JP3557726B2 - Sludge interface measuring device - Google Patents

Sludge interface measuring device Download PDF

Info

Publication number
JP3557726B2
JP3557726B2 JP17214695A JP17214695A JP3557726B2 JP 3557726 B2 JP3557726 B2 JP 3557726B2 JP 17214695 A JP17214695 A JP 17214695A JP 17214695 A JP17214695 A JP 17214695A JP 3557726 B2 JP3557726 B2 JP 3557726B2
Authority
JP
Japan
Prior art keywords
sludge
interface
image
phase
sludge interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17214695A
Other languages
Japanese (ja)
Other versions
JPH0921678A (en
Inventor
信明 長尾
義尚 岸根
幹夫 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP17214695A priority Critical patent/JP3557726B2/en
Publication of JPH0921678A publication Critical patent/JPH0921678A/en
Application granted granted Critical
Publication of JP3557726B2 publication Critical patent/JP3557726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02W10/12

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚泥相と上澄み液相との界面を検出するための汚泥界面計測装置に係り、特に、嫌気性汚泥槽、特にUASB方式(顆粒状の汚泥を用いた上向流式スラッジブランケット方式)の内部における汚泥界面の計測に好適な装置に関する。
【0002】
詳しくは、運転状態によって変化する顆粒状汚泥の形状情報と個数情報およびそれの変化に基づいて汚泥界面を判定する汚泥界面計測装置に関する。
【0003】
【従来の技術】
UASB方式の嫌気性汚泥処理装置において、メタンガスはコロイド状の微細気泡や、その微細気泡が会合した粗大気泡となった状態で発生している。処理装置内の汚泥の存在状態は、粒径0.5〜3mmの顆粒状の汚泥が20000〜50000mg/lの濃度の濃縮されている汚泥相と、流入原水中の微細なSSや顆粒状の汚泥が破砕した粒径0.5mm以下の破砕汚泥が、SS(汚泥)濃度として100〜1000mg/lで存在している上澄み液相に大別できる。その汚泥相と上澄み液相の界面(汚泥界面)は一定しておらず、発生ガス量や流入原水量に応じて絶えず展開流動している。
【0004】
この汚泥界面が異常に高まると、処理装置内から顆粒状の汚泥が処理水に流出する可能性があり、また、汚泥界面が低いことは、処理装置の汚泥保持量が少ないことにつながる。そのため、嫌気性汚泥処理装置の運転管理において、装置内の汚泥界面を連続的に把握することは重要である。
【0005】
一般に活性汚泥処理装置の沈澱槽や凝集沈澱処理装置の沈澱槽の汚泥界面を測定する手段として、超音波式汚泥界面計や光学式汚泥濃度計による方法が用いられている。超音波式は、音波を汚泥界面に対して発射し、汚泥界面で反射した音波が帰ってくるまでの時間から汚泥までの距離を計測する方法である。また光学式汚泥濃度計による方法は、光の透過量が汚泥層と上澄み液で異なることを用いて界面を判定する方法である。
【0006】
【発明が解決しようとする課題】
これらの方式を用いて嫌気性汚泥処理装置内の汚泥界面を測定した結果、両方式とも発生メタンガスの影響が多大であり、信頼できる測定がなされなかった。特に、超音波式汚泥界面計では、発生メタンガスの気泡のため、超音波の伝播が正常に行われない。また、光学式汚泥濃度計では、発生した微細なメタンガスと顆粒状汚泥との識別が不十分となった。
【0007】
本発明は、上記のような問題点に鑑み、汚泥槽内部の汚泥界面計測において、発生する気泡の影響を受けずに安定して汚泥界面を計測可能な汚泥界面計測装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の汚泥界面計測装置は、懸濁液中を撮影する撮像手段と、該撮像手段から得られた画像情報の中から、形状パターンをもとに顆粒状汚泥を識別する画像処理手段と、該画像処理手段が出力する顆粒状汚泥の形状情報と個数情報とをもとに汚泥相と上澄み液相との界面を判定する判定部とを具備したものである。
【0009】
かかる本発明の汚泥界面計測装置によって汚泥界面を計測するには、例えば、CCDカメラ等の撮像手段によって液中を撮像する。この撮像データを画像処理することにより、汚泥と気泡とがそれぞれ塊粒状の画像として認識される。このうち、気泡の画像は円または円に近似したものとなっており、しかも液中を比較的高速で移動するのに対し、汚泥の画像は非円形で不規則形状となっており、しかも液中の移動が緩慢であるので、塊粒状の画像のうちの汚泥画像と気泡画像とを識別できる。
【0010】
この汚泥画像として識別された塊粒状物の個数をカウントする。このカウント数が所定個数を超えるときには、撮像地点は汚泥相内にあるものと判定される。
【0011】
撮像手段の深さを変更するか、あらかじめ複数の撮像手段を設置深さを異ならせて液中に配置しておくことにより、複数の深さにおける撮像データを得、各撮像地点が汚泥相内にあるか否かを判定する。汚泥相内にあると判定された地点のうちの最上位のものと、上澄み液相内にあると判定された地点のうちの最下位のものとの間に汚泥界面が存在すると判定される。
【0012】
【発明の実施の型態】
図1は実施例装置を備えた生物処理槽1の断面図であり、内部に上澄み液相2と汚泥相3とが存在している。槽1の上部に設けられた昇降装置6に対し懸吊部材7を介してCCDカメラ4と投光器5とが吊設されている。この昇降装置6は、カメラ4及び投光器5の水中の上下方向位置(深さ)を変更できると共に、その深さを検知して深さ情報を出力可能としている。
【0013】
この昇降装置6としては、ラックアンドピニオン機構を備え、このピニオン回転用のモータの回転数から深さ情報を出力するようにしたもの;回転ナットに螺子棒を螺合し、ナットの回転により螺子棒を上下させるようにした螺進機構を備え、ナット回転用のモータの回転数から深さ情報を出力するようにしたもの;懸吊用のワイヤの巻取機を備え、この巻取機の回転数から深さ情報を出力するようにしたもの;など、各種のものを用いることができる。
【0014】
投光器5は、外光を遮断した槽1内を照射するために設置されているが、槽1に採光用の窓や照明が設けられている場合は省略できる。
【0015】
CCDカメラ4は、防水ケース(図示略)内に配置されている。このCCDカメラ4は、例えば256×256個の画素を備えており、撮像データを信号処理装置10の画像処理回路8に出力している。
【0016】
なお、図1(c)のように液中に気泡が存在すると、気泡を撮像した画素の明度は周囲の液を撮像した画素の明度よりも高い。また、液中に汚泥が存在すると、汚泥を撮像した画素の明度は周囲の液を撮像した画素の明度よりも明度が低い。
【0017】
従って、この画像処理回路において、例えば隣接する画素の明度差から粒状物とその周囲の液との境界が識別され、すべての画素についてこの処理を行なうことにより、粒状物(境界を結んで得られる線が閉じている場合の閉じた領域)と液(連続相)との識別が行なわれる。
【0018】
本発明では、図3に示すように、例えば径が0.5mm以上であって且つ形状が円又は円近似形状でない粒状物の撮像を汚泥の撮像として判定する。
【0019】
この径Dとしては、複数方向の径の平均を採るのが好適であり、例えば、最大系D (図1(c))と、該最大径方向と直交方向の径D との平均をとることが好ましい。
【0020】
この径が0.5mm以上であっても、形状が円又は円近似形状であるものは気泡として判定する。円又は円近似形状であるか否かの判定は、例えばその粒状物の像の外周囲の長さLが、径Dの3.14倍(円の外周囲長さ)に対し所定範囲内のもの即ち、L/3.14D≦N(予め定めた値)であれば円又は円近似形状であると判定することにより行なわれる。
【0021】
図2に示すように、ある深さにおける1つの撮像画面中におけるすべての汚泥を検出し、その個数をカウントする。このカウント数が所定個数以上であるときには、その撮像地点は汚泥相内にあるものと判定し、次に所定距離上方へCCDカメラ4を移動させ、その地点で液中を撮像し、汚泥個数をカウントする。この汚泥個数が所定個数以下となる地点まで撮像地点を少しずつ上昇させる。汚泥個数が所定個数を越えた地点にまで達したならば、その地点と、汚泥個数が所定個数以内の最上位の地点との間に汚泥界面が存在するものと界面判定回路9で判断し、その中間レベルを汚泥界面位置として信号(界面情報)を出力する。
【0022】
なお、ある深さにおける撮像データの解析の結果その地点が上澄み液相中であると判定されたときには、その地点から順次に撮像地点を深くするように昇降装置6を作動させる。
【0023】
上記説明では1個のCCDカメラ4を槽1内に上下動可能に設置し、その深さを変えることにより汚泥界面を検出するようにしているが、設置深さを異ならせた複数のCCDカメラを槽1内に定置しても良い。
【0024】
上記説明では、径が所定値以上の粒状物を、その外周長さにもとづいて汚泥と気泡とに判別しているが、同一地点(深さ)において撮像時間を異ならせて複数回撮像し、各撮像画像上における粒状物の位置変化の大きいものを気泡として判定するようにしても良い。即ち、気泡は液中を速やかに移動(特に上昇)するが、汚泥は殆ど停滞しているため、経時的な位置変化から汚泥と気泡とを判別できる。もちろん、この経時的な位置変化(形状パターンの経時的変化)と外周長さデータとの双方に基づいて気泡と汚泥との判別を行なうようにしても良い。
【0025】
【発明の効果】
以上の通り、本発明の汚泥界面計測装置によると、液中の汚泥と気泡とを識別して高精度にて汚泥界面を計測することが可能となる。
【図面の簡単な説明】
【図1】(a)図は実施例装置を備えた生物処理槽の断面図、(b)図は実施例装置のブロック図、(c)図は液中の汚泥と気泡とを示す模式図である。
【図2】実施例装置の作動を示すフローチャートである。
【図3】汚泥と気泡との判別方法の説明図である。
【符号の説明】
1 生物処理槽
2 上澄み液相
3 汚泥相
4 CCDカメラ
5 投光器
6 昇降装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a sludge interface measuring device for detecting an interface between a sludge phase and a supernatant liquid phase, and more particularly to an anaerobic sludge tank, particularly a UASB system (an upward-flow sludge blanket system using granular sludge). The present invention relates to an apparatus suitable for measuring the sludge interface inside the device.
[0002]
More specifically, the present invention relates to a sludge interface measuring device that determines a sludge interface based on shape information and number information of granular sludge that changes according to an operation state, and changes thereof.
[0003]
[Prior art]
In the UASB anaerobic sludge treatment apparatus, methane gas is generated in the form of colloidal fine bubbles and coarse bubbles in which the fine bubbles are associated. The presence state of the sludge in the treatment apparatus is as follows: a sludge phase in which granular sludge having a particle size of 0.5 to 3 mm is concentrated at a concentration of 20000 to 50,000 mg / l; The crushed sludge having a particle size of 0.5 mm or less obtained by crushing the sludge can be roughly classified into a supernatant liquid phase existing at an SS (sludge) concentration of 100 to 1000 mg / l. The interface between the sludge phase and the supernatant liquid phase (sludge interface) is not constant, and is constantly developing and flowing according to the amount of generated gas and the amount of inflowing raw water.
[0004]
If the sludge interface is abnormally high, granular sludge may flow out into the treatment water from the inside of the treatment apparatus, and a low sludge interface leads to a small amount of sludge retained in the treatment apparatus. Therefore, in the operation management of the anaerobic sludge treatment apparatus, it is important to continuously grasp the sludge interface in the apparatus.
[0005]
Generally, as a means for measuring a sludge interface in a settling tank of an activated sludge treatment apparatus or a settling tank of a coagulation settling treatment apparatus, a method using an ultrasonic sludge interface meter or an optical sludge concentration meter is used. The ultrasonic method is a method of emitting a sound wave to a sludge interface and measuring the distance from the time until the sound wave reflected at the sludge interface returns to the sludge. The method using an optical sludge densitometer is a method of determining the interface by using the fact that the amount of transmitted light differs between the sludge layer and the supernatant.
[0006]
[Problems to be solved by the invention]
As a result of measuring the sludge interface in the anaerobic sludge treatment apparatus using these methods, both methods were greatly affected by the generated methane gas, and reliable measurement was not performed. In particular, in the ultrasonic sludge interface meter, ultrasonic waves are not propagated normally due to bubbles of generated methane gas. In addition, the optical sludge densitometer was inadequate for distinguishing between fine methane gas generated and granular sludge.
[0007]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a sludge interface measurement device capable of stably measuring a sludge interface without being affected by generated bubbles in measuring a sludge interface inside a sludge tank. And
[0008]
[Means for Solving the Problems]
The sludge interface measurement device of the present invention is an imaging unit that captures an image of the suspension, and from among image information obtained from the imaging unit, an image processing unit that identifies granular sludge based on a shape pattern, A determination unit for determining an interface between the sludge phase and the supernatant liquid phase based on the shape information and the number information of the granular sludge output by the image processing means.
[0009]
In order to measure the sludge interface by the sludge interface measuring device of the present invention, for example, an image of the liquid is taken by an imaging means such as a CCD camera. By performing image processing on the image data, sludge and air bubbles are each recognized as a lump-shaped image. Among them, the image of the bubble is a circle or a shape approximating a circle, and moves at a relatively high speed in the liquid, whereas the image of the sludge is non-circular and irregular in shape, and moreover, Since the inside moves slowly, the sludge image and the bubble image in the lump-like image can be distinguished.
[0010]
The number of lumps and granules identified as the sludge image is counted. When the counted number exceeds a predetermined number, it is determined that the imaging point is in the sludge phase.
[0011]
By changing the depth of the imaging means or disposing a plurality of imaging means in advance at different installation depths in the liquid, imaging data at a plurality of depths is obtained, and each imaging point is located within the sludge phase. Is determined. It is determined that a sludge interface exists between the highest one of the points determined to be in the sludge phase and the lowest one of the points determined to be in the supernatant liquid phase.
[0012]
DESCRIPTION OF THE PREFERRED EMBODIMENTS
FIG. 1 is a cross-sectional view of a biological treatment tank 1 provided with an apparatus according to an embodiment, in which a supernatant liquid phase 2 and a sludge phase 3 are present. A CCD camera 4 and a projector 5 are suspended from a lifting device 6 provided above the tank 1 via a suspension member 7. The elevating device 6 can change the vertical position (depth) of the camera 4 and the projector 5 in water in the vertical direction, and can detect the depth to output depth information.
[0013]
The lifting device 6 is provided with a rack and pinion mechanism, and outputs depth information from the rotation speed of the motor for rotating the pinion; a screw nut is screwed into a rotation nut, and the screw is rotated by rotation of the nut. A screw mechanism for raising and lowering a rod, and outputting depth information from a rotation speed of a motor for rotating a nut; a winding machine for a wire for suspension; Various types such as output of depth information from the number of rotations can be used.
[0014]
The floodlight 5 is installed to irradiate the inside of the tank 1 that blocks external light, but can be omitted when the tank 1 is provided with a lighting window or lighting.
[0015]
The CCD camera 4 is arranged in a waterproof case (not shown). The CCD camera 4 has, for example, 256 × 256 pixels, and outputs image data to an image processing circuit 8 of a signal processing device 10.
[0016]
Note that if bubbles exist in the liquid as shown in FIG. 1 (c), the brightness of the pixel that has captured the bubble is higher than the brightness of the pixels that have captured the surrounding liquid. Further, when sludge is present in the liquid, the brightness of the pixel that has captured the sludge is lower than the brightness of the pixels that have captured the surrounding liquid.
[0017]
Therefore, in this image processing circuit, for example, the boundary between the granular material and the surrounding liquid is identified based on the brightness difference between adjacent pixels, and this process is performed on all the pixels, whereby the granular material (obtained by connecting the boundary) is obtained. A distinction is made between a liquid (continuous phase) and a liquid (closed area when the line is closed).
[0018]
In the present invention, as shown in FIG. 3, for example, imaging of a granular material having a diameter of 0.5 mm or more and not having a circular or circular approximate shape is determined as imaging of sludge.
[0019]
As this diameter D, it is preferable to take the average of the diameters in a plurality of directions. For example, the average of the maximum system D 1 (FIG. 1C) and the diameter D 2 in the direction orthogonal to the maximum diameter direction is obtained. It is preferred to take.
[0020]
Even if the diameter is 0.5 mm or more, a shape having a circular shape or a circular approximate shape is determined as a bubble. The determination as to whether or not the shape is a circle or a circle approximate shape is made, for example, such that the outer peripheral length L of the image of the granular object is within a predetermined range with respect to 3.14 times the diameter D (the outer peripheral length of the circle). In other words, if L / 3.14D ≦ N (predetermined value), it is determined by determining that the shape is a circle or a circle approximate shape.
[0021]
As shown in FIG. 2, all sludges in one imaging screen at a certain depth are detected, and the number thereof is counted. When the counted number is equal to or more than a predetermined number, it is determined that the imaging point is in the sludge phase, and then the CCD camera 4 is moved upward by a predetermined distance to image the liquid at that point, and the sludge number is determined. Count. The imaging point is gradually raised to a point where the number of sludges is equal to or less than a predetermined number. If the number of sludges reaches a point exceeding the predetermined number, the interface determination circuit 9 determines that a sludge interface exists between the point and the highest point within the predetermined number of sludges, A signal (interface information) is output using the intermediate level as the sludge interface position.
[0022]
When it is determined that the point is in the supernatant liquid phase as a result of the analysis of the imaging data at a certain depth, the elevating device 6 is operated so that the imaging point is sequentially deepened from that point.
[0023]
In the above description, one CCD camera 4 is installed in the tank 1 so as to be able to move up and down, and the sludge interface is detected by changing the depth. However, a plurality of CCD cameras with different installation depths are provided. May be placed in the tank 1.
[0024]
In the above description, the granular material having a diameter equal to or larger than a predetermined value is determined to be sludge and air bubbles based on the outer peripheral length, but is imaged a plurality of times at the same point (depth) with different imaging times, Those having a large change in the position of the granular material on each captured image may be determined as bubbles. That is, the bubbles move quickly (especially, rise) in the liquid, but the sludge is almost stagnant, so that the sludge and the bubbles can be distinguished from the change in position over time. Needless to say, it is also possible to discriminate between air bubbles and sludge based on both the temporal change of the position (the temporal change of the shape pattern) and the outer peripheral length data.
[0025]
【The invention's effect】
As described above, according to the sludge interface measuring device of the present invention, it is possible to identify sludge and bubbles in the liquid and measure the sludge interface with high accuracy.
[Brief description of the drawings]
1A is a cross-sectional view of a biological treatment tank provided with an embodiment apparatus, FIG. 1B is a block diagram of the embodiment apparatus, and FIG. 1C is a schematic view showing sludge and bubbles in a liquid. It is.
FIG. 2 is a flowchart showing the operation of the embodiment device.
FIG. 3 is an explanatory diagram of a method for distinguishing between sludge and air bubbles.
[Explanation of symbols]
Reference Signs List 1 biological treatment tank 2 supernatant liquid phase 3 sludge phase 4 CCD camera 5 floodlight 6 lifting device

Claims (1)

懸濁液中を撮影する撮像手段と、該撮像手段から得られた画像情報の中から、形状パターンをもとに顆粒状汚泥を識別する画像処理手段と、該画像処理手段が出力する顆粒状汚泥の形状情報と個数情報とをもとに汚泥相と上澄み液相との界面を判定する判定部とを具備してなる汚泥界面計測装置。Imaging means for photographing the suspension; image processing means for identifying granular sludge based on a shape pattern from image information obtained from the imaging means; A sludge interface measuring device comprising: a determination unit for determining an interface between a sludge phase and a supernatant liquid phase based on sludge shape information and number information.
JP17214695A 1995-07-07 1995-07-07 Sludge interface measuring device Expired - Fee Related JP3557726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17214695A JP3557726B2 (en) 1995-07-07 1995-07-07 Sludge interface measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17214695A JP3557726B2 (en) 1995-07-07 1995-07-07 Sludge interface measuring device

Publications (2)

Publication Number Publication Date
JPH0921678A JPH0921678A (en) 1997-01-21
JP3557726B2 true JP3557726B2 (en) 2004-08-25

Family

ID=15936423

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17214695A Expired - Fee Related JP3557726B2 (en) 1995-07-07 1995-07-07 Sludge interface measuring device

Country Status (1)

Country Link
JP (1) JP3557726B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7344018B2 (en) * 2019-06-19 2023-09-13 オルガノ株式会社 Water treatment method and water treatment equipment
JP7344017B2 (en) * 2019-06-19 2023-09-13 オルガノ株式会社 Water treatment method and water treatment equipment

Also Published As

Publication number Publication date
JPH0921678A (en) 1997-01-21

Similar Documents

Publication Publication Date Title
US20160223452A1 (en) Monitoring Apparatus and System
JP3557726B2 (en) Sludge interface measuring device
CN112964606A (en) Machine vision suspension turbidity detection device and detection method
JP3700204B2 (en) Sludge levitation prediction device
JPS63133061A (en) Fish living condition monitoring instrument
JP3700205B2 (en) Sludge levitation detector
US4943370A (en) Method and apparatus for monitoring material in a liquid
JP3235501B2 (en) Sludge interface measuring device
JP2024026106A (en) Information processor, water treatment system, water treatment method and program
JPH0617903B2 (en) Flock monitoring method
KR102349842B1 (en) CCTV System for Backwash Timing forecast Observation of Activated Carbon Absorption Condition
JPH05172728A (en) Hydrosphere observation, surveillance and purification system
JP2020098323A (en) Floating material imaging device
JPH0517495B2 (en)
JP2005150840A (en) Water quality monitoring system and fish image recognition method used for same
Nobbs et al. The design, construction and commissioning of a low-cost optical particle size analyser specifically for measurement of settling velocities and size of flocs
WO2022049941A1 (en) Downward flow device, water quality inspection system, and water quality inspection method
JP2539179B2 (en) Device for monitoring substances suspended in water
JPH04326993A (en) Apparatus and method for monitoring bacteria
JPH0579999A (en) Inspecting device for precipitated foreign object in bottle
JP3901300B2 (en) Sludge image processing device for measuring sludge particle size
JP3852505B2 (en) Sludge retention measuring device
JP3224623B2 (en) Fish eye inspection equipment
JPH06277687A (en) Mlss gauge
JPS6279330A (en) Apparatus for recognizing floc image in water purifying plant

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040510

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120528

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees