JP3700205B2 - Sludge levitation detector - Google Patents

Sludge levitation detector Download PDF

Info

Publication number
JP3700205B2
JP3700205B2 JP19321995A JP19321995A JP3700205B2 JP 3700205 B2 JP3700205 B2 JP 3700205B2 JP 19321995 A JP19321995 A JP 19321995A JP 19321995 A JP19321995 A JP 19321995A JP 3700205 B2 JP3700205 B2 JP 3700205B2
Authority
JP
Japan
Prior art keywords
sludge
interface
phase
imaging
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19321995A
Other languages
Japanese (ja)
Other versions
JPH0938688A (en
Inventor
信明 長尾
義尚 岸根
幹夫 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP19321995A priority Critical patent/JP3700205B2/en
Publication of JPH0938688A publication Critical patent/JPH0938688A/en
Application granted granted Critical
Publication of JP3700205B2 publication Critical patent/JP3700205B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、嫌気性反応槽内における汚泥の浮上を検出するための汚泥浮上検出装置に係り、特に、UASB方式(顆粒状の汚泥を用いた上向流式スラッジブランケット方式)の内部における汚泥の浮上検出に好適な装置に関する。
【0002】
詳しくは、運転状態によって変化する顆粒状汚泥の形状情報と個数情報およびそれの変化に基づいて汚泥相と上澄み液相との界面を検出し、この界面の変動から汚泥の浮上を判定する汚泥浮上検出装置に関する。
【0003】
【従来の技術】
UASB方式の嫌気性汚泥処理装置において、メタンガスはコロイド状の微細気泡や、その微細気泡が会合した粗大気泡となった状態で発生している。処理装置内の汚泥の存在状態は、粒径0.5〜3mmの顆粒状の汚泥が20000〜50000mg/lの濃度の濃縮されている汚泥相と、流入原水中の微細なSSや顆粒状の汚泥が破砕した粒径0.5mm以下の破砕汚泥が、SS(汚泥)濃度として100〜1000mg/lで存在している上澄み液相に大別できる。その汚泥相と上澄み液相の界面(汚泥界面)は一定しておらず、発生ガス量や流入原水量に応じて絶えず展開流動している。
【0004】
この汚泥の浮上性が異常に高まると、処理装置内から顆粒状の汚泥が処理水に流出する可能性があり、処理装置の汚泥保持量が少ないことにつながる。そのため、嫌気性汚泥処理装置の運転管理において、装置内の汚泥界面を連続的に把握することは重要である。
【0005】
一般に活性汚泥処理装置の沈澱槽や凝集沈澱処理装置の沈澱槽の汚泥界面を測定する手段として、超音波式汚泥界面計や光学式汚泥濃度計による方法が用いられている。超音波式は、音波を汚泥界面に対して発射し、汚泥界面で反射した音波が帰ってくるまでの時間から汚泥までの距離を計測する方法である。また光学式汚泥濃度計による方法は、光の透過量が汚泥層と上澄み液で異なることを用いて界面を判定する方法である。
【0006】
【発明が解決しようとする課題】
これらの方式を用いて嫌気性汚泥処理装置内の汚泥界面を測定した結果、両方式とも発生メタンガスの影響が多大であり、信頼できる測定がなされなかった。特に、超音波式汚泥界面計では、発生メタンガスの気泡のため、超音波の伝播が正常に行われない。また、光学式汚泥濃度計では、発生した微細なメタンガスと顆粒状汚泥との識別が不十分となった。
【0007】
汚泥の浮上を汚泥界面の動きから検出するためには、連続的に汚泥界面を監視することが有効となるが、これらの計測方法を連続的に実施することは難しく、また定期的に実施する場合でも実施に当たっては現場操作員の判断が必要となるほか、汚泥界面の動きを精度よくとらえようとすると一回の計測に費やす時間が長くなるなど、汚泥界面の動きから汚泥の浮上を検出する為の人的負担が大きくなるという問題があった。
【0008】
本発明は、上記のような問題点に鑑み、嫌気性反応槽内の汚泥界面を経時的に検出し、これに基づいて浮上を検出する汚泥浮上検出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明の汚泥浮上検出装置は、嫌気性反応槽内部の懸濁液中を撮影する撮像手段と、該撮像手段から得られた画像情報の中から、形状パターンをもとに顆粒状汚泥を識別する画像処理手段と、該画像処理手段が出力する顆粒状汚泥の形状情報と個数情報とをもとに汚泥相と上澄み液相との界面を検出する界面検出手段と、界面の経時的な変化率に基づいて汚泥の浮上を判定する判定部とを具備したものである。
【0010】
かかる本発明の汚泥浮上検出装置によって汚泥の浮上を検出するには、例えば、CCDカメラ等の撮像手段によって液中を撮像する。この撮像データを画像処理することにより、汚泥と気泡とがそれぞれ塊粒状の画像として認識される。このうち、気泡の画像は円または円に近似したものとなっており、しかも液中を比較的高速で移動するのに対し、汚泥の画像は非円形で不規則形状となっており、しかも液中の移動が緩慢であるので、塊粒状の画像のうちの汚泥画像と気泡画像とを識別できる。
【0011】
たとえば、所定の撮像範囲内におけるこの汚泥画像として識別された塊粒状物の個数をカウントする。このカウント数が所定個数を超えるときには、撮像地点は汚泥相内にあるものと判定される。
【0012】
撮像手段の深さを変更するか、あらかじめ複数の撮像手段を設置深さを異ならせて液中に配置しておくことにより、複数の深さにおける撮像データを得、各撮像地点が汚泥相内にあるか否かを判定する。汚泥相内にあると判定された地点のうちの最上位のものと、上澄み液相内にあると判定された地点のうちの最下位のものとの間に汚泥界面が存在すると判定される。
【0013】
この汚泥界面レベルを経時的に検出し、汚泥界面の変動率が所定値以上である場合には、汚泥が浮上しているものと判定する。
【0014】
【発明の実施の形態】
図1は実施例装置を備えた嫌気性生物処理槽1の断面図であり、内部に上澄み液相2と汚泥相3とが存在している。槽1の上部に設けられた昇降装置6に対し懸吊部材7を介してCCDカメラ4と投光器5とが吊設されている。この昇降装置6は、カメラ4及び投光器5の水中の上下方向位置(深さ)を変更できると共に、その深さを検知して深さ情報を出力可能としている。
【0015】
この昇降装置6としては、ラックアンドピニオン機構を備え、このピニオン回転用のモータの回転数から深さ情報を出力するようにしたもの;回転ナットに螺子棒を螺合し、ナットの回転により螺子棒を上下させるようにした螺進機構を備え、ナット回転用のモータの回転数から深さ情報を出力するようにしたもの;懸吊用のワイヤの巻取機を備え、この巻取機の回転数から深さ情報を出力するようにしたもの;など、各種のものを用いることができる。
【0016】
投光器5は、外光を遮断した槽1内を照射するために設置されているが、槽1に採光用の窓や照明が設けられている場合は省略できる。
【0017】
CCDカメラ4は、防水ケース(図示略)内に配置されている。このCCDカメラ4は、例えば256×256個の画素を備えており、撮像データを信号処理装置10の画像処理回路8に出力している。
【0018】
なお、図1(c)のように液中に気泡が存在すると、気泡を撮像した画素の明度は周囲の液を撮像した画素の明度よりも高い。また、液中に汚泥が存在すると、汚泥を撮像した画素の明度は周囲の液を撮像した画素の明度よりも明度が低い。
【0019】
従って、この画像処理回路において、例えば隣接する画素の明度差から粒状物とその周囲の液との境界が識別され、すべての画素についてこの処理を行なうことにより、粒状物(境界を結んで得られる線が閉じている場合の閉じた領域)と液(連続相)との識別が行なわれる。
【0020】
本発明では、図3に示すように、例えば径が0.5mm以上であって且つ形状が円又は円近似形状でない粒状物の撮像を汚泥の撮像として判定する。
【0021】
この径Dとしては、複数方向の径の平均を採るのが好適であり、例えば、最大系D1 (図1(c))と、該最大径方向と直交方向の径D2 との平均をとることが好ましい。
【0022】
この径が0.5mm以上であっても、形状が円又は円近似形状であるものは気泡として判定する。円又は円近似形状であるか否かの判定は、例えばその粒状物の像の外周囲の長さLが、径Dの3.14倍(円の外周囲長さ)に対し所定範囲内のもの即ち、L/3.14D≦N(予め定めた値)であれば円又は円近似形状であると判定することにより行なわれる。
【0023】
図2に示すように、ある深さにおける1つの撮像画面中におけるすべての汚泥を検出し、その個数をカウントする。このカウント数が所定個数以上であるときには、その撮像地点は汚泥相内にあるものと判定し、次に所定距離上方へCCDカメラ4を移動させ、その地点で液中を撮像し、汚泥個数をカウントする。この汚泥個数が所定個数以下となる地点まで撮像地点を少しずつ上昇させる。汚泥個数が所定個数よりも少数の地点にまで達したならば、その地点と、汚泥個数が所定個数以上の最上位の地点との間に汚泥界面が存在するものと界面判定回路9で判断し、その中間レベルを汚泥界面位置として信号(界面情報)を出力する。
【0024】
なお、ある深さにおける撮像データの解析の結果その地点が上澄み液相中であると判定されたときには、その地点から順次に例えば10cm毎に撮像地点を深くするように昇降装置6を作動させる。
【0025】
このようにして検出された汚泥界面レベルを経時的にチェックし、汚泥界面の変動率(例えば低下率)が所定値を超えるときには、汚泥の浮上性が高いと判定し、汚泥浮上検出信号を出力する。
【0026】
この汚泥浮上検出信号に基づき、警報を発したり、汚泥層を撹拌して大径汚泥を破砕して小径化し、ガスを放出させたり、流出汚泥を回収し、破砕してから反応槽に戻す等の処置をとる。
【0027】
上記説明では1個のCCDカメラ4を槽1内に上下動可能に設置し、その深さを変えることにより汚泥界面を検出するようにしているが、設置深さを異ならせた複数のCCDカメラを槽1内に定置しても良い。
【0028】
上記説明では、径が所定値以上の粒状物を、その外周長さにもとづいて汚泥と気泡とに判別しているが、同一地点(深さ)において撮像時間を異ならせて複数回撮像し、各撮像画像上における粒状物の位置変化の大きいものを気泡として判定するようにしても良い。即ち、気泡は液中を速やかに移動(特に上昇)するが、汚泥は殆ど停滞しているため、経時的な位置変化から汚泥と気泡とを判別できる。もちろん、この経時的な位置変化(形状パターンの経時的変化)と外周長さデータとの双方に基づいて気泡と汚泥との判別を行なうようにしても良い。
【0029】
【発明の効果】
以上の通り、本発明の汚泥浮上検出装置によると、液中の汚泥と気泡とを識別して高精度にて界面を検出し、この界面の変動に基づいて早期に汚泥の浮上を検出することが可能となる。また、この検出を無人にて連続的に行なうことができる。さらに、汚泥の浮上検出信号を受けて適切な汚泥処理(汚泥の破砕等)を実施することで、汚泥の処理水への流出を阻止することが可能となる。
【図面の簡単な説明】
【図1】(a)図は実施例装置を備えた生物処理槽の断面図、(b)図は実施例装置のブロック図、(c)図は液中の汚泥と気泡とを示す模式図である。
【図2】実施例装置の作動を示すフローチャートである。
【図3】汚泥と気泡との判別方法の説明図である。
【符号の説明】
1 生物処理槽
2 上澄み液相
3 汚泥相
4 CCDカメラ
5 投光器
6 昇降装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a sludge levitation detecting device for detecting sludge levitation in an anaerobic reaction tank, and more particularly, sludge inside a UASB method (upward flow sludge blanket method using granular sludge). The present invention relates to a device suitable for ascent detection.
[0002]
Specifically, the sludge levitation is determined by detecting the interface between the sludge phase and the supernatant liquid phase based on the shape information and number information of the granular sludge that changes according to the operating condition and the changes in the sludge, and determining the sludge levitation from the change in this interface. The present invention relates to a detection device.
[0003]
[Prior art]
In a UASB-type anaerobic sludge treatment apparatus, methane gas is generated in a state of colloidal fine bubbles or coarse bubbles in which the fine bubbles are associated. The state of the sludge in the treatment apparatus is that the granular sludge having a particle size of 0.5 to 3 mm is concentrated in a sludge phase with a concentration of 20000 to 50000 mg / l, and the fine SS and granular in the inflow raw water. Crushed sludge having a particle size of 0.5 mm or less crushed by sludge can be broadly classified into a supernatant liquid phase present in an SS (sludge) concentration of 100 to 1000 mg / l. The interface between the sludge phase and the supernatant liquid phase (sludge interface) is not constant, and constantly develops and flows according to the amount of generated gas and the amount of inflow raw water.
[0004]
If the floatability of this sludge increases abnormally, granular sludge may flow out from the treatment apparatus into the treated water, leading to a small amount of sludge retained in the treatment apparatus. Therefore, in the operation management of the anaerobic sludge treatment apparatus, it is important to continuously grasp the sludge interface in the apparatus.
[0005]
Generally, a method using an ultrasonic sludge interface meter or an optical sludge densitometer is used as a means for measuring a sludge interface in a sedimentation tank of an activated sludge treatment apparatus or a sedimentation tank of a coagulation sedimentation treatment apparatus. The ultrasonic method is a method in which sound waves are emitted to the sludge interface and the distance from the time until the sound wave reflected at the sludge interface returns to the sludge is measured. The method using an optical sludge densitometer is a method for determining the interface using the fact that the amount of transmitted light differs between the sludge layer and the supernatant liquid.
[0006]
[Problems to be solved by the invention]
As a result of measuring the sludge interface in the anaerobic sludge treatment apparatus using these methods, the influence of the generated methane gas was great in both methods, and reliable measurements were not made. In particular, an ultrasonic sludge interface meter does not propagate ultrasonic waves normally due to the bubbles of generated methane gas. In addition, the optical sludge densitometer is insufficient to distinguish between the generated fine methane gas and granular sludge.
[0007]
Although it is effective to continuously monitor the sludge interface in order to detect sludge levitation from the movement of the sludge interface, it is difficult to carry out these measurement methods continuously and regularly. Even in such cases, it will be necessary to judge the on-site operator, and if the sludge interface movement is accurately captured, the time spent for one measurement will be increased. There was a problem that the human burden for the work would increase.
[0008]
In view of the above problems, an object of the present invention is to provide a sludge levitation detection device that detects a sludge interface in an anaerobic reaction tank over time and detects levitation based on the detected sludge interface.
[0009]
[Means for Solving the Problems]
The sludge levitation detection apparatus of the present invention identifies granular sludge based on a shape pattern from an imaging means for photographing a suspension inside an anaerobic reaction tank and image information obtained from the imaging means. Image processing means, interface detection means for detecting the interface between the sludge phase and the supernatant liquid phase based on the shape information and number information of the granular sludge output from the image processing means, and the change of the interface over time And a determination unit that determines sludge levitation based on the rate.
[0010]
In order to detect sludge levitation by the sludge levitation detecting device of the present invention, for example, an image of the liquid is imaged by an imaging means such as a CCD camera. By performing image processing on the imaged data, sludge and bubbles are recognized as massive images. Among these, the bubble image is a circle or a circle that approximates the circle and moves relatively fast in the liquid, whereas the sludge image is non-circular and irregularly shaped. Since the movement in the inside is slow, it is possible to distinguish the sludge image and the bubble image from the lump-like image.
[0011]
For example, the number of massive particles identified as this sludge image within a predetermined imaging range is counted. When this count number exceeds the predetermined number, it is determined that the imaging point is in the sludge phase.
[0012]
By changing the depth of the imaging means or arranging multiple imaging means in the liquid with different installation depths in advance, imaging data at multiple depths is obtained, and each imaging point is within the sludge phase It is determined whether or not. It is determined that a sludge interface exists between the highest point among the points determined to be in the sludge phase and the lowest point among the points determined to be in the supernatant liquid phase.
[0013]
This sludge interface level is detected over time, and when the sludge interface fluctuation rate is equal to or greater than a predetermined value, it is determined that the sludge is floating.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional view of an anaerobic biological treatment tank 1 equipped with an embodiment apparatus, in which a supernatant liquid phase 2 and a sludge phase 3 exist. A CCD camera 4 and a projector 5 are suspended from a lifting device 6 provided in the upper part of the tank 1 via a suspension member 7. The lifting device 6 can change the vertical position (depth) of the camera 4 and the projector 5 in water, and can detect the depth and output depth information.
[0015]
The lifting device 6 includes a rack and pinion mechanism and outputs depth information from the rotational speed of the pinion rotating motor; a screw rod is screwed onto the rotating nut, and the screw is rotated by rotating the nut. A screw mechanism that moves the rod up and down, and outputs depth information from the number of rotations of the motor for rotating the nut; a wire winder for suspension; Various devices such as one that outputs depth information from the number of rotations can be used.
[0016]
The projector 5 is installed to irradiate the inside of the tank 1 where external light is blocked, but can be omitted if the tank 1 is provided with a lighting window or illumination.
[0017]
The CCD camera 4 is disposed in a waterproof case (not shown). The CCD camera 4 includes, for example, 256 × 256 pixels, and outputs imaging data to the image processing circuit 8 of the signal processing device 10.
[0018]
Note that when bubbles exist in the liquid as shown in FIG. 1C, the brightness of the pixels that image the bubbles is higher than the brightness of the pixels that image the surrounding liquid. In addition, when sludge is present in the liquid, the brightness of the pixel that images the sludge is lower than the brightness of the pixel that images the surrounding liquid.
[0019]
Therefore, in this image processing circuit, for example, the boundary between the granular material and the surrounding liquid is identified from the brightness difference between adjacent pixels, and the granular material (obtained by connecting the boundary is obtained by performing this processing for all the pixels. A distinction is made between the closed area (when the line is closed) and the liquid (continuous phase).
[0020]
In the present invention, as shown in FIG. 3, for example, imaging of a granular material having a diameter of 0.5 mm or more and a shape that is not a circle or a circle approximate shape is determined as sludge imaging.
[0021]
As the diameter D, it is preferable to take the average of the diameters in a plurality of directions. For example, the average of the maximum system D 1 (FIG. 1 (c)) and the diameter D 2 in the orthogonal direction to the maximum diameter direction. It is preferable to take.
[0022]
Even if this diameter is 0.5 mm or more, a shape having a circular shape or a circular approximate shape is determined as a bubble. Whether or not the shape is a circle or a circle approximate shape is determined by, for example, the outer peripheral length L of the image of the granular material being within a predetermined range with respect to 3.14 times the diameter D (the outer peripheral length of the circle) In other words, if L / 3.14D ≦ N (predetermined value), the determination is made as a circle or a circle approximate shape.
[0023]
As shown in FIG. 2, all the sludge in one imaging screen in a certain depth is detected, and the number is counted. When this count number is equal to or greater than the predetermined number, it is determined that the imaging point is within the sludge phase, and then the CCD camera 4 is moved upward by a predetermined distance, and the liquid is imaged at that point. Count. The imaging point is gradually raised to a point where the number of sludges becomes a predetermined number or less. If the number of sludges reaches a point less than the predetermined number, the interface judgment circuit 9 determines that a sludge interface exists between that point and the highest point where the number of sludges is a predetermined number or more. A signal (interface information) is output with the intermediate level as the sludge interface position.
[0024]
As a result of analysis of imaging data at a certain depth, when it is determined that the point is in the supernatant liquid phase, the elevating device 6 is operated so as to deepen the imaging point sequentially, for example, every 10 cm from that point.
[0025]
The sludge interface level detected in this way is checked over time, and when the sludge interface fluctuation rate (for example, the rate of decrease) exceeds a predetermined value, it is determined that the sludge floatability is high and a sludge rise detection signal is output. To do.
[0026]
Based on this sludge levitation detection signal, an alarm is issued, the sludge layer is agitated to crush large-diameter sludge to reduce its diameter, gas is released, spilled sludge is recovered, crushed and returned to the reaction tank, etc. Take action.
[0027]
In the above description, one CCD camera 4 is installed in the tank 1 so as to be movable up and down, and the sludge interface is detected by changing the depth. However, a plurality of CCD cameras having different installation depths are used. May be placed in the tank 1.
[0028]
In the above description, the granular material having a diameter of a predetermined value or more is discriminated as sludge and air bubbles based on the outer peripheral length, but is imaged multiple times with different imaging times at the same point (depth), You may make it determine a thing with a large position change of the granular material on each captured image as a bubble. That is, the bubbles move (especially rise) quickly in the liquid, but the sludge is almost stagnant, so that the sludge and the bubbles can be discriminated from the positional change with time. Of course, air bubbles and sludge may be discriminated based on both the position change with time (change with time of the shape pattern) and the outer peripheral length data.
[0029]
【The invention's effect】
As described above, according to the sludge levitation detection device of the present invention, it is possible to detect sludge and bubbles in the liquid, detect the interface with high accuracy, and detect sludge levitation at an early stage based on the fluctuation of the interface. Is possible. Moreover, this detection can be continuously performed unattended. Furthermore, it is possible to prevent the sludge from flowing out into the treated water by performing an appropriate sludge treatment (such as sludge crushing) in response to the sludge rise detection signal.
[Brief description of the drawings]
1A is a cross-sectional view of a biological treatment tank equipped with an embodiment apparatus, FIG. 1B is a block diagram of the embodiment apparatus, and FIG. 1C is a schematic diagram showing sludge and bubbles in the liquid. It is.
FIG. 2 is a flowchart showing an operation of the embodiment apparatus.
FIG. 3 is an explanatory diagram of a method for discriminating between sludge and bubbles.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Biological processing tank 2 Supernatant liquid phase 3 Sludge phase 4 CCD camera 5 Floodlight 6 Lifting device

Claims (1)

嫌気性反応槽内部の懸濁液中を撮影する撮像手段と、該撮像手段から得られた画像情報の中から、形状パターンをもとに顆粒状汚泥を識別する画像処理手段と、該画像処理手段が出力する顆粒状汚泥の形状情報と個数情報とをもとに汚泥相と上澄み液相との界面を検出する界面検出手段と、界面の経時的な変化率に基づいて汚泥の浮上を判定する判定部とを具備してなる汚泥浮上検出装置。Imaging means for photographing the suspension in the anaerobic reaction tank, image processing means for identifying granular sludge based on a shape pattern from image information obtained from the imaging means, and the image processing Based on the shape information and number information of granular sludge output by the means, the interface detection means detects the interface between the sludge phase and the supernatant liquid phase, and the sludge floating is judged based on the change rate of the interface over time A sludge levitation detection device comprising a determination unit for performing the determination.
JP19321995A 1995-07-28 1995-07-28 Sludge levitation detector Expired - Fee Related JP3700205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19321995A JP3700205B2 (en) 1995-07-28 1995-07-28 Sludge levitation detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19321995A JP3700205B2 (en) 1995-07-28 1995-07-28 Sludge levitation detector

Publications (2)

Publication Number Publication Date
JPH0938688A JPH0938688A (en) 1997-02-10
JP3700205B2 true JP3700205B2 (en) 2005-09-28

Family

ID=16304301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19321995A Expired - Fee Related JP3700205B2 (en) 1995-07-28 1995-07-28 Sludge levitation detector

Country Status (1)

Country Link
JP (1) JP3700205B2 (en)

Also Published As

Publication number Publication date
JPH0938688A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
CN103163075B (en) A kind of water regime monitoring system
JP3131661B2 (en) Water pollution monitoring apparatus and method
CN107036985A (en) A kind of transparency detection method, system and network
CN104749117A (en) Water environment monitoring device adopting image vision processing technology
JP3700205B2 (en) Sludge levitation detector
JP3700204B2 (en) Sludge levitation prediction device
JP3557726B2 (en) Sludge interface measuring device
Benson et al. InSiPID: A new low-cost instrument for in situ particle size measurements in estuarine and coastal waters
US4943370A (en) Method and apparatus for monitoring material in a liquid
JPS63133061A (en) Fish living condition monitoring instrument
JP2008281423A (en) System and method for detecting drifting material
JP3235501B2 (en) Sludge interface measuring device
JP3691502B2 (en) Water quality monitoring device and fish image recognition method used therefor
JPH0579999A (en) Inspecting device for precipitated foreign object in bottle
JPS61138161A (en) Monitoring method of flock in water purifying plant
JPH05172728A (en) Hydrosphere observation, surveillance and purification system
KR101860088B1 (en) An apparatus for depth-measuring and monitoring an interface and a depth-measuring and monitoring method using the same
KR102349842B1 (en) CCTV System for Backwash Timing forecast Observation of Activated Carbon Absorption Condition
JP2003075429A (en) Scum detection method and apparatus
JP2539179B2 (en) Device for monitoring substances suspended in water
Nobbs et al. The design, construction and commissioning of a low-cost optical particle size analyser specifically for measurement of settling velocities and size of flocs
JP4431868B2 (en) Condition monitoring device
JP3901300B2 (en) Sludge image processing device for measuring sludge particle size
JPH04148849A (en) Aggregated floc monitoring apparatus
JP3446804B2 (en) Sludge interface measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080722

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees