JP3235501B2 - Sludge interface measuring device - Google Patents

Sludge interface measuring device

Info

Publication number
JP3235501B2
JP3235501B2 JP4217597A JP4217597A JP3235501B2 JP 3235501 B2 JP3235501 B2 JP 3235501B2 JP 4217597 A JP4217597 A JP 4217597A JP 4217597 A JP4217597 A JP 4217597A JP 3235501 B2 JP3235501 B2 JP 3235501B2
Authority
JP
Japan
Prior art keywords
sludge
interface
phase
liquid phase
determination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4217597A
Other languages
Japanese (ja)
Other versions
JPH10239135A (en
Inventor
義尚 岸根
信明 長尾
晋 福江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP4217597A priority Critical patent/JP3235501B2/en
Publication of JPH10239135A publication Critical patent/JPH10239135A/en
Application granted granted Critical
Publication of JP3235501B2 publication Critical patent/JP3235501B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、汚泥相と上澄み液
相との界面を検出するための汚泥界面計測装置に係り、
特に、嫌気性汚泥槽、特にUASB方式(顆粒状の汚泥
を用いた上向流式スラッジブランケット方式)の内部に
おける汚泥界面の計測に好適な装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge interface measuring device for detecting an interface between a sludge phase and a supernatant liquid phase.
In particular, the present invention relates to an apparatus suitable for measuring a sludge interface in an anaerobic sludge tank, particularly a UASB method (upflow sludge blanket method using granular sludge).

【0002】詳しくは、運転状態によって変化する顆粒
状汚泥の形状情報と個数情報およびそれの変化に基づい
て汚泥界面を判定する汚泥界面計測装置に関する。
More specifically, the present invention relates to a sludge interface measuring device which determines a sludge interface based on shape information and number information of granular sludge which changes depending on an operation state, and changes thereof.

【0003】[0003]

【従来の技術】UASB方式の嫌気性汚泥処理装置にお
いて、メタンガスはコロイド状の微細気泡や、その微細
気泡が会合した粗大気泡となった状態で発生している。
処理装置内の汚泥の存在状態は、粒径0.5〜3mmの
顆粒状の汚泥が20000〜50000mg/lの濃度
の濃縮されている汚泥相と、流入原水中の微細なSSや
顆粒状の汚泥が破砕した粒径0.5mm以下の破砕汚泥
が、SS(汚泥)濃度として100〜1000mg/l
で存在している上澄み液相に大別できる。その汚泥相と
上澄み液相の界面(汚泥界面)は一定しておらず、発生
ガス量や流入原水量に応じて絶えず展開流動している。
2. Description of the Related Art In an anaerobic sludge treatment apparatus of the UASB type, methane gas is generated in the form of colloidal fine bubbles and coarse bubbles in which the fine bubbles are associated.
The presence state of the sludge in the treatment apparatus is as follows: a sludge phase in which granular sludge having a particle size of 0.5 to 3 mm is concentrated at a concentration of 20000 to 50,000 mg / l; The crushed sludge having a particle size of 0.5 mm or less obtained by crushing the sludge has an SS (sludge) concentration of 100 to 1000 mg / l.
Can be roughly divided into the supernatant liquid phase that exists. The interface between the sludge phase and the supernatant liquid phase (sludge interface) is not constant, and is constantly developing and flowing according to the amount of generated gas and the amount of inflowing raw water.

【0004】この汚泥界面が異常に高まると、処理装置
内から顆粒状の汚泥が処理水に流出する可能性があり、
また、汚泥界面が低いことは、処理装置の汚泥保持量が
少ないことにつながる。そのため、嫌気性汚泥処理装置
の運転管理において、装置内の汚泥界面を連続的に把握
することは重要である。この界面高さを知る方法とし
て、汚泥サンプラーを用いて槽内の各深さから液を採取
し、汚泥濃度分析して界面高さを決定する方法がある
が、人力によるサンプリングを行うものであり、迅速さ
に欠ける。
[0004] If the sludge interface is abnormally high, granular sludge may flow out into the treated water from within the treatment equipment,
In addition, a low sludge interface leads to a small amount of sludge retained in the treatment apparatus. Therefore, in the operation management of the anaerobic sludge treatment apparatus, it is important to continuously grasp the sludge interface in the apparatus. As a method of knowing the interface height, there is a method of collecting the liquid from each depth in the tank using a sludge sampler and analyzing the sludge concentration to determine the interface height.However, sampling is performed manually. Lack of speed.

【0005】一般に活性汚泥処理装置の沈澱槽や凝集沈
澱処理装置の沈澱槽の汚泥界面を測定する測定装置とし
て、超音波式汚泥界面計や光学式汚泥濃度計を用いた装
置が用いられている。超音波式界面計は、音波を汚泥界
面に対して発射し、汚泥界面で反射した音波が帰ってく
るまでの時間から汚泥までの距離を計測する装置であ
る。また光学式汚泥濃度計は、光の透過量が汚泥層と上
澄み液で異なることを用いて界面を判定する装置であ
る。
In general, as a measuring device for measuring a sludge interface in a settling tank of an activated sludge treatment apparatus or a settling tank of a coagulated sedimentation treatment apparatus, an apparatus using an ultrasonic sludge interface meter or an optical sludge concentration meter is used. . An ultrasonic interferometer is a device that emits a sound wave to a sludge interface and measures the distance from the time until the sound wave reflected at the sludge interface returns to the sludge. The optical sludge densitometer is an apparatus that determines the interface by using the fact that the amount of transmitted light differs between the sludge layer and the supernatant.

【0006】[0006]

【発明が解決しようとする課題】これらの方式を用いて
嫌気性汚泥処理装置内の汚泥界面を測定した結果、両方
式とも発生メタンガスの影響が多大であり、信頼できる
測定がなされなかった。特に、超音波式汚泥界面計で
は、発生メタンガスの気泡のため、超音波の伝播が正常
に行われない。また、光学式汚泥濃度計では、発生した
微細なメタンガスと顆粒状汚泥との識別が不十分であっ
たり、水の色度の影響により誤差が大きくなるという短
所がある。
As a result of measuring the sludge interface in an anaerobic sludge treatment apparatus using these methods, both methods were greatly affected by the generated methane gas, and could not be reliably measured. In particular, in the ultrasonic type sludge interface meter, ultrasonic waves are not normally propagated due to bubbles of generated methane gas. In addition, the optical sludge densitometer has disadvantages in that the generated fine methane gas and granular sludge are insufficiently distinguished, and errors are increased due to the influence of chromaticity of water.

【0007】本発明は、上記のような問題点に鑑み、汚
泥槽内部の汚泥界面計測において、発生する気泡の影響
を受けずに精度良く汚泥界面を計測可能な汚泥界面計測
装置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a sludge interface measuring apparatus capable of measuring a sludge interface accurately without being affected by generated bubbles in measuring a sludge interface inside a sludge tank. With the goal.

【0008】[0008]

【課題を解決するための手段】本発明の汚泥界面計測装
置は、懸濁液中を撮影する撮像手段と、該撮像手段から
得られた画像情報に基づいてニューラルネットワークを
用いて汚泥相と上澄み液相との界面を判定する判定部と
を具備してなる汚泥界面計測装置であって、前記判定部
は、明度対画素数のヒストグラムに基づいて前記判定を
行うものである。
SUMMARY OF THE INVENTION A sludge interface measuring apparatus according to the present invention uses an imaging means for photographing a suspension, and a sludge phase and a supernatant using a neural network based on image information obtained from the imaging means. A sludge interface measurement device comprising: a determination unit for determining an interface with a liquid phase , wherein the determination unit
Makes the determination based on a histogram of lightness versus number of pixels.
Is what you do .

