の水中に配置した
超音波センサ50から沈殿物53へ向けて超音波パルス
を発射し、レベル計51により、超音波パルスが沈殿物
53表面から反射して戻って来るまでの時間Tと,水中
における音速Vとに基づき、超音波センサ50から沈殿
物53表面までの距離L=1/2(V×T)を測定す
る。この場合、水中の音速Vを1500m/secと仮
定すると、200KHzの超音波の波長は7.5mm、
400KHzの超音波の波長は3.75mm、1MHz
の超音波の波長は1.5mmとなる。
FIG. 3 shows an ultrasonic sensor 50 and a level meter 5.
FIG. 2 is a principle diagram in the case of measuring the level of the sediment 53 in the sedimentation tank 52 using No. 1 and emitting an ultrasonic pulse toward the sediment 53 from the ultrasonic sensor 50 arranged in the water of the sedimentation tank 52. Based on the time T until the ultrasonic pulse is reflected back from the surface of the sediment 53 and returned by the level meter 51 and the speed of sound V in water, the distance L from the ultrasonic sensor 50 to the surface of the sediment 53 is L = 1. / 2 (V x T) is measured. In this case, assuming that the sound velocity V in water is 1500 m / sec, the wavelength of the ultrasonic wave of 200 KHz is 7.5 mm,
The wavelength of the ultrasonic wave of 400 KHz is 3.75 mm, 1 MHz
The ultrasonic wave has a wavelength of 1.5 mm.

【0004】沈殿槽内の沈殿物は、通常、沈殿槽底部か
ら比重の重い順に層を形成して沈殿している場合が一般
的であるが、例えば図4に示す如く、特に汚水処理施設
等に設置された大型の沈殿槽60においては(図示例で
は例えば直径8m,高さ4m)、攪拌用モータ61の出
力軸へ,棒状部材62,支持部材63,64等を介して
大型攪拌機(レイキ)65を取付け、攪拌用モータ61
で攪拌機65を駆動して、沈殿物66が沈殿槽60の底
部に完全に固まらないように攪拌しているため、前記の
現象が顕著に発生する。この場合、沈殿物66の表層に
は、充分に沈殿しきらない軽い比重の沈殿物が浮遊汚泥
層67を形成する。
[0004] Usually, the sediment in the sedimentation tank is generally formed by forming layers from the bottom of the sedimentation tank in descending order of specific gravity. For example, as shown in FIG. In the large settling tank 60 installed in the above (for example, a diameter of 8 m and a height of 4 m in the illustrated example), a large stirrer (reiki stirrer (Reiki) is connected to the output shaft of the stirring motor 61 via a rod-shaped member 62, support members 63, 64 and the like. ) 65 is attached to the stirring motor 61
The stirrer 65 is driven by to stir the precipitate 66 so that the precipitate 66 does not completely solidify at the bottom of the settling tank 60, so that the above phenomenon occurs remarkably. In this case, on the surface layer of the sediment 66, a sediment having a light specific gravity that does not fully sediment forms a suspended sludge layer 67.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述し
た従来の超音波測定方法により、沈殿層内で比重の重い
順に層を形成している沈殿物のレベルを測定する場合、
超音波センサから沈殿槽内の沈殿物へ向けて発射した超
音波パルスの反射が最も強い部分のレベルを測定するこ
とになるため、沈殿槽内における状態(沈殿物や浮遊汚
泥)を細密に測定する場合や、オーバフローし易い浮遊
汚泥のレベルを測定する場合には、従来技術では充分に
対応できないという問題があった。
However, in the case of measuring the level of the precipitates forming the layers in the descending order of specific gravity in the precipitation layer by the above-mentioned conventional ultrasonic measurement method,
Since the level of the strongest reflection of the ultrasonic pulse emitted from the ultrasonic sensor toward the sediment in the sedimentation tank will be measured, the state (sediment or suspended sludge) in the sedimentation tank will be measured closely. However, there is a problem in that the conventional technique cannot sufficiently cope with the situation when measuring the level of floating sludge that easily overflows.

【0006】[0006]

【発明の目的】本発明は、上記従来例の有する不都合を
改善し、特に1台のレベル計に対して周波数が相異する
2種類の超音波センサを配設することにより、比重の重
い沈殿物のレベルと比重の軽い浮遊汚泥のレベルとを同
時に測定可能とした超音波式距離測定装置の提供を目的
とする。
An object of the present invention is to improve the disadvantages of the above conventional example, and in particular, by disposing two kinds of ultrasonic sensors having different frequencies with respect to one level meter, precipitation having a large specific gravity is achieved. An object of the present invention is to provide an ultrasonic distance measuring device capable of simultaneously measuring the level of a substance and the level of floating sludge having a low specific gravity.

【0007】[0007]

【課題を解決するための手段】本発明は、沈殿槽の液中
底部に沈殿した沈殿物や液中に浮遊した浮遊汚泥へ超音
波を発射し、前記沈殿物や前記浮遊汚泥から反射した超
音波の検出に基づき、前記沈殿物や前記浮遊汚泥までの
距離を測定する超音波式距離測定装置において、前記沈
殿槽の液中上方から下方へ向けて比較的低い周波数の超
音波を発射する第1の超音波センサと、前記沈殿槽の液
中上方から下方へ向けて比較的高い周波数の超音波を発
射する第2の超音波センサと、前記第1の超音波センサ
及び前記第2の超音波センサの各検出信号に基づき,前
記沈殿物表面及び前記浮遊汚泥表面へ放射された超音波
が反射して戻って来るまでの時間を計測する時間計測手
段とを備え、該時間計測手段により計測した計測時間に
基づき前記沈殿物及び前記浮遊汚泥までの各距離を測定
する演算手段を具備する構成としている。これによっ
て、前記目的を達成するものである。
Means for Solving the Problems The present invention is to emit ultrasonic waves to a sediment that has settled at the bottom of a liquid in a settling tank or floating sludge suspended in the liquid, and the ultrasonic waves reflected from the sediment and the floating sludge. In an ultrasonic distance measuring device for measuring the distance to the sediment or the floating sludge based on the detection of sound waves, the ultrasonic wave of a relatively low frequency is emitted downward from above in the liquid of the settling tank. No. 1 ultrasonic sensor, a second ultrasonic sensor that emits ultrasonic waves of a relatively high frequency downward from above in the liquid of the precipitation tank, the first ultrasonic sensor and the second ultrasonic sensor. Based on each detection signal of the sound wave sensor, a time measuring means for measuring the time until the ultrasonic waves radiated to the surface of the sediment and the surface of the floating sludge are reflected and returned, and are measured by the time measuring means Based on the measured time It has a configuration comprising an arithmetic means for measuring the respective distances of the fine until said floating sludge. This achieves the above object.

【0008】[0008]

【作用】本発明によれば、第1の超音波センサから沈殿
槽の液中下方へ発射された周波数の低い超音波は、波長
が長いため、粒子が小さい浮遊汚泥を通過し、該浮遊汚
泥下方の沈殿物によって反射され、第1の超音波センサ
へ戻って来る一方、第2の超音波センサから沈殿槽の液
中下方へ発射された周波数の高い超音波は、波長が短い
ため、粒子が小さい浮遊汚泥によって反射され、第2の
超音波センサへ戻って来る。時間計測手段は、第1の超
音波センサの検出信号に基づき、沈殿物表面へ放射され
た超音波が反射して戻って来るまでの時間を計測し、第
2の超音波センサの検出信号に基づき、浮遊汚泥表面へ
放射された超音波が反射して戻って来るまでの時間を計
測する。演算手段は、時間計測手段による各計測時間に
基づき、沈殿物までの距離と浮遊汚泥までの距離を測定
する。上記により、沈殿槽の底部に沈殿した沈殿物まで
の距離と,沈殿槽の液中に浮遊した浮遊汚泥までの距離
とを同時に測定することができるため、例えば、沈殿物
が比重の重い順に層を形成して沈殿している汚水処理施
設等の沈殿槽においても、当該沈殿槽内における沈殿物
や浮遊汚泥等の状態や、オーバフローし易い浮遊汚泥ま
での距離を的確に測定することができる。
According to the present invention, since the ultrasonic waves of low frequency emitted downward from the liquid in the settling tank from the first ultrasonic sensor have a long wavelength, they pass through the suspended sludge with small particles, The high-frequency ultrasonic waves reflected downward by the precipitate below and returning to the first ultrasonic sensor while being emitted downward from the second ultrasonic sensor into the liquid in the sedimentation tank have a short wavelength, so that the particles are Is reflected by the small suspended sludge and returns to the second ultrasonic sensor. The time measuring means measures, based on the detection signal of the first ultrasonic sensor, the time until the ultrasonic waves radiated to the surface of the sediment are reflected and returned, and use the detection signal of the second ultrasonic sensor as the detection signal. Based on this, the time until the ultrasonic waves emitted to the surface of the floating sludge are reflected and returned is measured. The calculating means measures the distance to the sediment and the distance to the floating sludge based on each measurement time by the time measuring means. From the above, it is possible to simultaneously measure the distance to the sediment deposited at the bottom of the sedimentation tank and the distance to the floating sludge suspended in the liquid of the sedimentation tank. Even in a sedimentation tank of a wastewater treatment facility or the like that forms and precipitates, it is possible to accurately measure the state of sediment, floating sludge and the like in the sedimentation tank and the distance to the floating sludge that easily overflows.

【0009】[0009]

【実施例】以下、本発明の超音波式距離測定装置を沈殿
物及び浮遊汚泥レベル測定装置に適用してなる実施例を
図面に基づいて説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which the ultrasonic distance measuring device of the present invention is applied to a sediment and floating sludge level measuring device will be described below with reference to the drawings.

【0010】先ず、本実施例の超音波センサを使用した
沈殿物及び浮遊汚泥レベル測定装置の構成を図2に基づ
き説明すると、比重が重く且つ粒子が大なる沈殿物1
と,比重が軽く且つ粒子が小なる浮遊汚泥2が沈殿した
沈殿槽3の水中には、例えば超音波周波数が200KH
zの超音波センサ4と,例えば超音波周波数が400K
Hzの超音波センサ5とが配置されており、該超音波セ
ンサ4及び超音波センサ5には、リード線6,7を介し
て後述の各部を備えたレベル計8が接続されている。超
音波周波数200KHzの超音波センサ4は、沈殿物1
のレベル測定に使用し、超音波周波数400KHzの超
音波センサ5は、浮遊汚泥2のレベル測定に使用するよ
うになっている。
First, the structure of a sediment and floating sludge level measuring apparatus using the ultrasonic sensor of this embodiment will be described with reference to FIG. 2. The sediment 1 having a large specific gravity and large particles 1
In the water of the settling tank 3 in which the floating sludge 2 having a small specific gravity and small particles is settled, for example, an ultrasonic frequency of 200 KH
z ultrasonic sensor 4 and, for example, an ultrasonic frequency of 400K
The ultrasonic sensor 5 of Hz is arranged, and the ultrasonic sensor 4 and the ultrasonic sensor 5 are connected to a level meter 8 having various parts described later via lead wires 6 and 7. The ultrasonic sensor 4 having an ultrasonic frequency of 200 KHz is used for the sediment 1
The ultrasonic sensor 5 having an ultrasonic frequency of 400 KHz is used to measure the level of the suspended sludge 2.

【0011】次に、本実施例の沈殿物及び浮遊汚泥レベ
ル測定系を図1に基づき説明すると、該沈殿物及び浮遊
汚泥レベル測定系は、超音波周波数200KHzの超音
波センサ4と、該超音波センサ4の信号入出力系を構成
する送信パルス発生部9,増幅部10,波形整形部1
1,検波部12と、超音波周波数400KHzの超音波
センサ5と、該超音波センサ5の信号入出力系を構成す
る送信パルス発生部13,増幅部14,波形整形部1
5,検波部16と、制御系を構成する時間計測部17,
演算部18と、入出力及び表示系を構成する操作部1
9,表示部20,出力部21とを備える構成となってい
る。
Next, the sediment and floating sludge level measuring system of the present embodiment will be described with reference to FIG. 1. The sediment and floating sludge level measuring system is composed of an ultrasonic sensor 4 having an ultrasonic frequency of 200 KHz and the ultrasonic sensor. A transmission pulse generating unit 9, an amplifying unit 10, and a waveform shaping unit 1 forming a signal input / output system of the sound wave sensor 4.
1, a detection unit 12, an ultrasonic sensor 5 having an ultrasonic frequency of 400 KHz, a transmission pulse generation unit 13, an amplification unit 14, and a waveform shaping unit 1 which constitute a signal input / output system of the ultrasonic sensor 5.
5, the detection unit 16 and the time measurement unit 17 that constitutes the control system,
Operation unit 1 and operation unit 1 constituting input / output and display system
9, a display unit 20, and an output unit 21 are provided.

【0012】送信パルス発生部9は、時間計測部17の
制御信号に基づき、超音波センサ4へ駆動信号を出力
し、超音波センサ4は、送信パルス発生部9の駆動信号
に基づき、沈殿槽3内へ超音波を発射し、沈殿物1表面
から反射した超音波を増幅部10へ出力するようになっ
ている。増幅部10は、超音波センサ4の出力信号を増
幅した増幅信号を波形整形部11へ出力し、波形整形部
11は、増幅部10の出力信号を波形整形した波形整形
信号を検波部12へ出力し、検波部12は、波形整形部
11の出力信号を検波した検波信号を時間計測部17へ
出力するようになっている。
The transmission pulse generator 9 outputs a drive signal to the ultrasonic sensor 4 based on the control signal from the time measuring unit 17, and the ultrasonic sensor 4 receives the drive signal from the transmission pulse generator 9 to settling tank. Ultrasonic waves are emitted into the inside of the precipitate 3, and the ultrasonic waves reflected from the surface of the precipitate 1 are output to the amplification section 10. The amplification unit 10 outputs an amplified signal obtained by amplifying the output signal of the ultrasonic sensor 4 to the waveform shaping unit 11, and the waveform shaping unit 11 outputs the waveform shaped signal obtained by shaping the output signal of the amplification unit 10 to the detection unit 12. The detection section 12 outputs the detection signal obtained by detecting the output signal of the waveform shaping section 11 to the time measuring section 17.

【0013】同様に、送信パルス発生部13は、時間計
測部17の制御信号に基づき、超音波センサ5へ駆動信
号を出力し、超音波センサ5は、送信パルス発生部13
の駆動信号に基づき、沈殿槽3内へ超音波を発射し、浮
遊汚泥2表面から反射した超音波を増幅部14へ出力す
るようになっている。増幅部14は、超音波センサ5の
出力信号を増幅した増幅信号を波形整形部15へ出力
し、波形整形部15は、増幅部14の出力信号を波形整
形した波形整形信号を検波部16へ出力し、検波部16
は、波形整形部15の出力信号を検波した検波信号を時
間計測部17へ出力するようになっている。
Similarly, the transmission pulse generator 13 outputs a drive signal to the ultrasonic sensor 5 based on the control signal of the time measuring unit 17, and the ultrasonic sensor 5 transmits the drive pulse.
The ultrasonic wave is emitted into the settling tank 3 based on the drive signal of the above, and the ultrasonic wave reflected from the surface of the floating sludge 2 is output to the amplification section 14. The amplification unit 14 outputs the amplified signal obtained by amplifying the output signal of the ultrasonic sensor 5 to the waveform shaping unit 15, and the waveform shaping unit 15 outputs the waveform shaped signal obtained by shaping the output signal of the amplification unit 14 to the detection unit 16. Output and detect section 16
Outputs a detection signal obtained by detecting the output signal of the waveform shaping section 15 to the time measuring section 17.

【0014】時間計測部17は、検波部12の出力に基
づき、超音波周波数200KHzの超音波センサ4から
発射した超音波が沈殿物1表面から反射して戻って来る
までの時間T1を計測すると共に、検波部16の出力に
基づき、超音波周波数400KHzの超音波センサ5か
ら発射した超音波が浮遊汚泥2表面から反射して戻って
来るまでの時間T2を計測するようになっている。演算
部18は、時間計測部17から出力される時間T1と,
水中における音速Vとに基づき、超音波センサ4から沈
殿物1表面までの距離L1=1/2(V×T1)を測定
すると共に、時間計測部17から出力される時間T2
と,水中における音速Vとに基づき、超音波センサ5か
ら浮遊汚泥2表面までの距離L2=1/2(V×T2)
を測定するようになっている。
The time measuring unit 17 measures the time T1 until the ultrasonic wave emitted from the ultrasonic sensor 4 having an ultrasonic frequency of 200 KHz is reflected from the surface of the sediment 1 and returns based on the output of the detection unit 12. At the same time, based on the output of the detection unit 16, the time T2 until the ultrasonic waves emitted from the ultrasonic sensor 5 having an ultrasonic frequency of 400 KHz are reflected from the surface of the floating sludge 2 and returned is measured. The calculating unit 18 calculates the time T1 output from the time measuring unit 17,
A distance L1 = 1/2 (V × T1) from the ultrasonic sensor 4 to the surface of the sediment 1 is measured based on the sound velocity V in water, and a time T2 output from the time measuring unit 17 is measured.
And the speed of sound V in water, the distance L2 = 1/2 (V × T2) from the ultrasonic sensor 5 to the surface of the floating sludge 2
Is designed to measure.

【0015】操作部19は、測定作業者によるレベル計
8の設定を行うためのもので、所定の設定に基づく信号
を演算部18へ出力するようになっている。表示部20
は、演算部18で測定した超音波センサ4から沈殿物1
表面までの距離L1,超音波センサ5から浮遊汚泥2表
面までの距離L2等を表示するようになっている。出力
部21は、前記測定距離や各種データ等を印字等により
出力するようになっている。
The operation unit 19 is used by the measurement operator to set the level meter 8, and outputs a signal based on a predetermined setting to the calculation unit 18. Display unit 20
Is the sediment 1 from the ultrasonic sensor 4 measured by the calculation unit 18.
The distance L1 to the surface, the distance L2 from the ultrasonic sensor 5 to the surface of the floating sludge 2 and the like are displayed. The output unit 21 outputs the measured distance, various data, and the like by printing or the like.

【0016】次に、上記の如く構成した本実施例の動作
を説明する。
Next, the operation of this embodiment configured as described above will be described.

【0017】測定作業者が、操作部19から、レベル計
8を測定対象沈殿物の超音波反射特性に合わせる設定を
行うと、該操作部19から設定信号が演算部18を介し
時間計測部17へ供給される結果、時間計測部17は、
送信パルス発生部9を介し超音波センサ4へ駆動信号を
供給し、送信パルス発生部13を介し超音波センサ5へ
駆動信号を供給する。これにより、超音波センサ4は、
周波数200KHzの超音波を沈殿槽3内へ向けて発射
し、超音波センサ5は、周波数400KHzの超音波を
沈殿槽3内へ向けて発射する。
When the measuring operator sets the level meter 8 to the ultrasonic reflection characteristics of the sediment to be measured from the operating section 19, a setting signal from the operating section 19 is transmitted from the operating section 19 to the time measuring section 17 As a result of being supplied to
A drive signal is supplied to the ultrasonic sensor 4 via the transmission pulse generator 9 and a drive signal is supplied to the ultrasonic sensor 5 via the transmission pulse generator 13. Thereby, the ultrasonic sensor 4
An ultrasonic wave having a frequency of 200 KHz is emitted into the sedimentation tank 3, and the ultrasonic sensor 5 emits an ultrasonic wave having a frequency of 400 KHz into the sedimentation tank 3.

【0018】超音波センサ4から発射し,沈殿物1表面
から反射した超音波は、増幅部10により増幅され、波
形整形部11により波形整形され、検波部12により検
波された後、時間計測部17へ供給される。同様に、超
音波センサ5から発射し,浮遊汚泥2表面から反射した
超音波は、増幅部14により増幅され、波形整形部15
により波形整形され、検波部16により検波された後、
時間計測部17へ供給される。
The ultrasonic wave emitted from the ultrasonic sensor 4 and reflected from the surface of the precipitate 1 is amplified by the amplifying section 10, shaped by the waveform shaping section 11 and detected by the detecting section 12, and then the time measuring section. 17 is supplied. Similarly, the ultrasonic waves emitted from the ultrasonic sensor 5 and reflected from the surface of the floating sludge 2 are amplified by the amplification unit 14, and the waveform shaping unit 15 is provided.
After the waveform is shaped by and detected by the detection unit 16,
It is supplied to the time measuring unit 17.

【0019】この場合、沈殿物1(浮遊汚泥2)へ発射
した超音波の当該沈殿物1(浮遊汚泥2)からの反射量
は、使用超音波の波長と沈殿物1(浮遊汚泥2)の粒子
の大きさにより差が生ずる。即ち、周波数が低い超音波
は、波長が長いため、粒子の小さい浮遊汚泥2を通過
し、該浮遊汚泥2の下方に有る粒子の大きい沈殿物1に
よって反射する。他方、周波数が高い超音波は、波長が
短いため、粒子の小さい浮遊汚泥2からでも充分検出可
能な量が反射する。
In this case, the reflection amount of the ultrasonic waves emitted to the sediment 1 (floating sludge 2) from the sediment 1 (floating sludge 2) depends on the wavelength of the ultrasonic waves used and the sediment 1 (floating sludge 2). Differences occur depending on the size of the particles. That is, since the ultrasonic wave having a low frequency has a long wavelength, it passes through the suspended sludge 2 having small particles and is reflected by the sediment 1 having large particles below the suspended sludge 2. On the other hand, since the ultrasonic wave having a high frequency has a short wavelength, a sufficiently detectable amount is reflected even from the suspended sludge 2 having small particles.

【0020】時間計測部17は、検波部12の出力に基
づき、超音波センサ4から発射した超音波が沈殿物1表
面から反射して戻って来るまでの時間T1を計測し、検
波部16の出力に基づき、超音波センサ5から発射した
超音波が浮遊汚泥2表面から反射して戻って来るまでの
時間T2を計測する。これにより、演算部18は、時間
計測部17から出力される時間T1と,水中における音
速Vとに基づき、超音波センサ4から沈殿物1表面まで
の距離L1=1/2(V×T1)を測定すると共に、時
間計測部17から出力される時間T2と,水中における
音速Vとに基づき、超音波センサ5から浮遊汚泥2表面
までの距離L2=1/2(V×T2)を測定し、該測定
結果を、表示部20へ表示すると共に、出力部21から
出力する。
The time measuring unit 17 measures the time T1 until the ultrasonic wave emitted from the ultrasonic sensor 4 is reflected from the surface of the sediment 1 and returns based on the output of the detection unit 12, and Based on the output, the time T2 until the ultrasonic waves emitted from the ultrasonic sensor 5 are reflected from the surface of the floating sludge 2 and returned is measured. Thereby, the calculation unit 18 calculates the distance L1 = 1/2 (V × T1) from the ultrasonic sensor 4 to the surface of the sediment 1 based on the time T1 output from the time measurement unit 17 and the sound velocity V in water. And the distance L2 = 1/2 (V × T2) from the ultrasonic sensor 5 to the surface of the floating sludge 2 based on the time T2 output from the time measuring unit 17 and the sound velocity V in water. The measurement result is displayed on the display unit 20 and output from the output unit 21.

【0021】上述したように、本実施例によれば、粒子
が大きく且つ比重が重い沈殿物1のレベル測定用として
周波数が低い(例えば200KHz)超音波センサ4を
使用し、粒子が小さく且つ比重が軽い浮遊汚泥2のレベ
ル測定用として周波数が高い(例えば400KHz)を
使用しているため、1台のレベル計8により、沈殿槽3
の底部に沈殿した沈殿物1のレベルと,沈殿槽3の水中
に浮遊した浮遊汚泥2のレベルとを同時に測定すること
ができる。これにより、例えば、沈殿物が比重の重い順
に層を形成して沈殿している汚水処理施設等の沈殿槽に
おいても、当該沈殿槽内における沈殿物や浮遊汚泥等の
状態を細密に測定することが可能となる共に、オーバフ
ローし易い浮遊汚泥のレベルをも的確に測定することが
可能となる。
As described above, according to this embodiment, the ultrasonic sensor 4 having a low frequency (for example, 200 KHz) is used for measuring the level of the precipitate 1 having large particles and heavy specific gravity. Since a high frequency (for example, 400 KHz) is used for measuring the level of the suspended sludge 2 that is light, one set of the level meter 8 can be used to set the sedimentation tank 3
It is possible to simultaneously measure the level of the sediment 1 that has settled at the bottom of the tank and the level of the floating sludge 2 that has floated in the water in the settling tank 3. As a result, for example, even in a sedimentation tank of a wastewater treatment facility or the like in which the sediments form a layer in the order of descending specific gravity, the state of the sediments and suspended sludge in the sedimentation tank can be precisely measured. In addition, the level of floating sludge that easily overflows can be accurately measured.

【0022】尚、本実施例では、沈殿物及び浮遊汚泥レ
ベル測定装置を、沈殿槽内の沈殿物や浮遊汚泥のレベル
を測定する場合に適用したが、例えば各種液状原料や燃
料等を備蓄するタンク内のスラッジレベルを測定する場
合や、粒材の洗浄槽内のレベルを測定する場合等にも適
用することが可能である。
In this embodiment, the sediment and floating sludge level measuring device is applied to measure the level of sediment and floating sludge in the settling tank. However, for example, various liquid raw materials and fuels are stockpiled. It can be applied to the case of measuring the sludge level in the tank, the case of measuring the level of the granular material in the cleaning tank, and the like.

【0023】[0023]

【発明の効果】以上説明したように、本発明の超音波式
距離測定装置によれば、超音波周波数が異なる2種類の
超音波センサから沈殿物表面及び浮遊汚泥表面へ放射し
た超音波が反射して戻って来るまでの時間に基づき,沈
殿物及び浮遊汚泥までの各距離を測定する構成であるた
め、沈殿槽の底部に沈殿した沈殿物までの距離と,沈殿
槽の液中に浮遊した浮遊汚泥までの距離とを同時に測定
することが可能となり、この結果、例えば、沈殿物が比
重の重い順に層を形成して沈殿している汚水処理施設等
の沈殿槽においても、当該沈殿槽内における沈殿物や浮
遊汚泥等の状態や、オーバフローし易い浮遊汚泥までの
距離を的確に測定することが可能となる等、顕著な効果
を奏することができる。
As described above, according to the ultrasonic distance measuring apparatus of the present invention, the ultrasonic waves emitted from the two kinds of ultrasonic sensors having different ultrasonic frequencies to the surface of the sediment and the surface of the suspended sludge are reflected. The distance to the sediment and floating sludge is measured based on the time it takes to return. Therefore, the distance to the sediment that has settled to the bottom of the sedimentation tank and the floating in the liquid in the sedimentation tank It is possible to measure the distance to the floating sludge at the same time, and as a result, for example, even in a sedimentation tank of a wastewater treatment facility or the like in which sediments form a layer in order of descending specific gravity It is possible to obtain remarkable effects such as the state of sediments and floating sludge, etc., and the distance to the floating sludge that easily overflows.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用した実施例の沈殿物及び浮遊汚泥
レベル測定系のブロック図である。
FIG. 1 is a block diagram of a sediment and floating sludge level measuring system of an example to which the present invention is applied.

【図2】本実施例の沈殿槽内における超音波センサの測
定状態を示す概略図である。
FIG. 2 is a schematic diagram showing a measurement state of the ultrasonic sensor in the settling tank of the present embodiment.

【図3】従来例の沈殿槽内における超音波センサの測定
状態を示す概略図である。
FIG. 3 is a schematic diagram showing a measurement state of an ultrasonic sensor in a settling tank of a conventional example.

【図4】従来例の沈殿槽内の攪拌状態を示す概略図であ
る。
FIG. 4 is a schematic view showing a stirring state in a settling tank of a conventional example.

【符号の説明】[Explanation of symbols]

1 沈殿物 2 浮遊汚泥 3 沈殿槽 4 第1の超音波センサとしての超音波センサ 5 第2の超音波センサとしての超音波センサ 6 レベル計 9、13 送信パルス発生部 10、14 増幅部 11、15 波形整形部 12、16 検波部 17 時間計測手段としての時間計測部 18 演算手段としての演算部 19 操作部 20 表示部 21 出力部 1 Sediment 2 Floating Sludge 3 Settling Tank 4 Ultrasonic Sensor as First Ultrasonic Sensor 5 Ultrasonic Sensor as Second Ultrasonic Sensor 6 Level Meter 9,13 Transmission Pulse Generator 10,14 Amplifier 11, 15 waveform shaping section 12, 16 detection section 17 time measuring section as time measuring means 18 arithmetic section as arithmetic means 19 operation section 20 display section 21 output section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 沈殿槽の液中底部に沈殿した沈殿物や液
中に浮遊した浮遊汚泥へ超音波を発射し、前記沈殿物や
前記浮遊汚泥から反射した超音波の検出に基づき、前記
沈殿物や前記浮遊汚泥までの距離を測定する超音波式距
離測定装置において、 前記沈殿槽の液中上方から下方へ向けて比較的低い周波
数の超音波を発射する第1の超音波センサと、前記沈殿
槽の液中上方から下方へ向けて比較的高い周波数の超音
波を発射する第2の超音波センサと、前記第1の超音波
センサ及び前記第2の超音波センサの各検出信号に基づ
き,前記沈殿物表面及び前記浮遊汚泥表面へ放射された
超音波が反射して戻って来るまでの時間を計測する時間
計測手段とを備え、 該時間計測手段により計測した計測時間に基づき前記沈
殿物及び前記浮遊汚泥までの各距離を測定する演算手段
を具備したことを特徴とする超音波式距離測定装置。
1. An ultrasonic wave is emitted to a sediment settled in the bottom of the settling tank or floating sludge suspended in the solution, and the settling is performed based on detection of the ultrasonic wave reflected from the precipitate or the suspended sludge. In an ultrasonic distance measuring device for measuring the distance to an object or the floating sludge, a first ultrasonic sensor for emitting an ultrasonic wave of a relatively low frequency from above in the liquid of the settling tank to above, and Based on a second ultrasonic sensor that emits ultrasonic waves of a relatively high frequency downward from above in the liquid of the settling tank, and detection signals of the first ultrasonic sensor and the second ultrasonic sensor And a time measuring means for measuring a time until ultrasonic waves radiated to the surface of the sediment and the surface of the floating sludge are reflected and returned, and the sediment based on the measurement time measured by the time measuring means. And each up to the floating sludge Release ultrasonic distance measuring apparatus characterized by comprising a calculating means for measuring.
JP4352645A 1992-12-10 1992-12-10 Ultrasonic distance measuring apparatus Withdrawn JPH06174530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4352645A JPH06174530A (en) 1992-12-10 1992-12-10 Ultrasonic distance measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4352645A JPH06174530A (en) 1992-12-10 1992-12-10 Ultrasonic distance measuring apparatus

Publications (1)

Publication Number Publication Date
JPH06174530A true JPH06174530A (en) 1994-06-24

Family

ID=18425465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4352645A Withdrawn JPH06174530A (en) 1992-12-10 1992-12-10 Ultrasonic distance measuring apparatus

Country Status (1)

Country Link
JP (1) JPH06174530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271376A (en) * 2006-03-30 2007-10-18 Koden Electronics Co Ltd Device and method for monitoring deposition state of deposit in liquid
KR101423491B1 (en) * 2014-04-03 2014-07-28 권진희 Sludge measurement apparatus possible of simultaneous measurement sedimentation sludge interface and floating sludge formation using digital filter system and measurement method
KR101877766B1 (en) * 2016-07-20 2018-07-13 (주)엠에스플로우 An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007271376A (en) * 2006-03-30 2007-10-18 Koden Electronics Co Ltd Device and method for monitoring deposition state of deposit in liquid
KR101423491B1 (en) * 2014-04-03 2014-07-28 권진희 Sludge measurement apparatus possible of simultaneous measurement sedimentation sludge interface and floating sludge formation using digital filter system and measurement method
KR101877766B1 (en) * 2016-07-20 2018-07-13 (주)엠에스플로우 An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon

Similar Documents

Publication Publication Date Title
US11035826B1 (en) Method and apparatus for determining GVF—gas volume fraction—for aerated fluids and liquids in flotation tanks, columns, drums, tubes, vats
JPS62500612A (en) Ultrasonic measurement method for solid concentration and particle size distribution
WO1984001233A1 (en) Ultrasonic measurement
JPS5855477B2 (en) sonar device
US3914984A (en) System for measuring solids and/or immiscible liquids in liquids
OA11207A (en) Setting process analysis device and method
JPS63103962A (en) Method and device for measuring volume retention rate of dispersed phase in liquid/liquid dispersed system by ultrasonic wave
US4425793A (en) Level gauging systems
JPH06174530A (en) Ultrasonic distance measuring apparatus
FR2391456A1 (en) METHOD AND DEVICE FOR MEASURING FILLING DISTANCES OR HEIGHTS BY ACOUSTIC SOUNDING IN A GASEOUS FLUID BY MEANS OF SOUND WAVES
JP3547888B2 (en) Ultrasonic sensor and dispensing device using the same
JP2001183354A (en) Ultrasonic concentration meter
JPH07270532A (en) Ultrasonic type method and device for measuring distance
JPH01304322A (en) Instrument for measuring boundary of suspended matter
GB2256049A (en) Measurement of flocculation layer depth and density
SU834499A1 (en) Method of ultrasonic pulse mirror-transmission testing
JPS5947259B2 (en) Sonic detection method for suspensions
JPH05231903A (en) Measuring apparatus of moving body
SU934221A1 (en) Method of measuring thickness of articles
JP2854423B2 (en) Interface device for suspended foreign matter
JPH0535995B2 (en)
SU851255A1 (en) Device for measuring sea surface aerated layer characteristics
RU2167393C2 (en) Ultrasonic method determining thickness of article
KR200258787Y1 (en) Float Concentration Color Meter
JP2001141438A (en) Device for measuring thickness of bottom mud

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000307