JPS613012A - Measurement of liquid level in liquefied gas container using ultrasonic wave - Google Patents
Measurement of liquid level in liquefied gas container using ultrasonic waveInfo
- Publication number
- JPS613012A JPS613012A JP59122947A JP12294784A JPS613012A JP S613012 A JPS613012 A JP S613012A JP 59122947 A JP59122947 A JP 59122947A JP 12294784 A JP12294784 A JP 12294784A JP S613012 A JPS613012 A JP S613012A
- Authority
- JP
- Japan
- Prior art keywords
- container
- liquefied gas
- liquid level
- wall
- ultrasonic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、超音波を利用した液化ガス例えばLPG (
液化石油ガス)容器内の液面位置の測定方法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention utilizes ultrasonic waves to process liquefied gases such as LPG (
This invention relates to a method for measuring the liquid level position in a liquefied petroleum gas (liquefied petroleum gas) container.
(従来の技術)
例えば、LPGの販売事業者がItPG容器内の液面位
置を測定することは、LPGの販売上重要な意義を有す
るものであるが、一般家庭、共同住宅、レストラン等の
大多数のLPGの消費先では、一台のガスメータに対し
てatのLPG容器を接続してLPGを使用しており、
個々の容器内のLPG残留量がかなり異なるにも拘らず
、LPG容器には液面計が設置されていないのが実状で
ある。(Prior art) For example, it is important for LPG sales businesses to measure the liquid level in ItPG containers, but it is also important for LPG sales businesses to measure the liquid level in ItPG containers. Many LPG consumers use LPG by connecting an AT LPG container to a single gas meter.
The reality is that LPG containers are not equipped with level gauges, even though the amount of LPG remaining in each container varies considerably.
従来、LPG量の測定方法として、次の2つの方法が利
用されている。Conventionally, the following two methods have been used to measure the amount of LPG.
第一は、空の容器重量とLPGを充填したときの容器重
量とを台秤で計り、その重量差からLPG量を算出する
方法である。The first method is to measure the weight of the empty container and the weight of the container filled with LPG using a platform scale, and calculate the amount of LPG from the difference in weight.
第二は充填作業所でLPGの充填が完了した以後のガス
放出量をガスメータで連続測定する方法である。The second method is to use a gas meter to continuously measure the amount of gas released after LPG filling is completed at a filling workshop.
(発明が解決しようとする問題点)
前記第一の方法は、指定された国家資格を有する者がガ
ス警報器、消火器等法定保安設備を完備した特定の充填
作業所において実施が可能であるが、通常、消費先には
LPG容器重量を測定できる台秤が配置されていないた
め液面位置は容器の設置場所で測定できない。(Problem to be Solved by the Invention) The first method can be carried out by a person with designated national qualifications at a specific filling work site that is fully equipped with statutory safety equipment such as gas alarms and fire extinguishers. However, since a platform scale that can measure the weight of an LPG container is usually not installed at the consumer site, the liquid level cannot be measured at the location where the container is installed.
前記第二の方法は、個々の容器にガスメータが設備され
ていないから該容器内の液面位置を測定できず、そのた
め容器交換に際しては容器内の残液量が不明のまま取外
される不都合があった。In the second method, since each container is not equipped with a gas meter, the liquid level position in the container cannot be measured, and therefore, when replacing the container, the container is removed without knowing the amount of remaining liquid in the container, which is inconvenient. was there.
本発明は、液化ガス容器の設置場所において、従来の測
定方法に比して簡易且つ安価に測定することができる液
化ガス容器内の液面位置の測定方法?提供することをそ
の目的とするものである。The present invention provides a method for measuring the liquid level position in a liquefied gas container that can be measured at a location where the liquefied gas container is installed, which is simpler and cheaper than conventional measuring methods. Its purpose is to provide.
(問題点を解決するための手段)
本発明は、液化ガス容器外壁に超音波送受波器を接触さ
せて移動し、その各位置で該送受波器から前記容器のほ
ぼ中心軸に向けてパルス状超音波を発射すると共にその
反射波を前記送受波器で受波し、その出力信号が変化す
る位置より前記容器内の液化ガス液体の液面位置を測定
することを特徴とする。(Means for Solving the Problems) The present invention moves an ultrasonic transducer in contact with the outer wall of a liquefied gas container, and at each position, pulses are sent from the transducer toward approximately the central axis of the container. The present invention is characterized in that a shaped ultrasonic wave is emitted and its reflected wave is received by the transducer, and the liquid level position of the liquefied gas liquid in the container is measured from the position where the output signal changes.
(作用)
第1図(4)に示すように、液化ガス液体aの液面以下
の容器すの外壁に超音波送受波器(1)を接触させ、該
容器すのほぼ中心軸に向けてパルス状超音波を該送受波
器(1)から発射させると、超音波は密度の大きい液化
ガス液体a(例えばLL
PGは密度pn = 0.5 g/cA )に伝播しや
すいから、第1図(B)に矢示のように液体a中を容器
すの壁面で反射されて往復し、送受波器(1)から出力
信号として往復時間に対応する時間間隔でパルス状信号
が出力する。しかるに前記液体aの液面上の容器すの外
壁からパルス状超音波を発射させると、超音波は密度の
小さい液化ガス気体(例えばLPGは密度ρg =2X
10 g/−)には伝播しにくいので、第1図(0
)に矢示のように主として器壁内をその一部が壁面で反
射されながら周回し、送受波器(1)から出力信号とし
て密集したパルス状信号が出力する。(Function) As shown in Fig. 1 (4), the ultrasonic transducer (1) is brought into contact with the outer wall of the container below the liquid level of the liquefied gas liquid a, and the When a pulsed ultrasonic wave is emitted from the transducer (1), the ultrasonic wave easily propagates into a liquefied gas liquid a with a high density (for example, LL PG has a density pn = 0.5 g/cA), so the first As shown by the arrow in Figure (B), it is reflected from the wall of the container and reciprocates in the liquid a, and a pulsed signal is output as an output signal from the transducer (1) at time intervals corresponding to the reciprocating time. However, when pulsed ultrasonic waves are emitted from the outer wall of the container above the surface of the liquid a, the ultrasonic waves are emitted from a liquefied gas with a low density (for example, LPG has a density ρg = 2X).
10 g/-), so it is difficult to propagate to
) as shown by the arrow, it mainly circulates within the vessel wall with a part of it being reflected by the wall surface, and a dense pulse-like signal is output from the transducer (1) as an output signal.
したがって、超音波送受波器(1)を容器すの外壁に接
触させながら移動すると、液化ガス液体aと液化ガス気
体Cの境界である液面を通過した際、該送受波器(1)
から出力する出力信号が変化する。よってこの変化する
位置から液化ガス容器すの液化ガス液体aの液面位置が
測定される。Therefore, when the ultrasonic transducer (1) is moved while being in contact with the outer wall of the container, when the ultrasonic transducer (1) passes through the liquid surface that is the boundary between the liquefied gas liquid a and the liquefied gas gas C, the ultrasonic transducer (1)
The output signal output from changes. Therefore, the liquid level position of the liquefied gas liquid a in the liquefied gas container is measured from this changing position.
(実施例)
第2図は本発明の一実施例の実施に使用する装置のブロ
ック図を示す。(Embodiment) FIG. 2 shows a block diagram of an apparatus used to implement an embodiment of the present invention.
同図において、(1)は超音波用送受波器で、該送受波
器(1)には、パルス発生器(2)から振幅約−80v
1持続時間約α5μ秒のパルス波がタイマ(3)で約α
2秒毎に自動的に印加されるように構成されている。該
送受波器(1)の共振周波数は、例えば現在最も多く流
通している充填@5 ayの(4)は増幅回路で、該増
幅回路(4)には、その出力が検波回路(5)及び自動
利得制御回路(6)を介して負帰還されるようにし、こ
の回路で送受波器(1)の出力信号の波形の違いを検出
するようにした。In the figure, (1) is an ultrasonic transducer, and the transducer (1) is supplied with an amplitude of about -80V from a pulse generator (2).
A pulse wave with a duration of approximately α5μ seconds is detected by the timer (3) at approximately α
It is configured to be automatically applied every 2 seconds. The resonant frequency of the transducer (1) is, for example, the filling @5 ay which is currently the most widely distributed. and an automatic gain control circuit (6) for negative feedback, and this circuit detects differences in the waveforms of the output signals of the transducer (1).
(力は微分回路で、該微分回路(7)は検波回路(5)
の出力を微分して出力信号の波形の違いを更に選別する
ものであり、(8)は微分回路(力の出力パルスで作動
し、ブザー等の報知器(9)を作動させる持続的な作動
信号を出力する報知器作動回路、OQは電源電圧が所定
値を有するかどうかをチェックする電源チェック回路で
ある、また0υは電源、O2は電源aυと増幅回路(4
)との間に介入され、タイマ(3)の出力により制御さ
れて超音波を発射してから最初の反射波が到達するまで
の時間(例えばO8鴫秒)に対応する時澗例えば11秒
間のみ電源電圧を増幅回路(4)に加えるようにする電
源制御回路で、この回路によれば電源0υの消耗を少な
くすることができる。(The power is a differentiator circuit, and the differentiator circuit (7) is a detection circuit (5)
(8) is a differentiation circuit (operated by a force output pulse, which operates continuously to activate an alarm such as a buzzer (9)). An alarm operating circuit that outputs a signal, OQ is a power supply check circuit that checks whether the power supply voltage has a predetermined value, 0υ is a power supply, and O2 is a power supply aυ and an amplifier circuit (4
), and is controlled by the output of the timer (3) and corresponds to the time from when the ultrasonic wave is emitted until the first reflected wave arrives (for example, only 11 seconds). This is a power supply control circuit that applies a power supply voltage to the amplifier circuit (4), and this circuit can reduce consumption of the power supply 0υ.
次に、上記装置を使用した本発明の一実施例の測定方法
について説明する。Next, a measurement method according to an embodiment of the present invention using the above device will be explained.
今、接触媒質を薄く塗布した超音波用送受波器(1)を
、第1図(A)に示すように、液化ガス容器すの外壁に
軽く押し付けながら壁面に沿って上下させる。該送受波
器(1)が液面以下の容器すの外壁に接触しているとき
は、送受波器(1)から出力する出力信号は液化ガス液
体aを往復する時間間隔のパルス状信号であるから、増
幅回路(4)を介して検波器(5)からパルス状信号が
出力する。Now, as shown in FIG. 1(A), the ultrasonic transducer (1) coated with a thin coat of couplant is moved up and down along the wall surface while being lightly pressed against the outer wall of the liquefied gas container. When the transducer (1) is in contact with the outer wall of the container below the liquid level, the output signal output from the transducer (1) is a pulse-like signal at the time interval of reciprocating the liquefied gas liquid a. Therefore, a pulsed signal is output from the detector (5) via the amplifier circuit (4).
この信号は微分回路(力を介して報知器作動回路(8)
を駆動するから、持続する作動信号により報知器(9)
例えばブザは鳴動する。送受波器(1)を液面より上の
容器すの外壁に接触させると、送受波器(1)から出力
する出力信号は密集したパルス状信号であるから、この
信号は自動利得制御回路(6)によって増幅率が制御さ
れる増幅回路(4)を経ることによってほとんど消失さ
し、検波器(5)から出力が生じない。たとえ僅か出力
したとしても微分回路(力を経ることによって消減し、
報知器作動回路(8)を駆動しないから、例えばブザは
鳴動しない。This signal is transferred to the alarm activation circuit (8) via the differential circuit (force).
The alarm (9) is triggered by a continuous activation signal.
For example, a buzzer sounds. When the transducer (1) is brought into contact with the outer wall of the container above the liquid level, the output signal from the transducer (1) is a densely packed pulse-like signal, so this signal is processed by the automatic gain control circuit ( 6), the signal is almost eliminated by passing through the amplifier circuit (4) whose amplification factor is controlled by the wave detector (5), and no output is generated from the wave detector (5). Even if the output is small, it will disappear by passing through the differential circuit (force),
Since the alarm operating circuit (8) is not driven, the buzzer, for example, does not sound.
したがって送受波器(1ンを下から上に移動しブザの鳴
動が停止した位置から液化ガス液体aの液面位置を知る
ことができる。Therefore, the level position of the liquefied gas liquid a can be determined from the position where the buzzer stops sounding by moving the transducer (1) from the bottom to the top.
第6図は、第2図に示されるブロック図を具体化した電
気回路図である。FIG. 6 is an electrical circuit diagram embodying the block diagram shown in FIG. 2.
同図中、第2図と同一の符号は同一のものを示す。In the figure, the same symbols as in FIG. 2 indicate the same things.
第4図(A)及び第4図(B)は、共に送受波器(1)
を液面位置よ°り上方に位置させ、第4図(Alは第6
図示の回路において自動利得制御回路(6)を省略した
場合、第4図(B)は自動利得制御回路(6)を設けた
場合のX点における出力信号波形であり、第4図(0)
は送受波器(1)を液面位置より下方に位置させたとき
の第3図示の回路のX点における出力信号波形である。Figure 4 (A) and Figure 4 (B) both show a transducer (1).
4 (Al is located above the liquid level).
When the automatic gain control circuit (6) is omitted in the illustrated circuit, FIG. 4(B) shows the output signal waveform at point X when the automatic gain control circuit (6) is provided, and FIG. 4(0)
is the output signal waveform at point X of the circuit shown in FIG. 3 when the transducer (1) is positioned below the liquid level.
この波形を対比すれば、自動利得制御回路(6)を接続
した増幅回路(4)は液面の上下を判別して報知器(9
)を作動、不作動を決定する判別回路であることが理解
できる。Comparing these waveforms, we can see that the amplifier circuit (4) connected to the automatic gain control circuit (6) determines whether the liquid level is up or down and activates the alarm (9).
) can be understood to be a discrimination circuit that determines whether to operate or not.
以上第2図及び第3図に示される装置を用いた本発明の
一実施例について説明したが、送受波器(1)の出力信
号波形を直接あるいは増幅器を介して陰極線管に加え、
該管上でその波形を観測することにより液面位置を測定
してもよく、あるいは図示説明しないが公知の技術を用
いて出力信号の変化を測定してもよい。An embodiment of the present invention using the apparatus shown in FIGS. 2 and 3 has been described above.
The liquid level position may be measured by observing the waveform on the tube, or changes in the output signal may be measured using a known technique (not shown or described).
尚、液化ガスとしてLPGを例示したが、液化石然ガス
(I、NG)、液体窒素等でもよい。Although LPG is illustrated as an example of the liquefied gas, liquefied natural gas (I, NG), liquid nitrogen, etc. may also be used.
(発明の効果)
本発明は、液化ガス容器外壁に超音波送受波器を接触さ
せて移動し、その各位置で該送受波器から前記容器のほ
ぼ中心軸に向けてパルス状超音波を発射すると共にその
反射波を該送受波器で受波し、その出力信号が変化する
位置より前記容器内の液化ガス液体の液面位置を測定す
るようにしたから、液化ガス容器の設置場所で簡易に液
面位置を測定することができ、容器を交換し、充填作業
所に配送する作業の無駄が無い等の効果を有する。(Effects of the Invention) The present invention moves an ultrasonic transducer in contact with the outer wall of a liquefied gas container, and emits pulsed ultrasonic waves from the transducer at each position toward approximately the central axis of the container. At the same time, the reflected wave is received by the transducer, and the liquid level position of the liquefied gas liquid in the container is measured from the position where the output signal changes. It is possible to measure the liquid level position immediately, which has the advantage of eliminating wasteful work in replacing containers and delivering them to filling stations.
第1図(A)は、本発明の測定方法を説明するための液
化ガス容器の要部の裁断側面図、第1図(B)は第1図
(A)におけるE−B細裁断面図、第1図(0)は第1
図(A)におけるo−o義截断面図、第2図は本発明の
測定方法の一実施例に使用する装置のブロック図、第S
図は第2図に示される回路の具体的電気回路図、第4図
(A)は第5図に示される回路において、自動利得制御
回路(6)を省略したときのX点における出力信号の波
形図、第4図CB)及び(0)はそれぞれ送受波器を液
面の上及び下に位置させたときの第6図に示される回路
のX点における出力信号の波形図を示す。
a・・・液化ガス液体 b・・・液化ガス容器C・・
・液化ガス気体FIG. 1(A) is a cutaway side view of a main part of a liquefied gas container for explaining the measurement method of the present invention, and FIG. 1(B) is a cutaway cross-sectional view taken along the line E-B in FIG. 1(A). , Figure 1 (0) is the first
FIG. 2 is a block diagram of an apparatus used in an embodiment of the measuring method of the present invention, and FIG.
The figure shows a specific electric circuit diagram of the circuit shown in Fig. 2, and Fig. 4 (A) shows the output signal at point X when the automatic gain control circuit (6) is omitted in the circuit shown in Fig. 5. Waveform diagrams, Figures 4 (CB) and (0) show waveform diagrams of the output signal at point X of the circuit shown in Figure 6 when the transducer is positioned above and below the liquid level, respectively. a...Liquefied gas liquid b...Liquefied gas container C...
・Liquefied gas gas
Claims (1)
、その各位置で該送受波器から前記容器のほぼ中心軸に
向けてパルス状超音波を発射すると共にその反射波を前
記送受波器で受波し、その出力信号が変化する位置より
前記容器内の液化ガス液体の液面位置を測定することを
特徴とする超音波を利用した液化ガス容器内の液面位置
の測定方法。An ultrasonic transducer is brought into contact with the outer wall of the liquefied gas container and moved, and at each position a pulsed ultrasonic wave is emitted from the transducer toward approximately the center axis of the container, and the reflected wave is transmitted to the transducer. A method for measuring the liquid level position in a liquefied gas container using ultrasonic waves, characterized in that the liquid level position of the liquefied gas liquid in the container is measured from the position where the output signal changes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122947A JPS613012A (en) | 1984-06-16 | 1984-06-16 | Measurement of liquid level in liquefied gas container using ultrasonic wave |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59122947A JPS613012A (en) | 1984-06-16 | 1984-06-16 | Measurement of liquid level in liquefied gas container using ultrasonic wave |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS613012A true JPS613012A (en) | 1986-01-09 |
Family
ID=14848554
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59122947A Pending JPS613012A (en) | 1984-06-16 | 1984-06-16 | Measurement of liquid level in liquefied gas container using ultrasonic wave |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS613012A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304322A (en) * | 1988-06-02 | 1989-12-07 | Shizuoka Prefecture | Instrument for measuring boundary of suspended matter |
WO1995012804A1 (en) * | 1993-11-01 | 1995-05-11 | Zevex, Inc. | Noninvasive ultrasonic liquid level indicator |
FR3051040A1 (en) * | 2016-05-04 | 2017-11-10 | Maple High Tech | CONNECTED APPARATUS FOR MONITORING A LEVEL OF GAS IN A CONTAINER SUCH AS A BOTTLE OF GAS, WITH ENERGY RECOVERY. |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313461A (en) * | 1976-07-22 | 1978-02-07 | Mitsubishi Electric Corp | Liquid level measuring device |
JPS5788327A (en) * | 1980-11-19 | 1982-06-02 | Besutoooberu Moburii Ltd | Liquid level detector |
JPS57128843A (en) * | 1980-12-16 | 1982-08-10 | Maikuro Piyuaa Shisutemusu Inc | Pulse echo apparatus and holder thereof |
-
1984
- 1984-06-16 JP JP59122947A patent/JPS613012A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5313461A (en) * | 1976-07-22 | 1978-02-07 | Mitsubishi Electric Corp | Liquid level measuring device |
JPS5788327A (en) * | 1980-11-19 | 1982-06-02 | Besutoooberu Moburii Ltd | Liquid level detector |
JPS57128843A (en) * | 1980-12-16 | 1982-08-10 | Maikuro Piyuaa Shisutemusu Inc | Pulse echo apparatus and holder thereof |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01304322A (en) * | 1988-06-02 | 1989-12-07 | Shizuoka Prefecture | Instrument for measuring boundary of suspended matter |
WO1995012804A1 (en) * | 1993-11-01 | 1995-05-11 | Zevex, Inc. | Noninvasive ultrasonic liquid level indicator |
US5438868A (en) * | 1993-11-01 | 1995-08-08 | Zevex, Inc. | Noninvasive ultrasonic liquid level indicator |
FR3051040A1 (en) * | 2016-05-04 | 2017-11-10 | Maple High Tech | CONNECTED APPARATUS FOR MONITORING A LEVEL OF GAS IN A CONTAINER SUCH AS A BOTTLE OF GAS, WITH ENERGY RECOVERY. |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4280126A (en) | Liquid level detector | |
EP0372700B1 (en) | A fluid level monitor | |
US4325255A (en) | Ultrasonic apparatus and method for measuring the characteristics of materials | |
US6176132B1 (en) | Method for determining liquid level in a container using an electromagnetic acoustic transducer (EMAT) | |
US6925870B2 (en) | Ultrasonic fill level device and method | |
JPH0235954B2 (en) | ||
CA2045140A1 (en) | Welding method and apparatus | |
US3423992A (en) | Ultrasonic apparatus for measuring thickness or distances | |
JPS613012A (en) | Measurement of liquid level in liquefied gas container using ultrasonic wave | |
GB2076536A (en) | Method of Detecting a Body of Liquid | |
US4285053A (en) | Acoustic method and apparatus for measuring micron and submicron distances | |
US4212201A (en) | Ultrasonic sensor | |
JPS63247608A (en) | Method for measuring thickness and internal cracking position of concrete | |
GB2167185A (en) | Acoustically detecting and/or identifying a liquid | |
JPH027013B2 (en) | ||
EP2757353A1 (en) | Device for detecting flooding of a hollow structure | |
SU1673950A1 (en) | Method of ultrasonic quality control of a plastic envelope | |
JPS577519A (en) | Liquid level gauge | |
SU1113735A1 (en) | Device for determination of articles flaws by acoustic emission signals | |
SU892293A1 (en) | Liquid parameter checking method | |
SU702295A1 (en) | Method of checking continuity | |
JPS5593006A (en) | Ultrasonic thickness measuring instrument | |
JPS5689021A (en) | Acoustic level measuring method | |
JPS56100308A (en) | Measuring method for thickness | |
SU896552A1 (en) | Device for contact -free ultrasonic flaw detection |