【0009】かかる本発明の汚泥界面計測装置によって
汚泥界面を計測するには、例えば、CCDカメラ等の撮
像手段によって液中を撮像する。この撮像データに基づ
いて汚泥相内にあるか上澄み液相内にあるかをニューラ
ルネットワークを利用して判定する。この判定を行うに
は、予め懸濁液の多数の実際の撮像をコンピュータに入
力すると共に各撮像が汚泥相内のものであるか上澄み液
相内のものであるかの判定結果(この判断は「人」が行
う。)をコンピュータに入力し、コンピュータに学習さ
せておく。コンピュータにおいては、図3に示すような
明度対画素数のヒストグラムを作成し、このヒストグラ
ムパターンと汚泥相内又は上澄み液相内との対応関係を
帰納付け、これを学習結果として記憶する。そして、判
定に際してはこの学習結果に基づいて撮像地点か汚泥相
内であるか上澄み液相内であるか判定を行う。
In order to measure the sludge interface by the sludge interface measuring device of the present invention, for example, an image of the liquid is taken by an imaging means such as a CCD camera. Based on this imaging data, it is determined using a neural network whether it is in the sludge phase or in the supernatant liquid phase. To make this determination, a number of actual images of the suspension are input in advance to the computer and the results of the determination of whether each image is in the sludge phase or in the supernatant liquid phase (this determination is Is input to the computer and trained by the computer. In the computer, a histogram of the lightness versus the number of pixels as shown in FIG. 3 is created, the correspondence between the histogram pattern and the sludge phase or the supernatant liquid phase is inductively stored, and this is stored as a learning result. At the time of the determination, it is determined based on the learning result whether the imaging point is in the sludge phase or in the supernatant liquid phase.

【0010】撮像手段の深さを変更するか、あらかじめ
複数の撮像手段を設置深さを異ならせて液中に配置して
おくことにより、複数の深さにおける撮像データを得、
各撮像地点が汚泥相内にあるか否かを判定する。汚泥相
内にあると判定された地点のうちの最上位のものと、上
澄み液相内にあると判定された地点のうちの最下位のも
のとの間に汚泥界面が存在すると判定される。
The imaging data at a plurality of depths can be obtained by changing the depth of the imaging means or by previously arranging a plurality of imaging means in the liquid at different installation depths.
It is determined whether each imaging point is in the sludge phase. It is determined that a sludge interface exists between the highest one of the points determined to be in the sludge phase and the lowest one of the points determined to be in the supernatant liquid phase.

【0011】[0011]

【発明の実施の型態】図1は実施例装置を備えた生物処
理槽1の断面図であり、内部に上澄み液相2と汚泥相3
とが存在している。槽1の上部に設けられた昇降装置6
に対し懸吊部材7を介してCCDカメラ4と投光器5と
が吊設されている。この昇降装置6は、カメラ4及び投
光器5の水中の上下方向位置(深さ)を変更できると共
に、その深さを検知して深さ情報を出力可能としてい
る。
FIG. 1 is a cross-sectional view of a biological treatment tank 1 provided with an apparatus according to an embodiment of the present invention, in which a supernatant liquid phase 2 and a sludge phase 3 are provided.
And exists. Elevating device 6 provided above tank 1
The CCD camera 4 and the light projector 5 are suspended via a suspension member 7. The elevating device 6 can change the vertical position (depth) of the camera 4 and the projector 5 in water in the vertical direction, and can detect the depth to output depth information.

【0012】この昇降装置6としては、ラックアンドピ
ニオン機構を備え、このピニオン回転用のモータの回転
数から深さ情報を出力するようにしたもの;回転ナット
に螺子棒を螺合し、ナットの回転により螺子棒を上下さ
せるようにした螺進機構を備え、ナット回転用のモータ
の回転数から深さ情報を出力するようにしたもの;懸吊
用のワイヤの巻取機を備え、この巻取機の回転数から深
さ情報を出力するようにしたもの;など、各種のものを
用いることができる。
The lifting device 6 has a rack-and-pinion mechanism, and outputs depth information from the number of rotations of a motor for rotating the pinion; A screw mechanism for raising and lowering a screw rod by rotation, and outputting depth information from the number of rotations of a motor for rotating a nut; a winding machine for a wire for suspension; Various types such as outputting depth information from the number of rotations of the machine can be used.

【0013】投光器5は、外光を遮断した槽1内を照射
するために設置されているが、槽1に採光用の窓や照明
が設けられている場合は省略できる。
The light projector 5 is provided to irradiate the inside of the tank 1 in which external light is blocked, but can be omitted when the tank 1 is provided with a lighting window or lighting.

【0014】CCDカメラ4は、防水ケース(図示略)
内に配置されている。このCCDカメラ4は、例えば2
56×256個の画素を備えており、撮像データを信号
処理装置10の判定部8及び画像表示装置11に出力し
ている。
The CCD camera 4 has a waterproof case (not shown).
Is located within. The CCD camera 4 is, for example, 2
It has 56 × 256 pixels, and outputs image data to the determination unit 8 of the signal processing device 10 and the image display device 11.

【0015】この判定部8においては、256×256
個の画素の明度を図3の如くヒストグラム化する。そし
て、このヒストグラム化されたデータを既存の学習デー
タと対比し、汚泥相内又は上澄み液相内の判定を行う。
この学習及び判定の具体的な手法としては、例えば次の
方法があげられる。
In this determination unit 8, 256 × 256
The brightness of each pixel is converted into a histogram as shown in FIG. Then, the histogram-converted data is compared with the existing learning data, and the determination in the sludge phase or the supernatant liquid phase is performed.
As a specific method of this learning and determination, for example, the following method can be cited.

【0016】まず、予め汚泥相内又は上澄み液相内と判
定された画像をコンピュータに入力し、このデータをヒ
ストグラム化する。そして、明度の平均値、偏差、分散
(又は標準偏差)、画素数のピーク(山)の数(図3で
は2個)、各ピークの明度値(例えば最頻値と次頻
値)、画素数のボトム(谷)の数、各ボトムの明度値等
の予測変数についてヒストグラムからデータを採取す
る。多数の画像と各画像の汚泥相内又は上澄み液相内の
判定結果とを入力し、各画像についてすべての予測変数
のデータを採取する。
First, an image previously determined to be in the sludge phase or in the supernatant liquid phase is input to a computer, and this data is converted into a histogram. Then, the average value, the deviation, the variance (or the standard deviation) of the brightness, the number of peaks (mountains) in the number of pixels (two in FIG. 3), the brightness values of each peak (for example, mode and second mode), Data is collected from the histogram for predictive variables such as the number of bottoms (valleys) of the number and the brightness value of each bottom. A large number of images and the results of determination of the sludge phase or the supernatant liquid phase of each image are input, and data of all predictive variables is collected for each image.

【0017】すべての画像についてすべての予測変数の
データを採取した後、各予測変数のデータと判定結果
(汚泥相内又は上澄み液相内)とが整合する判定要素
(数師係数、重み係数、重みによる微係数など)を求
め、学習終了とする。
After collecting the data of all the predictive variables for all the images, the decision elements (square coefficient, weighting coefficient, weight coefficient, etc.) in which the data of each predictor and the judgment result (in the sludge phase or in the supernatant liquid phase) match. And the like, and the learning is terminated.

【0018】この学習結果に基づいて、実際の画像デー
タが入力された場合、その撮像地点が汚泥相内であるか
上澄み液相内であるか判定する。
When actual image data is input based on the learning result, it is determined whether the imaging point is in the sludge phase or the supernatant liquid phase.

【0019】図2に示すように、ある深さにおける撮像
画面における明度対画素数のヒストグラムに基づいて撮
像地点が汚泥相内にあるか上澄み液相内にあるか判定す
る。撮像地点が汚泥相内にあるものと判定される場合
は、次に所定距離上方へCCDカメラ4を移動させ、そ
の地点で液中を撮像し、上記と同様にして判定を行う。
この判定結果が上澄み液相内となる地点まで撮像地点を
少しずつ上昇させる。判定結果が上澄み液相内地点にま
で達したならば、その地点と、判定結果が汚泥相内であ
る最上位の地点との間に汚泥界面が存在するものと界面
高さ決定回路9で決定し、その中間レベルを汚泥界面位
置として信号(界面情報)を出力する。
As shown in FIG. 2, it is determined whether the imaging point is in the sludge phase or the supernatant liquid phase based on the histogram of the brightness versus the number of pixels on the imaging screen at a certain depth. When it is determined that the imaging point is in the sludge phase, the CCD camera 4 is then moved upward by a predetermined distance, an image of the liquid is taken at that point, and the determination is performed in the same manner as described above.
The imaging point is gradually raised to a point where the result of the determination is in the supernatant liquid phase. If the determination result reaches the point in the supernatant liquid phase, the interface height determination circuit 9 determines that the sludge interface exists between that point and the highest point in the sludge phase where the determination result is. Then, a signal (interface information) is output using the intermediate level as the sludge interface position.

【0020】なお、ある深さにおける撮像データの解析
の結果その地点が上澄み液相中であると判定されたとき
には、その地点から順次に撮像地点を深くするように昇
降装置6を作動させ、最後の上澄み液相高さと最初の汚
泥相高さとの中間を汚泥界面位置とする。
When it is determined that the point is in the supernatant liquid phase as a result of the analysis of the imaging data at a certain depth, the elevating device 6 is operated so as to sequentially deepen the imaging point from that point. The intermediate between the supernatant liquid phase height and the initial sludge phase height is defined as the sludge interface position.

【0021】上記説明では1個のCCDカメラ4を槽1
内に上下動可能に設置し、その深さを変えることにより
汚泥界面を検出するようにしているが、設置深さを異な
らせた複数のCCDカメラを槽1内に定置しても良い。
In the above description, one CCD camera 4 is connected to the tank 1
The sludge interface is detected by changing its depth, but a plurality of CCD cameras having different installation depths may be fixed in the tank 1.

【0022】[0022]

【発明の効果】以上の通り、本発明の汚泥界面計測装置
によると、懸濁液の撮像をニューラルネットワークを用
い、該撮像が汚泥相内のもの上澄み液相内のものか
明度対画素数のヒストグラムに基づいて判定するように
したものであり、液中の気泡や色度の影響を受けること
なく高精度にて汚泥界面を計測することが可能となる。
As described above, according to the sludge interface measuring apparatus of the present invention, the suspension is imaged using a neural network .
There, whether imaging those things or supernatant phase within the sludge phase
The determination is made based on the histogram of the brightness versus the number of pixels , and the sludge interface can be measured with high accuracy without being affected by bubbles or chromaticity in the liquid.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(a)図は実施例装置を備えた生物処理槽の断
面図、(b)図は実施例装置のブロック図である。
FIG. 1A is a cross-sectional view of a biological treatment tank provided with an embodiment apparatus, and FIG. 1B is a block diagram of the embodiment apparatus.

【図2】実施例装置の作動を示すフローチャートであ
る。
FIG. 2 is a flowchart showing the operation of the embodiment device.

【図3】明度対画素数のヒストグラムの一例である。FIG. 3 is an example of a histogram of brightness versus number of pixels.

【符号の説明】[Explanation of symbols]

1 生物処理槽 2 上澄み液相 3 汚泥相 4 CCDカメラ 5 投光器 6 昇降装置 7 懸吊部材 8 判定部 9 界面高さ決定回路 DESCRIPTION OF SYMBOLS 1 Biological treatment tank 2 Supernatant liquid phase 3 Sludge phase 4 CCD camera 5 Floodlight 6 Lifting device 7 Suspension member 8 Judgment part 9 Interface height determination circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平9−21678(JP,A) 実開 平3−112679(JP,U) 実開 平3−13563(JP,U) (58)調査した分野(Int.Cl.7,DB名) G01F 23/28 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-9-21678 (JP, A) JP-A-3-112679 (JP, U) JP-A-3-13563 (JP, U) (58) Survey Field (Int.Cl. 7 , DB name) G01F 23/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 懸濁液中を撮影する撮像手段と、該撮像
手段から得られた画像情報に基づいてニューラルネット
ワークを用いて汚泥相と上澄み液相との界面を判定する
判定部とを具備してなる汚泥界面計測装置であって、 前記判定部は、明度対画素数のヒストグラムに基づいて
前記判定を行うものであることを特徴とする 汚泥界面計
測装置。
1. An imaging means for taking an image of a suspension, and the imaging means
Neural network based on image information obtained from means
Judgment of interface between sludge phase and supernatant liquid phase using work
And a judgment unitA sludge interface measuring device, The determination unit is based on a histogram of brightness versus number of pixels.
Characterized in that the determination is made Sludge interface meter
Measuring device.
JP4217597A 1997-02-26 1997-02-26 Sludge interface measuring device Expired - Fee Related JP3235501B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4217597A JP3235501B2 (en) 1997-02-26 1997-02-26 Sludge interface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4217597A JP3235501B2 (en) 1997-02-26 1997-02-26 Sludge interface measuring device

Publications (2)

Publication Number Publication Date
JPH10239135A JPH10239135A (en) 1998-09-11
JP3235501B2 true JP3235501B2 (en) 2001-12-04

Family

ID=12628656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4217597A Expired - Fee Related JP3235501B2 (en) 1997-02-26 1997-02-26 Sludge interface measuring device

Country Status (1)

Country Link
JP (1) JP3235501B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6213201B2 (en) * 2013-12-09 2017-10-18 日本ゼオン株式会社 Interface control method
JP6927465B2 (en) * 2015-02-17 2021-09-01 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. Model-based methods and equipment for classifying interfering factors in specimens
CN104819753B (en) * 2015-04-24 2019-01-25 武金玉 Level-sensing device under liquid
JP6832011B2 (en) * 2017-07-06 2021-02-24 株式会社 太陽 Waste liquid equipment

Also Published As

Publication number Publication date
JPH10239135A (en) 1998-09-11

Similar Documents

Publication Publication Date Title
CN103163075B (en) A kind of water regime monitoring system
JP3343444B2 (en) LCD panel image quality inspection apparatus and LCD image presampling method
CN203148531U (en) Water level and water quality monitoring terminal based on machine vision
CN102297660A (en) Measuring method of shield tunnel lining segment seam open width and apparatus thereof
CN106404623A (en) Suspended silt concentration monitoring system and monitoring method
CN101936919B (en) Computer vision based glass quality detection device and measuring method thereof
CN105261027A (en) Method and system for detecting sludge settlement ratio based on image processing
CN104749117A (en) Water environment monitoring device adopting image vision processing technology
JP3235501B2 (en) Sludge interface measuring device
CN112964606A (en) Machine vision suspension turbidity detection device and detection method
CN105865582A (en) Operating method of water environment monitoring system using image visual processing technology
CN104123728A (en) Hough transform based round pipe detection method
Benson et al. InSiPID: A new low-cost instrument for in situ particle size measurements in estuarine and coastal waters
JP2007147448A (en) Oil film detector and oil film detection method
JP3901300B2 (en) Sludge image processing device for measuring sludge particle size
JP3700205B2 (en) Sludge levitation detector
JPH0921678A (en) Sludge-interface measuring device
RU2495451C1 (en) Method of determining vertical distribution and dimensional structure of zooplankton in water reservoir
JPH07280792A (en) Water turbidity measuring method and turbidity measuring instrument
JP3021269B2 (en) Vehicle detection device
JPH02193219A (en) Turbidity display device
CN117387500A (en) Method and system for detecting thickness of each layer of asphalt concrete pavement core drilling sample
CN105675508A (en) Water environment monitoring system adopting image vision processing technology
CN105717050A (en) Working method of water environment monitoring system based on image visual processing technology
CN105486352A (en) Comprehensive detecting device and comprehensive detecting method for equivalent characteristic information of shells

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080928

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090928

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100928

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110928

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120928

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130928

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140928

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees