JPH01304322A - Instrument for measuring boundary of suspended matter - Google Patents

Instrument for measuring boundary of suspended matter

Info

Publication number
JPH01304322A
JPH01304322A JP63135943A JP13594388A JPH01304322A JP H01304322 A JPH01304322 A JP H01304322A JP 63135943 A JP63135943 A JP 63135943A JP 13594388 A JP13594388 A JP 13594388A JP H01304322 A JPH01304322 A JP H01304322A
Authority
JP
Japan
Prior art keywords
interface
liquid
boundary
reflected
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63135943A
Other languages
Japanese (ja)
Inventor
Tadashi Sakata
正 坂田
Yoshiyuki Totsuka
戸塚 好之
Yutaka Matsumoto
豊 松本
Teruhisa Meguro
目黒 輝久
Kazunobu Masuda
増田 和伸
Kaoru Fukuda
薫 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RITSUKA KOGYO KK
Shizuoka Prefecture
Original Assignee
RITSUKA KOGYO KK
Shizuoka Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RITSUKA KOGYO KK, Shizuoka Prefecture filed Critical RITSUKA KOGYO KK
Priority to JP63135943A priority Critical patent/JPH01304322A/en
Publication of JPH01304322A publication Critical patent/JPH01304322A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To accurately measure the boundary of floatable suspended matters in a liquid by using a measuring device which can directly measure the boundary by means of ultrasonic waves of a frequency of about 400-1,500kHz and their reflected waves. CONSTITUTION:The capacity and depth of a settling reservoir 1 are respectively formed in corresponding to the processing quantity of waste water, sewage, etc., to be processed and 4-5mm in the case of processing waste water and 10m in the case of processing sewage. The bottom of the reservoir 1 is formed to a funnel-like shape and the sucking port of a suction pump 2 is opened at the central part of the bottom of the funnel. In addition, a drain pipe 3 for supernatant liquid is connected with the upper part of the liquid layer in the reservoir 1 and an ultrasonic wave transmitter-receiver dr which transmits ultrasonic waves of 400-1,500kHz in frequency into the liquid is provided above the surface of the liquid in the reservoir 1. When the ultrasonic wave is reflected on the boundary between the liquid and sludge, the reflected wave is received and transmitted to a measuring instrument MS. The instrument MS discriminates boundary signals from the reflected signals and measures the time from the transmission to the reception or the attenuated quantity of the reflected waves. Then the instrument MS calculates the position of the boundary, namely, depth to the boundary between the liquid and sludge based on the time or attenuated quantity.

Description

【発明の詳細な説明】 イ0発明の目的 (産業上の利用分野) 本発明は、廃水処理、下水処理用等の沈澱槽、その他、
液中に界面を成して懸濁する浮遊性異物の界面を測定す
る装置。詳しくは400〜1500KHzの超音波の選
定と、その反射波から界面信号を弁別して深さを測定す
る測定部とを使用することにより、浮遊性懸濁異物から
直接反射波を受けてその界面を確実に測定することがで
きる界面測定装置とその測定結果に基いて作動する警報
、制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION A.Objective of the invention (industrial application field)
A device that measures the interface of floating foreign matter suspended in a liquid. Specifically, by selecting an ultrasonic wave of 400 to 1500 KHz and using a measurement unit that measures the depth by discriminating the interface signal from the reflected wave, it is possible to directly receive the reflected wave from the floating suspended foreign object and measure the interface. The present invention relates to an interface measuring device that can reliably perform measurements, and an alarm and control device that operates based on the measurement results.

(従来の技術) 従来、水底に堆積する泥状異物等の堆積層の厚さ測定す
る装置として、特開昭58−218607号公報所載の
ものが知られており、このものは、タンク内の所定高さ
に配置され、はぼ垂直下向きに超音波を発信すると共に
、その反射波を受信する超音波受信器と、ワイヤにより
吊り下げられタンク内を上下動する下面に平面を有し、
」―而に球面を有する重錘と、同型針を」二下動させる
手段とからなる構成のものである。
(Prior Art) Conventionally, as a device for measuring the thickness of a deposited layer of muddy foreign matter etc. deposited on the bottom of water, there has been known a device described in Japanese Patent Application Laid-Open No. 58-218607. It has an ultrasonic receiver placed at a predetermined height, emits ultrasonic waves almost vertically downward and receives the reflected waves, and a flat surface on the lower surface that is suspended by a wire and moves up and down inside the tank.
It consists of a weight with a spherical surface and a means for moving the needle of the same type downward.

(発明が解決しようとする課題) 前記した従来の装置は、()、1〜5 M Hzの超音
波を使用しているが、槽底に堆積した固体の界面から反
射波を受けて深さを測定することはできないから、堆積
層の上に重錘を置き、この重錘により発信超音波を反射
させてこの反射波を受信し、重錘の深さを求めてこの深
さに重錘の厚さを加えることにより、実際の堆積層の深
さを求める間接的な測定法によっている。従って重錘と
これを昇降させる手段等の機械的な付帯設備か必要で、
この/ごめ設備上に不便で、可搬性にも劣る問題点かあ
った。
(Problem to be Solved by the Invention) The conventional device described above uses ultrasonic waves of 1 to 5 MHz, but it receives reflected waves from the interface of solids deposited on the bottom of the tank and Since it is not possible to measure the depth of This is an indirect measurement method that determines the actual depth of the deposited layer by adding the thickness of the layer. Therefore, mechanical ancillary equipment such as a weight and a means to raise and lower it is required.
This equipment was inconvenient and had problems with portability.

本発明は、前記した従来の問題点を解消するためになさ
れ/にもので、液体中に懸濁する異物の界面検知に適し
た超音波の周波数のjX定と、その反射波から界面信号
を弁別して測定値を求める測定部との採用により、界面
を直接測定することかできて、重錘やその昇降手段等の
付帯設備を使用しないため、設備に便利て可搬性にも優
れる界面測定装置とこれを利用した警報、制御装置を提
供することを目的としている。
The present invention has been made/made to solve the above-mentioned conventional problems, and it is based on the jX constant of the ultrasonic frequency suitable for detecting the interface of a foreign object suspended in a liquid, and the detection of an interface signal from the reflected wave. This interface measuring device is equipped with a measurement section that discriminates and obtains measured values, allowing it to directly measure the interface, and does not require incidental equipment such as a weight or means for raising and lowering it, making it convenient for equipment and excellent in portability. The purpose of this project is to provide alarms and control devices that utilize this technology.

口1発明の構成 (課題を解決するための手段) 面層目的を達成するための本発明の手段は、浮遊性異物
か界面を成して懸濁する液体中へ400・〜1500k
T(Zの超音波を発信する発信部と、その反射波を受信
する受信部と、受信した信号を増幅してその界面信号を
弁別し、反射時間2減衰度等を基に界面の深さを測定す
る測定部とを備えさせた@濁異物の界面測定装置と、 前記し/に懸濁異物の界面測定装置に、その測定値に基
づいて作動する警報器、制御器を組合わぜな警報、制御
装置の構成にある。
Structure of the Invention (Means for Solving the Problems) The means of the present invention for achieving the object of the present invention is that floating foreign matter forms an interface and is suspended in a liquid of 400 to 1500 km.
T An interface measuring device for suspended foreign matter is equipped with a measurement unit that measures It is in the configuration of the alarm and control device.

(作 用) 前記のように構成される本発明の界面測定装置は、例え
ば沈澱槽の液中に懸濁して界面を成す汚泥の界面を測定
する場合は、液面上か、液中に超音波の発受信部を設置
し、これから例えば100OK T−T zの超音波を
液中に発信すると、超音波は液中を進んで液体とは密度
が異る界面や槽底に達すれば、ここから反射して来て受
信部に受信される。すると測定部は反射波を増幅分析し
て、その中の周物界IW1よりの反射信号を他の反射信
号とは弁別し、この信号の発信から受信までの時間、又
は、反射時と受信時の減衰度に基づいて、界面の深さを
演算して表示部に表示させ、この表示部に記録機を併用
して置けば、表示は逐次記録される。又、前記した測定
部に汚泥の界面が基準位置を越えて危険位に達すると動
作する警報器を絹合わせて置けば、界面か土、澄液の排
出l」に近付き、河川へ流出する危険な状態になるとこ
れを検知して警報を発し、管理者による引抜ポンプの運
転を(/i2L、て、汚泥の河川流出を防止する措置を
人為的に吊しさせる。
(Function) When measuring the interface of sludge that is suspended in the liquid of a settling tank and forms an interface, the interface measuring device of the present invention configured as described above can be used on the surface of the liquid or in the liquid. If you install a sound wave transmitter/receiver and transmit an ultrasonic wave of, for example, 100 OK T-Tz into the liquid, the ultrasonic wave will travel through the liquid and reach the interface or bottom of the tank, where the density is different from that of the liquid. It is reflected by the receiver and received by the receiver. Then, the measurement unit amplifies and analyzes the reflected waves, distinguishes the reflected signal from the surrounding object world IW1 from other reflected signals, and determines the time from transmission to reception of this signal, or the time of reflection and reception. The depth of the interface is calculated based on the degree of attenuation and displayed on the display, and if a recorder is also placed on this display, the display will be recorded one by one. In addition, if an alarm is placed on the measuring part that is activated when the sludge interface exceeds the reference position and reaches a dangerous level, there is a danger that the interface, soil, and clear liquid will come close to being discharged and flow into the river. When this condition is detected, an alarm is issued, and the administrator is forced to stop the operation of the withdrawal pump (/i2L) and take artificial measures to prevent sludge from flowing into the river.

又、前記した測定部に汚泥の界面が基準位置を越えて危
険位に達すると動作する制御器を組合せて置けば、汚泥
界面が上澄液の排出口に近付き、河川へ流出する危険な
状態になると制御器が汚泥の引抜きポンプを運転して汚
泥を引き抜き、界面が基準位に下ればポンプを停止さぜ
な後、原水供給ポンプを運転して汚泥引き抜きに伴う原
水の水位低下を補足させ、汚泥の河川流出を防止する措
置は自動的に講じさせ得るものである。
In addition, if the above-mentioned measuring unit is combined with a controller that operates when the sludge interface exceeds the reference position and reaches a dangerous position, the sludge interface will approach the supernatant discharge port, causing a dangerous situation where it will flow into the river. When this happens, the controller operates the sludge extraction pump to pull out the sludge, and when the interface drops to the standard level, the pump is stopped, and then the raw water supply pump is operated to compensate for the drop in the raw water level due to the sludge extraction. and measures to prevent sludge from flowing into rivers can be automatically taken.

(実 施 例) 以下に本発明に係る装置の実験例及び実施例を説明する
(Example) Experimental examples and examples of the apparatus according to the present invention will be described below.

(実験例) 図面第1図に示すように300φ、3mのアクリル試験
槽を製作し、この試験槽の中に別表1−に示ず通り5種
の浮遊性汚泥が懸濁する液体を入れ、これらの液体中へ
後記する測定装置の発信部から2001(Hz、600
KHz、1000KHz、2000K )(Zの4種の
超音波を発信して、それぞれの反射波を受信部により受
信し、測定部でこの信号を増幅処理して界面信号を他の
信号と弁別して、反射時間や減衰度に基いて演算させ、
界面位置(深さ)を測定する試験を行った。その結果は
同表のごとくで、200 K Hzてはいずれの汚泥に
イ」いても超音波が汚泥を透過してしまい反則波か得ら
れないので界面の測定ができなかったが、600 K 
Hzでは下水道汚泥、製紙汚泥、牛乳汚泥については反
射波が得られ、界面を測定することかでき/ごか、ブロ
イラー汚泥、こみ汚泥ては超音波か汚泥を透過してしま
って反射波が得られないため界1fh−iの測定がてき
ず、1000K Hzては総゛Cの汚泥Gこついて界面
からの反射か得られて界面の測定ができた。しかし、2
000K Hzでは超音波が減衰し、てしよい反射波が
得られないため界面の測定ができなかつノどこの結果か
ら前記のような汚泥の界面を測定する場合に使用可能な
超音波は、1000KHzをピークとし、これより=1
−数100 KI−■Z程度、即ち、400〜1500
I(I−I zの範囲の周波数が適当であることが実証
された。
(Experiment example) As shown in Figure 1 of the drawing, a 300φ, 3m acrylic test tank was manufactured, and a liquid in which five types of floating sludge were suspended as shown in Attached Table 1 was placed in this test tank. A signal of 2001 (Hz, 600
KHz, 1000KHz, 2000K) (Z)4 types of ultrasonic waves are emitted, each reflected wave is received by the receiver, and the measurement unit amplifies this signal to distinguish the interface signal from other signals. Calculate based on reflection time and degree of attenuation,
A test was conducted to measure the interface position (depth). The results are shown in the same table. At 200 KHz, the ultrasonic waves would pass through the sludge no matter what kind of sludge it was in, so no counterwave could be obtained, so it was not possible to measure the interface, but at 600 KHz, the interface could not be measured.
At Hz, reflected waves can be obtained for sewage sludge, paper manufacturing sludge, and milk sludge, and the interface can be measured. Since the field 1fh-i could not be measured, at 1000 KHz, the reflection from the interface was obtained due to the sludge G with a total of ゛C, and the interface could be measured. However, 2
At 000 KHz, the ultrasonic wave is attenuated and a strong reflected wave cannot be obtained, so it is impossible to measure the interface. Based on these results, the ultrasonic wave that can be used to measure the sludge interface as described above is 1000 KHz. is the peak, and from this = 1
-Several 100 KI-■Z degree, i.e. 400-1500
It has been demonstrated that frequencies in the range I(I-Iz) are suitable.

この実験例及び後記する実施例において、汚泥界面より
反射する微弱な信号により直接界面測定をするためには
、微弱な信号を氾・要な大きさに増幅すると共に、反射
信号から界面の信号だけを他の雑音信号や槽底信号等か
ら弁別して取り出し、その反射時間や減衰度に基ついて
界面の深さを算出する高精度の測定装置を必要とするも
ので、この測定部としては、第2図及び第3図のブロッ
ク図に示す通りの2つの方式があり、第2図に示ずブロ
ック図のものは、測定周期クロック発生回路。
In this experimental example and the examples described later, in order to directly measure the interface using the weak signal reflected from the sludge interface, the weak signal must be amplified to the required magnitude and only the interface signal can be extracted from the reflected signal. This requires a high-precision measurement device that separates and extracts the signal from other noise signals, tank bottom signals, etc., and calculates the depth of the interface based on the reflection time and degree of attenuation. There are two methods as shown in the block diagrams of FIGS. 2 and 3. The one shown in the block diagram not shown in FIG. 2 is a measurement cycle clock generation circuit.

タイミング発生回路、単発パルス用ケー1〜発生回路、
振動子1へライブ回路、振動子(発受信部)、増幅検波
回路、受信波ケート回路。
Timing generation circuit, single pulse case 1 ~ generation circuit,
Live circuit to transducer 1, transducer (transmission/reception section), amplification/detection circuit, reception wave gate circuit.

増幅回路、AGC回路、STC回路、カウンター用スタ
ー1へ、スI〜ツブゲート回路、カウンター、CPU(
中央演算処理装置)1メモリ一2数個の入出力回路1表
示部、警報部。
Amplifier circuit, AGC circuit, STC circuit, counter star 1, sub I ~ tube gate circuit, counter, CPU (
Central processing unit) 1 memory, 2 or more input/output circuits, 1 display section, alarm section.

制御部を備え、クロック発生回路では測定の1−回分の
周期を設定し、タイミング発生回路では振動子に加える
パルス幅、計測のスター1〜及びス1〜ツブ等のタイミ
ングをとっている。
A control section is provided, and a clock generation circuit sets the period for one measurement, and a timing generation circuit determines the pulse width applied to the vibrator and the timing of the measurement star 1 and step 1.

そして振動子に人ってきた超音波は電気信号に変換され
るが、微弱電圧のため増幅回路で増幅される。この信号
は高周波を含んでいるので高周波増幅する。又、増幅器
にケインコンI−冒−ル端子を設げてA、 G C回路
やST″C回路の信号でゲインを可変できる様にしであ
る。更にゲーI−機能を持たせて振動子に送信信号を加
えている時はケー1〜を閉して増幅しない様にもしてい
る。
The ultrasonic waves that hit the transducer are converted into electrical signals, but because they are weak voltages, they are amplified by an amplifier circuit. Since this signal contains high frequencies, it is amplified at high frequencies. In addition, the amplifier is equipped with a gain control terminal so that the gain can be varied using the signals from the A, GC, and ST''C circuits.Furthermore, it is equipped with a gain function to transmit signals to the oscillator. When adding a signal, I close the cables 1~ to prevent it from being amplified.

カウンター用スI〜ツプゲー1−回路は、測定開始信号
を測定周期用クロックより作成し、フリップフロップを
リセツlへし°C反射信号が来るのを待つ。反射波が来
るとゲーIへを閉しると共に、CPUに反射波か来たこ
とを知らせる働きをし、CPUはこの知らせに基づいて
作動し、反射信号から界面信号を弁別してこれの反射波
の到達時間又は減衰度により界面の深さを演算して、表
示部に表示させると共に、警報部や制御部に伝達する様
にしたものである。
The counter circuit generates a measurement start signal from the measurement cycle clock, resets the flip-flop, and waits for the °C reflection signal to arrive. When a reflected wave arrives, it closes the gate I and notifies the CPU that a reflected wave has arrived.The CPU operates based on this notification, distinguishes the interface signal from the reflected signal, and detects the reflected wave. The depth of the interface is calculated based on the arrival time or the degree of attenuation, and is displayed on the display unit and is also transmitted to the alarm unit and control unit.

又、第3図に示すブロック図のものは、タイミング発生
回路、単発パルス発生回路、振動子ドライブ回路、振動
子、A/T)変換器。
The block diagram shown in FIG. 3 includes a timing generation circuit, a single pulse generation circuit, a vibrator drive circuit, a vibrator, and an A/T converter.

検波増幅回路、STC回路、CPU、メモリー、入出力
回路、出力回路4表示部、警報部。
Detection amplifier circuit, STC circuit, CPU, memory, input/output circuit, output circuit 4 display section, alarm section.

制御部を備えて、CPU(中央演算処理装置)か、メモ
リーしであるプロクラムにより作動し、タイミング発生
回路では、超音波振動子に加えるパルス幅、s ’−r
 c増幅等のスタート及びスI〜ツブのタイミングをと
っている。超音波振動子は送受信兼用形(送信と受信専
用形でも可)なので、振動子に入って来た超音波は、ア
ナロク′電気信号に変換されるが、微弱であるためST
C回路によりゲインコントロールされた増幅器と検波器
で増幅検波される。A / D変換器でアナログ信号を
ゲインタル信号に変換し、CPUにより制御させてメモ
リーに記憶させる動作を2〜5回繰返してデータを蓄積
し、この蓄積データに基いて、界面信号を他の信号から
弁別して取出し、反射の時間や信号の減衰度に基いて界
面の深さを測定して、表示部に表示すると共に、警報部
と制御部にも測定結果を伝達させるものである。
It is equipped with a control unit and is operated by a CPU (Central Processing Unit) or a program in memory, and a timing generation circuit controls the pulse width, s'-r, applied to the ultrasonic transducer.
The timing of the start of c amplification, etc. and the timing of sw. Since the ultrasonic transducer is a transmitter/receiver type (a type exclusively for transmitter and receiver is also possible), the ultrasonic wave that enters the transducer is converted into an analog electric signal, but it is weak and therefore ST
The signal is amplified and detected by an amplifier and a detector whose gain is controlled by the C circuit. The analog signal is converted into a gain signal using an A/D converter, and the operation of storing the data in memory under control of the CPU is repeated 2 to 5 times to accumulate data.Based on this accumulated data, the interface signal is converted into a gain signal. The depth of the interface is measured based on the reflection time and the degree of attenuation of the signal, and is displayed on the display unit, and the measurement results are also transmitted to the alarm unit and control unit.

以下にこれらの測定装置による汚泥界面測定の実施例を
測定装置全体をMS、発受信器(振動子)をdl−と表
示して説明する。
Examples of sludge interface measurement using these measuring devices will be described below, with the entire measuring device being represented as MS and the transceiver (oscillator) being represented as dl-.

図面第4図の実施例において、沈澱槽1はその容積を処
理すべき廃水1下水等の処理量に見合った大きさに形成
し、深さは廃水処理用の場合は4〜5m、下水処理用の
場合は10mに形成して、その下部を漏」−形とし、こ
の底の中心部に引抜きポンプ2の吸引口を開口させ、槽
1の液層の」二部には」二澄液の排出管3を接続してあ
り、前記した沈澱槽]−の液面上(液面中でも可)に超
音波の発受信器d rを置して、4()0〜1500K
 I(zの超音波を液体中に発信し、この超音波が液体
と汚泥の界面において反射されると、これを受信して測
定装置MSに伝える。すると測定袋WMSは反射信号か
ら界面信号を弁別して、その発信から受信までの時間か
、反射波の減衰度を測定し、これに基いて汚泥界面の位
置、即ち、液面よりの深さを演算して測定を行うもので
ある。
In the embodiment shown in Figure 4 of the drawings, the sedimentation tank 1 is formed to have a volume commensurate with the amount of wastewater 1 to be treated, such as sewage, etc., and a depth of 4 to 5 m for wastewater treatment; In the case of a tank 1, it should be formed to a length of 10 m, and its lower part should be shaped like a leak, and the suction port of the drawing pump 2 should be opened in the center of the bottom, and the second part of the liquid layer in the tank 1 should be filled with two clear liquid. The ultrasonic transmitter/receiver dr is placed on the liquid surface (or even on the liquid surface) of the above-mentioned sedimentation tank, and the ultrasonic wave transmitter/receiver is heated at 0 to 1500 K.
An ultrasonic wave of I(z is transmitted into the liquid, and when this ultrasonic wave is reflected at the interface between the liquid and sludge, it is received and transmitted to the measurement device MS.The measurement bag WMS then detects the interface signal from the reflected signal. The time from transmission to reception is determined, and the degree of attenuation of the reflected wave is measured.Based on this, the position of the sludge interface, that is, the depth from the liquid surface, is calculated and measured.

前記実施例により廃水及び下水の処理において汚泥界面
の測定を行った結果は、別表2に示す通りで、この場合
、製紙廃水と牛乳廃水に付いては試験を省略したが、そ
の他の廃水に付いては、前記した試験槽による実験と同
し結果が得られ、超音波の周波数は400〜1500に
■−IZが適切であることが実証されている。
The results of measuring the sludge interface in the treatment of wastewater and sewage according to the above example are shown in Attached Table 2. In this case, the tests were omitted for paper manufacturing wastewater and milk wastewater, but the results for other wastewaters were as follows. In this case, the same results as in the experiment using the test tank described above were obtained, and it was demonstrated that ①-IZ is appropriate for the ultrasonic frequency of 400 to 1500.

第5図に示す実施例は、廃水、下水の連続処理に適した
界面の測定装置の実施例を示すもので、沈澱槽1は第1
−図の実施例と基本的に同一のものであるが、槽]−上
に原水供給ポンプ4の吐出口が開口していて、原水の連
続−11−一 供給が行われるようにしてあり、この沈澱槽1の液面上
(液体中でも可)に超音波の発受信器d、 rが配置さ
れ、これから400−1500KHzの超音波を液体中
に発信し、この超音波が液体と汚泥との界面において反
射されると、測定装置MSがこれを受信して、界面信号
を弁別してこれの発信から受信迄の時間か反射波の減衰
度に基いて汚泥界面の位置(深さ)を演算し、表示器に
表示すると共に、制御器に伝達するもので、その結果は
前記実施例と同様であり、この実施例においては、界面
の深さが基準値より上昇して危険値に達すると、制御器
の作動により、引き抜きポンプを運転し、汚泥を引き抜
いてこれに伴う水位低下は原水供給ポンプの運転により
補充し、汚泥の河川への流出を自動的に防止するのに有
効である。
The embodiment shown in FIG. 5 shows an embodiment of an interface measuring device suitable for continuous treatment of wastewater and sewage.
- It is basically the same as the embodiment shown in the figure, but the discharge port of the raw water supply pump 4 is opened above the tank, so that the raw water is continuously supplied. Ultrasonic transmitter/receivers d and r are placed above the liquid level (or even in the liquid) of the sedimentation tank 1, and from this, 400-1500 KHz ultrasonic waves are emitted into the liquid, and these ultrasonic waves cause the interaction between the liquid and sludge. When reflected at the interface, the measuring device MS receives it, discriminates the interface signal, and calculates the position (depth) of the sludge interface based on the time from transmission to reception or the degree of attenuation of the reflected wave. , is displayed on the display and transmitted to the controller, and the result is the same as in the previous embodiment. In this embodiment, when the depth of the interface rises above the reference value and reaches the critical value, By operating the controller, the extraction pump is operated to extract the sludge, and when the water level drops due to this, the raw water supply pump is operated to replenish the water level, which is effective in automatically preventing the sludge from flowing into the river.

第6図は廃水2下水の回分処理に使用した実施例を示す
もので、沈澱1HIj; :l−’はその容積を処理す
べき廃水、下水の処理NGこ見合った−1.2− 大きさに形成し、深さを廃水処理用の場合は4〜5m、
下水処理の場合は10mに形成して、その下部を漏斗底
とし、この底部の一側に引抜ポンプ2の吸引口を開口さ
せ、槽1−′内の液体刷部に排水ポンプ5の吸引管6を
挿入してあり、この吸引管6は同図に示すように長さの
異る複数本を並設して、これらを弁7の選択作動により
切換使用するか、図面は省略したが、−本の吸引管6を
昇降させて、液体の吸引位置を変化させるようにしてあ
り、又、この汚泥層中には曝気管8を挿入して、汚泥を
曝気するようにしてあり、この沈澱槽1にも第2図の実
施例と同様に、超音波の発受信部d11−と測定装置M
Sを用いて、常時、汚泥界面を測定監視し、界面か異常
上昇を起こすときは、汚泥を自動的に引き抜いて界面の
上昇を抑止し、これに起因する汚泥の河川流出を防止さ
せるものである。
Figure 6 shows an example used for batch treatment of wastewater 2 sewage, where the volume of sediment 1HIj; and the depth is 4 to 5 m for wastewater treatment.
In the case of sewage treatment, the bottom of the funnel is 10 m long, the bottom of which is the bottom of the funnel, the suction port of the drawing pump 2 is opened on one side of the bottom, and the suction pipe of the drainage pump 5 is connected to the liquid printing part in the tank 1-'. As shown in the figure, a plurality of suction tubes 6 of different lengths are arranged side by side, and these can be selectively used by selective operation of the valve 7. Although the drawing is omitted, - The suction pipe 6 is moved up and down to change the suction position of the liquid, and an aeration pipe 8 is inserted into the sludge layer to aerate the sludge, and this sedimentation Similarly to the embodiment shown in FIG.
S is used to constantly measure and monitor the sludge interface, and when an abnormal rise occurs in the interface, the sludge is automatically pulled out to suppress the rise in the interface and prevent the sludge from flowing into rivers due to this. be.

ハ 発明の効果 前記の通り構成される本発明の装置は、適切な周波数の
超音波と、これの反射波により界面を直接測定出来る測
定装置とを用いることにより、液体中の浮遊生懸澗異物
の界面を正確に測定できるから、この測定値に基いて汚
泥界面を監視ずれは、界面の上昇による汚泥の流出を防
止して、放流水の水質を維持できる。
C. Effects of the Invention The device of the present invention configured as described above uses ultrasonic waves of an appropriate frequency and a measuring device that can directly measure an interface using the reflected waves of the ultrasonic waves, thereby detecting suspended foreign particles in a liquid. Since the interface can be accurately measured, the sludge interface can be monitored based on this measured value to prevent sludge from flowing out due to a rise in the interface and maintain the water quality of the effluent.

異物の界面を反射波により直接測定できる装置を使用す
れば、従来用いた重錘やその昇降手段等の付帯設備が不
要となり、設備に便利で可搬性も優れる。
Using a device that can directly measure the interface of a foreign object using reflected waves eliminates the need for conventionally used incidental equipment such as a weight and means for raising and lowering it, making it convenient for equipment and excellent in portability.

超音波を利用するから、着色排水中の浮遊性汚泥の界面
測定に対しても測定誤差を生じない。
Since ultrasonic waves are used, measurement errors do not occur even when measuring the interface of floating sludge in colored wastewater.

周波数の選定により各種の廃水処理、下水処理施設の沈
澱検相として、又は各種の界面測定機器用等として広く
利用”ζきる。
Depending on the frequency selected, it can be widely used for various types of wastewater treatment, for sediment phase detection in sewage treatment facilities, and for various interface measurement devices.

測定結果の出力を利用して界面」−昇時、警報を発しさ
せてこれに基づき人手により汚泥の引出しを行い、汚泥
の流出を人為的に防止できる。
Using the output of the measurement results, an alarm is issued when the interface rises, and based on this, the sludge is pulled out manually, making it possible to artificially prevent sludge from flowing out.

前記測定結果の出力を利用して制御器を作動させ、汚泥
の引出しを自動的に防止できる。
The output of the measurement results can be used to operate a controller to automatically prevent sludge withdrawal.

等の特有の効果を奏するものである。It has the following unique effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に関する装置の実験装置の正面図。第2
図及び第3図は本発明の装置に用いた測定装置のブロッ
ク図。第4図〜第6図は本発明の各実施例を示す概要構
成図で、第4図は基本形を、第5図は連続処理式を、第
6図は回分処理式を示す。 図中1,1′は沈澱槽、 d、rは超音波発受信器、 
MSは測定装置である。 = 16− 特開平1−、304.322 (6) 、d、r
FIG. 1 is a front view of an experimental apparatus related to the present invention. Second
3 and 3 are block diagrams of a measuring device used in the device of the present invention. 4 to 6 are schematic configuration diagrams showing each embodiment of the present invention. FIG. 4 shows the basic form, FIG. 5 shows the continuous processing type, and FIG. 6 shows the batch processing type. In the figure, 1 and 1' are sedimentation tanks, d and r are ultrasonic transmitters and receivers,
MS is a measuring device. = 16- JP-A-1-, 304.322 (6), d, r

Claims (2)

【特許請求の範囲】[Claims] (1)浮遊性異物が界面を成して懸濁する液体中へ40
0〜1500kHzの超音波を発信する発信部と、その
反射波を受信する受信部と、受信した信号を増幅してそ
の界面信号を弁別し、反射時間、減衰度等を基に界面の
深さを測定する測定部とを備えさせたことを特徴とする
懸濁異物の界面測定装置。
(1) Floating foreign matter forms an interface and is suspended in a liquid40
A transmitting part that emits ultrasonic waves of 0 to 1500 kHz, a receiving part that receives the reflected waves, and the received signal is amplified and the interface signal is discriminated, and the depth of the interface is determined based on the reflection time, degree of attenuation, etc. What is claimed is: 1. An interface measuring device for suspended foreign matter, comprising: a measuring section for measuring .
(2)請求項第1項記載の懸濁異物の界面測定装置に、
その測定値に基づいて作動する警報器、制御器等を組合
わせたことを特徴とする警報、制御装置。
(2) The interface measuring device for suspended foreign matter according to claim 1,
An alarm and control device characterized by a combination of an alarm, a controller, etc. that operate based on the measured value.
JP63135943A 1988-06-02 1988-06-02 Instrument for measuring boundary of suspended matter Pending JPH01304322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63135943A JPH01304322A (en) 1988-06-02 1988-06-02 Instrument for measuring boundary of suspended matter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63135943A JPH01304322A (en) 1988-06-02 1988-06-02 Instrument for measuring boundary of suspended matter

Publications (1)

Publication Number Publication Date
JPH01304322A true JPH01304322A (en) 1989-12-07

Family

ID=15163472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63135943A Pending JPH01304322A (en) 1988-06-02 1988-06-02 Instrument for measuring boundary of suspended matter

Country Status (1)

Country Link
JP (1) JPH01304322A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259824A (en) * 1991-02-15 1992-09-16 Kaijo Corp Measuring apparatus for interface of suspended foreign matter
JPH0618315A (en) * 1992-06-30 1994-01-25 Kaijo Corp Detecting method for position of interface
JPH0814990A (en) * 1994-06-27 1996-01-19 Kansai Tec:Kk Method and instrument for measuring levels of multilayer liquids
JPH0889943A (en) * 1991-08-27 1996-04-09 Hanshin Suido Kigyodan Fluidized-bed activated carbon adsorption water tank and method for detecting the activated carbon bed
JP2007271376A (en) * 2006-03-30 2007-10-18 Koden Electronics Co Ltd Device and method for monitoring deposition state of deposit in liquid

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869552A (en) * 1971-12-21 1973-09-21
JPS5144417A (en) * 1974-08-06 1976-04-16 Communications Patents Ltd
JPS613012A (en) * 1984-06-16 1986-01-09 Kanagawaken Measurement of liquid level in liquefied gas container using ultrasonic wave

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4869552A (en) * 1971-12-21 1973-09-21
JPS5144417A (en) * 1974-08-06 1976-04-16 Communications Patents Ltd
JPS613012A (en) * 1984-06-16 1986-01-09 Kanagawaken Measurement of liquid level in liquefied gas container using ultrasonic wave

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04259824A (en) * 1991-02-15 1992-09-16 Kaijo Corp Measuring apparatus for interface of suspended foreign matter
JPH0889943A (en) * 1991-08-27 1996-04-09 Hanshin Suido Kigyodan Fluidized-bed activated carbon adsorption water tank and method for detecting the activated carbon bed
JP2593833B2 (en) * 1991-08-27 1997-03-26 阪神水道企業団 Fluidized bed activated carbon adsorption water tank and its activated carbon layer detection method
JPH0618315A (en) * 1992-06-30 1994-01-25 Kaijo Corp Detecting method for position of interface
JPH0814990A (en) * 1994-06-27 1996-01-19 Kansai Tec:Kk Method and instrument for measuring levels of multilayer liquids
JP2007271376A (en) * 2006-03-30 2007-10-18 Koden Electronics Co Ltd Device and method for monitoring deposition state of deposit in liquid

Similar Documents

Publication Publication Date Title
US6062070A (en) Method and apparatus for the sonic measurement of sludge and clarity conditions during the treatment of waste water
US4121094A (en) System for detecting, indicating and regulating the level of semi-solid matter in a reservoir
US3985030A (en) Ultrasonic acoustic pulse echo ranging system
US5020374A (en) Velocity measurement system
SE454918B (en) PROCEDURE AND DEVICE FOR SEATING THE FLOW SPEED OF A SUSPENSION WITH ULTRA SOUND ECOPULAR TECHNOLOGY
CN101189510A (en) Method and device for monitoring a flowing liquid for the presence of air
WO2019196176A1 (en) Multifunctional drainage bottle
JPH01304322A (en) Instrument for measuring boundary of suspended matter
US5224837A (en) Apparatus for recovery of liquid hydrocarbon
US4397191A (en) Liquid velocity measurement system
KR101608819B1 (en) Apparatus and system for detacting oil leakage of gas station to prevent pollution of soil or underwater
KR101877766B1 (en) An Ultrasound Apparatus for Measuring an Interface Surface of an Active Carbon
EP0050452B1 (en) Apparatus for indicating variations in acoustic properties on an interface
KR20020072452A (en) Liquid level gauge and method of measuring liquid level
CN110567559A (en) Sensor, sensor system and sensing method
CN204461508U (en) Ultrasonic sensor
JP5946025B2 (en) Multiphase flow meter
JP2854423B2 (en) Interface device for suspended foreign matter
GB2107870A (en) Apparatus for measuring distances within elongate enclosures
ES484972A1 (en) Means for detecting liquid levels in a container
JP2002340656A (en) Instrument for measuring sludge interface
JP4431868B2 (en) Condition monitoring device
JPS5824757Y2 (en) Ultrasonic sediment detection device
JPS57199918A (en) Liquid level detector
US12111288B2 (en) Device and method for measuring settleability of activated sludge in-situ