WO2024024444A1 - Monitoring system, learning device, monitoring method, learning method, and program - Google Patents

Monitoring system, learning device, monitoring method, learning method, and program Download PDF

Info

Publication number
WO2024024444A1
WO2024024444A1 PCT/JP2023/025136 JP2023025136W WO2024024444A1 WO 2024024444 A1 WO2024024444 A1 WO 2024024444A1 JP 2023025136 W JP2023025136 W JP 2023025136W WO 2024024444 A1 WO2024024444 A1 WO 2024024444A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
liquid separation
supernatant water
separation tank
image
Prior art date
Application number
PCT/JP2023/025136
Other languages
French (fr)
Japanese (ja)
Inventor
要 原田
信一 栗原
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Publication of WO2024024444A1 publication Critical patent/WO2024024444A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a monitoring system, a learning device, a monitoring method, a learning method, and a program.
  • This application claims priority to Japanese Patent Application No. 2022-120673 filed in Japan on July 28, 2022, the contents of which are incorporated herein.
  • Aerobic biological treatment which has an aeration tank and a settling tank in wastewater treatment
  • Aerobic biological treatment which has an aeration tank and a settling tank in wastewater treatment
  • the equipment is almost complete in terms of engineering.
  • the wastewater changes, and the inflow conditions often differ from when the equipment was designed based on the assumed water quality and volume.
  • due to the shift to multi-product manufacturing there are more and more fluctuations, and the number of cases in which they become larger is increasing, making plant maintenance and management more complex and difficult.
  • the position of the interface formed from suspended turbidity in the liquid is determined based on the results of emitting ultrasonic pulses perpendicularly from the liquid surface and receiving the reflected pulses.
  • a technique for measuring is known (for example, see Patent Document 1).
  • a technique for monitoring the state inside a tank such as a solid-liquid separation tank is known (for example, see Patent Document 2).
  • This technology consists of an A/D converter that converts the received signal into a digital signal by a sensor that sends out ultrasound or light and receives the ultrasound or light that propagated through the water containing the suspended solid layer, and an A/D converter that converts the received signal into a digital signal.
  • a calculation unit that calculates the position of the interface in the tank based on the information
  • a graphic conversion unit that converts the digital signal into pixel data
  • a memory that stores the pixel data and the interface position data, and the pixel data stored in the memory.
  • a display section that displays.
  • an interface level meter that can quickly and stably switch and display image information of a plurality of time widths is known (for example, see Patent Document 3).
  • This interface level meter uses an ultrasonic sensor, an A/D converter that converts the signal received by the ultrasonic sensor into a digital signal, and detects the position of the interface between the suspended matter layer and the supernatant water based on the digital signal.
  • a calculation unit that performs calculations, a graphics conversion unit that converts digital signals into pixel data corresponding to a predetermined color gradation, and a storage area that acquires and stores pixel string data including a plurality of pixel data at different time intervals.
  • a display area that displays a plurality of pixel row data stored in any one of the storage areas based on color gradation, and a display area that displays the position of the interface calculated by the calculation unit.
  • a display section having a display section.
  • a technique for measuring the precipitation state includes an ultrasonic transmitting/receiving means for transmitting and receiving ultrasonic waves vertically downward from the water surface of a settling tank, and a waveform processing means for processing reflected received waves obtained by the ultrasonic transmitting/receiving means.
  • the waveform processing means measures the amount of substances floating under the water surface and/or the concentration distribution of sediment based on changes in the intensity of the reflected received waves.
  • a technique for detecting interfaces between layers in a sludge accumulation layer is known (for example, see Patent Document 5).
  • This technology uses a sensor that transmits ultrasonic waves or light into the liquid in a solid-liquid separation tank and receives ultrasonic waves or light that have propagated through the water, including the sludge accumulation layer, and is based on the signals from the sensor. Then, the position of the interface between the sludge accumulation layer and the supernatant water is detected, and the interface between the free sedimentation layer occupying the uppermost layer in the sludge accumulation layer and the coagulated sedimentation layer below the free sedimentation layer is detected.
  • the band in which the received signal intensity distribution of the sensor in the depth direction of the tank is constant at the top of the sludge accumulation layer is defined as a free settling layer, and the received signal intensity distribution is lower than that of the free settling layer.
  • the position where the value starts to increase is defined as the interface between the free sedimentation layer and the coagulated sedimentation layer.
  • monitoring images images obtained by monitoring the processing status
  • people diagnose the current state of processing by interpreting monitoring images.
  • the causes of the results of diagnosing the processing status were diagnosed by humans based on their experience.
  • people were making decisions about how to deal with the problem.
  • Interpreting surveillance images requires experience, and the interpretation results may vary depending on the interpreter.
  • the present invention has been made in view of the above circumstances, and provides a monitoring system, a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater. With the goal.
  • One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image, Using the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, solid-liquid separation is performed from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis.
  • a determination unit that determines the internal state of the tank; and an interior of the solid-liquid separation tank determined by the determination unit using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model.
  • the monitoring system includes an output unit that outputs information specifying the state of the monitor.
  • One aspect of the present invention is based on a monitoring image that is an image showing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the monitoring image of the inside of the solid-liquid separation tank. Based on this, the first learning model that has learned the relationship between the monitoring image and the internal state of the solid-liquid separation tank is used to determine the state of the solid-liquid separation tank from the monitoring image representing the inside of the solid-liquid separation tank that is the target of diagnosis.
  • the monitoring system has an output unit that outputs identifying information, and the monitoring image does not include an error image that is an image at the time of a measurement failure.
  • one aspect of the present invention is to provide a supernatant water image and a supernatant water image based on the supernatant water image and information specifying a cause of a diagnosis result based on the supernatant water image.
  • the solid-liquid separation tank is determined from the supernatant water image of the solid-liquid separation tank that is the target of diagnosis using the second learning model that has learned the relationship with information that specifies the cause of the diagnosis result inside the solid-liquid separation tank.
  • One aspect of the present invention is the monitoring system according to (1) above, in which the supernatant water image is Using the third learning model that has learned the relationship between information and information that specifies how to deal with the diagnosis results inside the solid-liquid separation tank, solid-liquid analysis is performed from the supernatant water image of the solid-liquid separation tank that is the target of diagnosis.
  • one aspect of the present invention provides information for specifying the supernatant water image and a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • the fourth learning model that has learned the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank based on the a change sign deriving unit that detects a sign of a change in the state inside the solid-liquid separation tank from a clear water image, and the output unit is configured to detect the supernatant water image of the solid-liquid separation tank to be diagnosed and the fourth The learning model further outputs information that specifies a sign of a change in the state inside the solid-liquid separation tank detected by the change sign deriving unit.
  • One aspect of the present invention is the monitoring system according to (1) above, in which the diagnosis result is based on one or both of a deposited state of solids and a suspended state of solids included in the supernatant water image. Generated based on.
  • One aspect of the present invention is the monitoring system according to (1) above, in which the determination unit determines the solid-liquid separation tank from the supernatant water image showing the inside of the solid-liquid separation tank that is the object of diagnosis. Determine whether the internal state is normal, malfunctioning, or abnormal.
  • the determination unit determines that the state inside the solid-liquid separation tank is either malfunctioning or abnormal
  • the solid-liquid separation when the determination unit determines that the state inside the solid-liquid separation tank is either malfunctioning or abnormal, the solid-liquid separation
  • the device further includes a notification unit that notifies that the state inside the tank is either malfunction or abnormal.
  • One aspect of the present invention provides a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and a state of the supernatant water inside the solid-liquid separation tank.
  • the learning device includes a learning unit that generates, through learning, a first learning model representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank based on the image-based diagnosis result.
  • One aspect of the present invention is a monitoring image that is an image showing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater, and a diagnosis result based on the monitoring image of the internal state of the solid-liquid separation tank.
  • a learning unit that generates a first learning model representing the relationship between the monitoring image and the internal state of the solid-liquid separation tank by learning based on the above, and the monitoring image is an error image that is an image at the time of a measurement failure. It is a learning device that does not include.
  • One aspect of the present invention is the learning device according to (10) above, in which the supernatant water image does not include an error image that is an image at the time of poor measurement.
  • One aspect of the present invention is the learning device according to (10) above, in which the learning unit performs a process based on the supernatant water image and information specifying a cause of a diagnosis result based on the supernatant water image.
  • a second learning model representing the relationship between the supernatant water image and information specifying the cause of the diagnosis result inside the solid-liquid separation tank is generated by learning.
  • One aspect of the present invention is the learning device according to (10) above, in which the learning unit is based on the supernatant water image and information specifying how to deal with a diagnosis result based on the supernatant water image. Then, a third learning model representing the relationship between the supernatant water image and information specifying how to deal with the diagnosis result inside the solid-liquid separation tank is generated by learning.
  • One aspect of the present invention is the learning device according to (10) above, in which the learning unit is configured to determine the supernatant water image and the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • a fourth learning model representing the relationship between the supernatant water image and the information specifying the change in the internal state of the solid-liquid separation tank is generated based on the information specifying the change.
  • the diagnosis result is one or both of a deposited state of solids and a suspended state of solids included in the supernatant water image. Generated based on.
  • One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image, Using the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, solid-liquid separation is performed from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis.
  • a monitoring method executed by a monitoring system comprising the steps of: outputting information specifying the state of the computer.
  • One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image,
  • This is a learning method executed by a learning device, which includes a step of generating, through learning, a first learning model representing a relationship between a supernatant water image and an internal state of a solid-liquid separation tank.
  • One aspect of the present invention is to provide a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, to a computer of a monitoring system, and a diagnosis based on the supernatant water image.
  • the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank is used to create a supernatant that represents the supernatant water inside the solid-liquid separation tank that is the target of diagnosis.
  • One aspect of the present invention is to display a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and an inside of the solid-liquid separation tank on a computer of a learning device.
  • This program executes a step of generating, by learning, a first learning model representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, based on the diagnosis result based on the supernatant water image.
  • a monitoring system a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater.
  • FIG. 1 is a diagram showing a configuration example of a monitoring system according to an embodiment of the present invention. It is a figure showing an example of an ultrasonic sensor.
  • 1 is a diagram illustrating an example of a data processing device of a monitoring system according to an embodiment. It is a diagram showing an example of the operation of the monitoring system according to the present embodiment.
  • FIG. 3 is a diagram showing an example of a monitoring image.
  • FIG. 3 is a diagram showing an example of teacher data.
  • FIG. 2 is a diagram showing an example 1 of the operation of the monitoring system according to the present embodiment. It is a figure showing example 2 of operation of a monitoring system concerning this embodiment. It is a figure showing example 3 of operation of a monitoring system concerning this embodiment.
  • FIG. 7 is a diagram showing another example of the data processing device according to the present embodiment. It is a figure showing the example of composition of the monitoring system concerning modification 1 of an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of teacher data. It is a figure showing example 1 of operation of a monitoring system concerning modification 1 of an embodiment.
  • FIG. 7 is a diagram illustrating a second example of the operation of the monitoring system according to the first modification of the embodiment. It is a figure showing an example of composition of a monitoring system concerning modification 2 of an embodiment of the present invention.
  • FIG. 3 is a diagram showing an example of teacher data.
  • FIG. 7 is a diagram illustrating an example 1 of operation of a monitoring system according to a second modification of the embodiment.
  • FIG. 7 is a diagram illustrating a second example of the operation of the monitoring system according to a third modification of the embodiment. It is a figure showing an example of composition of a monitoring system concerning modification 4 of an embodiment of the present invention. It is a figure showing an example of the monitoring device of the monitoring system concerning modification 4 of this embodiment.
  • FIG. 7 is a diagram showing an example 1 of operation of a monitoring system according to a fourth modification of the embodiment.
  • FIG. 7 is a diagram showing a second example of the operation of the monitoring system according to a fourth modification of the embodiment. This is an example of an error image. It is a figure showing example 1 of operation of a monitoring system concerning other embodiments. It is a figure showing example 2 of operation of a monitoring system concerning other embodiments. It is a figure showing example 3 of operation of a monitoring system concerning this embodiment.
  • FIG. 1 is a diagram showing a configuration example of a monitoring system according to an embodiment of the present invention.
  • the monitoring system 100 diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks.
  • the sewage treatment equipment 10 as an example of equipment including a solid-liquid separation tank.
  • An example of the sewage treatment equipment 10 includes a pre-sedimentation tank 11, a concentration tank 12, a storage tank 13, a dehydrator 14, a container 15, an aeration tank 16, a post-sedimentation tank 17, a pump 18, and equipment control.
  • a device 19 is provided.
  • the pre-sedimentation tank 11 is connected to the aeration tank 16 through a flow path P1.
  • Raw water is introduced into the pre-sedimentation tank 11 .
  • the pre-sedimentation tank 11 settles and separates initial settled sludge (drawn sludge) from introduced raw water.
  • the water to be treated after sedimentation and separation is introduced into the aeration tank 16 via the flow path P1.
  • the aeration tank 16 is connected to the post-sedimentation tank 17 via a flow path P2.
  • the aeration tank 16 performs aerobic treatment on the water to be treated introduced from the pre-sedimentation tank 11 by aerating air from an aeration pipe.
  • the water to be treated that has been aerobically treated in the aeration tank 16 is introduced into the post-sedimentation tank 17 via the flow path P2.
  • the post-settling tank 17 is connected to the pump 18 through a flow path P3. Pump 18 is connected to flow path P4.
  • the flow path P4 is branched into a flow path P5 and a flow path P6.
  • the flow path P5 is connected to the concentration tank 12, and the flow path P6 is connected to the aeration tank 16.
  • the post-settling tank 17 separates the water to be treated introduced from the aeration tank 16 into settled sludge (drawn sludge) and supernatant water.
  • the supernatant water in the post-sedimentation tank 17 is discharged outside the sewage treatment facility 10 as discharge water.
  • a part of the sludge settled in the post-settling tank 17 is introduced into the thickening tank 12 as surplus sludge via the pump 18, the flow path P4, and the flow path P5.
  • the remainder of the sludge settled in the post-settling tank 17 is returned to the aeration tank 16 as return sludge via the flow path P4 and piping P6.
  • the pump 18 By controlling the pump 18 by the equipment control device 19, a predetermined amount of sludge from among the sludge precipitated in the post-settling tank 17 is introduced into the flow path P4.
  • the pre-precipitation tank 11 is connected to the concentration tank 12 through a flow path P7.
  • the drawn sludge is introduced into the thickening tank 12 from the pre-sedimentation tank 11 via the flow path P7.
  • the concentration tank 12 is connected to the pre-precipitation tank 11 through a flow path P8, and connected to the storage tank 13 through a flow path P9.
  • the introduced sludge is separated by gravity into supernatant water and thickened sludge.
  • the supernatant water is returned to the pre-sedimentation tank 11 via the flow path P8.
  • the thickened sludge is extracted from the bottom of the thickening tank 12 and introduced into the storage tank 13 via the flow path P9.
  • the storage tank 13 is connected to a dehydrator 14 through a flow path P10.
  • the storage tank 13 temporarily stores the thickened sludge introduced from the thickening tank 12.
  • the thickened sludge stored in the thickening tank 12 is introduced into the dehydrator 14.
  • the dehydrator 14 is connected to the container 15 by a conveyor P11.
  • the dehydrator 14 dehydrates the thickened sludge introduced from the storage tank 13.
  • the dehydrated cake produced by the dehydration process is introduced into the container 15 via the conveyor P11.
  • the container 15 accommodates the dehydrated cake introduced by the dehydrator 14, and carries out the accommodated dehydrated cake.
  • the monitoring system 100 includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40, a terminal device 45, and a monitoring device 50.
  • the gateway device 31, the information processing device 40, the terminal device 45, and the monitoring device 50 are connected via a network NW.
  • the network NW is a wireless or wired communication network.
  • This network NW includes the Internet, an intranet, and the like.
  • the network NW is an information communication network configured by a WAN (Wide Area Network), a LAN (Local Area Network), and the like.
  • This WAN includes, for example, a mobile phone network, a PHS (Personal Handy-phone System) network, a PSTN (Public Switched Telephone Network), a dedicated communication line network, and a VPN (Virtual Private Network). .
  • the ultrasonic sensor 20 transmits ultrasonic waves into water by applying a pulse voltage to an ultrasonic transducer from an ultrasonic transmitting circuit.
  • a pulse voltage to an ultrasonic transducer from an ultrasonic transmitting circuit.
  • the ultrasonic sensor 20 is installed in the post-settling tank 17 and transmits ultrasonic waves into the inside of the post-settling tank.
  • the voltage [V] is converted into sound pressure [dB].
  • Ultrasonic waves are generated by the tiny vibrations of the vibrator.
  • An example of a vibrator is a ceramic element.
  • the ultrasonic sensor 20 includes an oscillation (transmission) section 21 that is a transducer 2 for transmitting, and a receiving section 22 that is a transducer for receiving.
  • the ultrasonic sensor 20 includes two vibrators, an oscillating section 21 and a receiving section 22.
  • the transmitting transducer and the receiving transducer may be realized by one transducer.
  • the ultrasonic sensor 20 is installed at a predetermined height 27 of a post-settling tank 17 (hereinafter also referred to as a treatment tank 25) that stores a suspended matter accumulation layer 23 such as sludge and supernatant water 24 of the suspended matter accumulation layer 23. by a mechanism (not shown).
  • the depth is not changed.
  • an image database can be created by dividing 200 dots into 5 m.
  • each pixel is 2.5 cm, and the display resolution is 2.5 cm.
  • there may be a setting item for inputting the depth when setting the measurement and data in the depth direction may be thinned out based on this setting value. All the data may be stored so that a certain part can be enlarged, and the display may be thinned out or partially enlarged (full display) in accordance with an instruction.
  • the oscillator 21 provides an electric signal generated by a signal generation circuit (not shown) to the ultrasonic transducer and transmits it toward the lower surface of the processing tank 25 .
  • the ultrasonic waves transmitted by the oscillator 21 are reflected by the interface 26 between the suspended matter accumulation layer 23 and its supernatant water 24, the suspended matter under the interface 26, the bottom of the processing tank 25, etc.
  • the reflected waves return one after another with a time difference (arrival time) proportional to the position (distance, depth) of the reflected object.
  • the strength of the reflected wave is related to the properties ( ⁇ density) of the object, and this information is expressed in sound pressure (dB).
  • the reflected wave is received by the receiving section 22.
  • the sound pressure causes the vibrator to vibrate, and a voltage corresponding to the strength of the vibrator is generated.
  • the sound pressure [dB] is converted into voltage [V].
  • the receiving section 22 outputs the received signal to the data processing device 30.
  • the data processing device 30 receives the received signal output by the receiving section 22 and converts the received signal into image data.
  • FIG. 3 is a diagram showing an example of a data processing device of the monitoring system according to the present embodiment.
  • the data processing device 30 includes an ultrasound transmission/reception circuit 32, a data conversion circuit 33, a data calculation section 34, and an image data storage section 35.
  • the ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 .
  • the ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20.
  • the ultrasonic transmitter/receiver circuit 32 outputs the received electrical signal to the data converter circuit 33 .
  • the data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32.
  • the data conversion circuit 33 amplifies the acquired electrical signal.
  • the data conversion circuit 33 performs masking processing on the amplified electrical signal.
  • the data conversion circuit 33 converts the amplified electrical signal into a digital signal by digitally processing the signal intensity based on the result of masking processing. For example, the data conversion circuit 33 converts the electrical signal into, for example, 256 tones based on the signal strength.
  • the data conversion circuit 33 outputs a digital signal to the data calculation section 34.
  • the data calculation unit 34 temporarily stores (stocks) signal strength and position information in association with each other.
  • the data calculation unit 34 calculates the position (depth) of the interface 26 between the suspended matter accumulation layer 23 and the supernatant water 24. For example, the data calculation unit 34 calculates, based on the elapsed time of the reflected intensity of ultrasonic waves after the ultrasonic sensor 20 transmits the ultrasonic waves, up to the timing when the reflected intensity suddenly increases beyond a predetermined threshold. Derive the elapsed time.
  • the data calculation unit 34 calculates the distance to the interface 26 (the position of the interface 26) based on the derived time passage.
  • the data calculation unit 34 outputs numerical digital data at the interface level to the image data storage unit 35.
  • the data calculation unit 34 outputs the stored information associating the signal strength and position information and digital data of interface level numerical values to the image data storage unit 35.
  • the data calculation section 34 may output information indicating a determination error to the image data storage section 35.
  • the data calculation unit 34 may output to the image data storage unit 35 information that associates signal strength with position information, and information that associates digital data of numerical values at the interface level with temperature data.
  • FIG. 4 is a diagram illustrating an example of the operation of the monitoring system according to this embodiment.
  • FIG. 4 shows an example of data output from the data calculation section 34 to the image data storage section 35.
  • An example of data output from the data calculation section 34 to the image data storage section 35 is expressed as an instantaneous value.
  • the data calculation unit 34 transmits the digital signal to the monitoring device 50 via the gateway device 31. Returning to FIG. 1, the explanation will be continued.
  • the monitoring device 50 is realized by a device such as a personal computer, a server, or an industrial computer.
  • the monitoring device 50 includes a communication device 51, a recording device 52, an information processing unit 53, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
  • the communication device 51 is realized by a communication module.
  • the communication device 51 communicates with other devices such as the data processing device 30 and the information processing device 40 via the network NW.
  • the communication device 51 receives the digital signal transmitted by the data processing device 30.
  • the communication device 51 receives data measured during a predetermined period of time in the past at predetermined time intervals. Specifically, the communication device 51 receives data for the past hour once every hour.
  • the communication device 51 also receives a monitoring image request sent by the terminal device 45 for requesting a monitoring image.
  • the monitoring image is an image showing changes in reflection intensity (reception intensity) over time after ultrasonic waves are transmitted to the solid-liquid separation tank.
  • the communication device 51 transmits the monitoring image response output by the information processing unit 53 to the terminal device 45 in response to the received monitoring image request.
  • the communication device 51 receives the diagnosis result notification sent by the terminal device 45 in response to the sent monitoring image response.
  • the diagnosis result notification includes information indicating the monitoring image and information indicating the diagnosis result of the internal state of the solid-liquid separation tank.
  • the communication device 51 receives the in-tank state information request transmitted by the information processing device 40.
  • the communication device 51 transmits the tank state information response outputted by the information processing section 53 to the information processing device 40 .
  • the communication device 51 acquires the status notification information output by the information processing unit 53 and transmits the acquired status notification information to the information processing device 40 .
  • the recording device 52 is realized by, for example, a RAM, a ROM, an HDD, a flash memory, or a hybrid storage device that is a combination of two or more of these.
  • the recording device 52 stores a program (monitoring application) executed by the monitoring device 50.
  • the recording device 52 also stores pixel data output from the information processing section 53.
  • the recording device 52 includes training data of diagnosis results that associates information indicating a supernatant water image with a diagnosis result of the interior of the solid-liquid separation tank (inside the tank) based on the supernatant water image, and data based on the training data of the diagnosis results. , a learning model of diagnosis results obtained by machine learning of the relationship between the supernatant water image and the internal state of the solid-liquid separation tank is stored.
  • FIG. 5 shows an example of a monitoring image.
  • the information processing unit 53 acquires the digital signal transmitted by the data processing device 30. Based on the acquired digital signal, the information processing unit 53 converts the intensity of the reflected wave into a color tone, converts the time until the reflected wave returns to a distance, provides it as position information, and matches the color tone and distance.
  • This continuous plot is the monitoring image.
  • images corresponding to the bottom surface of the solid-liquid separation tank, the rake, the sludge accumulation layer, the sludge interface, and the supernatant water are seen in the monitoring image.
  • the supernatant water image is an image of supernatant water included in the monitoring image.
  • the monitoring image is the measurement result of the suspended matter deposit layer 23 and the supernatant water 24 by the ultrasonic sensor 20
  • the supernatant water image is the measurement result of only the supernatant water 24 by the ultrasonic sensor 20. This is the result.
  • FIG. 6 is a diagram showing an example of teacher data.
  • FIG. 6 shows the teaching data of the diagnosis results.
  • the training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image.
  • one of "normal”, “abnormal”, and “unwell” is associated with each of the plurality of supernatant water images as a diagnostic result.
  • a monitoring image will be used for convenience.
  • (1) is diagnosed as normal because the supernatant water has a sufficient depth.
  • (2) is diagnosed as abnormal because the depth of the supernatant water is shallow.
  • Case (3) is diagnosed as malfunctioning because accumulated sludge is seen floating up in the supernatant water.
  • the explanation will be continued.
  • the information processing unit 53 functions as, for example, a graphic generation unit 54, a current status determination unit 55, and a learning unit 56.
  • the graphic generator 54 acquires the digital signal received by the communication device 51.
  • the graphic converting unit 54 converts the values of the acquired digital signals into pixel data.
  • the graphic converting unit 54 causes the recording device 52 to store the pixel data after converting the digital signal.
  • the graphic generation unit 54 acquires the supernatant water image request received by the communication device 51.
  • the graphic generation unit 54 acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request.
  • the graphic generator 54 creates an image of supernatant water included in the monitoring image based on the acquired pixel data.
  • the graphic generation unit 54 creates a supernatant water image response that includes information indicating the created supernatant water image and is addressed to the information processing device 40 .
  • the graphic generation unit 54 outputs the created supernatant water image response to the communication device 51.
  • the graphic generation unit 54 detects a sludge interface, which is an interface between supernatant water and a sludge accumulation layer, from a monitoring image, for example, and creates pixel data vertically upward from the sludge interface (in a direction where water depth becomes shallower) as a supernatant water image.
  • the sludge interface is the interface 26 calculated by the data calculation unit 34.
  • the graphic section 54 may set the position of the interface 26 calculated by the data calculation section 34 as the sludge interface.
  • the graphic generation unit 54 acquires the tank internal state information request received by the communication device 51.
  • the graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data.
  • the graphic generation unit 54 creates an in-tank state information response that includes information indicating the created supernatant water image and is addressed to the information processing device 40 .
  • the graphic generator 54 outputs the created tank state information response to the communication device 51.
  • the current state determining unit 55 acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • the current status determination unit 55 acquires the learning model of the diagnosis result stored in the recording device 52.
  • the current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result. If the determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the current status determination unit 55 sends the information processing device 40 containing information indicating the determination result of the internal state of the solid-liquid separation tank as a destination. Create status notification information.
  • the current status determination unit 55 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
  • the current status determination unit 55 may use the measured data as is, or may include data measured over a long period of time in a limited display width by thinning out the data. good. By including data measured over a long period of time in a limited display width, changes over a longer period of time can be monitored. If it is a still image, pixel data can be picked up at any appropriate interval and switched and displayed, but in this embodiment, measurement is always performed and new data is added, so pixel data can be picked up and displayed at any appropriate interval.
  • pixel data is picked up at regular intervals and switched for display, there is a risk that data processing will be delayed or hindered, and if measurement becomes unstable due to image display, it would be a waste of money. Therefore, in this embodiment, several preset display time widths are prepared, and data storage areas for time widths corresponding to each of the plurality of display time widths are created. In this embodiment, an interval at which new data is added is specified, and an image database (data storage area (address)) corresponding to each of a plurality of intervals is created.
  • An operation to switch the display is performed on the monitoring device 50, and a display time width is selected.
  • the current status determination unit 55 acquires data from the database corresponding to the selected time display width, and creates a supernatant water image using the acquired data. If the time display width is switched, data is acquired from the database corresponding to the selected time display width, and a supernatant water image is created using the acquired data. With this configuration, smooth switching can be performed without processing the data in the database in which the data is stored and without the time lag of creating a supernatant water image.
  • the learning unit 56 acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image.
  • the recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result.
  • the learning unit 56 acquires training data of the diagnosis results stored in the recording device 52.
  • the learning unit 56 performs machine learning (supervised learning) on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired diagnostic result training data.
  • a learning model for diagnosis results that correlates clear water images and the internal state of the solid-liquid separation tank is generated.
  • the learning unit 56 recognizes the supernatant water image using a convolutional neural network (CNN). Based on the information indicating the supernatant water image, the learning model of the diagnosis result classifies the supernatant water image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank.
  • the learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
  • All or part of the information processing unit 53 is a functional unit (hereinafter referred to as a software function) realized by a processor such as a CPU (Central Processing Unit) executing a program such as a monitoring application stored in the recording device 52. ).
  • a functional unit hereinafter referred to as a software function
  • information processing unit 53 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array), or may be realized by software functions. It may also be realized by a combination of parts and hardware.
  • LSI Large Scale Integration
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • the information processing device 40 is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the information processing device 40 is installed in a monitoring center that remotely monitors the sewage treatment facility 10.
  • the information processing device 40 receives the status information notification transmitted by the monitoring device 50
  • the information processing device 40 displays the determination result of the solid-liquid separation tank included in the received status information notification.
  • the information processing device 40 also requests tank internal status information addressed to the monitoring device 50, including information requesting the internal status of the tank, based on the operator's operation to acquire status information in the solid-liquid separation tank. Create.
  • the information processing device 40 transmits the created tank state information request to the communication device 51.
  • the information processing device 40 receives the tank state information response sent by the monitoring device 50 in response to the tank state information request.
  • the information processing device 40 acquires the supernatant water image included in the received tank state information response.
  • the information processing device 40 displays the acquired supernatant water image.
  • the terminal device 45 is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the terminal device 45 is installed in a monitoring center that monitors the sewage treatment facility 10.
  • the user operates the terminal device 45 to create a supernatant water image request addressed to the monitoring device 50 that includes information requesting a supernatant water image. .
  • the terminal device 45 creates a supernatant water image request based on the user's operation.
  • the terminal device 45 transmits the created supernatant water image request to the monitoring device 50.
  • the terminal device 45 receives the supernatant water image response sent by the monitoring device 50 in response to the supernatant water image request sent to the monitoring device 50 .
  • the terminal device 45 displays the monitoring image included in the supernatant water image response.
  • the user refers to the supernatant water image displayed on the terminal device 45 and diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image.
  • the user causes a diagnosis result notification addressed to the monitoring device 50 to be created, which includes information indicating the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank.
  • the terminal device 45 creates a diagnosis result notification based on the user's operation.
  • the terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
  • FIG. 7 is a diagram showing an example 1 of the operation of the monitoring system according to the present embodiment.
  • the monitoring device 50 accumulates the diagnosis results of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by the terminal device 45, and monitors the accumulated internal state of the solid-liquid separation tank. A process of performing machine learning based on diagnosis results and generating a learning model of the diagnosis results will be described.
  • Step S1-1 In the data processing device 30 , the ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 .
  • Step S2-1 In the data processing device 30, the ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20.
  • Step S3-1 In the data processing device 30 , the ultrasonic transmission/reception circuit 32 outputs the received electrical signal to the data conversion circuit 33 .
  • the data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32.
  • the data conversion circuit 33 amplifies the acquired electrical signal.
  • the data conversion circuit 33 performs masking processing on the amplified electrical signal.
  • the data conversion circuit 33 converts the amplified electric signal into a digital signal by digitally processing the signal intensity based on the result of masking processing.
  • the data calculation unit 34 acquires a digital signal from the data conversion circuit 33, and performs temperature correction calculation related to position (distance) information and interface level determination calculation on the acquired digital signal.
  • Step S4-1 In the data processing device 30, the data calculation unit 34 transmits a digital signal on which a temperature correction calculation related to position (distance) information and an interface level determination calculation have been performed to the monitoring device 50 via the gateway device 31.
  • Step S5-1) In the monitoring device 50, the communication device 51 receives the digital signal transmitted by the data processing device 30.
  • the graphic generator 54 acquires the digital signal received by the communication device 51.
  • the graphic converting unit 54 converts the values of the acquired digital signals into pixel data.
  • Step S6-1) In the monitoring device 50, the graphic converting unit 54 causes the recording device 52 to store the pixel data converted into digital signals.
  • Step S7-1) The terminal device 45 creates a supernatant water image request.
  • Step S8-1) The terminal device 45 transmits the created supernatant water image request to the monitoring device 50.
  • Step S9-1 In the monitoring device 50, the communication device 51 receives the supernatant water image request transmitted by the terminal device 45.
  • the graphic generation unit 54 acquires the supernatant water image request received by the communication device 51.
  • the graphic generation unit 54 acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request.
  • the graphic generator 54 creates a supernatant water image based on the acquired pixel data.
  • the graphic generation unit 54 creates a clear water image response addressed to the terminal device 45 that includes information indicating the created clear water image.
  • Step S10-1 In the monitoring device 50, the graphic generation unit 54 outputs the created supernatant water image response to the communication device 51.
  • the communication device 51 acquires the supernatant water image response output by the graphic converting unit 54 and transmits the obtained supernatant water image response to the terminal device 45 .
  • Step S11-1) The terminal device 45 receives the supernatant water image response transmitted by the monitoring device 50.
  • the terminal device 45 displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response.
  • the terminal device 45 creates a diagnosis result notification including information indicating the supernatant water image and the result of diagnosing the supernatant water image.
  • Step S12-1) The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
  • Step S13-1) In the monitoring device 50, the communication device 51 receives the diagnosis result notification sent by the terminal device 45.
  • the learning unit 56 acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image.
  • the recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result.
  • Step S14-1) In the monitoring device 50, the learning unit 56 acquires training data of the diagnosis results stored in the recording device 52.
  • the learning unit 56 performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result.
  • a learning model of the diagnosis results is generated in relation to the internal state of the separation tank. (Step S15-1)
  • the learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
  • the diagnosis result notification may be a diagnosis result based on a monitoring image instead of a supernatant water image. That is, in step S7-1, the terminal device 45 creates a monitoring image request, in step S8-1, the terminal device 45 transmits the created monitoring image request to the monitoring device 50, and in step S9-1, the monitoring device 50 An image may be created, and the monitoring device 50 may transmit a monitoring image response to the terminal device 45 in step S10-1.
  • FIG. 8 is a diagram showing a second example of the operation of the monitoring system according to the present embodiment.
  • monitoring device 50 acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal.
  • a process in which the monitoring device 50 determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described. Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-2 to S6-2, the description thereof will be omitted here.
  • Step S7-2 In the monitoring device 50, the current state determination unit 55 acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • Step S8-2) In the monitoring device 50, the current state determining unit 55 acquires the learning model of the diagnosis result stored in the recording device 52.
  • Step S9-2) In the monitoring device 50, the current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
  • Step S10-2) In the monitoring device 50, the current state determination unit 55 determines whether the determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. The current state determination unit 55 terminates when the determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormal, that is, it is determined to be normal.
  • Step S11-2) In the monitoring device 50, when the current state determination unit 55 determines that the internal state of the solid-liquid separation tank is malfunctioning or abnormal, the current status determination unit 55 transmits information indicating the determination result of the internal state of the solid-liquid separation tank. Create status notification information with the information processing device 40 as the destination.
  • Step S12-2) In the monitoring device 50, the current status determining unit 55 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
  • the monitoring device 50 creates a supernatant water image in step S7-2, but this is just an example.
  • the monitoring device 50 may create a monitoring image based on pixel data, and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps.
  • FIG. 9 is a diagram showing a third example of the operation of the monitoring system according to the present embodiment.
  • a process in which the monitoring device 50 transmits information indicating a supernatant water image based on the tank internal state information request transmitted by the information processing device 40 will be described. Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-3 to S6-3, the description thereof will be omitted here.
  • Step S7-3) The information processing device 40 creates an in-tank state information request based on the user's operation.
  • Step S8-3) The information processing device 40 transmits the created tank state information request to the monitoring device 50.
  • Step S9-3 In the monitoring device 50, the communication device 51 receives the tank state information request transmitted by the information processing device 40.
  • the graphic generation unit 54 acquires the tank internal state information request received by the communication device 51.
  • the graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data.
  • the graphic creation unit 54 creates an in-tank state information response addressed to the information processing device 40, which includes information indicating the created supernatant water image.
  • Step S11-3) In the monitoring device 50 , the graphic section 54 outputs the created tank state information response to the communication device 51 .
  • the communication device 51 acquires the in-tank state information response outputted by the graphic generator 54 and transmits the obtained in-tank state information response to the information processing device 40 .
  • the information processing device 40 receives the tank state information response transmitted by the monitoring device 50, and acquires information indicating the supernatant water image included in the received tank state information response.
  • the information processing device 40 displays the supernatant water image by performing image processing on the information indicating the obtained supernatant water image. With this configuration, the user of the information processing device 40 can check the internal state of the solid-liquid separation tank.
  • the monitoring device 50 may create a monitoring image instead of the supernatant water image
  • the tank condition information response may include information indicating the monitoring image
  • the information processing device 40 may create a monitoring image instead of the supernatant water image.
  • a monitoring image may be displayed by performing image processing on the information.
  • an ultrasonic sensor 20 may be installed in the pre-precipitation tank 11 to determine the internal state of the pre-precipitation tank 11, or an ultrasonic sensor 20 may be installed in the concentration tank 12 to determine the internal state of the concentration tank 12. may be determined. That is, the ultrasonic sensor 20 is installed in at least one of the post-sedimentation tank 17, the pre-sedimentation tank 11, and the concentration tank 12 to determine the internal state.
  • the monitoring system 100 may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100 may be connected to one sewage treatment facility 10. If the monitoring system 100 is connected to multiple sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to connect the monitoring system 100 to a plurality of sewage treatment facilities 10. If so, there is a high possibility that it will be judged as "abnormal" and output. In other words, since the monitoring device 50 is capable of learning more, it is possible to increase the number of cases that can be used for determination.
  • the monitoring device 50 performs machine learning
  • a device that performs machine learning may be implemented as a device different from the monitoring device 50.
  • the learning device uses the supernatant water image, which is an image representing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image inside the solid-liquid separation tank to the monitoring device 50. Get from.
  • the learning device generates a diagnosis result representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank based on the acquired supernatant water image and the diagnosis result based on the supernatant water image of the internal state of the solid-liquid separation tank. It has a learning section that generates a learning model by machine learning (supervised machine learning).
  • machine learning supervised machine learning
  • the determination result of the state may be classified into four or more types.
  • the current state determination unit 55 compares the created supernatant water image with past supernatant water images in a normal state, and if it is determined that there is a change, the current state determination unit 55 compares the created supernatant water image with the past normal state supernatant water image, and if it is determined that there is a change, the current state determination unit 55 compares the created supernatant water image with the past normal state supernatant water image, and if it is determined that there is a change,
  • the internal state of the solid-liquid separation tank may be determined using the learning model of the diagnosis results.
  • the data processing device 30 may include the display switching operation section 36 and the image data display section 37. FIG.
  • FIG. 10 is a diagram showing another example of the data processing device according to this embodiment.
  • An example of the display switching operation section 36 is configured by a display switching button.
  • An example of the image data display section 37 is a display.
  • the image data display section 37 may display the measured data as is, or may display long-term data in a limited display width by thinning out the measured data. By displaying long-term data in a limited display width, it is possible to monitor long-term changes over time. If a still image is to be displayed on the image data display section 37, pixel data can be picked up at any appropriate interval and switched and displayed, but as in this embodiment, measurement is always performed and new data is displayed.
  • depth direction the vertical direction
  • time series the horizontal direction
  • the data will be displayed for 4 minutes in the direction
  • 10 seconds the data will be displayed for 40 minutes in the horizontal direction.
  • by providing an area for stocking 240 data or more data required for the display width and scrolling the display changes from the past can be observed as if they were a moving image. In this embodiment, these two types of data storage and display are possible.
  • the image data storage section 35 of the data processing device 30 may be accessed from an external terminal and the data stored in the image data storage section 35 may be retrieved.
  • the data calculation unit 34 of the data processing device 30 may be accessed from an external terminal.
  • the data stored in the data calculation section 34 may be extracted and output to the external terminal in response to a command from the external terminal.
  • the data output by the data calculation unit 34 can be displayed on the external terminal, so online monitoring is possible.
  • the latest data may be output from the data calculation unit 34 to the external terminal in response to a command from the external terminal.
  • the interval at which data is output can be set on an external terminal.
  • data can be displayed sequentially on the external terminal, allowing remote live image monitoring.
  • the data calculation unit 34 of the data processing device 30 may be configured to transmit data to an external terminal.
  • the data calculation unit 34 may transmit data to an external terminal based on settings for transmitting data. With this configuration, the external terminal can be used for remote monitoring of the sewage treatment facility 10.
  • the data calculation unit 34 of the data processing device 30 may be configured to output data to an external data server or recording medium.
  • the data calculation unit 34 outputs data to an external data server or recording medium based on the settings.
  • the external data server creates a database based on the data output by the data calculation unit 34.
  • the external data server may display images or process data based on the created database.
  • the data calculation unit 34 of the data processing device 30 when the data calculation unit 34 of the data processing device 30 transmits data to an external terminal, the data may be transmitted according to the RS232C standard, for example.
  • the data calculation unit 34 of the data processing device 30 when the data calculation unit 34 of the data processing device 30 transmits data to an external terminal, it may be transmitted as is between the external terminal, or a signal converter may be provided and the data may be transmitted using the RS422, RS485 standard or USB ( It may also be converted into a transmission protocol such as Universal Serial Bus (Universal Serial Bus), LAN, or optical fiber for transmission.
  • data may be sent from the external terminal to the server regularly or irregularly.
  • the central monitoring device may request data from an external terminal (such as a small PC) and cause the external terminal to output the data.
  • the external terminal may have the functions of the monitoring device 50 described above.
  • the external terminal may acquire the data output by the data calculation unit 34, determine the internal state of the solid-liquid separation tank based on the supernatant water image based on the acquired data, and output the determination result to the server.
  • the server may have the function of the current status determination unit 55 of the monitoring device described above.
  • the external terminal acquires the data output by the data calculation unit 34 and transmits the acquired data to the server.
  • the server acquires the data transmitted by the external device, and determines the internal state of the solid-liquid separation tank based on the supernatant water image based on the acquired data.
  • the monitoring device 50 displays a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and an inside of the solid-liquid separation tank.
  • the first learning model is used as a learning model for the diagnosis result that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank.
  • a determination unit as a current status determination unit 55 that determines the internal state of a solid-liquid separation tank from a supernatant water image representing the supernatant water inside a certain solid-liquid separation tank, and the supernatant water of the solid-liquid separation tank that is the subject of diagnosis.
  • the monitoring device 50 uses the first learning model that has learned the relationship between the supernatant water image and the diagnosis results inside the solid-liquid separation tank to determine the diagnosis of the solid-liquid separation tank that is the target of diagnosis. Since the internal state of the solid-liquid separation tank can be determined from the supernatant water image representing the internal supernatant water, the internal state of the solid-liquid separation tank can be monitored. Using the first learning model, it is possible to judge the internal state of the solid-liquid separation tank from a supernatant water image representing the supernatant water inside the solid-liquid separation tank, which is the target of diagnosis.
  • the diagnosis is mainly made by looking at the supernatant water, so the monitoring device 50 monitors the supernatant water and sludge accumulation in the solid-liquid separation tank. It is possible to perform a diagnosis closer to that performed by a human than diagnosing the internal state of a solid-liquid separation tank from an image including layers. If the system is configured as an on-site system, the dimensions and characteristics of the tank will not change, making it easy to compare the past and present, making it easy to distinguish between steady state, unsteady state, or abnormality. .
  • the diagnosis result based on the monitored image is generated based on either or both of the accumulated state of solid matter and the suspended state of solid matter included in the monitored image.
  • the monitoring device 50 can perform monitoring based on either or both of the accumulated state of solids and the suspended state of solids included in the supernatant water image and the monitoring image including the supernatant water image.
  • the internal state of the solid-liquid separation tank can be determined from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis. .
  • the determination unit determines whether the internal state of the solid-liquid separation tank is normal, malfunctioning, or abnormal from the supernatant water image showing the inside of the solid-liquid separation tank that is the object of diagnosis.
  • the monitoring device 50 can diagnose the supernatant water image and the diagnosis result inside the solid-liquid separation tank based on the supernatant water image and the diagnosis result based on the supernatant water image inside the solid-liquid separation tank. Using the first learning model that has learned the relationship between You can determine if there is.
  • the determination unit determines that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal, it notifies that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal. It further includes a notification section.
  • FIG. 11 is a diagram illustrating a configuration example of a monitoring system according to Modification 1 of the embodiment of the present invention.
  • the monitoring system 100a according to the first modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks.
  • the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment.
  • the monitoring system 100a includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40a, a terminal device 45a, and a monitoring device 50a.
  • the gateway device 31, the information processing device 40a, the terminal device 45a, and the monitoring device 50a are connected via a network NW.
  • the data calculation unit 34 transmits the digital signal to the monitoring device 50a via the gateway device 31.
  • the monitoring device 50a is realized by a device such as a personal computer, a server, or an industrial computer.
  • the monitoring device 50a includes a communication device 51, a recording device 52, an information processing section 53a, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
  • the recording device 52 stores a program (monitoring application) executed by the monitoring device 50a.
  • the recording device 52 also stores pixel data output by the information processing section 53a.
  • the recording device 52 stores training data of a diagnosis result that associates information indicating a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant data based on the training data of the diagnosis result.
  • a learning model of diagnosis results obtained by machine learning of the relationship between the clear water image and the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data. Based on this, a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
  • FIG. 12 is a diagram showing an example of teacher data.
  • FIG. 12 shows training data for diagnosis results and training data for causes.
  • the training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image.
  • the cause training data is data that associates a supernatant water image with information that specifies a cause that is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image.
  • a monitoring image will be used for convenience.
  • one of "normal”, “abnormal”, and “unwell” is associated with each of a plurality of supernatant water images as a diagnostic result, similarly to the embodiment. Further, an estimated result of the cause of the diagnosis result is associated with each of the plurality of supernatant water images based on the diagnosis result.
  • (1) is diagnosed as normal because the supernatant water has a sufficient depth. If it is diagnosed as normal, the estimated cause of the diagnosis result is not stored. (2) is diagnosed as abnormal because the depth of the supernatant water is shallow. In this case, bulking is stored as an example of the estimated cause of the diagnosis result.
  • the information processing unit 53a functions as, for example, a graphic generation unit 54, a current status determination unit 55a, a learning unit 56a, and a cause determination unit 57.
  • the current state determination unit 55a acquires pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • the current state determination unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
  • the current state determination unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
  • the learning section 56a has the following functions in addition to the functions of the learning section 56.
  • the learning unit 56a acquires the diagnosis result notification received by the communication device 51, and obtains cause training data that associates the information indicating the supernatant water image included in the acquired diagnosis result notification with the estimated result of the cause resulting in the diagnosis result.
  • the information is stored in the recording device 52.
  • the learning unit 56a acquires the teacher data of the cause stored in the recording device 52.
  • the learning unit 56a performs machine learning (supervised learning) on the supernatant water image and the result of estimating the cause, which is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired teacher data on the cause.
  • a learning model of the cause is generated that associates the supernatant water image with information specifying the cause of the internal state of the solid-liquid separation tank.
  • the learning unit 56a recognizes the supernatant water image using a convolutional neural network. Based on the information indicating the supernatant water image, the cause learning model classifies the supernatant water image into one of the information that specifies the cause of the internal state of the solid-liquid separation tank.
  • the learning unit 56a causes the recording device 52 to store the generated learning model of the cause.
  • the cause determination unit 57 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the obtained determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the cause determination unit 57 acquires the learning model of the cause stored in the recording device 52. The cause determining unit 57 determines information that specifies the cause of the internal state of the solid-liquid separation tank in the acquired supernatant water image based on the acquired learning model of the cause. The cause determining unit 57 generates information including information indicating the supernatant water image, information indicating the internal state of the solid-liquid separation tank, and information indicating the determination result of information specifying the cause of the internal state of the solid-liquid separation tank.
  • the cause determination unit 57 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the cause determination unit 57, and transmits the acquired status notification information to the information processing device 40a.
  • All or part of the information processing unit 53a is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • a software functional unit that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • all or part of the information processing section 53a may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
  • the information processing device 40 can be applied to the information processing device 40a.
  • the terminal device 45a is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the terminal device 45a is installed in a monitoring center that monitors the sewage treatment facility 10.
  • the user operates the terminal device 45a to create a supernatant water image request addressed to the monitoring device 50a that includes information requesting a supernatant water image. .
  • the terminal device 45a creates a supernatant water image request based on the user's operation.
  • the terminal device 45a transmits the created supernatant water image request to the monitoring device 50a.
  • the terminal device 45a receives the supernatant water image response sent by the monitoring device 50a in response to the supernatant water image request sent to the monitoring device 50a.
  • the terminal device 45a displays the supernatant water image included in the supernatant water image response.
  • the user refers to the supernatant water image displayed by the terminal device 45a, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank.
  • the user can access the monitoring device 50a, which includes information indicating a supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, and information specifying the cause of the diagnosis result.
  • the terminal device 45a creates a diagnosis result notification based on the user's operation.
  • the terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.
  • FIG. 13 is a diagram illustrating a first example of the operation of the monitoring system according to the first modification of the embodiment.
  • the monitoring device 50a accumulates the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by the terminal device 45a, and information specifying the cause of the diagnosis result. Then, machine learning is performed based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank and information specifying the causes of the diagnosis results, and a learning model of the diagnosis results and a learning model of the causes are generated.
  • steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-4 to S10-4, the description thereof will be omitted here.
  • the terminal device 45a receives the supernatant water image response transmitted by the monitoring device 50a.
  • the terminal device 45a displays the supernatant water image by performing image processing on information indicating the supernatant water image included in the received supernatant water image response.
  • the terminal device 45a creates a diagnosis result notification addressed to the monitoring device 50a that includes the diagnosis result of the internal state of the solid-liquid separation tank and information specifying the cause of the diagnosis result.
  • the terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.
  • Step S13-4) In the monitoring device 50a, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45a.
  • the learning unit 56a acquires the diagnosis result notification received by the communication device 51, and acquires information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. Obtain information that identifies the cause of the problem.
  • the learning unit 56a causes the recording device 52 to store training data of a diagnosis result in which information indicating the acquired supernatant water image is associated with a diagnosis result of the internal state of the solid-liquid separation tank.
  • the learning unit 56a causes the recording device 52 to store cause teacher data in which information indicating the acquired supernatant water image is associated with information specifying a cause that is a diagnostic result of the internal state of the solid-liquid separation tank. (Step S14-4) In the monitoring device 50a, the learning unit 56a acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56a performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank. The learning unit 56a acquires the teacher data of the cause stored in the recording device 52.
  • the learning unit 56a performs machine learning on the supernatant water image and information that specifies the cause of the diagnosis of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause.
  • a learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
  • diagnosis result notification may be a diagnosis result based on a monitoring image instead of a supernatant water image. That is, in step S7-4, the terminal device 45a creates a surveillance image request, in step S8-4, the terminal device 45a transmits the created surveillance image request to the surveillance device 50a, and in step S9-4, the surveillance device 50a monitors the An image may be created, and the monitoring device 50a may transmit a monitoring image response to the terminal device 45a in step S10-4.
  • FIG. 14 is a diagram illustrating a second example of the operation of the monitoring system according to the first modification of the embodiment.
  • monitoring device 50a acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal.
  • the monitoring device 50a will explain the process of determining the internal state of the solid-liquid separation tank based on the created supernatant water image. Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-5 to S6-5, the description thereof will be omitted here.
  • Step S7-5 In the monitoring device 50a, the current state determining unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • Step S8-5 In the monitoring device 50a, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
  • Step S9-5) In the monitoring device 50a, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
  • Step S10-5 In the monitoring device 50a, the cause determination unit 57 acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. The cause determination unit 57 determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57 determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process ends.
  • Step S11-5) In the monitoring device 50a, the cause determination unit 57 acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. .
  • the cause determining unit 57 determines information specifying the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
  • the cause determination unit 57 includes information indicating the supernatant water image, information indicating the determination result of the internal state of the solid-liquid separation tank, and information indicating the determination result of the cause of the internal state of the solid-liquid separation tank.
  • Step S14-5 In the monitoring device 50a, the cause determination unit 57 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the cause determination unit 57, and transmits the acquired status notification information to the information processing device 40a.
  • the monitoring device 50 creates a supernatant water image in step S7-5, but this is only an example.
  • the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps. Since FIG. 9 can be applied to the process in which the monitoring device 50a transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40a, a description thereof will be omitted.
  • the monitoring system 100a is connected to one sewage treatment facility 10, but the present invention is not limited to this example.
  • the monitoring system 100a may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100a may be connected to one sewage treatment facility 10. If the monitoring system 100a is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B. For example, there is a high possibility that it will be determined as an "abnormality" and that information identifying the cause of the abnormality will be determined and output.
  • the monitoring device 50a since the monitoring device 50a is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
  • a device that performs machine learning may be implemented as a device different from the monitoring device 50a.
  • the learning device is the learning device described in the embodiment, and the learning device acquires the supernatant water image and information that specifies the cause of the diagnosis result based on the supernatant water image from the monitoring device 50a.
  • the learning section of the learning device uses the supernatant water image and information that specifies the cause of the diagnosis result based on the supernatant water image to determine the supernatant water image and information that specifies the cause of the internal state of the solid-liquid separation tank.
  • a second learning model representing the relationship is generated by machine learning (supervised machine learning).
  • machine learning supervised machine learning
  • the monitoring device 50a performs a diagnosis based on the supernatant water image and information specifying the cause of the diagnosis result based on the supernatant water image. Then, using the second learning model as a learning model of the cause that has learned the relationship between the supernatant water image and the information that specifies the cause of the diagnosis result inside the solid-liquid separation tank, the solid-liquid separation that is the target of diagnosis is A cause determination unit 57 is provided that determines information specifying the cause of the internal state of the solid-liquid separation tank from the supernatant water image of the tank.
  • the output unit further outputs information specifying the cause of the internal state of the solid-liquid separation tank determined by the cause determination unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the second learning model. do.
  • the monitoring device 50a uses the second learning model that has learned the relationship between the supernatant water image and the information that specifies the cause of the diagnosis result inside the solid-liquid separation tank to determine the target of diagnosis. Since information identifying the cause of the internal state of the solid-liquid separation tank can be determined from the supernatant water image of the solid-liquid separation tank, the cause of the internal state of the solid-liquid separation tank can be monitored.
  • the second learning model it is possible to determine the cause of the internal state of the solid-liquid separation tank from the supernatant water image showing the inside of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of diagnosing the cause of the internal state of a separation tank, human experience is not required, and variations in diagnostic results can be reduced.
  • FIG. 15 is a diagram showing a configuration example of a monitoring system according to modification 2 of the embodiment of the present invention.
  • the monitoring system 100b according to the second modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks.
  • the sewage treatment equipment 10 is applied as an example of equipment including a solid-liquid separation tank, similarly to the embodiment.
  • the monitoring system 100b includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40b, a terminal device 45b, and a monitoring device 50b.
  • the gateway device 31, the information processing device 40b, the terminal device 45b, and the monitoring device 50b are connected via the network NW.
  • the data calculation unit 34 transmits the digital signal to the monitoring device 50b via the gateway device 31.
  • the monitoring device 50b is realized by a device such as a personal computer, a server, or an industrial computer.
  • the monitoring device 50b includes a communication device 51, a recording device 52, an information processing section 53b, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
  • the recording device 52 stores a program (monitoring application) executed by the monitoring device 50b.
  • the recording device 52 also stores pixel data output by the information processing section 53b.
  • the recording device 52 stores the supernatant water image based on the training data of the diagnosis result that associates the information indicating the supernatant water image with the diagnosis result of the inside of the solid-liquid separation tank based on the supernatant water image, and the supernatant water image based on the training data of the diagnosis result.
  • a learning model of the diagnosis result obtained by machine learning of the relationship between the information and the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores cause training data in which information indicating the monitoring image is associated with information specifying the cause of the diagnosis result inside the solid-liquid separation tank based on the supernatant water image, and cause training data based on the cause training data.
  • a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnosis result of a solid-liquid separation tank based on the supernatant water image, and training data of a countermeasure method. Based on this, a learning model of a countermeasure method obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure method for the internal state of the solid-liquid separation tank is stored.
  • FIG. 16 is a diagram showing an example of teacher data.
  • FIG. 16 shows training data for diagnosis results, training data for causes, and training data for countermeasures.
  • the training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image.
  • the cause training data is data that associates a supernatant water image with information that specifies a cause that is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image.
  • the training data for the countermeasure method is data that associates a supernatant water image with information specifying a countermeasure method for the internal state of the solid-liquid separation tank based on the supernatant water image.
  • a monitoring image will be used for convenience.
  • one of "normal”, “abnormal”, and “disorder” is associated with each of the plurality of monitoring images as a diagnostic result.
  • an estimated result of the cause of the diagnosis result is associated with each of the plurality of monitoring images based on the diagnosis result.
  • information specifying a method of dealing with the diagnosis result is associated with each of the plurality of monitoring images based on the diagnosis result.
  • (1) is diagnosed as normal because the supernatant water has a sufficient depth. If it is diagnosed as normal, the estimated cause of the diagnosis result and the countermeasure method are not stored. (2) is diagnosed as abnormal because the depth of the supernatant water is shallow.
  • the information processing unit 53b functions as, for example, a graphic generation unit 54, a current status determination unit 55a, a learning unit 56b, a cause determination unit 57b, and a countermeasure determination unit 58.
  • the learning section 56b has the following functions in addition to the functions of the learning section 56a.
  • the learning unit 56b acquires the diagnosis result notification received by the communication device 51, and determines a countermeasure method by associating information indicating a supernatant water image included in the acquired diagnosis result notice with information specifying a countermeasure method for the diagnosis result.
  • the teacher data is stored in the recording device 52.
  • the learning unit 56b acquires training data of coping methods stored in the recording device 52.
  • the learning unit 56b performs machine learning (supervised learning) on the supernatant water image and information specifying how to deal with the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the obtained training data of the countermeasure method.
  • machine learning supervised learning
  • a learning model of how to deal with the internal state of the solid-liquid separation tank is created by associating the supernatant water image with how to deal with the internal state of the solid-liquid separation tank.
  • the learning unit 56b uses a convolutional neural network to recognize the supernatant water image.
  • the learning model of the countermeasure method classifies the supernatant water image into one of the information that specifies the countermeasure method for the internal state of the solid-liquid separation tank.
  • the learning unit 56b causes the recording device 52 to store the generated learning model of the coping method.
  • the cause determination unit 57b acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the obtained determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52. The cause determination unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause. The countermeasure determination unit 58 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a.
  • the countermeasure determination unit 58 acquires the learning model of the countermeasure stored in the recording device 52.
  • the countermeasure determination unit 58 determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
  • the countermeasure determining unit 58 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b.
  • the countermeasure determination unit 58 generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank.
  • Status notification information destined for the processing device 40b is created.
  • the countermeasure determination unit 58 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the cause determination unit 57b, and transmits the acquired status notification information to the information processing device 40b.
  • All or part of the information processing unit 53b is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • a software functional unit that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • all or part of the information processing section 53b may be realized by
  • the terminal device 45b is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the terminal device 45b is installed in a monitoring center that monitors the sewage treatment facility 10.
  • the user operates the terminal device 45b to create a supernatant water image request addressed to the monitoring device 50b that includes information requesting a supernatant water image. .
  • the terminal device 45b creates a supernatant water image request based on the user's operation.
  • the terminal device 45b transmits the created supernatant water image request to the monitoring device 50b.
  • the terminal device 45b receives the supernatant water image response sent by the monitoring device 50b in response to the supernatant water image request sent to the monitoring device 50b.
  • the terminal device 45b displays the supernatant water image included in the supernatant water image response.
  • the user refers to the supernatant water image displayed by the terminal device 45b, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank.
  • the terminal device 45b receives information indicating the supernatant water image, the diagnosis result of the internal state of the solid-liquid separation tank, information identifying the cause of the diagnosis result, and how to deal with the diagnosis result.
  • a diagnosis result notification containing information specifying the method and addressed to the monitoring device 50b is created.
  • the terminal device 45b creates a diagnosis result notification based on the user's operation.
  • the terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.
  • FIG. 17 is a diagram showing an example 1 of the operation of the monitoring system according to the second modification of the embodiment.
  • the monitoring device 50b receives the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification transmitted by the terminal device 45b, information specifying the cause of the diagnosis result, and the diagnosis result. The process of accumulating information specifying how to deal with the results will be described.
  • the monitoring device 50b performs machine learning based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank, information specifying the causes of the diagnosis results, and information specifying how to deal with the diagnosis results.
  • Step S11-6) The terminal device 45b receives the supernatant water image response transmitted by the monitoring device 50b.
  • the terminal device 45b displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response.
  • the terminal device 45b sends the monitoring device 50b as a destination, which includes a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information specifying a method to deal with the diagnosis result. Create a diagnosis result notification. (Step S12-6) The terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.
  • Step S13-6) In the monitoring device 50b, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45b.
  • the learning unit 56b acquires the diagnosis result notification received by the communication device 51, and includes information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. and information that identifies how to deal with it.
  • the learning unit 56b includes training data of diagnosis results that associate information indicating the acquired supernatant water image with diagnosis results of the internal state of the solid-liquid separation tank, and information indicating the supernatant water image and the internal state of the solid-liquid separation tank.
  • Step S14-6 In the monitoring device 50b, the learning unit 56b acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
  • the learning unit 56b acquires the teacher data of the cause stored in the recording device 52.
  • the learning unit 56b performs machine learning on the supernatant water image and the information that specifies the cause of the diagnosis of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause.
  • a learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
  • the learning unit 56b acquires training data of coping methods stored in the recording device 52.
  • the learning unit 56b performs machine learning on the supernatant water image and information specifying how to deal with the internal state of the solid-liquid separation tank, based on the acquired teaching data of the countermeasure method.
  • a learning model of how to deal with the internal state of the separation tank is generated in association with information specifying how to deal with the situation inside the separation tank.
  • the learning unit 56b causes the recording device 52 to store the generated diagnostic result learning model, cause learning model, and countermeasure learning model.
  • the diagnosis result notification may be a result of diagnosis based on a monitoring image instead of a supernatant water image.
  • step S7-6 the terminal device 45b creates a surveillance image request
  • step S8-1 the terminal device 45b transmits the created surveillance image request to the surveillance device 50b
  • step S9-1 the surveillance device 50b monitors the An image may be created, and the monitoring device 50b may transmit a monitoring image response to the terminal device 45b in step S10-1.
  • FIG. 18 is a diagram illustrating a second example of the operation of the monitoring system according to the second modification of the embodiment.
  • monitoring device 50b acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal.
  • a process in which the monitoring device 50b determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described. Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-7 to S6-7, the description thereof will be omitted here.
  • Step S7-7-7 In the monitoring device 50b, the current state determining unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data. (Step S8-7) In the monitoring device 50b, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52. (Step S9-7) In the monitoring device 50b, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
  • Step S10-7 In the monitoring device 50b, the cause determination unit 57b acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. The cause determination unit 57b determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57b determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process ends.
  • Step S11-7) In the monitoring device 50b, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. .
  • Step S12-7) In the monitoring device 50b, the cause determination unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
  • Step S13-7) In the monitoring device 50b, the countermeasure determination unit 58 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a.
  • the countermeasure determination unit 58 acquires the learning model of the countermeasure stored in the recording device 52. (Step S14-7) In the monitoring device 50b, the countermeasure determination unit 58 determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method. (Step S15-7) In the monitoring device 50b, the countermeasure determining unit 58 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b.
  • the countermeasure determination unit 58 generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank.
  • Status notification information destined for the processing device 40b is created.
  • the countermeasure determination unit 58 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the countermeasure method determining unit 58, and transmits the acquired status notification information to the information processing device 40b.
  • the monitoring device 50 creates a supernatant water image in step S7-7, but this is just an example.
  • the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps. Since FIG. 9 can be applied to the process in which the monitoring device 50b transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40b, a description thereof will be omitted.
  • the monitoring system 100b is connected to one sewage treatment facility 10, but the present invention is not limited to this example.
  • the monitoring system 100b may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100b may be connected to one sewage treatment facility 10. If the monitoring system 100b is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B. For example, there is a high possibility that it will be determined as an "abnormality" and that information specifying the cause of the abnormality and information specifying a countermeasure will be determined and output.
  • the monitoring device 50b since the monitoring device 50b is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
  • a device that performs machine learning may be implemented as a device different from the monitoring device 50b.
  • the learning device acquires the supernatant water image and information specifying how to deal with the diagnosis result based on the supernatant water image from the monitoring device 50b. do.
  • the learning section of the learning device identifies how to deal with the supernatant water image and the diagnostic results inside the solid-liquid separation tank based on the supernatant water image and information that specifies how to deal with the diagnostic results based on the supernatant water image.
  • a third learning model expressing the relationship with the information is generated by machine learning (supervised machine learning).
  • the information processing device 40b may notify the operator of the sewage treatment equipment 10 of the countermeasure included in the status notification, or may send control information for causing the equipment control device 19 to execute the countermeasure. may be created and the created control information may be sent to the equipment control device 19.
  • the solid-liquid separation tank it is determined whether the internal state of the solid-liquid separation tank is normal, abnormal, or malfunctioning based on the supernatant water image, and the solid-liquid separation tank Based on whether the internal condition of the sludge is determined to be abnormal or malfunctioning, it is possible to promote sludge extraction, introduce sludge settling agents, etc., reduce the injection speed, reduce the input amount, and remove sludge.
  • promotion of is stored has been described, it is not limited to this example.
  • the situation may be classified into one or more methods based on whether the determination result of the internal state of the solid-liquid separation tank is abnormal or malfunctioning.
  • the first modification of the embodiment further includes a process of determining information for specifying a method to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank.
  • This example is not limited to this example.
  • the embodiment may further include a process of determining information that specifies how to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank.
  • the monitoring device 50b includes the supernatant water image and information specifying how to deal with the diagnosis result based on the supernatant water image in the monitoring device 50a according to the embodiment.
  • the third learning model is used as a learning model of a countermeasure method that has learned the relationship between the supernatant water image and information specifying a countermeasure method for the diagnosis result inside the solid-liquid separation tank.
  • a countermeasure determination unit 58 is provided that determines information specifying a countermeasure for the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank.
  • the output unit includes information specifying how to deal with the internal state of the solid-liquid separation tank determined by the solution determination unit 58 using the supernatant water image of the solid-liquid separation tank to be diagnosed and the third learning model. further output.
  • the monitoring device 50b performs diagnosis using the third learning model that has learned the relationship between the supernatant water image and information specifying how to deal with the diagnosis result inside the solid-liquid separation tank. Since information specifying how to deal with the internal state of the solid-liquid separation tank can be determined from the supernatant water image of the target solid-liquid separation tank, it is possible to monitor how to deal with the internal state of the solid-liquid separation tank.
  • the third learning model it is possible to judge how to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of diagnosing how to deal with internal conditions, human experience is not required and the variation in diagnostic results can be reduced.
  • FIG. 19 is a diagram showing a configuration example of a monitoring system according to modification 3 of the embodiment of the present invention.
  • the monitoring system 100c according to the third modification of the embodiment not only diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and concentration tanks, but also detects signs of change.
  • the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment.
  • the monitoring system 100c includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40c, a terminal device 45c, and a monitoring device 50c.
  • the gateway device 31, the information processing device 40c, the terminal device 45c, and the monitoring device 50c are connected via the network NW.
  • the data calculation unit 34 transmits the digital signal to the monitoring device 50c via the gateway device 31.
  • the monitoring device 50c is realized by a device such as a personal computer, a server, or an industrial computer.
  • the monitoring device 50c includes a communication device 51, a recording device 52, an information processing unit 53c, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
  • the recording device 52 stores a program (monitoring application) executed by the monitoring device 50c.
  • the recording device 52 also stores pixel data output by the information processing section 53c.
  • the recording device 52 stores training data of a diagnosis result that associates information indicating a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant data based on the training data of the diagnosis result.
  • a learning model of diagnosis results obtained by machine learning of the relationship between the clear water image and the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data.
  • a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and a countermeasure method.
  • a learning model of a countermeasure obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure for the internal state of the solid-liquid separation tank is stored based on the training data.
  • the recording device 52 stores change teacher data in which information indicating a supernatant water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, and change teacher data. Based on the data, a learning model of changes obtained by machine learning of the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank is stored.
  • the information processing unit 53c functions as, for example, a graphics generation unit 54, a current status determination unit 55a, a learning unit 56c, a cause determination unit 57b, a countermeasure determination unit 58c, and a change sign derivation unit 59.
  • the learning section 56c has the following functions in addition to the functions of the learning section 56b.
  • the learning unit 56c acquires the change teacher data stored in the recording device 52.
  • the learning unit 56c performs machine learning (supervised learning) on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data.
  • the learning unit 56c uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the change learning model classifies the supernatant water image into one of the information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image was obtained. be done.
  • the learning unit 56c causes the recording device 52 to store the generated change learning model.
  • the countermeasure determination unit 58c acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58c acquires a learning model of the countermeasure stored in the recording device 52. The countermeasure determination unit 58c determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
  • the change sign deriving unit 59 acquires information indicating the supernatant water image from the current state determining unit 55a. The change sign deriving unit 59 acquires the learning model of change stored in the recording device 52.
  • the change sign deriving unit 59 derives a sign of change in the solid-liquid separation tank of the acquired supernatant water image based on the acquired change learning model.
  • All or part of the information processing unit 53c is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52.
  • all or part of the information processing section 53c may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
  • the information processing device 40 can be applied to the information processing device 40c.
  • the terminal device 45c is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the terminal device 45c is installed in a monitoring center that monitors the sewage treatment facility 10.
  • the user operates the terminal device 45c to create a supernatant water image request addressed to the monitoring device 50c that includes information requesting a supernatant water image. .
  • the terminal device 45c creates a supernatant water image request based on the user's operation.
  • the terminal device 45c transmits the created supernatant water image request to the monitoring device 50c.
  • the terminal device 45c receives the supernatant water image response sent by the monitoring device 50c in response to the supernatant water image request sent to the monitoring device 50c.
  • the terminal device 45c displays the supernatant water image included in the supernatant water image response.
  • the user refers to the supernatant water image displayed by the terminal device 45c, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank, A method to deal with the internal state of the solid-liquid separation tank is specified, the internal state of the solid-liquid separation tank after the supernatant water image is obtained is estimated, and changes therein are identified.
  • the user can receive information indicating the supernatant water image, the diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information indicating the internal state of the solid-liquid separation tank.
  • Diagnosis results addressed to the monitoring device 50c including information specifying how to deal with the internal condition and information specifying changes in the internal condition of the solid-liquid separation tank after the supernatant water image is obtained. Let notifications be created.
  • the terminal device 45c creates a diagnosis result notification based on the user's operation.
  • the terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c.
  • FIG. 20 is a diagram illustrating a first example of the operation of the monitoring system according to the third modification of the embodiment.
  • the monitoring device 50c receives the information indicating the supernatant water image included in the diagnosis result notification sent by the terminal device 45c, the diagnosis result of the internal state of the solid-liquid separation tank, and the cause of the diagnosis result. information that specifies the diagnosis result, information that specifies how to deal with the diagnosis result, and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • Step S11-8) The terminal device 45c receives the supernatant water image response transmitted by the monitoring device 50c.
  • the terminal device 45c displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response.
  • the terminal device 45c has information indicating the supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information specifying a method for dealing with the diagnosis result. , and information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, a diagnosis result notification addressed to the monitoring device 50c is created.
  • Step S12-8) The terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c.
  • Step S13-8) In the monitoring device 50c, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45c.
  • the learning unit 56c acquires the diagnosis result notification received by the communication device 51, and acquires information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. information that specifies how to deal with the problem and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • the learning unit 56c includes teacher data of diagnosis results that associates information indicating the acquired supernatant water image with diagnosis results of the internal state of the solid-liquid separation tank, and information indicating the supernatant water image and the internal state of the solid-liquid separation tank.
  • the teacher data of the cause is associated with the information that specifies the cause of the diagnosis result of the condition
  • the teacher data of the countermeasure is associated with the information indicating the supernatant water image and the information that specifies how to deal with the diagnosis result
  • the recording device 52 stores change teacher data in which information indicating a clear water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • Step S14-8 In the monitoring device 50c, the learning unit 56c acquires training data of the diagnosis results stored in the recording device 52.
  • the learning unit 56c performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired training data of the diagnosis result.
  • a learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
  • the learning unit 56c acquires the teacher data of the cause stored in the recording device 52.
  • the learning unit 56c performs machine learning on the supernatant water image and information for specifying the cause of the diagnosis result of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause.
  • a learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
  • the learning unit 56c acquires training data of coping methods stored in the recording device 52.
  • the learning unit 56c performs machine learning on the supernatant water image and information specifying how to deal with the internal state of the solid-liquid separation tank, based on the acquired teaching data of the countermeasure method.
  • a learning model of how to deal with the internal state of the separation tank is generated in association with information specifying how to deal with the situation inside the separation tank.
  • the learning unit 56c acquires the change teacher data stored in the recording device 52.
  • the learning unit 56c performs machine learning on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data. , a change learning model is generated that associates a supernatant water image with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • Step S15-8) In the monitoring device 50c, the learning unit 56c causes the recording device 52 to store the generated diagnostic result learning model, cause learning model, countermeasure learning model, and change learning model.
  • diagnosis result notification may be the result of diagnosis based on the monitoring image instead of the supernatant water image. That is, in step S7-8, the terminal device 45c creates a surveillance image request, in step S8-8 the terminal device 45c transmits the created surveillance image request to the surveillance device 50c, and in step S9-8, the surveillance device 50c monitors the An image may be created, and the monitoring device 50c may transmit a monitoring image response to the terminal device 45c in step S10-8.
  • FIG. 21 is a diagram illustrating a second example of the operation of the monitoring system according to the third modification of the embodiment.
  • monitoring device 50c acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal.
  • a process in which the monitoring device 50c determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described. Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-9 to S6-9, the explanation here will be omitted.
  • Step S7-9 In the monitoring device 50c, the current state determination unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • Step S8-9 In the monitoring device 50c, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
  • Step S9-9) In the monitoring device 50c, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
  • the cause determination unit 57b acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a.
  • the cause determination unit 57b determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57b determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process moves to step S15-9. (Step S11-9) In the monitoring device 50c, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. . (Step S12-9) In the monitoring device 50c, the cause determining unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
  • Step S13-9) In the monitoring device 50c, the countermeasure determination unit 58c acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58c acquires a learning model of the countermeasure stored in the recording device 52.
  • Step S14-9) In the monitoring device 50c, the countermeasure determination unit 58c determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
  • Step S15-9) In the monitoring device 50c, the change sign deriving unit 59 acquires the learning model of change stored in the recording device 52. In the monitoring device 50c, the change sign deriving unit 59 detects a sign of a change in the state inside the solid-liquid separation tank in the acquired supernatant water image based on the acquired change learning model.
  • Step S16-9) In the monitoring device 50c, the change sign deriving unit 59 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current state determining unit 55a.
  • the change sign deriving unit 59 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b.
  • the change sign deriving unit 59 extracts information indicating the supernatant water image, the determination result of the internal state of the solid-liquid separation tank, information specifying the cause of the internal state of the solid-liquid separation tank, and the information indicating the internal state of the solid-liquid separation tank.
  • Status notification information addressed to the information processing device 40c is created, including information specifying how to deal with the situation and the detection result of a sign of a change in the internal status of the solid-liquid separation tank.
  • the change sign deriving unit 59 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the countermeasure method determining unit 58c, and transmits the acquired status notification information to the information processing device 40c. Note that the monitoring device 50 creates a supernatant water image in step S7-9, but this is just an example.
  • the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps. Since FIG. 9 can be applied to the process in which the monitoring device 50c transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40c, a description thereof will be omitted.
  • the monitoring system 100c is connected to one sewage treatment facility 10, but the present invention is not limited to this example.
  • the monitoring system 100c may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100c may be connected to one sewage treatment facility 10. If the monitoring system 100c is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B.
  • the monitoring device 50c since the monitoring device 50c is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
  • the third modification of the embodiment described above a case has been described in which the monitoring device 50c performs machine learning, but the present invention is not limited to this example.
  • a device that performs machine learning may be implemented as a device different from the monitoring device 50c.
  • the learning device specifies the supernatant water image and the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. information from the monitoring device 50c.
  • the learning section of the learning device analyzes the supernatant water image and the internal state of the solid-liquid separation tank based on the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • a fourth learning model representing a relationship with information specifying a change in state is generated by machine learning (supervised machine learning).
  • the information processing device 40c may notify the operator of the sewage treatment facility 10 of information that specifies a change in the internal state of the solid-liquid separation tank, which is included in the state notification.
  • the monitoring device 50c monitors the supernatant water image and the internal state of the solid-liquid separation tank after the supernatant water image is obtained in the monitoring device 50b according to the embodiment. Diagnosis is performed using the fourth learning model as a change learning model that has learned the relationship between the supernatant water image and the information identifying changes in the internal state of the solid-liquid separation tank.
  • the apparatus includes a change sign deriving unit 59 that detects a sign of a change in the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank, which is the object of the process.
  • the output unit outputs information that identifies a sign of a change in the internal state of the solid-liquid separation tank detected by the change sign derivation unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the fourth learning model. Output more.
  • the monitoring device 50c uses the fourth learning model that has learned the relationship between the supernatant water image and the information specifying the change in the internal state of the solid-liquid separation tank to detect the target of diagnosis. Since signs of changes in the internal state of the solid-liquid separation tank can be detected from the supernatant water image of the solid-liquid separation tank, changes in the internal state of the solid-liquid separation tank can be monitored.
  • the fourth learning model it is possible to detect signs of changes in the internal state of the solid-liquid separation tank from images of the supernatant water of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of detecting signs of changes in internal conditions, human experience is not required and variations in diagnostic results can be reduced.
  • FIG. 22 is a diagram illustrating a configuration example of a monitoring system according to modification 4 of the embodiment of the present invention.
  • a monitoring system 100d according to a fourth modification of the embodiment is the same as the third modification of the embodiment in which a monitoring device 50d is connected between the data processing device 30d and the gateway device 31 without going through the network NW.
  • the monitoring system 100d according to the fourth modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks, and detects signs of change.
  • the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment.
  • the sewage treatment equipment 10 is omitted.
  • the monitoring system 100d includes an ultrasonic sensor 20, a data processing device 30d, a monitoring device 50d, a gateway device 31, an information processing device 40d, and a terminal device 45d.
  • the gateway device 31, the information processing device 40d, and the terminal device 45d are connected via the network NW.
  • the data calculation unit 34 transmits the digital signal to the monitoring device 50d.
  • FIG. 23 is a diagram illustrating an example of a monitoring device of a monitoring system according to modification example 4 of the present embodiment.
  • the monitoring device 50d is realized by a device such as a personal computer, a server, or an industrial computer.
  • the monitoring device 50d includes a communication device 51, a recording device 52, an information processing section 53d, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
  • the recording device 52 stores a program (monitoring application) executed by the monitoring device 50d.
  • the recording device 52 also stores pixel data output by the information processing section 53d.
  • the recording device 52 contains training data of diagnosis results that associates information indicating a monitoring image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant water based on the training data of the diagnosis results.
  • a learning model of the diagnosis result obtained by machine learning of the relationship between the image and the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data.
  • a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
  • the recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and a countermeasure method.
  • a learning model of a countermeasure obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure for the internal state of the solid-liquid separation tank is stored based on the training data.
  • the recording device 52 stores change teacher data in which information indicating a supernatant water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, and change teacher data. Based on the data, a learning model of changes obtained by machine learning of the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank is stored.
  • the information processing unit 53d functions as, for example, a graphic generation unit 54d, a current status determination unit 55d, a learning unit 56d, a cause determination unit 57d, a countermeasure determination unit 58d, and a change sign derivation unit 59d.
  • the graphic generator 54d acquires the digital signal received by the communication device 51.
  • the graphic converting unit 54d converts the value of the acquired digital signal into pixel data.
  • the graphic converting unit 54d causes the recording device 52 to store the pixel data after converting the digital signal.
  • the graphic generation unit 54d acquires the supernatant water image request received by the communication device 51.
  • the graphic generation unit 54d acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request.
  • the graphic section 54d creates a supernatant water image based on the acquired pixel data.
  • the graphic generation unit 54d creates a clear water image response addressed to the information processing device 40d, which includes information indicating the created clear water image.
  • the graphic generator 54d outputs the created supernatant water image response to the communication device 51.
  • the graphic generating unit 54d acquires the tank internal state information request received by the communication device 51.
  • the graphic generating unit 54d acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data.
  • the graphic generating unit 54d creates an in-tank state information response addressed to the information processing device 40d, which includes information indicating the created supernatant water image.
  • the graphic generator 54d outputs the created tank state information response to the communication device 51.
  • the current state determination unit 55d acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
  • the current state determination unit 55d acquires the learning model of the diagnosis result stored in the recording device 52.
  • the current state determining unit 55d determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result. If the determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the current status determination unit 55d sends the information processing device 40d containing information indicating the determination result of the internal state of the solid-liquid separation tank as a destination. Create status notification information.
  • the current status determination unit 55d outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the current status determination unit 55d, and transmits the acquired status notification information to the information processing device 40d.
  • the current status determination unit 55d may use the measured data as is, or may include data measured over a long period of time in a limited display width by thinning out the data. good. By including data measured over a long period of time in a limited display width, changes over a longer period of time can be monitored. If it is a still image, pixel data can be picked up at arbitrary appropriate intervals and switched and displayed, but in the fourth modification of the present embodiment, new data is constantly added through measurement.
  • the fourth modification of the present embodiment several preset display time widths are prepared, and data storage areas for time widths corresponding to each of the plurality of display time widths are created.
  • an interval at which new data is added is specified, and an image database (data storage area (address)) corresponding to each of a plurality of intervals is created.
  • An operation to switch the display is performed on the monitoring device 50d, and a display time width is selected.
  • the current status determination unit 55d acquires data from the database corresponding to the selected time display width, and creates a supernatant water image using the acquired data. If the time display width is switched, data is acquired from the database corresponding to the selected time display width, and a supernatant water image is created using the acquired data. With this configuration, smooth switching can be performed without processing the data in the database in which the data is stored and without the time lag of creating a supernatant water image.
  • the learning unit 56d acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image.
  • the recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result.
  • the learning unit 56d acquires training data of the diagnosis results stored in the recording device 52.
  • the learning unit 56d performs machine learning (supervised learning) on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired diagnostic result training data.
  • a learning model for diagnosis results that correlates clear water images and the internal state of the solid-liquid separation tank is generated.
  • the learning unit 56d uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the learning model of the diagnosis result classifies the supernatant water image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank.
  • the learning unit 56d causes the recording device 52 to store the generated learning model of the diagnosis result.
  • the learning unit 56d acquires training data of coping methods stored in the recording device 52.
  • the learning unit 56d performs machine learning (supervised training) on the supernatant water image and information for specifying a response method to the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the obtained training data of the countermeasure method.
  • a learning model of how to deal with the internal state of the solid-liquid separation tank is created by associating the supernatant water image with how to deal with the internal state of the solid-liquid separation tank.
  • the learning unit 56d uses a convolutional neural network to recognize the supernatant water image.
  • the learning model of the countermeasure method classifies the supernatant water image into one of the information that specifies the countermeasure method for the internal state of the solid-liquid separation tank.
  • the learning unit 56d causes the recording device 52 to store the generated learning model of the coping method.
  • the learning unit 56d acquires the change teacher data stored in the recording device 52.
  • the learning unit 56d performs machine learning (supervised learning) on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data. learning) to generate a learning model of changes that associates a supernatant water image with information that specifies changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • the learning unit 56d uses a convolutional neural network to recognize the supernatant water image.
  • the change learning model classifies the supernatant water image into one of the information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image was obtained. be done.
  • the learning unit 56d causes the recording device 52 to store the generated learning model of change.
  • the cause determination unit 57d acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55d.
  • the cause determination unit 57d acquires the learning model of the cause stored in the recording device 52.
  • the cause determination unit 57d determines information specifying the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
  • the cause determining unit 57d generates information including information indicating the supernatant water image, information indicating the internal state of the solid-liquid separation tank, and information indicating the determination result of information specifying the cause of the internal state of the solid-liquid separation tank.
  • Status notification information destined for the processing device 40d is created.
  • the cause determination unit 57d outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the cause determination unit 57d, and transmits the acquired status notification information to the information processing device 40d.
  • the countermeasure determination unit 58d acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55d. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58d acquires the learning model of the countermeasure stored in the recording device 52. The countermeasure determination unit 58d determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method. The countermeasure determination unit 58d acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determination unit 57d.
  • the countermeasure determination unit 58d generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank. Status notification information destined for the processing device 40d is created. The countermeasure determination unit 58d outputs the created status notification information to the communication device 51.
  • the change sign deriving unit 59d acquires information indicating the supernatant water image from the current state determining unit 55d.
  • the change sign deriving unit 59d acquires the learning model of change stored in the recording device 52.
  • the change sign deriving unit 59d derives a sign of change in the solid-liquid separation tank from the acquired supernatant water image based on the acquired change learning model.
  • All or part of the information processing unit 53d is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be.
  • a functional unit hereinafter referred to as a software functional unit
  • all or part of the information processing section 53c may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
  • the information processing device 40 can be applied to the information processing device 40d.
  • the terminal device 45d is realized by a device such as a personal computer, a server, or an industrial computer.
  • An example of the terminal device 45d is installed in a monitoring center that monitors the sewage treatment facility 10.
  • the user operates the terminal device 45d to create a supernatant water image request addressed to the monitoring device 50d that includes information requesting a supernatant water image. .
  • the terminal device 45d creates a supernatant water image request based on the user's operation.
  • the terminal device 45d transmits the created supernatant water image request to the monitoring device 50d.
  • the terminal device 45d receives the supernatant water image response sent by the monitoring device 50d in response to the supernatant water image request sent to the monitoring device 50d.
  • the terminal device 45d displays the supernatant water image included in the supernatant water image response.
  • the user refers to the supernatant water image displayed by the terminal device 45d, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank, A method to deal with the internal state of the solid-liquid separation tank is specified, the internal state of the solid-liquid separation tank after the supernatant water image is obtained is estimated, and changes therein are identified.
  • the user can receive information showing the supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information indicating the internal state of the solid-liquid separation tank.
  • Diagnosis results addressed to the monitoring device 50d including information specifying how to deal with the internal condition and information specifying changes in the internal condition of the solid-liquid separation tank after the supernatant water image is obtained. Let notifications be created.
  • the terminal device 45d creates a diagnosis result notification based on the user's operation.
  • the terminal device 45d transmits the created diagnosis result notification to the monitoring device 50d.
  • FIG. 24 is a diagram illustrating an example 1 of operation of the monitoring system according to modification 4 of the embodiment.
  • the monitoring device 50d receives the information indicating the supernatant water image included in the diagnosis result notification sent by the terminal device 45d, the diagnosis result of the internal state of the solid-liquid separation tank, and the cause of the diagnosis result. information that specifies the diagnosis result, information that specifies how to deal with the diagnosis result, and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
  • Steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-10 to S10-10, and steps S11-8 to S15-8 in FIG. 20 can be applied to steps S11-10 to S15-10. , the explanation here is omitted.
  • FIG. 25 is a diagram illustrating a second example of the operation of the monitoring system according to the fourth modification of the embodiment.
  • monitoring device 50d acquires the digital signal transmitted by data processing device 30d, and creates a supernatant water image based on the acquired digital signal.
  • a process in which the monitoring device 50d determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described.
  • Steps S1-1 to S6-11 can be applied to steps S1-1 to S6-1 in FIG. 7, and steps S7-11 to S17-11 can be applied to steps S7-9 to S17-9 in FIG. , the explanation here is omitted.
  • FIG. 9 can be applied to the process in which the monitoring device 50d transmits information indicating the supernatant water image based on the in-tank state information request transmitted by the information processing device 40d, a description thereof will be omitted.
  • the monitoring device 50d is connected between the data processing device 30d and the gateway device 31 without going through the network NW.
  • the present invention can also be applied to a case where the monitoring device 50 is connected between the data processing device 30 and the gateway device 31 without going through the network NW.
  • Modification 1 of the embodiment can also be applied to a case where the monitoring device 50a is connected between the data processing device 30 and the gateway device 31 without going through the network NW.
  • the present invention can also be applied to a case where the monitoring device 50b is connected between the data processing device 30 and the gateway device 31 without going through the network NW.
  • the monitoring device 50d is connected to the sewage treatment facility by connecting the monitoring device 50d between the data processing device 30 and the gateway device 31 without going through the network NW. It can be installed at the site where 10 is installed. Therefore, the data of the data processing device 30d can be monitored in real time compared to the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW. Since the monitoring device 50d can perform the determination and derivation in real time, the time required for the determination and derivation can be shortened. Since the time required for determination and derivation can be shortened, it is possible to immediately notify the status when it is determined that there is an abnormality or malfunction.
  • the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, it is compared with the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW. This reduces the risk of data hacking and system attacks. Since the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, it is compared with the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW. Therefore, it is easy to determine the unique situation of the site (equipment), determine the cause, determine how to deal with it, and derive signs.
  • the information processing device 40d installed in the monitoring center collects information (programs, monitoring applications, learning models, image data, AI analysis results) can be updated remotely.
  • Information (mainly pixel data and AI analysis results) recorded in the recording device 52 of the monitoring device 50d installed at the site can be updated to the information processing device 40d installed remotely through the gateway device 31 and the network NW. can.
  • a monitoring system according to another embodiment has a similar configuration to the monitoring system shown in FIG. 1, but differs in the following points.
  • the recording device 52 includes training data of diagnosis results that associates information indicating a monitoring image with a diagnosis result of the interior (inside the tank) of the solid-liquid separation tank based on the monitoring image, and monitoring data based on the training data of the diagnosis results.
  • a learning model of the diagnosis result obtained by machine learning of the relationship between the image and the internal state of the solid-liquid separation tank is stored.
  • the training data of the diagnosis result is data that associates a monitoring image with a diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image.
  • one of "normal", "abnormal", and "disorder" is associated with each of the plurality of monitoring images as a diagnostic result.
  • (1) is diagnosed as normal because the supernatant water and the sludge accumulation layer are separated and the solid-liquid separation is in a good state.
  • the settling property of the sludge deteriorates and the sludge floats to the surface, so it is diagnosed as abnormal.
  • the accumulated sludge is seen to be floating up, so it is diagnosed as being in poor condition.
  • the graphic conversion unit 54 acquires the monitoring image request received by the communication device 51.
  • the graphic converting unit 54 obtains pixel data stored in the recording device 52 based on the obtained monitoring image request.
  • the graphic generator 54 creates a monitoring image based on the acquired pixel data.
  • the graphic creation unit 54 creates a monitoring image response that includes information indicating the created monitoring image and is addressed to the information processing device 40 .
  • the graphic generator 54 determines whether the created monitoring image is an error image.
  • the graphic conversion unit 54 outputs a monitoring image response including the monitoring image determined not to be an error image to the communication device 51.
  • FIG. 26 is an example of an error image.
  • the error image is a monitoring image created when the processing tank 25 cannot be measured due to reasons such as the ultrasonic sensor 20 malfunctioning or being buried in sludge.
  • An error image is an image in which the signal strength is weak both in the vertical and horizontal directions. For example, when the signal strength is below a predetermined size from a predetermined depth for a predetermined period of time, the graphic generator 54 determines that the monitoring image is an error image.
  • the graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a monitoring image based on the acquired pixel data.
  • the graphic generating unit 54 creates an in-tank state information response that includes information indicating the created monitoring image and is addressed to the information processing device 40 .
  • the current status determination unit 55 acquires the pixel data stored in the recording device 52, and creates a monitoring image based on the acquired pixel data.
  • the current status determination unit 55 determines whether the created monitoring image is an error image.
  • the determination method is the same as the determination method by the graphic generator 54.
  • the current status determination unit 55 determines the internal state of the solid-liquid separation tank in the created monitoring image based on the learning model of the acquired diagnosis result.
  • the learning unit 56 acquires the diagnosis result notification received by the communication device 51, and diagnoses the state inside the solid-liquid separation tank (inside the tank) based on information indicating a monitoring image included in the acquired diagnosis result notification and the monitoring image.
  • the teacher data of the diagnosis result associated with the result is stored in the recording device 52.
  • the learning unit 56 performs machine learning (supervised learning) on the monitoring image and the diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image, based on the acquired training data of the diagnosis result.
  • a learning model of the diagnosis results is generated in relation to the internal state of the solid-liquid separation tank.
  • the learning unit 56 uses a convolutional neural network (CNN) to recognize the monitoring image. Based on the information indicating the monitored image, the learning model of the diagnosis result classifies the monitored image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank.
  • CNN convolutional neural network
  • the information processing device 40 acquires the monitoring image included in the received tank state information response.
  • the information processing device 40 displays the acquired monitoring image.
  • the user operates the terminal device 45 to create a monitoring image request addressed to the monitoring device 50 that includes information requesting a monitoring image.
  • the terminal device 45 creates a monitoring image request based on the user's operation.
  • the terminal device 45 transmits the created monitoring image request to the monitoring device 50.
  • the terminal device 45 receives the monitoring image response sent by the monitoring device 50 in response to the monitoring image request sent to the monitoring device 50.
  • the terminal device 45 displays the monitoring image included in the monitoring image response.
  • the user refers to the monitoring image displayed by the terminal device 45 and diagnoses the internal state of the solid-liquid separation tank included in the monitoring image.
  • the user creates a diagnosis result notification addressed to the monitoring device 50 that includes information indicating the monitored image and the diagnosis result of the internal state of the solid-liquid separation tank.
  • the monitoring system uses monitoring images rather than supernatant water images. It is also determined whether the monitored image is an error image. Note that the supernatant water image may be created from the monitoring image after determining whether the monitoring image is an error image in the monitoring system. In other words, the determination as to whether or not it is an error image can be incorporated into the above-described embodiment and its modified examples.
  • FIG. 27 is a diagram illustrating an example 1 of operation of a monitoring system according to another embodiment.
  • monitoring device 50 accumulates the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by terminal device 45, and information specifying the cause of the diagnosis result. Then, machine learning is performed based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank and information specifying the causes of the diagnosis results, and a learning model of the diagnosis results and a learning model of the causes are generated. The process will be explained.
  • the ultrasonic transmitter/receiver circuit 32 In the data processing device 30 , the ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 . (Step S2-12) In the data processing device 30, the ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20. (Step S3-12) In the data processing device 30 , the ultrasonic transmission/reception circuit 32 outputs the received electrical signal to the data conversion circuit 33 . The data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32. The data conversion circuit 33 amplifies the acquired electrical signal. The data conversion circuit 33 performs masking processing on the amplified electrical signal.
  • the data conversion circuit 33 converts the amplified electrical signal into a digital signal by digitally processing the signal intensity based on the result of masking processing.
  • the data calculation unit 34 acquires a digital signal from the data conversion circuit 33, and performs a temperature correction calculation related to position (distance) information and an interface level determination calculation on the acquired digital signal.
  • the data calculation unit 34 transmits a digital signal on which temperature correction calculations related to position (distance) information and interface level determination calculations have been performed to the monitoring device 50 via the gateway device 31 .
  • the communication device 51 receives the digital signal transmitted by the data processing device 30.
  • the graphic generator 54 acquires the digital signal received by the communication device 51.
  • the graphic converting unit 54 converts the values of the acquired digital signals into pixel data.
  • the graphic converting unit 54 causes the recording device 52 to store the pixel data converted into digital signals.
  • the terminal device 45 creates a monitoring image request.
  • the terminal device 45 transmits the created monitoring image request to the monitoring device 50.
  • the communication device 51 receives the monitoring image request transmitted by the terminal device 45.
  • the graphic conversion unit 54 acquires the monitoring image request received by the communication device 51.
  • the graphic converting unit 54 obtains pixel data stored in the recording device 52 based on the obtained monitoring image request.
  • the graphic generator 54 creates a monitoring image based on the acquired pixel data.
  • the graphic section 54 includes information indicating the created monitoring image.
  • a monitoring image response addressed to the terminal device 45 is created.
  • the graphic generator 54 determines whether the created monitoring image is an error image.
  • Step S9b-12 The graphic creation unit 54 ends the operation when the created monitoring image is an error image. This makes it possible to prevent error images from being included in the teacher data.
  • the graphic generation unit 54 may notify the terminal device 45 that the monitoring image is an error image.
  • Step S10-12 In the monitoring device 50, the graphic conversion unit 54 outputs the created monitoring image response to the communication device 51 when the created monitoring image is not an error image.
  • the communication device 51 acquires the monitoring image response output by the graphic conversion unit 54 and transmits the acquired monitoring image response to the terminal device 45 .
  • the terminal device 45 receives the monitoring image response sent by the monitoring device 50.
  • the terminal device 45 displays the monitoring image by performing image processing on information indicating the monitoring image included in the received monitoring image response.
  • the terminal device 45 creates a diagnosis result notification including information indicating the monitored image and the result of diagnosing the monitored image.
  • the terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
  • the communication device 51 receives the diagnosis result notification sent by the terminal device 45.
  • the learning unit 56 acquires the diagnosis result notification received by the communication device 51, and diagnoses the state inside the solid-liquid separation tank (inside the tank) based on information indicating a monitoring image included in the acquired diagnosis result notification and the monitoring image.
  • the teacher data of the diagnosis result associated with the result is stored in the recording device 52.
  • Step S14-12 In the monitoring device 50, the learning unit 56 acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56 performs machine learning on the monitoring image and the diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image based on the acquired training data of the diagnosis result. Generates a learning model of diagnostic results that correlates with internal states. (Step S15-12) In the monitoring device 50, the learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
  • FIG. 28 is a diagram illustrating a second example of the operation of a monitoring system according to another embodiment.
  • monitoring device 50 acquires the digital signal transmitted by data processing device 30, and creates a monitoring image based on the acquired digital signal.
  • a process in which the monitoring device 50 determines the internal state of the solid-liquid separation tank based on the created monitoring image will be described.
  • Steps S1-13 to S6-13 can be applied to steps S1-12 to S6-12 in FIG. 27, so the description thereof will be omitted here.
  • Step S7-13 In the monitoring device 50, the current state determining unit 55 acquires the pixel data stored in the recording device 52, and creates a monitoring image based on the acquired pixel data.
  • Step S8-13 In the monitoring device 50, the current state determining unit 55 acquires the learning model of the diagnosis result stored in the recording device 52. (Step S8a-13) The current status determination unit 55 determines whether the created monitoring image is an error image. (Step S9b-12) The current status determination unit 55 ends the operation when the created monitoring image is an error image. If the created monitoring image is an error image, the current status determination unit 55 may output a status notification that the monitoring image is an error image to the information processing device 40 via the communication device 51. (Step S9-13) In the monitoring device 50, the current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created monitoring image based on the learning model of the acquired diagnosis result.
  • Step S10-13 In the monitoring device 50, the current state determination unit 55 determines whether the determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. The current state determination unit 55 terminates when the determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormal, that is, it is determined to be normal. (Step S11-13) In the monitoring device 50, when the current state determination unit 55 determines that the internal state of the solid-liquid separation tank is malfunctioning or abnormal, the current status determination unit 55 transmits information indicating the determination result of the internal state of the solid-liquid separation tank. Create status notification information with the information processing device 40 as the destination.
  • Step S12-13 In the monitoring device 50, the current status determining unit 55 outputs the created status notification information to the communication device 51.
  • the communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
  • FIG. 29 is a diagram illustrating a third example of the operation of the monitoring system according to this embodiment.
  • the monitoring device 50 transmits information indicating a monitored image based on the tank internal state information request transmitted by the information processing device 40 .
  • Steps S1-14 to S6-14 can be applied to steps S1-12 to S6-12 in FIG. 7, so the description thereof will be omitted here.
  • Step S7-14 The information processing device 40 creates an in-tank state information request based on the user's operation.
  • Step S8-14 The information processing device 40 transmits the created tank state information request to the monitoring device 50.
  • Step S9-14 In the monitoring device 50, the communication device 51 receives the tank state information request transmitted by the information processing device 40.
  • the graphic generation unit 54 acquires the tank internal state information request received by the communication device 51.
  • the graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a monitoring image based on the acquired pixel data.
  • the graphic generator 54 determines whether the created monitoring image is an error image.
  • Step S9b-14 The graphic creation unit 54 ends the operation when the created monitoring image is an error image.
  • the graphic generation unit 54 may output an in-tank state information response including information indicating that the monitoring image is an error image to the information processing device 40 via the communication device 51.
  • the graphic generation unit 54 includes information indicating the created monitoring image.
  • An in-tank status information response addressed to the information processing device 40 is created.
  • the graphic section 54 outputs the created tank state information response to the communication device 51 .
  • the communication device 51 acquires the in-tank state information response outputted by the graphic generator 54 and transmits the obtained in-tank state information response to the information processing device 40 .
  • the information processing device 40 receives the in-tank state information response transmitted by the monitoring device 50, and acquires information indicating the monitoring image included in the received in-tank state information response.
  • the information processing device 40 displays the surveillance image by performing image processing on information indicating the acquired surveillance image. With this configuration, the user of the information processing device 40 can check the internal state of the solid-liquid separation tank.
  • the monitoring device 50 does not use monitoring images that are error images to create a learning model. Furthermore, the monitoring device 50 does not perform determination using the learning model on error images. This can prevent the learning model from erroneously diagnosing the error image as normal.
  • the monitoring image is an error image
  • the portion of the error image where the signal strength is small is created as a supernatant water image
  • a computer program for realizing the functions of each device described above may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed.
  • the "computer system” here may include hardware such as an OS and peripheral devices.
  • “computer-readable recording media” refers to flexible disks, magneto-optical disks, ROMs, writable non-volatile memories such as flash memory, portable media such as DVDs (Digital Versatile Discs), and media built into computer systems.
  • a storage device such as a hard disk.
  • “computer-readable recording medium” refers to volatile memory (for example, DRAM (Dynamic It also includes those that retain programs for a certain period of time, such as Random Access Memory).
  • the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium.
  • the "transmission medium” that transmits the program refers to a medium that has a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
  • the above-mentioned program may be for realizing a part of the above-mentioned functions.
  • it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
  • a monitoring system a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater.
  • Data processing Device 31...Gateway device, 32...Ultrasonic transmission/reception circuit, 33...Data conversion circuit, 34...Data calculation section, 35...Image data storage section, 36...Display switching operation section, 37...Image data display section, 40, 40a, 40b, 40c, 40d... Information processing device, 45, 45a, 45b, 45c, 45d... Terminal device, 50, 50a, 50b, 50c, 50d... Monitoring device, 51... Communication device, 52...
  • Recording device 53, 53a, 53b, 53c...Information processing section, 54, 54d...Graphicization section, 55, 55a, 55d...Current status determination section, 56, 56a, 56b, 56c, 56d...Learning section, 57, 57b, 57d...Cause determination section , 58, 58c, 58d... Coping method determining unit, 59, 59d... Change sign deriving unit, 100, 100a, 100b, 100c, 100d... Monitoring system

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

This monitoring system comprises: a determination unit that determines the internal state of a solid-liquid separation tank to be diagnosed from a supernatant water image representing the supernatant water inside the solid-liquid separation tank, using a first learning model that has learned the relationship between supernatant water images, which are images representing the supernatant water inside a solid-liquid separation tank for separating waste water into solid and liquid, and the internal state of the solid-liquid separation tank, on the basis of the supernatant water images and diagnostic results based on the supernatant water images; and an output unit that outputs information identifying the internal state of the solid-liquid separation tank to be diagnosed as determined by the determination unit using the supernatant water image of the solid-liquid separation tank and the first learning model.

Description

監視システム、学習装置、監視方法、学習方法およびプログラムMonitoring systems, learning devices, monitoring methods, learning methods and programs
 本発明は、監視システム、学習装置、監視方法、学習方法およびプログラムに関する。
 本願は、2022年7月28日に日本に出願された特願2022-120673号について優先権を主張し、その内容をここに援用する。
The present invention relates to a monitoring system, a learning device, a monitoring method, a learning method, and a program.
This application claims priority to Japanese Patent Application No. 2022-120673 filed in Japan on July 28, 2022, the contents of which are incorporated herein.
 排水処理において曝気槽と沈殿槽とを持つ好気性生物処理(活性汚泥)は成熟した処理形態であり、設備としてはエンジニアリング的にほぼ完成されている。しかしながら、生産物や生産工程、生産量の変更に伴い排水が変化し、想定水質、水量を元に設備設計した時とは流入条件(基質、濃度、流量)が異なってきていることが多い。また、多品種製造への移行から変動が多く、大きくなるケースも増え、プラントの維持管理がより複雑に、難しくなってきている。加えて、水質環境基準の見直しに対応してこれまで以上に処理の安定化が要求される中、一方では処理コストの削減、すなわち電力費や廃棄物費、薬品使用量の削減が求められるようになってきている。このため、処理の状態を正確にかつ迅速に掴み、状態に合わせて適切に調整するような高度な管理が必要とされるが、このような計測監視は容易でない。 Aerobic biological treatment (activated sludge), which has an aeration tank and a settling tank in wastewater treatment, is a mature treatment form, and the equipment is almost complete in terms of engineering. However, as the products, production processes, and production volumes change, the wastewater changes, and the inflow conditions (substrate, concentration, flow rate) often differ from when the equipment was designed based on the assumed water quality and volume. In addition, due to the shift to multi-product manufacturing, there are more and more fluctuations, and the number of cases in which they become larger is increasing, making plant maintenance and management more complex and difficult. In addition, in response to the review of water quality and environmental standards, there is a need for more stable treatment than ever before, and on the other hand, there is a need to reduce treatment costs, that is, to reduce electricity costs, waste costs, and chemical consumption. It is becoming. Therefore, sophisticated management is required to accurately and quickly grasp the processing status and make appropriate adjustments according to the status, but such measurement and monitoring is not easy.
 処理の状態を監視する技術に関して、液面から垂直に超音波パルスを放射して、その反射パルスを受信した結果に基づいて、液中の浮遊混濁物から形成される界面の位置(界面深度)を測定する技術が知られている(例えば、特許文献1参照)。
 また、固液分離槽などの槽内の状態を監視する技術が知られている(例えば、特許文献2参照)。この技術は、超音波または光を送出し、懸濁物堆積層を含む水中を伝播した超音波または光を受信するセンサによる受信信号をデジタル信号に変換するA/D変換器と、デジタル信号に基づいて、槽内の界面の位置を算出する算出部と、デジタル信号を画素データに変換するグラフィック変換部と、画素データおよび界面位置データを格納するメモリと、該メモリに格納されている画素データを表示する表示部とを備える。
 また、複数の時間幅の画像情報の切り替え表示を迅速にかつ安定的に行うことができる界面レベル計が知られている(例えば、特許文献3参照)。この界面レベル計は、超音波センサと、超音波センサによる受信信号をデジタル信号に変換するA/D変換器と、デジタル信号に基づいて、懸濁物堆積層と上澄水との界面の位置を算出する算出部と、デジタル信号を所定の色階調に対応する画素データに変換するグラフィック変換部と、複数の画素データを含む画素列データの取得及び格納をそれぞれ異なる時間間隔で行う記憶領域を有するメモリと、記憶領域のいずれか1つに格納されている複数の画素列データを色階調に基づいて表示する表示領域、及び算出部により算出された前記界面の位置を表示する表示領域を有する表示部とを備える。
Regarding technology for monitoring the status of processing, the position of the interface formed from suspended turbidity in the liquid (interface depth) is determined based on the results of emitting ultrasonic pulses perpendicularly from the liquid surface and receiving the reflected pulses. A technique for measuring is known (for example, see Patent Document 1).
Furthermore, a technique for monitoring the state inside a tank such as a solid-liquid separation tank is known (for example, see Patent Document 2). This technology consists of an A/D converter that converts the received signal into a digital signal by a sensor that sends out ultrasound or light and receives the ultrasound or light that propagated through the water containing the suspended solid layer, and an A/D converter that converts the received signal into a digital signal. a calculation unit that calculates the position of the interface in the tank based on the information, a graphic conversion unit that converts the digital signal into pixel data, a memory that stores the pixel data and the interface position data, and the pixel data stored in the memory. and a display section that displays.
Furthermore, an interface level meter that can quickly and stably switch and display image information of a plurality of time widths is known (for example, see Patent Document 3). This interface level meter uses an ultrasonic sensor, an A/D converter that converts the signal received by the ultrasonic sensor into a digital signal, and detects the position of the interface between the suspended matter layer and the supernatant water based on the digital signal. A calculation unit that performs calculations, a graphics conversion unit that converts digital signals into pixel data corresponding to a predetermined color gradation, and a storage area that acquires and stores pixel string data including a plurality of pixel data at different time intervals. a display area that displays a plurality of pixel row data stored in any one of the storage areas based on color gradation, and a display area that displays the position of the interface calculated by the calculation unit. A display section having a display section.
 また、沈殿状態を計測する技術が知られている(例えば、特許文献4参照)。この技術は、沈殿池の水面から垂直下方に超音波を発信及び受信する超音波送受信手段と、超音波送受信手段で得られる反射受信波を処理する波形処理手段とを含む。波形処理手段で反射受信波の強度変化に基づいて水面下に浮遊する物質量、及び/または、沈殿物の濃度分布を計測する。
 また、汚泥堆積層内の層同士の界面を検出する技術が知られている(例えば、特許文献5参照)。この技術は、固液分離槽内の液中において、超音波または光を送出すると共に、汚泥堆積層を含む水中を伝播した超音波または光を受信するセンサを用い、該センサからの信号に基づいて、汚泥堆積層と上澄水との界面の位置を検出すると共に、該汚泥堆積層内の最上層を占める自由沈降層とその下側の凝集沈降層との界面を検出する。この技術は、該汚泥堆積層内の最上部において槽の深さ方向におけるセンサの受信信号強度分布が一定である帯域を自由沈降層とし、該自由沈降層の受信信号強度よりも受信信号強度分布が大きくなり始める位置を自由沈降層と凝集沈降層との界面とする。
Furthermore, a technique for measuring the precipitation state is known (for example, see Patent Document 4). This technique includes an ultrasonic transmitting/receiving means for transmitting and receiving ultrasonic waves vertically downward from the water surface of a settling tank, and a waveform processing means for processing reflected received waves obtained by the ultrasonic transmitting/receiving means. The waveform processing means measures the amount of substances floating under the water surface and/or the concentration distribution of sediment based on changes in the intensity of the reflected received waves.
Furthermore, a technique for detecting interfaces between layers in a sludge accumulation layer is known (for example, see Patent Document 5). This technology uses a sensor that transmits ultrasonic waves or light into the liquid in a solid-liquid separation tank and receives ultrasonic waves or light that have propagated through the water, including the sludge accumulation layer, and is based on the signals from the sensor. Then, the position of the interface between the sludge accumulation layer and the supernatant water is detected, and the interface between the free sedimentation layer occupying the uppermost layer in the sludge accumulation layer and the coagulated sedimentation layer below the free sedimentation layer is detected. In this technology, the band in which the received signal intensity distribution of the sensor in the depth direction of the tank is constant at the top of the sludge accumulation layer is defined as a free settling layer, and the received signal intensity distribution is lower than that of the free settling layer. The position where the value starts to increase is defined as the interface between the free sedimentation layer and the coagulated sedimentation layer.
特開平3-274484号公報Japanese Patent Application Publication No. 3-274484 特開2011-047761号公報JP2011-047761A 特開2011-13084号公報Japanese Patent Application Publication No. 2011-13084 特開平4-264235号公報Japanese Patent Application Publication No. 4-264235 特開2011-47760号公報Japanese Patent Application Publication No. 2011-47760
 前述した技術では、処理の状態を監視することによって得られる画像(以下「監視画像」という)は、人により解釈されていた。人は、監視画像を解釈することによって、現状の処理の状態を診断していた。また、処理の状態を診断した結果の原因について、人が経験に基づいて、診断していた。さらに、対処方法についても、人が判断していた。監視画像を解釈するには、経験が必要であり、解釈する人によって解釈結果に違いが生じる場合がある。
 本発明は上記事情に鑑みてなされたものであり、排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供することを目的とする。
In the techniques described above, images obtained by monitoring the processing status (hereinafter referred to as "monitoring images") are interpreted by humans. People diagnose the current state of processing by interpreting monitoring images. Furthermore, the causes of the results of diagnosing the processing status were diagnosed by humans based on their experience. Furthermore, people were making decisions about how to deal with the problem. Interpreting surveillance images requires experience, and the interpretation results may vary depending on the interpreter.
The present invention has been made in view of the above circumstances, and provides a monitoring system, a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater. With the goal.
 (1)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部とを有する監視システムである。
 (2)本発明の一態様は、排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した監視画像から固液分離槽の内部の状態を判定する判定部と、診断の対象である前記固液分離槽の前記監視画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部とを有し、前記監視画像は、測定不良時の画像であるエラー画像を含まない、監視システムである。
 (3)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像は、測定不良時の画像であるエラー画像を含まない。
 (4)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態となる原因を特定する情報を判定する原因判定部を有し、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第2学習モデルとを用いて前記原因判定部が判定した固液分離槽の内部の前記状態となる原因を特定する情報をさらに出力する。
 (5)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態への対処方法を特定する情報を判定する対処方法判定部を有し、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第3学習モデルとを用いて前記対処方法判定部が判定した固液分離槽の内部の前記状態への対処方法を特定する情報をさらに出力する。
 (6)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態の変化の予兆を検出する変化予兆導出部を備え、前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第4学習モデルとを用いて前記変化予兆導出部が検出した固液分離槽の内部の前記状態の変化の予兆を特定する情報をさらに出力する。
 (7)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。
 (8)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記判定部は、診断の対象である固液分離槽の内部を表した前記上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する。
 (9)本発明の一態様は、上記(1)に記載の監視システムにおいて、前記判定部が、固液分離槽の内部の前記状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の前記状態が不調と異常とのいずれかの状態であることを通知する通知部をさらに有する。
(1) One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image, Using the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, solid-liquid separation is performed from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis. a determination unit that determines the internal state of the tank; and an interior of the solid-liquid separation tank determined by the determination unit using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model. The monitoring system includes an output unit that outputs information specifying the state of the monitor.
(2) One aspect of the present invention is based on a monitoring image that is an image showing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the monitoring image of the inside of the solid-liquid separation tank. Based on this, the first learning model that has learned the relationship between the monitoring image and the internal state of the solid-liquid separation tank is used to determine the state of the solid-liquid separation tank from the monitoring image representing the inside of the solid-liquid separation tank that is the target of diagnosis. a determination unit that determines an internal state; and a determination unit that determines an internal state of the solid-liquid separation tank determined by the determination unit using the monitoring image of the solid-liquid separation tank that is a diagnosis target and the first learning model. The monitoring system has an output unit that outputs identifying information, and the monitoring image does not include an error image that is an image at the time of a measurement failure.
(3) One aspect of the present invention is the monitoring system according to (1) above, in which the supernatant water image does not include an error image that is an image at the time of poor measurement.
(4) In the monitoring system according to (1) above, one aspect of the present invention is to provide a supernatant water image and a supernatant water image based on the supernatant water image and information specifying a cause of a diagnosis result based on the supernatant water image. The solid-liquid separation tank is determined from the supernatant water image of the solid-liquid separation tank that is the target of diagnosis using the second learning model that has learned the relationship with information that specifies the cause of the diagnosis result inside the solid-liquid separation tank. has a cause determining unit that determines information that specifies the cause of the state inside the device, and the output unit is configured to output the supernatant water image of the solid-liquid separation tank that is the object of diagnosis and the second learning model. and further outputs information specifying the cause of the state inside the solid-liquid separation tank determined by the cause determining unit using the solid-liquid separation tank.
(5) One aspect of the present invention is the monitoring system according to (1) above, in which the supernatant water image is Using the third learning model that has learned the relationship between information and information that specifies how to deal with the diagnosis results inside the solid-liquid separation tank, solid-liquid analysis is performed from the supernatant water image of the solid-liquid separation tank that is the target of diagnosis. It has a countermeasure determination section that determines information specifying a countermeasure method for the condition inside the separation tank, and the output section outputs the supernatant water image of the solid-liquid separation tank that is the object of diagnosis and the third The learning model further outputs information specifying a method for dealing with the state inside the solid-liquid separation tank determined by the method determination section.
(6) In the monitoring system according to (1) above, one aspect of the present invention provides information for specifying the supernatant water image and a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. Using the fourth learning model that has learned the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank based on the a change sign deriving unit that detects a sign of a change in the state inside the solid-liquid separation tank from a clear water image, and the output unit is configured to detect the supernatant water image of the solid-liquid separation tank to be diagnosed and the fourth The learning model further outputs information that specifies a sign of a change in the state inside the solid-liquid separation tank detected by the change sign deriving unit.
(7) One aspect of the present invention is the monitoring system according to (1) above, in which the diagnosis result is based on one or both of a deposited state of solids and a suspended state of solids included in the supernatant water image. Generated based on.
(8) One aspect of the present invention is the monitoring system according to (1) above, in which the determination unit determines the solid-liquid separation tank from the supernatant water image showing the inside of the solid-liquid separation tank that is the object of diagnosis. Determine whether the internal state is normal, malfunctioning, or abnormal.
(9) In the monitoring system according to (1) above, when the determination unit determines that the state inside the solid-liquid separation tank is either malfunctioning or abnormal, the solid-liquid separation The device further includes a notification unit that notifies that the state inside the tank is either malfunction or abnormal.
 (10)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部を有する学習装置である。
 (11)本発明の一態様は、排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の状態の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部を有し、前記監視画像は、測定不良時の画像であるエラー画像を含まない、学習装置である。
 (12)本発明の一態様は、上記(10)に記載の学習装置において、前記上澄水画像は、測定不良時の画像であるエラー画像を含まない。
 (13)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を表す第2学習モデルを学習によって生成する。
 (14)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを学習によって生成する。
 (15)本発明の一態様は、上記(10)に記載の学習装置において、前記学習部は、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを生成する。
 (16)本発明の一態様は、上記(10)に記載の学習装置において、前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。
(10) One aspect of the present invention provides a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and a state of the supernatant water inside the solid-liquid separation tank. The learning device includes a learning unit that generates, through learning, a first learning model representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank based on the image-based diagnosis result.
(11) One aspect of the present invention is a monitoring image that is an image showing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater, and a diagnosis result based on the monitoring image of the internal state of the solid-liquid separation tank. a learning unit that generates a first learning model representing the relationship between the monitoring image and the internal state of the solid-liquid separation tank by learning based on the above, and the monitoring image is an error image that is an image at the time of a measurement failure. It is a learning device that does not include.
(12) One aspect of the present invention is the learning device according to (10) above, in which the supernatant water image does not include an error image that is an image at the time of poor measurement.
(13) One aspect of the present invention is the learning device according to (10) above, in which the learning unit performs a process based on the supernatant water image and information specifying a cause of a diagnosis result based on the supernatant water image. , a second learning model representing the relationship between the supernatant water image and information specifying the cause of the diagnosis result inside the solid-liquid separation tank is generated by learning.
(14) One aspect of the present invention is the learning device according to (10) above, in which the learning unit is based on the supernatant water image and information specifying how to deal with a diagnosis result based on the supernatant water image. Then, a third learning model representing the relationship between the supernatant water image and information specifying how to deal with the diagnosis result inside the solid-liquid separation tank is generated by learning.
(15) One aspect of the present invention is the learning device according to (10) above, in which the learning unit is configured to determine the supernatant water image and the internal state of the solid-liquid separation tank after the supernatant water image is obtained. A fourth learning model representing the relationship between the supernatant water image and the information specifying the change in the internal state of the solid-liquid separation tank is generated based on the information specifying the change.
(16) One aspect of the present invention is the learning device according to (10) above, in which the diagnosis result is one or both of a deposited state of solids and a suspended state of solids included in the supernatant water image. Generated based on.
 (17)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
 を有す、監視システムが実行する監視方法である。
(17) One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image, Using the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, solid-liquid separation is performed from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis. the step of determining the internal state of the tank, and the inside of the solid-liquid separation tank determined in the step of determining using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model; A monitoring method executed by a monitoring system, comprising the steps of: outputting information specifying the state of the computer.
 (18)本発明の一態様は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップを有する、学習装置が実行する学習方法である。 (18) One aspect of the present invention is based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image, This is a learning method executed by a learning device, which includes a step of generating, through learning, a first learning model representing a relationship between a supernatant water image and an internal state of a solid-liquid separation tank.
 (19)本発明の一態様は、監視システムのコンピュータに、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップとを実行させる、プログラムである。 (19) One aspect of the present invention is to provide a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, to a computer of a monitoring system, and a diagnosis based on the supernatant water image. Based on the results, the first learning model that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank is used to create a supernatant that represents the supernatant water inside the solid-liquid separation tank that is the target of diagnosis. the step of determining the internal state of the solid-liquid separation tank from the clear water image; and the step of determining the internal state of the solid-liquid separation tank using the supernatant water image of the solid-liquid separation tank that is the object of diagnosis and the first learning model. This is a program that executes the step of outputting information specifying the internal state of the solid-liquid separation tank.
 (20)本発明の一態様は、学習装置のコンピュータに、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップを実行させる、プログラムである。 (20) One aspect of the present invention is to display a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and an inside of the solid-liquid separation tank on a computer of a learning device. This program executes a step of generating, by learning, a first learning model representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank, based on the diagnosis result based on the supernatant water image.
 本発明によれば、排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供できるという効果がある。 According to the present invention, it is possible to provide a monitoring system, a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater.
本発明の実施形態に係る監視システムの構成例を示す図である。1 is a diagram showing a configuration example of a monitoring system according to an embodiment of the present invention. 超音波センサの一例を示す図である。It is a figure showing an example of an ultrasonic sensor. 本実施形態に係る監視システムのデータ処理装置の一例を示す図である。1 is a diagram illustrating an example of a data processing device of a monitoring system according to an embodiment. 本実施形態に係る監視システムの動作の一例を示す図である。It is a diagram showing an example of the operation of the monitoring system according to the present embodiment. 監視画像の一例を示す図である。FIG. 3 is a diagram showing an example of a monitoring image. 教師データの一例を示す図である。FIG. 3 is a diagram showing an example of teacher data. 本実施形態に係る監視システムの動作の例1を示す図である。FIG. 2 is a diagram showing an example 1 of the operation of the monitoring system according to the present embodiment. 本実施形態に係る監視システムの動作の例2を示す図である。It is a figure showing example 2 of operation of a monitoring system concerning this embodiment. 本実施形態に係る監視システムの動作の例3を示す図である。It is a figure showing example 3 of operation of a monitoring system concerning this embodiment. 本実施形態に係るデータ処理装置の他の例を示す図である。FIG. 7 is a diagram showing another example of the data processing device according to the present embodiment. 本発明の実施形態の変形例1に係る監視システムの構成例を示す図である。It is a figure showing the example of composition of the monitoring system concerning modification 1 of an embodiment of the present invention. 教師データの一例を示す図である。FIG. 3 is a diagram showing an example of teacher data. 実施形態の変形例1に係る監視システムの動作の例1を示す図である。It is a figure showing example 1 of operation of a monitoring system concerning modification 1 of an embodiment. 実施形態の変形例1に係る監視システムの動作の例2を示す図である。FIG. 7 is a diagram illustrating a second example of the operation of the monitoring system according to the first modification of the embodiment. 本発明の実施形態の変形例2に係る監視システムの構成例を示す図である。It is a figure showing an example of composition of a monitoring system concerning modification 2 of an embodiment of the present invention. 教師データの一例を示す図である。FIG. 3 is a diagram showing an example of teacher data. 実施形態の変形例2に係る監視システムの動作の例1を示す図である。FIG. 7 is a diagram illustrating an example 1 of operation of a monitoring system according to a second modification of the embodiment. 実施形態の変形例2に係る監視システムの動作の例2を示す図である。It is a figure showing example 2 of operation of a monitoring system concerning modification 2 of an embodiment. 本発明の実施形態の変形例3に係る監視システムの構成例を示す図である。It is a figure showing an example of composition of a monitoring system concerning modification 3 of an embodiment of the present invention. 実施形態の変形例3に係る監視システムの動作の例1を示す図である。It is a figure showing example 1 of operation of a monitoring system concerning modification 3 of an embodiment. 実施形態の変形例3に係る監視システムの動作の例2を示す図である。FIG. 7 is a diagram illustrating a second example of the operation of the monitoring system according to a third modification of the embodiment. 本発明の実施形態の変形例4に係る監視システムの構成例を示す図である。It is a figure showing an example of composition of a monitoring system concerning modification 4 of an embodiment of the present invention. 本実施形態の変形例4に係る監視システムの監視装置の一例を示す図である。It is a figure showing an example of the monitoring device of the monitoring system concerning modification 4 of this embodiment. 実施形態の変形例4に係る監視システムの動作の例1を示す図である。FIG. 7 is a diagram showing an example 1 of operation of a monitoring system according to a fourth modification of the embodiment. 実施形態の変形例4に係る監視システムの動作の例2を示す図である。FIG. 7 is a diagram showing a second example of the operation of the monitoring system according to a fourth modification of the embodiment. エラー画像の一例である。This is an example of an error image. 他の実施形態に係る監視システムの動作の例1を示す図である。It is a figure showing example 1 of operation of a monitoring system concerning other embodiments. 他の実施形態に係る監視システムの動作の例2を示す図である。It is a figure showing example 2 of operation of a monitoring system concerning other embodiments. 本実施形態に係る監視システムの動作の例3を示す図である。It is a figure showing example 3 of operation of a monitoring system concerning this embodiment.
 本実施形態の監視システム、監視方法およびプログラムを、図面を参照しつつ説明する。以下で説明する実施形態は一例に過ぎず、本発明が適用される実施形態は、以下の実施形態に限られない。
 なお、実施形態を説明するための全図において、同一の機能を有するものは同一符号を用い、繰り返しの説明は省略する。
 また、本願でいう「XXに基づいて」とは、「少なくともXXに基づく」ことを意味し、XXに加えて別の要素に基づく場合も含む。また、「XXに基づいて」とは、XXを直接に用いる場合に限定されず、XXに対して演算や加工が行われたものに基づく場合も含む。「XX」は、任意の要素(例えば、任意の情報)である。
The monitoring system, monitoring method, and program of this embodiment will be explained with reference to the drawings. The embodiments described below are merely examples, and the embodiments to which the present invention is applied are not limited to the following embodiments.
In addition, in all the figures for explaining the embodiment, parts having the same functions are denoted by the same reference numerals, and repeated explanations will be omitted.
Furthermore, "based on XX" as used herein means "based on at least XX", and includes cases where it is based on another element in addition to XX. Moreover, "based on XX" is not limited to the case where XX is used directly, but also includes the case where it is based on calculations or processing performed on XX. "XX" is an arbitrary element (for example, arbitrary information).
 [実施形態]
 (監視システム)
 図1は、本発明の実施形態に係る監視システムの構成例を示す図である。本実施形態に係る監視システム100は、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。本実施形態では、固液分離槽を備える設備の一例として、下水処理設備10について説明を続ける。
 (下水処理設備10)
 下水処理設備10の一例は、前沈殿槽11と、濃縮槽12と、貯留槽13と、脱水機14と、コンテナ15と、曝気槽16と、後沈殿槽17と、ポンプ18と、設備制御装置19とを備える。
 前沈殿槽11は、流路P1によって曝気槽16と接続されている。前沈殿槽11には、原水が導入される。前沈殿槽11は、導入された原水から初沈汚泥(引抜汚泥)を沈降分離する。沈降分離後の被処理水は、流路P1を経由して曝気槽16に導入される。
 曝気槽16は、流路P2によって後沈殿槽17と接続されている。曝気槽16は、前沈殿槽11から導入された被処理水に対して、散気管からの空気曝気により好気性処理を行う。曝気槽16において好気性処理された被処理水は、流路P2を経由して後沈殿槽17に導入される。
[Embodiment]
(Monitoring system)
FIG. 1 is a diagram showing a configuration example of a monitoring system according to an embodiment of the present invention. The monitoring system 100 according to this embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks. In this embodiment, description will be continued regarding the sewage treatment equipment 10 as an example of equipment including a solid-liquid separation tank.
(Sewage treatment equipment 10)
An example of the sewage treatment equipment 10 includes a pre-sedimentation tank 11, a concentration tank 12, a storage tank 13, a dehydrator 14, a container 15, an aeration tank 16, a post-sedimentation tank 17, a pump 18, and equipment control. A device 19 is provided.
The pre-sedimentation tank 11 is connected to the aeration tank 16 through a flow path P1. Raw water is introduced into the pre-sedimentation tank 11 . The pre-sedimentation tank 11 settles and separates initial settled sludge (drawn sludge) from introduced raw water. The water to be treated after sedimentation and separation is introduced into the aeration tank 16 via the flow path P1.
The aeration tank 16 is connected to the post-sedimentation tank 17 via a flow path P2. The aeration tank 16 performs aerobic treatment on the water to be treated introduced from the pre-sedimentation tank 11 by aerating air from an aeration pipe. The water to be treated that has been aerobically treated in the aeration tank 16 is introduced into the post-sedimentation tank 17 via the flow path P2.
 後沈殿槽17は、流路P3によってポンプ18と接続されている。ポンプ18は、流路P4と接続されている。流路P4は流路P5と流路P6とに分岐されている。流路P5は濃縮槽12と接続され、流路P6は曝気槽16と接続されている。後沈殿槽17は、曝気槽16から導入された被処理水を沈降汚泥(引抜汚泥)と上澄水とに分離する。後沈殿槽17の上澄水は、放流水として下水処理設備10の外に放流される。また、後沈殿槽17に沈殿した汚泥の一部は、余剰汚泥としてポンプ18と流路P4と流路P5とを経由して濃縮槽12へ導入される。後沈殿槽17に沈殿した汚泥の残りは、返送汚泥として、流路P4と配管P6とを経由して曝気槽16へ返送される。ポンプ18が設備制御装置19によって制御されることによって、後沈殿槽17に沈殿した汚泥のうち、所定の量の汚泥が流路P4に導入される。
 また、前沈殿槽11は、流路P7によって濃縮槽12と接続されている。濃縮槽12には、前沈殿槽11から流路P7を経由して引抜汚泥が導入される。濃縮槽12は流路P8によって前沈殿槽11と接続され、流路P9によって貯留槽13と接続される。
The post-settling tank 17 is connected to the pump 18 through a flow path P3. Pump 18 is connected to flow path P4. The flow path P4 is branched into a flow path P5 and a flow path P6. The flow path P5 is connected to the concentration tank 12, and the flow path P6 is connected to the aeration tank 16. The post-settling tank 17 separates the water to be treated introduced from the aeration tank 16 into settled sludge (drawn sludge) and supernatant water. The supernatant water in the post-sedimentation tank 17 is discharged outside the sewage treatment facility 10 as discharge water. Further, a part of the sludge settled in the post-settling tank 17 is introduced into the thickening tank 12 as surplus sludge via the pump 18, the flow path P4, and the flow path P5. The remainder of the sludge settled in the post-settling tank 17 is returned to the aeration tank 16 as return sludge via the flow path P4 and piping P6. By controlling the pump 18 by the equipment control device 19, a predetermined amount of sludge from among the sludge precipitated in the post-settling tank 17 is introduced into the flow path P4.
Further, the pre-precipitation tank 11 is connected to the concentration tank 12 through a flow path P7. The drawn sludge is introduced into the thickening tank 12 from the pre-sedimentation tank 11 via the flow path P7. The concentration tank 12 is connected to the pre-precipitation tank 11 through a flow path P8, and connected to the storage tank 13 through a flow path P9.
 濃縮槽12では、投入された汚泥は重力によって上澄水と濃縮汚泥とに分離される。上澄水は、流路P8を介して前沈殿槽11に返送される。濃縮汚泥は、濃縮槽12の底部から抜き出され、流路P9を介して貯留槽13に導入される。
 貯留槽13は、流路P10によって脱水機14と接続されている。貯留槽13は、濃縮槽12から導入された濃縮汚泥を一時的に貯める。濃縮槽12に貯められた濃縮汚泥は、脱水機14に導入される。脱水機14は、コンベヤP11によってコンテナ15と接続されている。脱水機14は、貯留槽13から導入された濃縮汚泥を脱水処理する。脱水処理することによって生じた脱水ケーキは、コンベヤP11を経由してコンテナ15へ導入される。コンテナ15は、脱水機14によって導入された脱水ケーキを収容し、収容した脱水ケーキを搬出する。
In the thickening tank 12, the introduced sludge is separated by gravity into supernatant water and thickened sludge. The supernatant water is returned to the pre-sedimentation tank 11 via the flow path P8. The thickened sludge is extracted from the bottom of the thickening tank 12 and introduced into the storage tank 13 via the flow path P9.
The storage tank 13 is connected to a dehydrator 14 through a flow path P10. The storage tank 13 temporarily stores the thickened sludge introduced from the thickening tank 12. The thickened sludge stored in the thickening tank 12 is introduced into the dehydrator 14. The dehydrator 14 is connected to the container 15 by a conveyor P11. The dehydrator 14 dehydrates the thickened sludge introduced from the storage tank 13. The dehydrated cake produced by the dehydration process is introduced into the container 15 via the conveyor P11. The container 15 accommodates the dehydrated cake introduced by the dehydrator 14, and carries out the accommodated dehydrated cake.
 (監視システム100)
 監視システム100は、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40と、端末装置45と、監視装置50とを備える。
 ゲートウェイ装置31と、情報処理装置40と、端末装置45と、監視装置50とは、ネットワークNWを介して接続される。ネットワークNWは、無線または有線による通信網である。このネットワークNWには、インターネットやイントラネットなどが含まれる。具体的には、ネットワークNWは、WAN(Wide Area Network)、LAN(Local Area Network)などによって構成される情報通信ネットワークである。このWANには、例えば、携帯電話網、PHS(Personal Handy-phone System)網、PSTN(Public Switched Telephone Network;公衆交換電話網)、専用通信回線網、およびVPN(Virtual Private Network)などが含まれる。
(Monitoring system 100)
The monitoring system 100 includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40, a terminal device 45, and a monitoring device 50.
The gateway device 31, the information processing device 40, the terminal device 45, and the monitoring device 50 are connected via a network NW. The network NW is a wireless or wired communication network. This network NW includes the Internet, an intranet, and the like. Specifically, the network NW is an information communication network configured by a WAN (Wide Area Network), a LAN (Local Area Network), and the like. This WAN includes, for example, a mobile phone network, a PHS (Personal Handy-phone System) network, a PSTN (Public Switched Telephone Network), a dedicated communication line network, and a VPN (Virtual Private Network). .
 超音波センサ20は、超音波発信回路から、パルス電圧を超音波振動子に与えて水中に超音波を発信する。本実施形態では、一例として、超音波センサ20が、後沈殿槽17に設置され、後沈殿槽の内部に超音波を発信する場合について説明を続ける。ここで、電圧[V]から音圧[dB]に転換される。振動子が微小に震えることによって、超音波を生じる。振動子の一例は、セラミック素子である。水中で”何か”に反射して返ってきた反射波を振動子が受けると起電することによって起電力が生じ、超音波受信回路が電圧を検出する。
 図2は、超音波センサの一例を示す図である。図2に示すように、超音波センサ20は送信用の振動子2である発振(発信)部21と受信用の振動子である受信部22とを備える。図2には、一例として、超音波センサ20が、発振部21と受信部22との二個の振動子を備える場合について説明する。しかし、送信用の振動子と受信用の振動子とを一つの振動子で実現してもよい。
 超音波センサ20は、汚泥等の懸濁物堆積層23とその懸濁物堆積層23の上澄水24とを貯留する後沈殿槽17(以下、処理槽25ともいう)の所定の高さ27に機構(図示なし)によって取り付けられている。超音波センサ20を計測する処理槽25に設置することによって、深さは不変となるため、深さを変更することはない。例えば深さが5mの槽であるとき、200ドットを5mに振り分けて画像データベースを作成することができる。この場合、1画素当たり2.5cmとなり、表示分解能は2.5cmとなる。例えば、計測設定時に深さを入力する設定項目があり、この設定値に基づき深さ方向データの間引きが行なわれてもよい。ある部分を拡大できるように、全データを収納していて、指示に応じて間引き表示させたり、部分的に拡大して表示(全表示)させたりしてもよい。
 発振部21は、信号生成回路(図示なし)により生成された電気信号を超音波振動子に与え、処理槽25の下面に向かって送信する。
The ultrasonic sensor 20 transmits ultrasonic waves into water by applying a pulse voltage to an ultrasonic transducer from an ultrasonic transmitting circuit. In this embodiment, as an example, a case will be continued in which the ultrasonic sensor 20 is installed in the post-settling tank 17 and transmits ultrasonic waves into the inside of the post-settling tank. Here, the voltage [V] is converted into sound pressure [dB]. Ultrasonic waves are generated by the tiny vibrations of the vibrator. An example of a vibrator is a ceramic element. When the transducer receives a reflected wave that is reflected back from something in the water, an electromotive force is generated, and the ultrasonic receiving circuit detects the voltage.
FIG. 2 is a diagram showing an example of an ultrasonic sensor. As shown in FIG. 2, the ultrasonic sensor 20 includes an oscillation (transmission) section 21 that is a transducer 2 for transmitting, and a receiving section 22 that is a transducer for receiving. In FIG. 2, as an example, a case will be described in which the ultrasonic sensor 20 includes two vibrators, an oscillating section 21 and a receiving section 22. However, the transmitting transducer and the receiving transducer may be realized by one transducer.
The ultrasonic sensor 20 is installed at a predetermined height 27 of a post-settling tank 17 (hereinafter also referred to as a treatment tank 25) that stores a suspended matter accumulation layer 23 such as sludge and supernatant water 24 of the suspended matter accumulation layer 23. by a mechanism (not shown). Since the depth remains unchanged by installing the ultrasonic sensor 20 in the processing tank 25 for measurement, the depth is not changed. For example, when the depth of a tank is 5 m, an image database can be created by dividing 200 dots into 5 m. In this case, each pixel is 2.5 cm, and the display resolution is 2.5 cm. For example, there may be a setting item for inputting the depth when setting the measurement, and data in the depth direction may be thinned out based on this setting value. All the data may be stored so that a certain part can be enlarged, and the display may be thinned out or partially enlarged (full display) in accordance with an instruction.
The oscillator 21 provides an electric signal generated by a signal generation circuit (not shown) to the ultrasonic transducer and transmits it toward the lower surface of the processing tank 25 .
 発振部21によって送信された超音波は、懸濁物堆積層23とその上澄水24との界面26や、界面26下の懸濁物や処理槽25の底部等によって反射される。反射波は、反射した物体の位置(距離、深さ)に比例した時間差(到達時間)を生じながら、次々に返ってくる。反射波の強さは、その物体の性状(≒密度)に関係し、その情報は音圧(dB)で表される。反射波は受信部22によって受信される。受信部22では、音圧が振動子を振動させ、その強さに応じた電圧が起電する。ここで、音圧[dB]から電圧[V]に転換される。受信部22は受信信号をデータ処理装置30へ出力する。データ処理装置30は、受信部22が出力した受信信号を受信し、受信した受信信号を画像データへ変換する。 The ultrasonic waves transmitted by the oscillator 21 are reflected by the interface 26 between the suspended matter accumulation layer 23 and its supernatant water 24, the suspended matter under the interface 26, the bottom of the processing tank 25, etc. The reflected waves return one after another with a time difference (arrival time) proportional to the position (distance, depth) of the reflected object. The strength of the reflected wave is related to the properties (≈density) of the object, and this information is expressed in sound pressure (dB). The reflected wave is received by the receiving section 22. In the receiving section 22, the sound pressure causes the vibrator to vibrate, and a voltage corresponding to the strength of the vibrator is generated. Here, the sound pressure [dB] is converted into voltage [V]. The receiving section 22 outputs the received signal to the data processing device 30. The data processing device 30 receives the received signal output by the receiving section 22 and converts the received signal into image data.
 図3は、本実施形態に係る監視システムのデータ処理装置の一例を示す図である。図3に示される例では、送信用の振動子と受信用の振動子とが一つの振動子で実現されている場合について説明する。
 データ処理装置30は、超音波発信受信回路32と、データ変換回路33と、データ演算部34と、画像データ格納部35とを備える。
 超音波発信受信回路32は、超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。超音波発信受信回路32は、超音波センサ20が出力した電気信号を受信する。超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。
 データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。例えば、データ変換回路33は、電気信号を信号強度に基づいて例えば256諧調に変換する。データ変換回路33は、デジタル信号をデータ演算部34へ出力する。
FIG. 3 is a diagram showing an example of a data processing device of the monitoring system according to the present embodiment. In the example shown in FIG. 3, a case will be described in which a transmitting transducer and a receiving transducer are implemented by one transducer.
The data processing device 30 includes an ultrasound transmission/reception circuit 32, a data conversion circuit 33, a data calculation section 34, and an image data storage section 35.
The ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 . The ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20. The ultrasonic transmitter/receiver circuit 32 outputs the received electrical signal to the data converter circuit 33 .
The data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32. The data conversion circuit 33 amplifies the acquired electrical signal. The data conversion circuit 33 performs masking processing on the amplified electrical signal. The data conversion circuit 33 converts the amplified electrical signal into a digital signal by digitally processing the signal intensity based on the result of masking processing. For example, the data conversion circuit 33 converts the electrical signal into, for example, 256 tones based on the signal strength. The data conversion circuit 33 outputs a digital signal to the data calculation section 34.
 データ演算部34は、データ変換回路33が出力したデジタル信号を取得する。また、データ演算部34は、超音波センサ20に設置された熱電対(図示なし)から温度データを取得する。データ演算部34は、取得した温度データを使用して水中を進行する音速の補正演算を行う。また、データ演算部34は、取得したデジタル信号に基づいて、信号の位置(=距離)を時間の関数で表す。また、データ演算部34は、取得したデジタル信号に基づいて、超音波センサ20が超音波を送信してからの時間経過に伴う反射強度(信号強度)の変化を演算する。データ演算部34は、信号の位置(=距離)を時間の関数で表した結果と超音波を送信してからの時間経過に伴う反射強度(信号強度)の変化を演算した結果とに基づいて、信号強度と位置情報とを関連付ける。データ演算部34は、信号強度と位置情報とを関連付けて一時的に格納(ストック)する。
 データ演算部34は、懸濁物堆積層23と上澄水24との界面26の位置(深さ)を算出する。例えば、データ演算部34は、超音波センサ20が超音波を送信してからの超音波の反射強度の時間経過に基づいて、反射強度が所定の閾値を超えて急激に大きくなったタイミングまでの経過時間を導出する。データ演算部34は、導出した時間経過に基づいて、界面26までの距離(界面26の位置)を算出する。データ演算部34は、界面レベルの数値のデジタルデータを画像データ格納部35へ出力する。
The data calculation unit 34 acquires the digital signal output from the data conversion circuit 33. Further, the data calculation unit 34 acquires temperature data from a thermocouple (not shown) installed in the ultrasonic sensor 20. The data calculation unit 34 uses the acquired temperature data to perform correction calculations on the speed of sound traveling in water. Further, the data calculation unit 34 expresses the position (=distance) of the signal as a function of time based on the acquired digital signal. Furthermore, the data calculation unit 34 calculates a change in reflection intensity (signal intensity) over time after the ultrasonic sensor 20 transmits the ultrasonic wave, based on the acquired digital signal. The data calculation unit 34 calculates the position (=distance) of the signal as a function of time and the change in reflection intensity (signal intensity) over time after transmitting the ultrasound. , associating signal strength with location information. The data calculation unit 34 temporarily stores (stocks) signal strength and position information in association with each other.
The data calculation unit 34 calculates the position (depth) of the interface 26 between the suspended matter accumulation layer 23 and the supernatant water 24. For example, the data calculation unit 34 calculates, based on the elapsed time of the reflected intensity of ultrasonic waves after the ultrasonic sensor 20 transmits the ultrasonic waves, up to the timing when the reflected intensity suddenly increases beyond a predetermined threshold. Derive the elapsed time. The data calculation unit 34 calculates the distance to the interface 26 (the position of the interface 26) based on the derived time passage. The data calculation unit 34 outputs numerical digital data at the interface level to the image data storage unit 35.
 データ演算部34は、ストックしていた信号強度と位置情報とを関連付けた情報と、界面レベルの数値のデジタルデータとを画像データ格納部35へ出力する。ここで、データ演算部34は、界面レベルの判定ができなかった場合には、判定エラーを示す情報を画像データ格納部35へ出力してもよい。データ演算部34は、信号強度と位置情報とを関連付けた情報と、界面レベルの数値のデジタルデータとの各々と温度データとを関連付けた情報とを画像データ格納部35へ出力してもよい。
 図4は、本実施形態に係る監視システムの動作の一例を示す図である。図4は、データ演算部34から画像データ格納部35へ出力されるデータの一例を示す。データ演算部34から画像データ格納部35へ出力されるデータの一例は瞬時値で表されている。図4は、データ演算部34から画像データ格納部35へ出力される瞬時値を二次元化して表示したものである。
 データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。図1に戻り説明を続ける。
The data calculation unit 34 outputs the stored information associating the signal strength and position information and digital data of interface level numerical values to the image data storage unit 35. Here, if the interface level cannot be determined, the data calculation section 34 may output information indicating a determination error to the image data storage section 35. The data calculation unit 34 may output to the image data storage unit 35 information that associates signal strength with position information, and information that associates digital data of numerical values at the interface level with temperature data.
FIG. 4 is a diagram illustrating an example of the operation of the monitoring system according to this embodiment. FIG. 4 shows an example of data output from the data calculation section 34 to the image data storage section 35. An example of data output from the data calculation section 34 to the image data storage section 35 is expressed as an instantaneous value. FIG. 4 shows a two-dimensional representation of the instantaneous values output from the data calculation unit 34 to the image data storage unit 35.
In the data processing device 30, the data calculation unit 34 transmits the digital signal to the monitoring device 50 via the gateway device 31. Returning to FIG. 1, the explanation will be continued.
 (監視装置50)
 監視装置50は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50は、通信装置51と、記録装置52と、情報処理部53と、各構成要素を図1に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
 通信装置51は、通信モジュールによって実現される。通信装置51は、ネットワークNWを経由して、データ処理装置30、情報処理装置40などの他の装置と通信を行う。通信装置51は、データ処理装置30が送信したデジタル信号を受信する。例えば、通信装置51は、所定の時間間隔毎に過去所定時間の間に計測されたデータを受信する。
 具体的には、通信装置51は、1時間に一回、過去1時間分のデータを受信する。また、通信装置51は、端末装置45が送信した監視画像を要求するための監視画像要求を受信する。ここで、監視画像は、固液分離槽に超音波が送信されてからの時間経過に伴う反射強度(受信強度)の変化を示す画像である。通信装置51は、受信した監視画像要求に対して、情報処理部53が出力した監視画像応答を端末装置45へ送信する。通信装置51は、送信した監視画像応答に対して、端末装置45が送信した診断結果通知を受信する。診断結果通知には、監視画像を示す情報と、固液分離槽の内部の状態の診断結果を示す情報が含まれる。
 また、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。通信装置51は、情報処理部53が出力した槽内状態情報応答を情報処理装置40へ送信する。通信装置51は、情報処理部53が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
(Monitoring device 50)
The monitoring device 50 is realized by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50 includes a communication device 51, a recording device 52, an information processing unit 53, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
The communication device 51 is realized by a communication module. The communication device 51 communicates with other devices such as the data processing device 30 and the information processing device 40 via the network NW. The communication device 51 receives the digital signal transmitted by the data processing device 30. For example, the communication device 51 receives data measured during a predetermined period of time in the past at predetermined time intervals.
Specifically, the communication device 51 receives data for the past hour once every hour. The communication device 51 also receives a monitoring image request sent by the terminal device 45 for requesting a monitoring image. Here, the monitoring image is an image showing changes in reflection intensity (reception intensity) over time after ultrasonic waves are transmitted to the solid-liquid separation tank. The communication device 51 transmits the monitoring image response output by the information processing unit 53 to the terminal device 45 in response to the received monitoring image request. The communication device 51 receives the diagnosis result notification sent by the terminal device 45 in response to the sent monitoring image response. The diagnosis result notification includes information indicating the monitoring image and information indicating the diagnosis result of the internal state of the solid-liquid separation tank.
Further, the communication device 51 receives the in-tank state information request transmitted by the information processing device 40. The communication device 51 transmits the tank state information response outputted by the information processing section 53 to the information processing device 40 . The communication device 51 acquires the status notification information output by the information processing unit 53 and transmits the acquired status notification information to the information processing device 40 .
 記録装置52は、例えば、RAM、ROM、HDD、フラッシュメモリ、又はこれらのうち複数が組み合わされたハイブリッド型記憶装置などにより実現される。記録装置52には、監視装置50により実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53が出力する画素データが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。ここで、監視画像及び監視画像に含まれる上澄水画像について説明する。
 図5は、監視画像の一例を示す。データ処理装置30は、超音波センサ20から水中下方(=底面方向)へ超音波を発信し、超音波が進行する範囲内に存在している物体に当たり返ってきた反射波を受信し、受信した反射波をデジタル信号へ変換する。
 情報処理部53は、データ処理装置30が送信したデジタル信号を取得する。情報処理部53は、取得したデジタル信号に基づいて、反射波の強度を色調に変換し、反射波が返ってくるまでの時間を距離に変換して位置情報として与え、色調と距離とを合わせて縦方向にセンサからの距離(=水深)、かつ横方向に経時的(=時系列)に連続プロットする。この連続プロットしたものが監視画像である。図5に示されるように、監視画像には、固液分離槽の底面から固液分離槽底面、レーキ、汚泥堆積層、汚泥界面、上澄水に該当する像が見られる。上澄水画像は、監視画像に含まれる上澄水の画像である。図2を用いて説明すると、監視画像は超音波センサ20による懸濁物堆積層23と上澄水24の測定結果であるのに対し、上澄水画像は超音波センサ20による上澄水24のみの測定結果である。
 図6は、教師データの一例を示す図である。図6は、診断結果の教師データを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。本実施形態では、一例として、複数の上澄水画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。図6の説明においては、便宜上監視画像により説明する。図6において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。(2)は、上澄水の深さが浅いため、異常であると診断される。(3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。図1に戻り説明を続ける。
The recording device 52 is realized by, for example, a RAM, a ROM, an HDD, a flash memory, or a hybrid storage device that is a combination of two or more of these. The recording device 52 stores a program (monitoring application) executed by the monitoring device 50. The recording device 52 also stores pixel data output from the information processing section 53.
The recording device 52 includes training data of diagnosis results that associates information indicating a supernatant water image with a diagnosis result of the interior of the solid-liquid separation tank (inside the tank) based on the supernatant water image, and data based on the training data of the diagnosis results. , a learning model of diagnosis results obtained by machine learning of the relationship between the supernatant water image and the internal state of the solid-liquid separation tank is stored. Here, the monitoring image and the supernatant water image included in the monitoring image will be explained.
FIG. 5 shows an example of a monitoring image. The data processing device 30 transmits ultrasonic waves from the ultrasonic sensor 20 downward underwater (=towards the bottom), and receives reflected waves that hit and return to objects existing within the range in which the ultrasonic waves travel. Convert reflected waves into digital signals.
The information processing unit 53 acquires the digital signal transmitted by the data processing device 30. Based on the acquired digital signal, the information processing unit 53 converts the intensity of the reflected wave into a color tone, converts the time until the reflected wave returns to a distance, provides it as position information, and matches the color tone and distance. Continuously plot the distance from the sensor (=water depth) in the vertical direction and the time course (=time series) in the horizontal direction. This continuous plot is the monitoring image. As shown in FIG. 5, images corresponding to the bottom surface of the solid-liquid separation tank, the rake, the sludge accumulation layer, the sludge interface, and the supernatant water are seen in the monitoring image. The supernatant water image is an image of supernatant water included in the monitoring image. To explain using FIG. 2, the monitoring image is the measurement result of the suspended matter deposit layer 23 and the supernatant water 24 by the ultrasonic sensor 20, whereas the supernatant water image is the measurement result of only the supernatant water 24 by the ultrasonic sensor 20. This is the result.
FIG. 6 is a diagram showing an example of teacher data. FIG. 6 shows the teaching data of the diagnosis results. The training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image. In this embodiment, as an example, one of "normal", "abnormal", and "unwell" is associated with each of the plurality of supernatant water images as a diagnostic result. In the description of FIG. 6, a monitoring image will be used for convenience. In FIG. 6, (1) is diagnosed as normal because the supernatant water has a sufficient depth. (2) is diagnosed as abnormal because the depth of the supernatant water is shallow. Case (3) is diagnosed as malfunctioning because accumulated sludge is seen floating up in the supernatant water. Returning to FIG. 1, the explanation will be continued.
 情報処理部53は、例えば、グラフィック化部54と、現状判定部55と、学習部56として機能する。
 グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。グラフィック化部54は、デジタル信号の変換後の画素データを記録装置52に記憶させる。
 グラフィック化部54は、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54は、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像に含まれる上澄水の画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含み、情報処理装置40を宛先とする上澄水画像応答を作成する。グラフィック化部54は、作成した上澄水画像応答を通信装置51へ出力する。
 グラフィック化部54は、例えば監視画像から上澄水と汚泥堆積層の界面である汚泥界面を検出し、汚泥界面から縦方向上方(水深が浅くなる方向)の画素データを上澄水画像として作成する。汚泥界面は、データ演算部34により算出される界面26である。グラフィック化部54は、データ演算部34により算出される界面26の位置を汚泥界面としてもよい。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含み、情報処理装置40を宛先とする槽内状態情報応答を作成する。グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。
The information processing unit 53 functions as, for example, a graphic generation unit 54, a current status determination unit 55, and a learning unit 56.
The graphic generator 54 acquires the digital signal received by the communication device 51. The graphic converting unit 54 converts the values of the acquired digital signals into pixel data. The graphic converting unit 54 causes the recording device 52 to store the pixel data after converting the digital signal.
The graphic generation unit 54 acquires the supernatant water image request received by the communication device 51. The graphic generation unit 54 acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request. The graphic generator 54 creates an image of supernatant water included in the monitoring image based on the acquired pixel data. The graphic generation unit 54 creates a supernatant water image response that includes information indicating the created supernatant water image and is addressed to the information processing device 40 . The graphic generation unit 54 outputs the created supernatant water image response to the communication device 51.
The graphic generation unit 54 detects a sludge interface, which is an interface between supernatant water and a sludge accumulation layer, from a monitoring image, for example, and creates pixel data vertically upward from the sludge interface (in a direction where water depth becomes shallower) as a supernatant water image. The sludge interface is the interface 26 calculated by the data calculation unit 34. The graphic section 54 may set the position of the interface 26 calculated by the data calculation section 34 as the sludge interface. The graphic generation unit 54 acquires the tank internal state information request received by the communication device 51. The graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data. The graphic generation unit 54 creates an in-tank state information response that includes information indicating the created supernatant water image and is addressed to the information processing device 40 . The graphic generator 54 outputs the created tank state information response to the communication device 51.
 現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常である場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
 現状判定部55は、上澄水画像を作成する場合に、計測したデータをそのまま使用してもよいし、間引きすることによって限られた表示幅に長時間の間に計測されたデータを含めてもよい。限られた表示幅に長時間の間に計測されたデータを含めることによって、より長い時間の変化を監視できる。仮に、静止画であるならば、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態では常に計測を行なって新しいデータが追加されていくため、任意の適当な間隔で画素データをピックアップして切替表示させた場合にはデータ処理に遅延や阻害をきたすおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。そこで、本実施形態では、予めプリセットされた表示時間幅がいくつか用意され、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域が作成される。本実施形態では、新規データを追加する間隔(インターバル)が指定され、複数のインターバルの各々に対応する画像データベース(データ格納領域(番地))が作成される。
The current state determining unit 55 acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data. The current status determination unit 55 acquires the learning model of the diagnosis result stored in the recording device 52. The current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result. If the determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the current status determination unit 55 sends the information processing device 40 containing information indicating the determination result of the internal state of the solid-liquid separation tank as a destination. Create status notification information. The current status determination unit 55 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
When creating a supernatant water image, the current status determination unit 55 may use the measured data as is, or may include data measured over a long period of time in a limited display width by thinning out the data. good. By including data measured over a long period of time in a limited display width, changes over a longer period of time can be monitored. If it is a still image, pixel data can be picked up at any appropriate interval and switched and displayed, but in this embodiment, measurement is always performed and new data is added, so pixel data can be picked up and displayed at any appropriate interval. If pixel data is picked up at regular intervals and switched for display, there is a risk that data processing will be delayed or hindered, and if measurement becomes unstable due to image display, it would be a waste of money. Therefore, in this embodiment, several preset display time widths are prepared, and data storage areas for time widths corresponding to each of the plurality of display time widths are created. In this embodiment, an interval at which new data is added is specified, and an image database (data storage area (address)) corresponding to each of a plurality of intervals is created.
 監視装置50に対して、表示を切り替える操作が行われるとともに、表示時間幅が選択される。現状判定部55は、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。仮に、時間表示幅を切り替え操作が行われた場合には、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。このように構成することによって、データが格納されるデータベースのデータを加工することなく、上澄水画像を作成するタイムラグもなく、スムーズな切り替えができる。
 学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56は、畳み込みニューラルネットワーク(CNN: Convolutional neural network)を使用して、上澄水画像を認識する。診断結果の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
 情報処理部53の全部または一部は、例えば、CPU(Central Processing Unit)などのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53の全部または一部は、LSI(Large Scale Integration)、ASIC(Application Specific Integrated Circuit)、またはFPGA(Field-Programmable Gate Array)などのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
An operation to switch the display is performed on the monitoring device 50, and a display time width is selected. The current status determination unit 55 acquires data from the database corresponding to the selected time display width, and creates a supernatant water image using the acquired data. If the time display width is switched, data is acquired from the database corresponding to the selected time display width, and a supernatant water image is created using the acquired data. With this configuration, smooth switching can be performed without processing the data in the database in which the data is stored and without the time lag of creating a supernatant water image.
The learning unit 56 acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image. The recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result. The learning unit 56 acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56 performs machine learning (supervised learning) on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired diagnostic result training data. A learning model for diagnosis results that correlates clear water images and the internal state of the solid-liquid separation tank is generated. For example, the learning unit 56 recognizes the supernatant water image using a convolutional neural network (CNN). Based on the information indicating the supernatant water image, the learning model of the diagnosis result classifies the supernatant water image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank. The learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
All or part of the information processing unit 53 is a functional unit (hereinafter referred to as a software function) realized by a processor such as a CPU (Central Processing Unit) executing a program such as a monitoring application stored in the recording device 52. ). Note that all or part of the information processing unit 53 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), or FPGA (Field-Programmable Gate Array), or may be realized by software functions. It may also be realized by a combination of parts and hardware.
 (情報処理装置40)
 情報処理装置40は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。情報処理装置40の一例は、下水処理設備10を遠隔から監視する監視センタに設置される。
 情報処理装置40は、監視装置50が送信した状態情報通知を受信した場合に、受信した状態情報通知に含まれる固液分離槽の判定結果を表示する。
 また、情報処理装置40は、オペレータが固液分離槽内の状態の情報を取得する操作に基づいて、槽内の状態を要求する情報を含む、監視装置50を宛先とする槽内状態情報要求を作成する。情報処理装置40は、作成した槽内状態情報要求を通信装置51へ送信する。
 情報処理装置40は、槽内状態情報要求に対して監視装置50が送信した槽内状態情報応答を受信する。情報処理装置40は、受信した槽内状態情報応答に含まれる上澄水画像を取得する。情報処理装置40は、取得した上澄水画像を表示する。
(Information processing device 40)
The information processing device 40 is realized by a device such as a personal computer, a server, or an industrial computer. An example of the information processing device 40 is installed in a monitoring center that remotely monitors the sewage treatment facility 10.
When the information processing device 40 receives the status information notification transmitted by the monitoring device 50, the information processing device 40 displays the determination result of the solid-liquid separation tank included in the received status information notification.
The information processing device 40 also requests tank internal status information addressed to the monitoring device 50, including information requesting the internal status of the tank, based on the operator's operation to acquire status information in the solid-liquid separation tank. Create. The information processing device 40 transmits the created tank state information request to the communication device 51.
The information processing device 40 receives the tank state information response sent by the monitoring device 50 in response to the tank state information request. The information processing device 40 acquires the supernatant water image included in the received tank state information response. The information processing device 40 displays the acquired supernatant water image.
 (端末装置45)
 端末装置45は、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45の一例は、下水処理設備10を監視する監視センタに設置される。
 ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45を操作することによって、上澄水画像を要求する情報を含む、監視装置50を宛先とする上澄水画像要求を作成させる。端末装置45は、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45は、作成した上澄水画像要求を監視装置50へ送信する。
 端末装置45は、監視装置50へ送信した上澄水画像要求に対して監視装置50が送信した上澄水画像応答を受信する。端末装置45は、上澄水画像応答に含まれる監視画像を表示する。ユーザーは、端末装置45が表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断する。
 ユーザーは、端末装置45を操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果を含む、監視装置50を宛先とする診断結果通知を作成させる。端末装置45は、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45は、作成した診断結果通知を監視装置50へ送信する。
(Terminal device 45)
The terminal device 45 is realized by a device such as a personal computer, a server, or an industrial computer. An example of the terminal device 45 is installed in a monitoring center that monitors the sewage treatment facility 10.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45 to create a supernatant water image request addressed to the monitoring device 50 that includes information requesting a supernatant water image. . The terminal device 45 creates a supernatant water image request based on the user's operation. The terminal device 45 transmits the created supernatant water image request to the monitoring device 50.
The terminal device 45 receives the supernatant water image response sent by the monitoring device 50 in response to the supernatant water image request sent to the monitoring device 50 . The terminal device 45 displays the monitoring image included in the supernatant water image response. The user refers to the supernatant water image displayed on the terminal device 45 and diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image.
By operating the terminal device 45, the user causes a diagnosis result notification addressed to the monitoring device 50 to be created, which includes information indicating the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank. The terminal device 45 creates a diagnosis result notification based on the user's operation. The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
 (監視システムの動作)
 図7は、本実施形態に係る監視システムの動作の例1を示す図である。図7を参照して、監視装置50が、端末装置45が送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果を蓄積し、蓄積した固液分離槽の内部の状態の診断結果に基づいて、機械学習を行い、診断結果の学習モデルを生成する処理について説明する。
 (ステップS1-1)
 データ処理装置30において、超音波発信受信回路32は超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。
 (ステップS2-1)
 データ処理装置30において、超音波発信受信回路32は超音波センサ20が出力した電気信号を受信する。
 (ステップS3-1)
 データ処理装置30において、超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。データ演算部34は、データ変換回路33からデジタル信号を取得し、取得したデジタル信号について、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行う。
 (ステップS4-1)
 データ処理装置30において、データ演算部34は、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行ったデジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。
 (ステップS5-1)
 監視装置50において、通信装置51は、データ処理装置30が送信したデジタル信号を受信する。グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。
 (ステップS6-1)
 監視装置50において、グラフィック化部54は、デジタル信号に変換後の画素データを記録装置52に記憶させる。
 (ステップS7-1)
 端末装置45は、上澄水画像要求を作成する。
(Operation of monitoring system)
FIG. 7 is a diagram showing an example 1 of the operation of the monitoring system according to the present embodiment. Referring to FIG. 7, the monitoring device 50 accumulates the diagnosis results of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by the terminal device 45, and monitors the accumulated internal state of the solid-liquid separation tank. A process of performing machine learning based on diagnosis results and generating a learning model of the diagnosis results will be described.
(Step S1-1)
In the data processing device 30 , the ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 .
(Step S2-1)
In the data processing device 30, the ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20.
(Step S3-1)
In the data processing device 30 , the ultrasonic transmission/reception circuit 32 outputs the received electrical signal to the data conversion circuit 33 . The data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32. The data conversion circuit 33 amplifies the acquired electrical signal. The data conversion circuit 33 performs masking processing on the amplified electrical signal. The data conversion circuit 33 converts the amplified electric signal into a digital signal by digitally processing the signal intensity based on the result of masking processing. The data calculation unit 34 acquires a digital signal from the data conversion circuit 33, and performs temperature correction calculation related to position (distance) information and interface level determination calculation on the acquired digital signal.
(Step S4-1)
In the data processing device 30, the data calculation unit 34 transmits a digital signal on which a temperature correction calculation related to position (distance) information and an interface level determination calculation have been performed to the monitoring device 50 via the gateway device 31.
(Step S5-1)
In the monitoring device 50, the communication device 51 receives the digital signal transmitted by the data processing device 30. The graphic generator 54 acquires the digital signal received by the communication device 51. The graphic converting unit 54 converts the values of the acquired digital signals into pixel data.
(Step S6-1)
In the monitoring device 50, the graphic converting unit 54 causes the recording device 52 to store the pixel data converted into digital signals.
(Step S7-1)
The terminal device 45 creates a supernatant water image request.
 (ステップS8-1)
 端末装置45は、作成した上澄水画像要求を監視装置50へ送信する。
 (ステップS9-1)
 監視装置50において、通信装置51は、端末装置45が送信した上澄水画像要求を受信する。グラフィック化部54は、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54は、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54は、作成した上澄水画像を示す情報を含む、端末装置45を宛先とする上澄水画像応答を作成する。
 (ステップS10-1)
 監視装置50において、グラフィック化部54は、作成した上澄水画像応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した上澄水画像応答を取得し、取得した上澄水画像応答を端末装置45へ送信する。
 (ステップS11-1)
 端末装置45は、監視装置50が送信した上澄水画像応答を受信する。端末装置45は、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45は、上澄水画像を示す情報と、上澄水画像を診断した結果とを含む診断結果通知を作成する。
 (ステップS12-1)
 端末装置45は、作成した診断結果通知を監視装置50へ送信する。
 (ステップS13-1)
 監視装置50において、通信装置51は、端末装置45が送信した診断結果通知を受信する。学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。
 (ステップS14-1)
 監視装置50において、学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
 (ステップS15-1)
 監視装置50において、学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
(Step S8-1)
The terminal device 45 transmits the created supernatant water image request to the monitoring device 50.
(Step S9-1)
In the monitoring device 50, the communication device 51 receives the supernatant water image request transmitted by the terminal device 45. The graphic generation unit 54 acquires the supernatant water image request received by the communication device 51. The graphic generation unit 54 acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request. The graphic generator 54 creates a supernatant water image based on the acquired pixel data. The graphic generation unit 54 creates a clear water image response addressed to the terminal device 45 that includes information indicating the created clear water image.
(Step S10-1)
In the monitoring device 50, the graphic generation unit 54 outputs the created supernatant water image response to the communication device 51. The communication device 51 acquires the supernatant water image response output by the graphic converting unit 54 and transmits the obtained supernatant water image response to the terminal device 45 .
(Step S11-1)
The terminal device 45 receives the supernatant water image response transmitted by the monitoring device 50. The terminal device 45 displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response. The terminal device 45 creates a diagnosis result notification including information indicating the supernatant water image and the result of diagnosing the supernatant water image.
(Step S12-1)
The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
(Step S13-1)
In the monitoring device 50, the communication device 51 receives the diagnosis result notification sent by the terminal device 45. The learning unit 56 acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image. The recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result.
(Step S14-1)
In the monitoring device 50, the learning unit 56 acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56 performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
(Step S15-1)
In the monitoring device 50, the learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
 なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-1において端末装置45が監視画像要求を作成し、ステップS8-1において端末装置45が作成した監視画像要求を監視装置50へ送信し、ステップS9-1において監視装置50が監視画像を作成し、ステップS10-1において監視装置50が監視画像応答を端末装置45へ送信してもよい。 Note that the diagnosis result notification may be a diagnosis result based on a monitoring image instead of a supernatant water image. That is, in step S7-1, the terminal device 45 creates a monitoring image request, in step S8-1, the terminal device 45 transmits the created monitoring image request to the monitoring device 50, and in step S9-1, the monitoring device 50 An image may be created, and the monitoring device 50 may transmit a monitoring image response to the terminal device 45 in step S10-1.
 図8は、本実施形態に係る監視システムの動作の例2を示す図である。図8を参照して、監視装置50が、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50が、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-2からS6-2は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
 (ステップS7-2)
 監視装置50において、現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
 (ステップS8-2)
 監視装置50において、現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。
 (ステップS9-2)
 監視装置50において、現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
 (ステップS10-2)
 監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であるか否かを判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもない、つまり正常と判定した場合には終了する。
 (ステップS11-2)
 監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。
 (ステップS12-2)
 監視装置50において、現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
FIG. 8 is a diagram showing a second example of the operation of the monitoring system according to the present embodiment. Referring to FIG. 8, monitoring device 50 acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal. A process in which the monitoring device 50 determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described.
Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-2 to S6-2, the description thereof will be omitted here.
(Step S7-2)
In the monitoring device 50, the current state determination unit 55 acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
(Step S8-2)
In the monitoring device 50, the current state determining unit 55 acquires the learning model of the diagnosis result stored in the recording device 52.
(Step S9-2)
In the monitoring device 50, the current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
(Step S10-2)
In the monitoring device 50, the current state determination unit 55 determines whether the determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. The current state determination unit 55 terminates when the determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormal, that is, it is determined to be normal.
(Step S11-2)
In the monitoring device 50, when the current state determination unit 55 determines that the internal state of the solid-liquid separation tank is malfunctioning or abnormal, the current status determination unit 55 transmits information indicating the determination result of the internal state of the solid-liquid separation tank. Create status notification information with the information processing device 40 as the destination.
(Step S12-2)
In the monitoring device 50, the current status determining unit 55 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
 なお、ステップS7-2において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。 Note that the monitoring device 50 creates a supernatant water image in step S7-2, but this is just an example. For example, the monitoring device 50 may create a monitoring image based on pixel data, and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps.
 図9は、本実施形態に係る監視システムの動作の例3を示す図である。図9を参照して、監視装置50が、情報処理装置40が送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理について説明する。
 ステップS1-3からS6-3は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
 (ステップS7-3)
 情報処理装置40は、ユーザーの操作に基づいて、槽内状態情報要求を作成する。
 (ステップS8-3)
 情報処理装置40は、作成した槽内状態情報要求を監視装置50へ送信する。
 (ステップS9-3)
 監視装置50において、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
 (ステップS10-3)
 監視装置50において、グラフィック化部54は、作成した上澄水画像を示す情報を含む、情報処理装置40を宛先とする槽内状態情報応答を作成する。
 (ステップS11-3)
 監視装置50において、グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した槽内状態情報応答を取得し、取得した槽内状態情報応答を情報処理装置40へ送信する。
 ステップS11-3の後、情報処理装置40は、監視装置50が送信した槽内状態情報応答を受信し、受信した槽内状態情報応答に含まれる上澄水画像を示す情報を取得する。情報処理装置40は、取得した上澄水画像を示す情報を画像処理することによって、上澄水画像を表示する。このように構成することによって、情報処理装置40のユーザーは、固液分離槽の内部の状態を確認できる。
 なお、監視装置50は、上澄水画像ではなく監視画像を作成してもよいし、槽内状態情報応答は監視画像を示す情報を含んでもよく、情報処理装置40は、取得した監視画像を示す情報を画像処理することによって、監視画像を表示してもよい。
FIG. 9 is a diagram showing a third example of the operation of the monitoring system according to the present embodiment. With reference to FIG. 9, a process in which the monitoring device 50 transmits information indicating a supernatant water image based on the tank internal state information request transmitted by the information processing device 40 will be described.
Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-3 to S6-3, the description thereof will be omitted here.
(Step S7-3)
The information processing device 40 creates an in-tank state information request based on the user's operation.
(Step S8-3)
The information processing device 40 transmits the created tank state information request to the monitoring device 50.
(Step S9-3)
In the monitoring device 50, the communication device 51 receives the tank state information request transmitted by the information processing device 40. The graphic generation unit 54 acquires the tank internal state information request received by the communication device 51. The graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data.
(Step S10-3)
In the monitoring device 50, the graphic creation unit 54 creates an in-tank state information response addressed to the information processing device 40, which includes information indicating the created supernatant water image.
(Step S11-3)
In the monitoring device 50 , the graphic section 54 outputs the created tank state information response to the communication device 51 . The communication device 51 acquires the in-tank state information response outputted by the graphic generator 54 and transmits the obtained in-tank state information response to the information processing device 40 .
After step S11-3, the information processing device 40 receives the tank state information response transmitted by the monitoring device 50, and acquires information indicating the supernatant water image included in the received tank state information response. The information processing device 40 displays the supernatant water image by performing image processing on the information indicating the obtained supernatant water image. With this configuration, the user of the information processing device 40 can check the internal state of the solid-liquid separation tank.
Note that the monitoring device 50 may create a monitoring image instead of the supernatant water image, the tank condition information response may include information indicating the monitoring image, and the information processing device 40 may create a monitoring image instead of the supernatant water image. A monitoring image may be displayed by performing image processing on the information.
 前述した実施形態では、一例として、後沈殿槽17に超音波センサ20が設置され、後沈殿槽17の内部の状態が判定される場合について説明したが、この例に限られない。例えば、前沈殿槽11に超音波センサ20が設置され、前沈殿槽11の内部の状態が判定されてもよいし、濃縮槽12に超音波センサ20が設置され、濃縮槽12の内部の状態が判定されてもよい。つまり、後沈殿槽17と前沈殿槽11と濃縮槽12との少なくとも一つに超音波センサ20が設置され、内部の状態が判定される。
 前述した実施形態では、1つの下水処理設備10に監視システム100が接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100が接続されてもよいし、1つの下水処理設備10に複数の監視システム100が接続されてもよい。仮に、複数の下水処理設備10に監視システム100が接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、出力される可能性が高い。つまり、監視装置50は、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
 前述した実施形態では、監視装置50が機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50とは別の装置で実現してもよい。この場合、学習装置は、排水を固液分離するための固液分離槽の内部を表した画像である上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とを監視装置50から取得する。学習装置は、取得した上澄水画像と固液分離槽の内部の状態の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す診断結果の学習モデルを機械学習(教師あり機械学習)によって生成する学習部を有する。
 前述した実施形態では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定する場合について説明したが、この例に限られない。例えば、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常とのいずれかであるかを判定してもよいし、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が四種類以上に分類されてもよい。
In the embodiment described above, as an example, a case has been described in which the ultrasonic sensor 20 is installed in the post-settling tank 17 and the internal state of the post-settling tank 17 is determined, but the present invention is not limited to this example. For example, an ultrasonic sensor 20 may be installed in the pre-precipitation tank 11 to determine the internal state of the pre-precipitation tank 11, or an ultrasonic sensor 20 may be installed in the concentration tank 12 to determine the internal state of the concentration tank 12. may be determined. That is, the ultrasonic sensor 20 is installed in at least one of the post-sedimentation tank 17, the pre-sedimentation tank 11, and the concentration tank 12 to determine the internal state.
In the embodiment described above, a case has been described in which the monitoring system 100 is connected to one sewage treatment facility 10, but the present invention is not limited to this example. For example, the monitoring system 100 may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100 may be connected to one sewage treatment facility 10. If the monitoring system 100 is connected to multiple sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to connect the monitoring system 100 to a plurality of sewage treatment facilities 10. If so, there is a high possibility that it will be judged as "abnormal" and output. In other words, since the monitoring device 50 is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
In the embodiment described above, a case has been described in which the monitoring device 50 performs machine learning, but the present invention is not limited to this example. For example, a device that performs machine learning may be implemented as a device different from the monitoring device 50. In this case, the learning device uses the supernatant water image, which is an image representing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image inside the solid-liquid separation tank to the monitoring device 50. Get from. The learning device generates a diagnosis result representing the relationship between the supernatant water image and the internal state of the solid-liquid separation tank based on the acquired supernatant water image and the diagnosis result based on the supernatant water image of the internal state of the solid-liquid separation tank. It has a learning section that generates a learning model by machine learning (supervised machine learning).
In the embodiment described above, a case has been described in which it is determined whether the determination result of the internal state of the solid-liquid separation tank is normal, abnormal, or malfunctioning based on the supernatant water image, but the present invention is limited to this example. do not have. For example, it may be determined whether the internal state of the solid-liquid separation tank is normal or abnormal based on the supernatant water image, or it may be determined whether the internal state of the solid-liquid separation tank is normal or abnormal based on the supernatant water image. The determination result of the state may be classified into four or more types.
 前述した実施形態において、現状判定部55は、作成した上澄水画像を過去の正常な状態の上澄水画像と比較した結果、変化があると判定される場合に、記録装置52に記憶されている診断結果の学習モデルを使用して、固液分離槽の内部の状態を判定してもよい。
 前述した実施形態において、データ処理装置30に、表示切替操作部36と、画像データ表示部37とを備えるようにしてもよい。
 図10は、本実施形態に係るデータ処理装置の他の例を示す図である。表示切替操作部36の一例は、表示切替ボタンによって構成される。画像データ表示部37の一例は、ディスプレイである。画像データ表示部37に、計測したデータをそのまま表示させてもよいし、計測したデータを間引くことによって限られた表示幅に長時間のデータを表示させてもよい。限られた表示幅に長時間のデータを表示させることによって、長時間の時間変化を監視することができる。
 仮に、画像データ表示部37に静止画を表示させる場合には、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態のように常に計測を行なって新しいデータが追加されていく場合には、画素データをピックアップして切替表示させる場合にはデータ処理に遅延や阻害が生じるおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。
 このため、本実施形態では、予めプリセットした表示時間幅をいくつか用意し、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域を作成し、新規データを追加する間隔(インターバル)を指定して、複数の表示時間幅の各々に対応する画像データベースを作成する。仮に、画像データ表示部37が縦方向(=深さ方向)に200画素、横方向(=時系列)に240画素で構成されるとしたときに1秒ごとにデータを格納した場合には横方向に4分間の表示データとなり、10秒ごとに格納した場合には横方向に40分間の表示データとなる。新規データの追加と同時に、最も古いデータを1つ消去するようにすることによって、限られたデータ領域で運用できる。また、表示幅に必要な240データ以上のデータをストックする領域を設け、スクロール表示させることによってあたかも過去からの変化を動画のようにして観察することもできる。本実施形態では、この2つのデータ格納と表示とが可能である。
In the embodiment described above, the current state determination unit 55 compares the created supernatant water image with past supernatant water images in a normal state, and if it is determined that there is a change, the current state determination unit 55 compares the created supernatant water image with the past normal state supernatant water image, and if it is determined that there is a change, the current state determination unit 55 compares the created supernatant water image with the past normal state supernatant water image, and if it is determined that there is a change, The internal state of the solid-liquid separation tank may be determined using the learning model of the diagnosis results.
In the embodiment described above, the data processing device 30 may include the display switching operation section 36 and the image data display section 37.
FIG. 10 is a diagram showing another example of the data processing device according to this embodiment. An example of the display switching operation section 36 is configured by a display switching button. An example of the image data display section 37 is a display. The image data display section 37 may display the measured data as is, or may display long-term data in a limited display width by thinning out the measured data. By displaying long-term data in a limited display width, it is possible to monitor long-term changes over time.
If a still image is to be displayed on the image data display section 37, pixel data can be picked up at any appropriate interval and switched and displayed, but as in this embodiment, measurement is always performed and new data is displayed. If more and more pixels are added, there is a risk that data processing will be delayed or hindered when pixel data is picked up and switched for display, and if measurement becomes unstable due to image display, it would be a waste of money.
For this reason, in this embodiment, several preset display time widths are prepared, a data storage area for the time width corresponding to each of the plurality of display time widths is created, and the interval at which new data is added is determined. , and create an image database corresponding to each of the plurality of display time widths. Suppose that the image data display section 37 is composed of 200 pixels in the vertical direction (=depth direction) and 240 pixels in the horizontal direction (=time series), and if data is stored every second, the horizontal The data will be displayed for 4 minutes in the direction, and if stored every 10 seconds, the data will be displayed for 40 minutes in the horizontal direction. By deleting the oldest data at the same time as new data is added, it can be operated with a limited data area. Furthermore, by providing an area for stocking 240 data or more data required for the display width and scrolling the display, changes from the past can be observed as if they were a moving image. In this embodiment, these two types of data storage and display are possible.
 前述した実施形態において、外部端末から、データ処理装置30の画像データ格納部35にアクセスして画像データ格納部35に格納されているデータを取り出すようにしてもよい。
 前述した実施形態において、外部端末からデータ処理装置30のデータ演算部34にアクセスしてもよい。この場合に、外部端末からの指令でデータ演算部34に格納されているデータを取り出して外部端末へ出力させてもよい。このように構成することによって、外部端末にデータ演算部34が出力したデータを表示させることができるため、オンラインでモニタリングが可能となる。
 また、この場合に、外部端末の指令により、データ演算部34から最新データを外部端末へ出力させてもよい。データを出力するインターバルは、外部端末で設定可能である。このように構成することによって、外部端末にデータを逐次表示させることができるため、リモート型のライブで画像監視ができる。具体的には、外部端末にインストールされる専用ソフトでデータ演算部34に付与された固有の認識番号(=パスワード)のチェックを逐次データ演算部と外部端末との間で行う。外部端末とデータ演算部との間で、1対1の通信ができるため、信号分配器等の設置による盗聴的なデータ抜き取りを防止できる。
In the embodiment described above, the image data storage section 35 of the data processing device 30 may be accessed from an external terminal and the data stored in the image data storage section 35 may be retrieved.
In the embodiment described above, the data calculation unit 34 of the data processing device 30 may be accessed from an external terminal. In this case, the data stored in the data calculation section 34 may be extracted and output to the external terminal in response to a command from the external terminal. With this configuration, the data output by the data calculation unit 34 can be displayed on the external terminal, so online monitoring is possible.
Further, in this case, the latest data may be output from the data calculation unit 34 to the external terminal in response to a command from the external terminal. The interval at which data is output can be set on an external terminal. With this configuration, data can be displayed sequentially on the external terminal, allowing remote live image monitoring. Specifically, the unique identification number (=password) given to the data calculation unit 34 is checked sequentially between the data calculation unit and the external terminal using dedicated software installed on the external terminal. Since one-to-one communication is possible between the external terminal and the data calculation unit, it is possible to prevent data extraction by eavesdropping by installing a signal distributor or the like.
 前述した実施形態において、データ処理装置30のデータ演算部34に外部端末へデータを送信する設定を行うようにしてもよい。データ演算部34は、データを送信する設定に基づいて外部端末へデータを送信するようにしてもよい。このように構成することによって、外部端末を下水処理設備10の遠隔監視に用いることができる。
 前述した実施形態において、データ処理装置30のデータ演算部34に外部のデータサーバー又は記録媒体へデータを出力する設定を行うようにしてもよい。データ演算部34は設定に基づいて、外部のデータサーバー又は記録媒体へデータを出力する。外部のデータサーバーは、データ演算部34が出力したデータに基づいてデータベースを作成する。外部のデータサーバーは、作成したデータベースに基づいて、画像を表示させてもよいし、データを加工してもよい。
 前述した実施形態において、データ処理装置30のデータ演算部34が外部端末へデータを送信する場合に、例えばRS232C規格の方式に従って送信してもよい。また、データ処理装置30のデータ演算部34が外部端末へデータを送信する場合に外部端子との間で、そのまま伝送してもよいし、信号変換器を設けて、RS422、RS485規格やUSB(Universal Serial Bus)、LAN、光ファイバーの伝送プロトコルに変換して送信してもよい。また、外部端末から、サーバーへ定期的又は不定期にデータを送信してもよい。この場合、外部端末(小型PCなど)へ、中央監視装置からデータ要求し、外部端末にデータを出力させてもよい。
 この場合、外部端末に前述した監視装置50の機能を持たせてもよい。外部端末は、データ演算部34が出力したデータを取得し、取得したデータに基づいて、上澄水画像による固液分離槽の内部の状態を判定し、その判定結果をサーバーへ出力してもよい。また、サーバーに前述した監視装置の現状判定部55の機能を持たせてもよい。外部端末は、データ演算部34が出力したデータを取得し、取得したデータをサーバーへ送信する。サーバーは、外部装置が送信したデータを取得し、取得したデータに基づいて、上澄水画像による固液分離槽の内部の状態を判定する。
In the embodiment described above, the data calculation unit 34 of the data processing device 30 may be configured to transmit data to an external terminal. The data calculation unit 34 may transmit data to an external terminal based on settings for transmitting data. With this configuration, the external terminal can be used for remote monitoring of the sewage treatment facility 10.
In the embodiment described above, the data calculation unit 34 of the data processing device 30 may be configured to output data to an external data server or recording medium. The data calculation unit 34 outputs data to an external data server or recording medium based on the settings. The external data server creates a database based on the data output by the data calculation unit 34. The external data server may display images or process data based on the created database.
In the embodiment described above, when the data calculation unit 34 of the data processing device 30 transmits data to an external terminal, the data may be transmitted according to the RS232C standard, for example. In addition, when the data calculation unit 34 of the data processing device 30 transmits data to an external terminal, it may be transmitted as is between the external terminal, or a signal converter may be provided and the data may be transmitted using the RS422, RS485 standard or USB ( It may also be converted into a transmission protocol such as Universal Serial Bus (Universal Serial Bus), LAN, or optical fiber for transmission. Further, data may be sent from the external terminal to the server regularly or irregularly. In this case, the central monitoring device may request data from an external terminal (such as a small PC) and cause the external terminal to output the data.
In this case, the external terminal may have the functions of the monitoring device 50 described above. The external terminal may acquire the data output by the data calculation unit 34, determine the internal state of the solid-liquid separation tank based on the supernatant water image based on the acquired data, and output the determination result to the server. . Further, the server may have the function of the current status determination unit 55 of the monitoring device described above. The external terminal acquires the data output by the data calculation unit 34 and transmits the acquired data to the server. The server acquires the data transmitted by the external device, and determines the internal state of the solid-liquid separation tank based on the supernatant water image based on the acquired data.
 本実施形態に係る監視システム100によれば、監視装置50は、排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した診断結果の学習モデルとしての第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する現状判定部55としての判定部と、診断の対象である固液分離槽の上澄水画像と第1学習モデルとを用いて判定部が判定した固液分離槽の内部の状態を特定する情報を出力する出力部とを有する。
 このように構成することによって、監視装置50は、上澄水画像と固液分離槽の内部の診断結果との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できるため、固液分離槽の槽内状態を監視できる。第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できることによって、人が経験に基づいて固液分離槽の内部を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。また、人が経験に基づいて固液分離槽の内部を診断する場合には、主に上澄水を見て診断していることから、監視装置50は、固液分離槽の上澄水と汚泥堆積層を含む画像から固液分離槽の内部の状態を診断するよりも、人が行う診断に近い診断を行うことができる。
 仮に現場完結型のシステム構成とした場合には槽の寸法や特性が変わらないので、過去と現在との比較が単純に行なえるので、定常時と非定常状態または異常発生の区別を容易にできる。外部から(オンライン/オフラインのどちらでもよい)事例集、最新事例等を取得し、取得した事例集、最新事例等をアップデートさせることによって、異常が検出されたとき、その異常がどんな状態であるかの判別およびその対処策の提示を、過去に発生した経験がなくかつ学習履歴がない場合でも出力させることができる。異常が発生した場合にアクセス可能なデータベースを参照できるようにすることによって、その状態が何であるか推定でき、対処策の入手を可能にできる。また、現場(設備)では起こり得ない判断をするミスを低減できる。このため、エラー判定のリスクを低くでき、また判定に要する時間も短くできる。データハッキング、システムへの攻撃のリスクを低くできる。
According to the monitoring system 100 according to the present embodiment, the monitoring device 50 displays a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and an inside of the solid-liquid separation tank. Based on the diagnosis result based on the supernatant water image, the first learning model is used as a learning model for the diagnosis result that has learned the relationship between the supernatant water image and the internal state of the solid-liquid separation tank. A determination unit as a current status determination unit 55 that determines the internal state of a solid-liquid separation tank from a supernatant water image representing the supernatant water inside a certain solid-liquid separation tank, and the supernatant water of the solid-liquid separation tank that is the subject of diagnosis. and an output section that outputs information specifying the internal state of the solid-liquid separation tank determined by the determination section using the image and the first learning model.
With this configuration, the monitoring device 50 uses the first learning model that has learned the relationship between the supernatant water image and the diagnosis results inside the solid-liquid separation tank to determine the diagnosis of the solid-liquid separation tank that is the target of diagnosis. Since the internal state of the solid-liquid separation tank can be determined from the supernatant water image representing the internal supernatant water, the internal state of the solid-liquid separation tank can be monitored. Using the first learning model, it is possible to judge the internal state of the solid-liquid separation tank from a supernatant water image representing the supernatant water inside the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of diagnosing the inside of a separation tank, no human experience is required, and variations in diagnostic results can be reduced. In addition, when a person diagnoses the inside of a solid-liquid separation tank based on experience, the diagnosis is mainly made by looking at the supernatant water, so the monitoring device 50 monitors the supernatant water and sludge accumulation in the solid-liquid separation tank. It is possible to perform a diagnosis closer to that performed by a human than diagnosing the internal state of a solid-liquid separation tank from an image including layers.
If the system is configured as an on-site system, the dimensions and characteristics of the tank will not change, making it easy to compare the past and present, making it easy to distinguish between steady state, unsteady state, or abnormality. . By acquiring a collection of cases, the latest cases, etc. from an external source (either online or offline) and updating the acquired case collection, latest cases, etc., when an abnormality is detected, what is the state of the abnormality? It is possible to output the determination of the problem and the presentation of countermeasures even if the problem has not occurred in the past and there is no learning history. By making it possible to refer to an accessible database when an abnormality occurs, it is possible to estimate the condition and obtain countermeasures. Furthermore, it is possible to reduce errors in judgments that would not occur on site (equipment). Therefore, the risk of error determination can be reduced, and the time required for determination can also be shortened. Reduces the risk of data hacking and system attacks.
 さらに、監視画像に基づく診断結果は、監視画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される。このように構成することによって、監視装置50は、上澄水画像とその上澄水画像が含まれる監視画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される診断結果の関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定できる。
 さらに、判定部は、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する。このように構成することによって、監視装置50は、上澄水画像と固液分離槽の内部の上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の診断結果との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定できる。
 さらに、判定部が、固液分離槽の内部の状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の状態が不調と異常とのいずれかの状態であることを通知する通知部をさらに有する。このように構成することによって、固液分離槽の内部の状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の状態が不調と異常とのいずれかの状態であることを通知できるため、ユーザーに固液分離槽の内部の状態に対応が必要なことを知らせることができる。
Furthermore, the diagnosis result based on the monitored image is generated based on either or both of the accumulated state of solid matter and the suspended state of solid matter included in the monitored image. With this configuration, the monitoring device 50 can perform monitoring based on either or both of the accumulated state of solids and the suspended state of solids included in the supernatant water image and the monitoring image including the supernatant water image. Using the first learning model that has learned the relationship between the generated diagnostic results, the internal state of the solid-liquid separation tank can be determined from the supernatant water image representing the supernatant water inside the solid-liquid separation tank that is the target of diagnosis. .
Further, the determination unit determines whether the internal state of the solid-liquid separation tank is normal, malfunctioning, or abnormal from the supernatant water image showing the inside of the solid-liquid separation tank that is the object of diagnosis. With this configuration, the monitoring device 50 can diagnose the supernatant water image and the diagnosis result inside the solid-liquid separation tank based on the supernatant water image and the diagnosis result based on the supernatant water image inside the solid-liquid separation tank. Using the first learning model that has learned the relationship between You can determine if there is.
Furthermore, when the determination unit determines that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal, it notifies that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal. It further includes a notification section. With this configuration, when it is determined that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal, it is possible to confirm that the internal state of the solid-liquid separation tank is either malfunctioning or abnormal. This allows the user to be notified of the need to take action regarding the internal state of the solid-liquid separation tank.
 [実施形態の変形例1]
 (監視システム)
 図11は、本発明の実施形態の変形例1に係る監視システムの構成例を示す図である。実施形態の変形例1に係る監視システム100aは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。実施形態の変形例1では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
[Modification 1 of embodiment]
(Monitoring system)
FIG. 11 is a diagram illustrating a configuration example of a monitoring system according to Modification 1 of the embodiment of the present invention. The monitoring system 100a according to the first modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks. In Modification 1 of the embodiment, the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment.
 (監視システム100a)
 監視システム100aは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40aと、端末装置45aと、監視装置50aとを備える。
 ゲートウェイ装置31と、情報処理装置40aと、端末装置45aと、監視装置50aとは、ネットワークNWを介して接続される。
 データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50aへ送信する。
 (監視装置50a)
 監視装置50aは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50aは、通信装置51と、記録装置52と、情報処理部53aと、各構成要素を図11に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
 記録装置52には、監視装置50aにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53aが出力する画素データが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
(Monitoring system 100a)
The monitoring system 100a includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40a, a terminal device 45a, and a monitoring device 50a.
The gateway device 31, the information processing device 40a, the terminal device 45a, and the monitoring device 50a are connected via a network NW.
In the data processing device 30, the data calculation unit 34 transmits the digital signal to the monitoring device 50a via the gateway device 31.
(Monitoring device 50a)
The monitoring device 50a is realized by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50a includes a communication device 51, a recording device 52, an information processing section 53a, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
The recording device 52 stores a program (monitoring application) executed by the monitoring device 50a. The recording device 52 also stores pixel data output by the information processing section 53a.
The recording device 52 stores training data of a diagnosis result that associates information indicating a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant data based on the training data of the diagnosis result. A learning model of diagnosis results obtained by machine learning of the relationship between the clear water image and the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data. Based on this, a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
 図12は、教師データの一例を示す図である。図12には、診断結果の教師データと原因の教師データとを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。原因の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けたデータである。図12の説明においては、便宜上監視画像により説明する。
 実施形態の変形例1では、一例として、実施形態と同様に複数の上澄水画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。さらに、複数の上澄水画像の各々に対して、診断結果に基づいて、診断結果となる原因の推定結果が関連付けられる。
 図12において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。正常と診断された場合には、診断結果となる原因の推定結果は記憶されない。
 (2)は、上澄水の深さが浅いため、異常であると診断される。この場合、診断結果となる原因の推定結果の一例として、バルキングが記憶される。バルキングとは、汚泥の沈降性が悪化し、上澄水を得にくくなる現象をいう。
 (3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。この場合、診断結果となる原因の推定結果の一例として、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される。図11に戻り説明を続ける。
FIG. 12 is a diagram showing an example of teacher data. FIG. 12 shows training data for diagnosis results and training data for causes. The training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image. The cause training data is data that associates a supernatant water image with information that specifies a cause that is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image. In the description of FIG. 12, a monitoring image will be used for convenience.
In Modified Example 1 of the embodiment, as an example, one of "normal", "abnormal", and "unwell" is associated with each of a plurality of supernatant water images as a diagnostic result, similarly to the embodiment. Further, an estimated result of the cause of the diagnosis result is associated with each of the plurality of supernatant water images based on the diagnosis result.
In FIG. 12, (1) is diagnosed as normal because the supernatant water has a sufficient depth. If it is diagnosed as normal, the estimated cause of the diagnosis result is not stored.
(2) is diagnosed as abnormal because the depth of the supernatant water is shallow. In this case, bulking is stored as an example of the estimated cause of the diagnosis result. Bulking is a phenomenon in which the sedimentation of sludge deteriorates, making it difficult to obtain supernatant water.
Case (3) is diagnosed as malfunctioning because accumulated sludge is seen floating up in the supernatant water. In this case, as examples of the estimated results of the cause of the diagnosis result, a high sludge input speed, a large sludge input amount, and a high sludge interface are stored. Returning to FIG. 11, the explanation will be continued.
 情報処理部53aは、例えば、グラフィック化部54と、現状判定部55aと、学習部56aと、原因判定部57として機能する。
 現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
 学習部56aは、学習部56の機能に加えて以下の機能を有する。学習部56aは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と診断結果となる原因の推定結果とを関連付けた原因の教師データを記録装置52に記憶させる。学習部56aは、記録装置52に記憶された原因の教師データを取得する。学習部56aは、取得した原因の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因の推定結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。例えば、学習部56aは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。原因の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態となる原因を特定する情報のいずれかに分類される。学習部56aは、生成した原因の学習モデルを記録装置52に記憶させる。
The information processing unit 53a functions as, for example, a graphic generation unit 54, a current status determination unit 55a, a learning unit 56a, and a cause determination unit 57.
The current state determination unit 55a acquires pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data. The current state determination unit 55a acquires the learning model of the diagnosis result stored in the recording device 52. The current state determination unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
The learning section 56a has the following functions in addition to the functions of the learning section 56. The learning unit 56a acquires the diagnosis result notification received by the communication device 51, and obtains cause training data that associates the information indicating the supernatant water image included in the acquired diagnosis result notification with the estimated result of the cause resulting in the diagnosis result. The information is stored in the recording device 52. The learning unit 56a acquires the teacher data of the cause stored in the recording device 52. The learning unit 56a performs machine learning (supervised learning) on the supernatant water image and the result of estimating the cause, which is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired teacher data on the cause. By doing so, a learning model of the cause is generated that associates the supernatant water image with information specifying the cause of the internal state of the solid-liquid separation tank. For example, the learning unit 56a recognizes the supernatant water image using a convolutional neural network. Based on the information indicating the supernatant water image, the cause learning model classifies the supernatant water image into one of the information that specifies the cause of the internal state of the solid-liquid separation tank. The learning unit 56a causes the recording device 52 to store the generated learning model of the cause.
 原因判定部57は、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57は、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。原因判定部57は、上澄水画像を示す情報と固液分離槽の内部の状態を示す情報と固液分離槽の内部の状態となる原因を特定する情報の判定結果を示す情報と含む、情報処理装置40aを宛先とする状態通知情報を作成する。原因判定部57は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40aへ送信する。
 情報処理部53aの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53aの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
 情報処理装置40aは、情報処理装置40を適用できる。
The cause determination unit 57 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the obtained determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the cause determination unit 57 acquires the learning model of the cause stored in the recording device 52. The cause determining unit 57 determines information that specifies the cause of the internal state of the solid-liquid separation tank in the acquired supernatant water image based on the acquired learning model of the cause. The cause determining unit 57 generates information including information indicating the supernatant water image, information indicating the internal state of the solid-liquid separation tank, and information indicating the determination result of information specifying the cause of the internal state of the solid-liquid separation tank. Create status notification information with the processing device 40a as the destination. The cause determination unit 57 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the cause determination unit 57, and transmits the acquired status notification information to the information processing device 40a.
All or part of the information processing unit 53a is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be. Note that all or part of the information processing section 53a may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
The information processing device 40 can be applied to the information processing device 40a.
 (端末装置45a)
 端末装置45aは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45aの一例は、下水処理設備10を監視する監視センタに設置される。
 ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45aを操作することによって、上澄水画像を要求する情報を含む、監視装置50aを宛先とする上澄水画像要求を作成させる。端末装置45aは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45aは、作成した上澄水画像要求を監視装置50aへ送信する。
 端末装置45aは、監視装置50aへ送信した上澄水画像要求に対して監視装置50aが送信した上澄水画像応答を受信する。端末装置45aは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45aが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定する。ユーザーは、端末装置45aを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを含む、監視装置50aを宛先とする診断結果通知を作成させる。端末装置45aは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45aは、作成した診断結果通知を監視装置50aへ送信する。
(Terminal device 45a)
The terminal device 45a is realized by a device such as a personal computer, a server, or an industrial computer. An example of the terminal device 45a is installed in a monitoring center that monitors the sewage treatment facility 10.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45a to create a supernatant water image request addressed to the monitoring device 50a that includes information requesting a supernatant water image. . The terminal device 45a creates a supernatant water image request based on the user's operation. The terminal device 45a transmits the created supernatant water image request to the monitoring device 50a.
The terminal device 45a receives the supernatant water image response sent by the monitoring device 50a in response to the supernatant water image request sent to the monitoring device 50a. The terminal device 45a displays the supernatant water image included in the supernatant water image response. The user refers to the supernatant water image displayed by the terminal device 45a, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank. By operating the terminal device 45a, the user can access the monitoring device 50a, which includes information indicating a supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, and information specifying the cause of the diagnosis result. Create a diagnosis result notification addressed to . The terminal device 45a creates a diagnosis result notification based on the user's operation. The terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.
 (監視システムの動作)
 図13は、実施形態の変形例1に係る監視システムの動作の例1を示す図である。図13を参照して、監視装置50aが、端末装置45aが送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを蓄積し、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルとを生成する処理について説明する。
 ステップS1-4からS10-4は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
 (ステップS11-4)
 端末装置45aは、監視装置50aが送信した上澄水画像応答を受信する。端末装置45aは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45aは、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを含む、監視装置50aを宛先とする診断結果通知を作成する。
 (ステップS12-4)
 端末装置45aは、作成した診断結果通知を監視装置50aへ送信する。
(Operation of monitoring system)
FIG. 13 is a diagram illustrating a first example of the operation of the monitoring system according to the first modification of the embodiment. Referring to FIG. 13, the monitoring device 50a accumulates the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by the terminal device 45a, and information specifying the cause of the diagnosis result. Then, machine learning is performed based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank and information specifying the causes of the diagnosis results, and a learning model of the diagnosis results and a learning model of the causes are generated. The process will be explained.
Since steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-4 to S10-4, the description thereof will be omitted here.
(Step S11-4)
The terminal device 45a receives the supernatant water image response transmitted by the monitoring device 50a. The terminal device 45a displays the supernatant water image by performing image processing on information indicating the supernatant water image included in the received supernatant water image response. The terminal device 45a creates a diagnosis result notification addressed to the monitoring device 50a that includes the diagnosis result of the internal state of the solid-liquid separation tank and information specifying the cause of the diagnosis result.
(Step S12-4)
The terminal device 45a transmits the created diagnosis result notification to the monitoring device 50a.
 (ステップS13-4)
 監視装置50aにおいて、通信装置51は、端末装置45aが送信した診断結果通知を受信する。学習部56aは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを取得する。
 学習部56aは、取得した上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56aは、取得した上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データを記録装置52に記憶させる。
 (ステップS14-4)
 監視装置50aにおいて、学習部56aは、記録装置52に記憶された診断結果の教師データを取得する。学習部56aは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
 学習部56aは、記録装置52に記憶された原因の教師データを取得する。学習部56aは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
 (ステップS15-4)
 監視装置50aにおいて、学習部56aは、生成した診断結果の学習モデルを記録装置52に記憶させる。学習部56aは、生成した原因の学習モデルを記録装置52に記憶させる。
(Step S13-4)
In the monitoring device 50a, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45a. The learning unit 56a acquires the diagnosis result notification received by the communication device 51, and acquires information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. Obtain information that identifies the cause of the problem.
The learning unit 56a causes the recording device 52 to store training data of a diagnosis result in which information indicating the acquired supernatant water image is associated with a diagnosis result of the internal state of the solid-liquid separation tank. The learning unit 56a causes the recording device 52 to store cause teacher data in which information indicating the acquired supernatant water image is associated with information specifying a cause that is a diagnostic result of the internal state of the solid-liquid separation tank.
(Step S14-4)
In the monitoring device 50a, the learning unit 56a acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56a performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
The learning unit 56a acquires the teacher data of the cause stored in the recording device 52. The learning unit 56a performs machine learning on the supernatant water image and information that specifies the cause of the diagnosis of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause. A learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
(Step S15-4)
In the monitoring device 50a, the learning unit 56a causes the recording device 52 to store the generated learning model of the diagnosis result. The learning unit 56a causes the recording device 52 to store the generated learning model of the cause.
 なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-4において端末装置45aが監視画像要求を作成し、ステップS8-4において端末装置45aが作成した監視画像要求を監視装置50aへ送信し、ステップS9-4において監視装置50aが監視画像を作成し、ステップS10-4において監視装置50aが監視画像応答を端末装置45aへ送信してもよい。 Note that the diagnosis result notification may be a diagnosis result based on a monitoring image instead of a supernatant water image. That is, in step S7-4, the terminal device 45a creates a surveillance image request, in step S8-4, the terminal device 45a transmits the created surveillance image request to the surveillance device 50a, and in step S9-4, the surveillance device 50a monitors the An image may be created, and the monitoring device 50a may transmit a monitoring image response to the terminal device 45a in step S10-4.
 図14は、実施形態の変形例1に係る監視システムの動作の例2を示す図である。図14を参照して、監視装置50aは、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50aは、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-5からS6-5は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
 (ステップS7-5)
 監視装置50aにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
 (ステップS8-5)
 監視装置50aにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
 (ステップS9-5)
 監視装置50aにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
 (ステップS10-5)
 監視装置50aにおいて、原因判定部57は、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57が、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合には終了する。
FIG. 14 is a diagram illustrating a second example of the operation of the monitoring system according to the first modification of the embodiment. Referring to FIG. 14, monitoring device 50a acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal. The monitoring device 50a will explain the process of determining the internal state of the solid-liquid separation tank based on the created supernatant water image.
Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-5 to S6-5, the description thereof will be omitted here.
(Step S7-5)
In the monitoring device 50a, the current state determining unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
(Step S8-5)
In the monitoring device 50a, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
(Step S9-5)
In the monitoring device 50a, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
(Step S10-5)
In the monitoring device 50a, the cause determination unit 57 acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. The cause determination unit 57 determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57 determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process ends.
 (ステップS11-5)
 監視装置50aにおいて、原因判定部57は、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
 (ステップS12-5)
 監視装置50aにおいて、原因判定部57は、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。
 (ステップS13-5)
 監視装置50aにおいて、原因判定部57は、上澄水画像を示す情報と固液分離槽の内部の状態の判定結果を示す情報と固液分離槽の内部の状態となる原因の判定結果を示す情報と含む、情報処理装置40aを宛先とする状態通知情報を作成する。
 (ステップS14-5)
 監視装置50aにおいて、原因判定部57は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40aへ送信する。
 なお、ステップS7-5において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
 監視装置50aが、情報処理装置40aが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
(Step S11-5)
In the monitoring device 50a, the cause determination unit 57 acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. .
(Step S12-5)
In the monitoring device 50a, the cause determining unit 57 determines information specifying the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
(Step S13-5)
In the monitoring device 50a, the cause determination unit 57 includes information indicating the supernatant water image, information indicating the determination result of the internal state of the solid-liquid separation tank, and information indicating the determination result of the cause of the internal state of the solid-liquid separation tank. Create status notification information that includes the information processing device 40a as the destination.
(Step S14-5)
In the monitoring device 50a, the cause determination unit 57 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the cause determination unit 57, and transmits the acquired status notification information to the information processing device 40a.
Note that the monitoring device 50 creates a supernatant water image in step S7-5, but this is only an example. For example, the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps.
Since FIG. 9 can be applied to the process in which the monitoring device 50a transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40a, a description thereof will be omitted.
 前述した実施形態の変形例1では、1つの下水処理設備10に監視システム100aが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100aが接続されてもよいし、1つの下水処理設備10に複数の監視システム100aが接続されてもよい。仮に、複数の下水処理設備10に監視システム100aが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報が判定され、出力される可能性が高い。つまり、監視装置50aは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
 前述した実施形態の変形例1では、監視装置50aが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50aとは別の装置で実現してもよい。この場合、学習装置は、実施形態で説明した学習装置において、学習装置は、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報を監視装置50aから取得する。学習装置の学習部は、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を表す第2学習モデルを機械学習(教師あり機械学習)によって生成する。
 前述した実施形態の変形例1では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定され、さらに、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、バルキング、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される場合について説明したがこの例に限られない。例えば、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、一又は複数の原因に分類されてもよい。
In the first modification of the embodiment described above, a case has been described in which the monitoring system 100a is connected to one sewage treatment facility 10, but the present invention is not limited to this example. For example, the monitoring system 100a may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100a may be connected to one sewage treatment facility 10. If the monitoring system 100a is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B. For example, there is a high possibility that it will be determined as an "abnormality" and that information identifying the cause of the abnormality will be determined and output. In other words, since the monitoring device 50a is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
In the first modification of the embodiment described above, a case has been described in which the monitoring device 50a performs machine learning, but the present invention is not limited to this example. For example, a device that performs machine learning may be implemented as a device different from the monitoring device 50a. In this case, the learning device is the learning device described in the embodiment, and the learning device acquires the supernatant water image and information that specifies the cause of the diagnosis result based on the supernatant water image from the monitoring device 50a. The learning section of the learning device uses the supernatant water image and information that specifies the cause of the diagnosis result based on the supernatant water image to determine the supernatant water image and information that specifies the cause of the internal state of the solid-liquid separation tank. A second learning model representing the relationship is generated by machine learning (supervised machine learning).
In the first modification of the embodiment described above, it is determined whether the internal state of the solid-liquid separation tank is normal, abnormal, or malfunctioning based on the supernatant water image, and the solid-liquid separation tank Explains cases where bulking, fast sludge input speed, large sludge input amount, and high sludge interface are stored based on whether the judgment result of the internal condition is abnormal or malfunctioning. However, it is not limited to this example. For example, it may be classified into one or more causes based on whether the determination result of the internal state of the solid-liquid separation tank is abnormal or malfunctioning.
 実施形態の変形例1に係る監視システム100aによれば、監視装置50aは、実施形態に係る監視装置50において、上澄水画像と上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した原因の学習モデルとしての第2学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態となる原因を特定する情報を判定する原因判定部57を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第2学習モデルとを用いて原因判定部が判定した固液分離槽の内部の状態となる原因を特定する情報をさらに出力する。
 このように構成することによって、監視装置50aは、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態となる原因を特定する情報を判定できるため、固液分離槽の内部の状態となる原因を監視できる。第2学習モデルを用いて、診断の対象である固液分離槽の内部を表した上澄水画像から固液分離槽の内部の状態となる原因を判定できることによって、人が経験に基づいて固液分離槽の内部の状態の原因を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
According to the monitoring system 100a according to the first modified example of the embodiment, the monitoring device 50a performs a diagnosis based on the supernatant water image and information specifying the cause of the diagnosis result based on the supernatant water image. Then, using the second learning model as a learning model of the cause that has learned the relationship between the supernatant water image and the information that specifies the cause of the diagnosis result inside the solid-liquid separation tank, the solid-liquid separation that is the target of diagnosis is A cause determination unit 57 is provided that determines information specifying the cause of the internal state of the solid-liquid separation tank from the supernatant water image of the tank. The output unit further outputs information specifying the cause of the internal state of the solid-liquid separation tank determined by the cause determination unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the second learning model. do.
With this configuration, the monitoring device 50a uses the second learning model that has learned the relationship between the supernatant water image and the information that specifies the cause of the diagnosis result inside the solid-liquid separation tank to determine the target of diagnosis. Since information identifying the cause of the internal state of the solid-liquid separation tank can be determined from the supernatant water image of the solid-liquid separation tank, the cause of the internal state of the solid-liquid separation tank can be monitored. Using the second learning model, it is possible to determine the cause of the internal state of the solid-liquid separation tank from the supernatant water image showing the inside of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of diagnosing the cause of the internal state of a separation tank, human experience is not required, and variations in diagnostic results can be reduced.
 [実施形態の変形例2]
 (監視システム)
 図15は、本発明の実施形態の変形例2に係る監視システムの構成例を示す図である。実施形態の変形例2に係る監視システム100bは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断する。実施形態の変形例2では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
[Modification 2 of embodiment]
(Monitoring system)
FIG. 15 is a diagram showing a configuration example of a monitoring system according to modification 2 of the embodiment of the present invention. The monitoring system 100b according to the second modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks. In the second modification of the embodiment, the sewage treatment equipment 10 is applied as an example of equipment including a solid-liquid separation tank, similarly to the embodiment.
 (監視システム100b)
 監視システム100bは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40bと、端末装置45bと、監視装置50bとを備える。
 ゲートウェイ装置31と、情報処理装置40bと、端末装置45bと、監視装置50bとは、ネットワークNWを介して接続される。
 データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50bへ送信する。
(Monitoring system 100b)
The monitoring system 100b includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40b, a terminal device 45b, and a monitoring device 50b.
The gateway device 31, the information processing device 40b, the terminal device 45b, and the monitoring device 50b are connected via the network NW.
In the data processing device 30, the data calculation unit 34 transmits the digital signal to the monitoring device 50b via the gateway device 31.
 (監視装置50b)
 監視装置50bは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50bは、通信装置51と、記録装置52と、情報処理部53bと、各構成要素を図15に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
 記録装置52には、監視装置50bにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53bが出力する画素データが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
 記録装置52には、監視画像を示す情報とその上澄水画像による固液分離槽の内部の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
(Monitoring device 50b)
The monitoring device 50b is realized by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50b includes a communication device 51, a recording device 52, an information processing section 53b, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
The recording device 52 stores a program (monitoring application) executed by the monitoring device 50b. The recording device 52 also stores pixel data output by the information processing section 53b.
The recording device 52 stores the supernatant water image based on the training data of the diagnosis result that associates the information indicating the supernatant water image with the diagnosis result of the inside of the solid-liquid separation tank based on the supernatant water image, and the supernatant water image based on the training data of the diagnosis result. A learning model of the diagnosis result obtained by machine learning of the relationship between the information and the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores cause training data in which information indicating the monitoring image is associated with information specifying the cause of the diagnosis result inside the solid-liquid separation tank based on the supernatant water image, and cause training data based on the cause training data. , a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnosis result of a solid-liquid separation tank based on the supernatant water image, and training data of a countermeasure method. Based on this, a learning model of a countermeasure method obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure method for the internal state of the solid-liquid separation tank is stored.
 図16は、教師データの一例を示す図である。図16には、診断結果の教師データと原因の教師データと対処方法の教師データとを示す。診断結果の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。原因の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けたデータである。対処方法の教師データは、上澄水画像とその上澄水画像による固液分離槽の内部の状態への対処方法を特定する情報とを関連付けたデータである。図16の説明においては、便宜上監視画像により説明する。
 実施形態の変形例2では、一例として、実施形態と同様に複数の監視画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。さらに、複数の監視画像の各々に対して、診断結果に基づいて、診断結果となる原因の推定結果が関連付けられる。さらに、複数の監視画像の各々に対して、診断結果に基づいて、診断結果への対処方法を特定する情報が関連付けられる。
 図16において、(1)は、上澄水が十分な深さがあるため、正常であると診断される。正常と診断された場合には、診断結果となる原因の推定結果と対処方法とは記憶されない。
 (2)は、上澄水の深さが浅いため、異常であると診断される。この場合、診断結果となる原因の推定結果として、バルキングが記憶される。さらに、診断結果となる原因の推定結果への対処方法として、汚泥引抜の促進と、汚泥沈降剤等の投入とが記憶される。
 (3)は、上澄水に堆積汚泥の舞い上がりが見られるため、不調であると診断される。この場合、診断結果となる原因の推定結果の一例として、汚泥投入速度が速いこと、汚泥投入量が多いこと、汚泥界面が高いことが記憶される。さらに、診断結果となる原因の推定結果への対処方法の一例として、投入速度の低下と、投入量の削減と、汚泥引抜の促進とが記憶される。図15に戻り説明を続ける。
FIG. 16 is a diagram showing an example of teacher data. FIG. 16 shows training data for diagnosis results, training data for causes, and training data for countermeasures. The training data of the diagnosis result is data that associates a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image. The cause training data is data that associates a supernatant water image with information that specifies a cause that is a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image. The training data for the countermeasure method is data that associates a supernatant water image with information specifying a countermeasure method for the internal state of the solid-liquid separation tank based on the supernatant water image. In the description of FIG. 16, a monitoring image will be used for convenience.
In the second modification of the embodiment, as an example, as in the embodiment, one of "normal", "abnormal", and "disorder" is associated with each of the plurality of monitoring images as a diagnostic result. Further, an estimated result of the cause of the diagnosis result is associated with each of the plurality of monitoring images based on the diagnosis result. Further, information specifying a method of dealing with the diagnosis result is associated with each of the plurality of monitoring images based on the diagnosis result.
In FIG. 16, (1) is diagnosed as normal because the supernatant water has a sufficient depth. If it is diagnosed as normal, the estimated cause of the diagnosis result and the countermeasure method are not stored.
(2) is diagnosed as abnormal because the depth of the supernatant water is shallow. In this case, bulking is stored as the estimated result of the cause of the diagnosis. Furthermore, promotion of sludge extraction, injection of sludge settling agent, etc. are stored as methods for dealing with the presumed cause of the diagnosis result.
Case (3) is diagnosed as malfunctioning because accumulated sludge is seen floating up in the supernatant water. In this case, as examples of the estimated results of the cause of the diagnosis result, a high sludge input speed, a large sludge input amount, and a high sludge interface are stored. Further, as an example of a method for dealing with the estimated cause of the diagnosis result, reduction of the input speed, reduction of the input amount, and promotion of sludge removal are stored. Returning to FIG. 15, the explanation will be continued.
 情報処理部53bは、例えば、グラフィック化部54と、現状判定部55aと、学習部56bと、原因判定部57bと、対処方法判定部58として機能する。
 学習部56bは、学習部56aの機能に加えて以下の機能を有する。学習部56bは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データを記録装置52に記憶させる。
 学習部56bは、記録装置52に記憶された対処方法の教師データを取得する。学習部56bは、取得した対処方法の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態への対処方法とを関係付けた対処方法の学習モデルを生成する。例えば、学習部56bは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。対処方法の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態への対処方法を特定する情報のいずれかに分類される。学習部56bは、生成した対処方法の学習モデルを記録装置52に記憶させる。
The information processing unit 53b functions as, for example, a graphic generation unit 54, a current status determination unit 55a, a learning unit 56b, a cause determination unit 57b, and a countermeasure determination unit 58.
The learning section 56b has the following functions in addition to the functions of the learning section 56a. The learning unit 56b acquires the diagnosis result notification received by the communication device 51, and determines a countermeasure method by associating information indicating a supernatant water image included in the acquired diagnosis result notice with information specifying a countermeasure method for the diagnosis result. The teacher data is stored in the recording device 52.
The learning unit 56b acquires training data of coping methods stored in the recording device 52. The learning unit 56b performs machine learning (supervised learning) on the supernatant water image and information specifying how to deal with the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the obtained training data of the countermeasure method. By doing this, a learning model of how to deal with the internal state of the solid-liquid separation tank is created by associating the supernatant water image with how to deal with the internal state of the solid-liquid separation tank. For example, the learning unit 56b uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the learning model of the countermeasure method classifies the supernatant water image into one of the information that specifies the countermeasure method for the internal state of the solid-liquid separation tank. The learning unit 56b causes the recording device 52 to store the generated learning model of the coping method.
 原因判定部57bは、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
 対処方法判定部58は、現状判定部55aから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。対処方法判定部58は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58は、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
 対処方法判定部58は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58は、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40bを宛先とする状態通知情報を作成する。対処方法判定部58は、作成した状態通知情報を通信装置51へ出力する。
 通信装置51は、原因判定部57bが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40bへ送信する。
 情報処理部53bの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53bの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
 情報処理装置40bは、情報処理装置40を適用できる。
The cause determination unit 57b acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the obtained determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52. The cause determination unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
The countermeasure determination unit 58 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58 acquires the learning model of the countermeasure stored in the recording device 52. The countermeasure determination unit 58 determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
The countermeasure determining unit 58 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b. The countermeasure determination unit 58 generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank. Status notification information destined for the processing device 40b is created. The countermeasure determination unit 58 outputs the created status notification information to the communication device 51.
The communication device 51 acquires the status notification information output by the cause determination unit 57b, and transmits the acquired status notification information to the information processing device 40b.
All or part of the information processing unit 53b is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be. Note that all or part of the information processing section 53b may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
The information processing device 40 can be applied to the information processing device 40b.
 (端末装置45b)
 端末装置45bは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45bの一例は、下水処理設備10を監視する監視センタに設置される。
 ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45bを操作することによって、上澄水画像を要求する情報を含む、監視装置50bを宛先とする上澄水画像要求を作成させる。端末装置45bは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45bは、作成した上澄水画像要求を監視装置50bへ送信する。
 端末装置45bは、監視装置50bへ送信した上澄水画像要求に対して監視装置50bが送信した上澄水画像応答を受信する。端末装置45bは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45bが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定する。ユーザーは、端末装置45bを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とその診断結果への対処方法を特定する情報を含む、監視装置50bを宛先とする診断結果通知を作成させる。端末装置45bは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45bは、作成した診断結果通知を監視装置50bへ送信する。
(Terminal device 45b)
The terminal device 45b is realized by a device such as a personal computer, a server, or an industrial computer. An example of the terminal device 45b is installed in a monitoring center that monitors the sewage treatment facility 10.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45b to create a supernatant water image request addressed to the monitoring device 50b that includes information requesting a supernatant water image. . The terminal device 45b creates a supernatant water image request based on the user's operation. The terminal device 45b transmits the created supernatant water image request to the monitoring device 50b.
The terminal device 45b receives the supernatant water image response sent by the monitoring device 50b in response to the supernatant water image request sent to the monitoring device 50b. The terminal device 45b displays the supernatant water image included in the supernatant water image response. The user refers to the supernatant water image displayed by the terminal device 45b, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank. By operating the terminal device 45b, the user receives information indicating the supernatant water image, the diagnosis result of the internal state of the solid-liquid separation tank, information identifying the cause of the diagnosis result, and how to deal with the diagnosis result. A diagnosis result notification containing information specifying the method and addressed to the monitoring device 50b is created. The terminal device 45b creates a diagnosis result notification based on the user's operation. The terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.
 (監視システムの動作)
 図17は、実施形態の変形例2に係る監視システムの動作の例1を示す図である。図17を参照して、監視装置50bが、端末装置45bが送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報とを蓄積する処理について説明する。監視装置50bが、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルとを生成する処理について説明する。
 ステップS1-6からS10-6は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
 (ステップS11-6)
 端末装置45bは、監視装置50bが送信した上澄水画像応答を受信する。端末装置45bは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45bは、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、その診断結果への対処方法を特定する情報とを含む、監視装置50bを宛先とする診断結果通知を作成する。
 (ステップS12-6)
 端末装置45bは、作成した診断結果通知を監視装置50bへ送信する。
(Operation of monitoring system)
FIG. 17 is a diagram showing an example 1 of the operation of the monitoring system according to the second modification of the embodiment. Referring to FIG. 17, the monitoring device 50b receives the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification transmitted by the terminal device 45b, information specifying the cause of the diagnosis result, and the diagnosis result. The process of accumulating information specifying how to deal with the results will be described. The monitoring device 50b performs machine learning based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank, information specifying the causes of the diagnosis results, and information specifying how to deal with the diagnosis results. , a process for generating a learning model for diagnosis results, a learning model for causes, and a learning model for coping methods will be described.
Since steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-6 to S10-6, the description thereof will be omitted here.
(Step S11-6)
The terminal device 45b receives the supernatant water image response transmitted by the monitoring device 50b. The terminal device 45b displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response. The terminal device 45b sends the monitoring device 50b as a destination, which includes a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information specifying a method to deal with the diagnosis result. Create a diagnosis result notification.
(Step S12-6)
The terminal device 45b transmits the created diagnosis result notification to the monitoring device 50b.
 (ステップS13-6)
 監視装置50bにおいて、通信装置51は、端末装置45bが送信した診断結果通知を受信する。学習部56bは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果への対処方法を特定する情報とを取得する。
 学習部56bは、取得した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、上澄水画像を示す情報と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データとを記録装置52に記憶させる。
 (ステップS14-6)
 監視装置50bにおいて、学習部56bは、記録装置52に記憶された診断結果の教師データを取得する。学習部56bは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
 学習部56bは、記録装置52に記憶された原因の教師データを取得する。学習部56bは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
 学習部56bは、記録装置52に記憶された対処方法の教師データを取得する。学習部56bは、取得した対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを関係付けた対処方法の学習モデルを生成する。
 (ステップS15-6)
 監視装置50bにおいて、学習部56bは、生成した診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルとを記録装置52に記憶させる。
 なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-6において端末装置45bが監視画像要求を作成し、ステップS8-1において端末装置45bが作成した監視画像要求を監視装置50bへ送信し、ステップS9-1において監視装置50bが監視画像を作成し、ステップS10-1において監視装置50bが監視画像応答を端末装置45bへ送信してもよい。
(Step S13-6)
In the monitoring device 50b, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45b. The learning unit 56b acquires the diagnosis result notification received by the communication device 51, and includes information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. and information that identifies how to deal with it.
The learning unit 56b includes training data of diagnosis results that associate information indicating the acquired supernatant water image with diagnosis results of the internal state of the solid-liquid separation tank, and information indicating the supernatant water image and the internal state of the solid-liquid separation tank. Records training data for the cause, which associates information that specifies the cause of the diagnosis result of the condition, and training data for the countermeasure, which associates information showing the supernatant water image with information that specifies how to deal with the diagnosis result. The information is stored in the device 52.
(Step S14-6)
In the monitoring device 50b, the learning unit 56b acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the training data of the acquired diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
The learning unit 56b acquires the teacher data of the cause stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant water image and the information that specifies the cause of the diagnosis of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause. A learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
The learning unit 56b acquires training data of coping methods stored in the recording device 52. The learning unit 56b performs machine learning on the supernatant water image and information specifying how to deal with the internal state of the solid-liquid separation tank, based on the acquired teaching data of the countermeasure method. A learning model of how to deal with the internal state of the separation tank is generated in association with information specifying how to deal with the situation inside the separation tank.
(Step S15-6)
In the monitoring device 50b, the learning unit 56b causes the recording device 52 to store the generated diagnostic result learning model, cause learning model, and countermeasure learning model.
Note that the diagnosis result notification may be a result of diagnosis based on a monitoring image instead of a supernatant water image. That is, in step S7-6, the terminal device 45b creates a surveillance image request, in step S8-1, the terminal device 45b transmits the created surveillance image request to the surveillance device 50b, and in step S9-1, the surveillance device 50b monitors the An image may be created, and the monitoring device 50b may transmit a monitoring image response to the terminal device 45b in step S10-1.
 図18は、実施形態の変形例2に係る監視システムの動作の例2を示す図である。図18を参照して、監視装置50bが、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50bが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-7からS6-7は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
 (ステップS7-7)
 監視装置50bにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
 (ステップS8-7)
 監視装置50bにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
 (ステップS9-7)
 監視装置50bにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
 (ステップS10-7)
 監視装置50bにおいて、原因判定部57bは、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57bが、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合には終了する。
FIG. 18 is a diagram illustrating a second example of the operation of the monitoring system according to the second modification of the embodiment. Referring to FIG. 18, monitoring device 50b acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal. A process in which the monitoring device 50b determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described.
Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-7 to S6-7, the description thereof will be omitted here.
(Step S7-7)
In the monitoring device 50b, the current state determining unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
(Step S8-7)
In the monitoring device 50b, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
(Step S9-7)
In the monitoring device 50b, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
(Step S10-7)
In the monitoring device 50b, the cause determination unit 57b acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. The cause determination unit 57b determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57b determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process ends.
 (ステップS11-7)
 監視装置50bにおいて、原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
 (ステップS12-7)
 監視装置50bにおいて、原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
 (ステップS13-7)
 監視装置50bにおいて、対処方法判定部58は、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58は、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。
 (ステップS14-7)
 監視装置50bにおいて、対処方法判定部58は、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
 (ステップS15-7)
 監視装置50bにおいて、対処方法判定部58は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58は、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40bを宛先とする状態通知情報を作成する。
 (ステップS16-7)
 監視装置50bにおいて、対処方法判定部58は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、対処方法判定部58が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40bへ送信する。
 なお、ステップS7-7において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
 監視装置50bが、情報処理装置40bが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
(Step S11-7)
In the monitoring device 50b, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. .
(Step S12-7)
In the monitoring device 50b, the cause determination unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
(Step S13-7)
In the monitoring device 50b, the countermeasure determination unit 58 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58 acquires the learning model of the countermeasure stored in the recording device 52.
(Step S14-7)
In the monitoring device 50b, the countermeasure determination unit 58 determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
(Step S15-7)
In the monitoring device 50b, the countermeasure determining unit 58 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b. The countermeasure determination unit 58 generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank. Status notification information destined for the processing device 40b is created.
(Step S16-7)
In the monitoring device 50b, the countermeasure determination unit 58 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the countermeasure method determining unit 58, and transmits the acquired status notification information to the information processing device 40b.
Note that the monitoring device 50 creates a supernatant water image in step S7-7, but this is just an example. For example, the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps.
Since FIG. 9 can be applied to the process in which the monitoring device 50b transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40b, a description thereof will be omitted.
 前述した実施形態の変形例2では、1つの下水処理設備10に監視システム100bが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100bが接続されてもよいし、1つの下水処理設備10に複数の監視システム100bが接続されてもよい。仮に、複数の下水処理設備10に監視システム100bが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報と、対処方法を特定する情報とが判定され、出力される可能性が高い。つまり、監視装置50bは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
 前述した実施形態の変形例2では、監視装置50bが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50bとは別の装置で実現してもよい。この場合、学習装置は、実施形態の変形例1で説明した学習装置において、学習装置は、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報と監視装置50bからを取得する。学習装置の学習部は、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを機械学習(教師あり機械学習)によって生成する。
 実施形態の変形例2において、情報処理装置40bは、状態通知に含まれる対処方法を下水処理設備10のオペレータに通知してもよいし、対処方法を設備制御装置19に実行させるための制御情報を作成し、作成した制御情報を設備制御装置19へ送信してもよい。
 前述した実施形態の変形例2では、上澄水画像に基づいて固液分離槽の内部の状態の判定結果が正常と異常と不調とのいずれかであるかを判定され、さらに、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、汚泥引抜の促進と、汚泥沈降剤等の投入と、投入速度の低下と、投入量の削減と、汚泥引抜の促進とが記憶される場合について説明したがこの例に限られない。例えば、固液分離槽の内部の状態の判定結果が異常と不調とのいずれかであるかに基づいて、一又は複数の対処方法に分類されてもよい。
 前述した実施形態の変形例2では、実施形態の変形例1に固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する処理をさらに有する場合にいて説明したが、この例に限られない。例えば、実施形態に固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する処理をさらに有るようにしてもよい。
In the second modification of the embodiment described above, a case has been described in which the monitoring system 100b is connected to one sewage treatment facility 10, but the present invention is not limited to this example. For example, the monitoring system 100b may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100b may be connected to one sewage treatment facility 10. If the monitoring system 100b is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B. For example, there is a high possibility that it will be determined as an "abnormality" and that information specifying the cause of the abnormality and information specifying a countermeasure will be determined and output. In other words, since the monitoring device 50b is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
In the second modification of the embodiment described above, a case has been described in which the monitoring device 50b performs machine learning, but the present invention is not limited to this example. For example, a device that performs machine learning may be implemented as a device different from the monitoring device 50b. In this case, in the learning device described in the first modification of the embodiment, the learning device acquires the supernatant water image and information specifying how to deal with the diagnosis result based on the supernatant water image from the monitoring device 50b. do. The learning section of the learning device identifies how to deal with the supernatant water image and the diagnostic results inside the solid-liquid separation tank based on the supernatant water image and information that specifies how to deal with the diagnostic results based on the supernatant water image. A third learning model expressing the relationship with the information is generated by machine learning (supervised machine learning).
In the second modification of the embodiment, the information processing device 40b may notify the operator of the sewage treatment equipment 10 of the countermeasure included in the status notification, or may send control information for causing the equipment control device 19 to execute the countermeasure. may be created and the created control information may be sent to the equipment control device 19.
In the second modification of the embodiment described above, it is determined whether the internal state of the solid-liquid separation tank is normal, abnormal, or malfunctioning based on the supernatant water image, and the solid-liquid separation tank Based on whether the internal condition of the sludge is determined to be abnormal or malfunctioning, it is possible to promote sludge extraction, introduce sludge settling agents, etc., reduce the injection speed, reduce the input amount, and remove sludge. Although the case where promotion of is stored has been described, it is not limited to this example. For example, the situation may be classified into one or more methods based on whether the determination result of the internal state of the solid-liquid separation tank is abnormal or malfunctioning.
In the second modification of the embodiment described above, the first modification of the embodiment further includes a process of determining information for specifying a method to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank. This example is not limited to this example. For example, the embodiment may further include a process of determining information that specifies how to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank.
 実施形態の変形例2に係る監視システム100bによれば、監視装置50bは、実施形態に係る監視装置50aにおいて、上澄水画像と上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した対処方法の学習モデルとしての第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定する対処方法判定部58を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第3学習モデルとを用いて対処方法判定部58が判定した固液分離槽の内部の状態への対処方法を特定する情報をさらに出力する。
 このように構成することによって、監視装置50bは、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を特定する情報を判定できるため、固液分離槽の内部の状態への対処方法を監視できる。第3学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態への対処方法を判定できることによって、人が経験に基づいて固液分離槽の内部の状態への対処方法を診断する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
According to the monitoring system 100b according to the second modification of the embodiment, the monitoring device 50b includes the supernatant water image and information specifying how to deal with the diagnosis result based on the supernatant water image in the monitoring device 50a according to the embodiment. Based on the above, the third learning model is used as a learning model of a countermeasure method that has learned the relationship between the supernatant water image and information specifying a countermeasure method for the diagnosis result inside the solid-liquid separation tank. A countermeasure determination unit 58 is provided that determines information specifying a countermeasure for the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank. The output unit includes information specifying how to deal with the internal state of the solid-liquid separation tank determined by the solution determination unit 58 using the supernatant water image of the solid-liquid separation tank to be diagnosed and the third learning model. further output.
With this configuration, the monitoring device 50b performs diagnosis using the third learning model that has learned the relationship between the supernatant water image and information specifying how to deal with the diagnosis result inside the solid-liquid separation tank. Since information specifying how to deal with the internal state of the solid-liquid separation tank can be determined from the supernatant water image of the target solid-liquid separation tank, it is possible to monitor how to deal with the internal state of the solid-liquid separation tank. Using the third learning model, it is possible to judge how to deal with the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of diagnosing how to deal with internal conditions, human experience is not required and the variation in diagnostic results can be reduced.
 [実施形態の変形例3]
 (監視システム)
 図19は、本発明の実施形態の変形例3に係る監視システムの構成例を示す図である。実施形態の変形例3に係る監視システム100cは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断することに加えて、変化の予兆を検出する。実施形態の変形例3では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。
[Modification 3 of embodiment]
(Monitoring system)
FIG. 19 is a diagram showing a configuration example of a monitoring system according to modification 3 of the embodiment of the present invention. The monitoring system 100c according to the third modification of the embodiment not only diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and concentration tanks, but also detects signs of change. In the third modification of the embodiment, the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment.
 (監視システム100c)
 監視システム100cは、超音波センサ20と、データ処理装置30と、ゲートウェイ装置31と、情報処理装置40cと、端末装置45cと、監視装置50cとを備える。
 ゲートウェイ装置31と、情報処理装置40cと、端末装置45cと、監視装置50cとは、ネットワークNWを介して接続される。
 データ処理装置30では、データ演算部34は、デジタル信号を、ゲートウェイ装置31を経由して監視装置50cへ送信する。
(Monitoring system 100c)
The monitoring system 100c includes an ultrasonic sensor 20, a data processing device 30, a gateway device 31, an information processing device 40c, a terminal device 45c, and a monitoring device 50c.
The gateway device 31, the information processing device 40c, the terminal device 45c, and the monitoring device 50c are connected via the network NW.
In the data processing device 30, the data calculation unit 34 transmits the digital signal to the monitoring device 50c via the gateway device 31.
 (監視装置50c)
 監視装置50cは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50cは、通信装置51と、記録装置52と、情報処理部53cと、各構成要素を図19に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
 記録装置52には、監視装置50cにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53cが出力する画素データが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データと、変化の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を機械学習することによって得られた変化の学習モデルとが記憶される。
(Monitoring device 50c)
The monitoring device 50c is realized by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50c includes a communication device 51, a recording device 52, an information processing unit 53c, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
The recording device 52 stores a program (monitoring application) executed by the monitoring device 50c. The recording device 52 also stores pixel data output by the information processing section 53c.
The recording device 52 stores training data of a diagnosis result that associates information indicating a supernatant water image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant data based on the training data of the diagnosis result. A learning model of diagnosis results obtained by machine learning of the relationship between the clear water image and the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data. Based on this, a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and a countermeasure method. A learning model of a countermeasure obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure for the internal state of the solid-liquid separation tank is stored based on the training data.
The recording device 52 stores change teacher data in which information indicating a supernatant water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, and change teacher data. Based on the data, a learning model of changes obtained by machine learning of the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank is stored.
 情報処理部53cは、例えば、グラフィック化部54と、現状判定部55aと、学習部56cと、原因判定部57bと、対処方法判定部58cと、変化予兆導出部59として機能する。
 学習部56cは、学習部56bの機能に加えて以下の機能を有する。学習部56cは、記録装置52に記憶された変化の教師データを取得する。学習部56cは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。例えば、学習部56cは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。変化の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報のいずれかに分類される。学習部56cは、生成した変化の学習モデルを記録装置52に記憶させる。
 対処方法判定部58cは、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58cは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58cは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
 変化予兆導出部59は、現状判定部55aから上澄水画像を示す情報を取得する。変化予兆導出部59は、記録装置52に記憶された変化の学習モデルを取得する。変化予兆導出部59は、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の変化の予兆を導出する。
 情報処理部53cの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53cの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
 情報処理装置40cは、情報処理装置40を適用できる。
The information processing unit 53c functions as, for example, a graphics generation unit 54, a current status determination unit 55a, a learning unit 56c, a cause determination unit 57b, a countermeasure determination unit 58c, and a change sign derivation unit 59.
The learning section 56c has the following functions in addition to the functions of the learning section 56b. The learning unit 56c acquires the change teacher data stored in the recording device 52. The learning unit 56c performs machine learning (supervised learning) on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data. learning) to generate a learning model of changes that associates a supernatant water image with information that specifies changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. For example, the learning unit 56c uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the change learning model classifies the supernatant water image into one of the information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image was obtained. be done. The learning unit 56c causes the recording device 52 to store the generated change learning model.
The countermeasure determination unit 58c acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58c acquires a learning model of the countermeasure stored in the recording device 52. The countermeasure determination unit 58c determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
The change sign deriving unit 59 acquires information indicating the supernatant water image from the current state determining unit 55a. The change sign deriving unit 59 acquires the learning model of change stored in the recording device 52. The change sign deriving unit 59 derives a sign of change in the solid-liquid separation tank of the acquired supernatant water image based on the acquired change learning model.
All or part of the information processing unit 53c is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be. Note that all or part of the information processing section 53c may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
The information processing device 40 can be applied to the information processing device 40c.
 (端末装置45c)
 端末装置45cは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45cの一例は、下水処理設備10を監視する監視センタに設置される。
 ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45cを操作することによって、上澄水画像を要求する情報を含む、監視装置50cを宛先とする上澄水画像要求を作成させる。端末装置45cは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45cは、作成した上澄水画像要求を監視装置50cへ送信する。
 端末装置45cは、監視装置50cへ送信した上澄水画像要求に対して監視装置50cが送信した上澄水画像応答を受信する。端末装置45cは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45cが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定し、固液分離槽の内部の状態への対処方法を特定し、その上澄水画像が得られた後の固液分離槽の内部の状態を推測し、その変化を特定する。
 ユーザーは、端末装置45cを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、固液分離槽の内部の状態への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50cを宛先とする診断結果通知を作成させる。端末装置45cは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45cは、作成した診断結果通知を監視装置50cへ送信する。
(Terminal device 45c)
The terminal device 45c is realized by a device such as a personal computer, a server, or an industrial computer. An example of the terminal device 45c is installed in a monitoring center that monitors the sewage treatment facility 10.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45c to create a supernatant water image request addressed to the monitoring device 50c that includes information requesting a supernatant water image. . The terminal device 45c creates a supernatant water image request based on the user's operation. The terminal device 45c transmits the created supernatant water image request to the monitoring device 50c.
The terminal device 45c receives the supernatant water image response sent by the monitoring device 50c in response to the supernatant water image request sent to the monitoring device 50c. The terminal device 45c displays the supernatant water image included in the supernatant water image response. The user refers to the supernatant water image displayed by the terminal device 45c, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank, A method to deal with the internal state of the solid-liquid separation tank is specified, the internal state of the solid-liquid separation tank after the supernatant water image is obtained is estimated, and changes therein are identified.
By operating the terminal device 45c, the user can receive information indicating the supernatant water image, the diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information indicating the internal state of the solid-liquid separation tank. Diagnosis results addressed to the monitoring device 50c, including information specifying how to deal with the internal condition and information specifying changes in the internal condition of the solid-liquid separation tank after the supernatant water image is obtained. Let notifications be created. The terminal device 45c creates a diagnosis result notification based on the user's operation. The terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c.
 (監視システムの動作)
 図20は、実施形態の変形例3に係る監視システムの動作の例1を示す図である。図20を参照して、監視装置50cが、端末装置45cが送信した診断結果通知に含まれる上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを蓄積し、蓄積した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その監視画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを生成する処理について説明する。
 ステップS1-8からS10-8は、図7のステップS1-1からS10-1を適用できるため、ここでの説明は省略する。
 (ステップS11-8)
 端末装置45cは、監視装置50cが送信した上澄水画像応答を受信する。端末装置45cは、受信した上澄水画像応答に含まれる上澄水画像を示す情報を画像処理することによって上澄水画像を表示する。端末装置45cは、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、その診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50cを宛先とする診断結果通知を作成する。
(Operation of monitoring system)
FIG. 20 is a diagram illustrating a first example of the operation of the monitoring system according to the third modification of the embodiment. Referring to FIG. 20, the monitoring device 50c receives the information indicating the supernatant water image included in the diagnosis result notification sent by the terminal device 45c, the diagnosis result of the internal state of the solid-liquid separation tank, and the cause of the diagnosis result. information that specifies the diagnosis result, information that specifies how to deal with the diagnosis result, and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. Information showing clear water images, diagnosis results of the internal state of the solid-liquid separation tank, information identifying the cause of the diagnosis results, information specifying how to deal with the diagnosis results, and monitoring images were obtained. Machine learning is performed based on the information that identifies the subsequent change in the internal state of the solid-liquid separation tank, and a learning model for diagnosis results, a learning model for causes, a learning model for countermeasures, and a learning model for changes are generated. The process will be explained.
Since steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-8 to S10-8, the description thereof will be omitted here.
(Step S11-8)
The terminal device 45c receives the supernatant water image response transmitted by the monitoring device 50c. The terminal device 45c displays the supernatant water image by processing the information indicating the supernatant water image included in the received supernatant water image response. The terminal device 45c has information indicating the supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information specifying a method for dealing with the diagnosis result. , and information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, a diagnosis result notification addressed to the monitoring device 50c is created.
 (ステップS12-8)
 端末装置45cは、作成した診断結果通知を監視装置50cへ送信する。
 (ステップS13-8)
 監視装置50cにおいて、通信装置51は、端末装置45cが送信した診断結果通知を受信する。学習部56cは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果への対処方法を特定する情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを取得する。
 学習部56cは、取得した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、上澄水画像を示す情報と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、上澄水画像を示す情報と診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データとを記録装置52に記憶させる。
 (ステップS14-8)
 監視装置50cにおいて、学習部56cは、記録装置52に記憶された診断結果の教師データを取得する。学習部56cは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
 学習部56cは、記録装置52に記憶された原因の教師データを取得する。学習部56cは、取得した原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関係付けた原因の学習モデルを生成する。
 学習部56cは、記録装置52に記憶された対処方法の教師データを取得する。学習部56cは、取得した対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを機械学習することによって、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報とを関係付けた対処方法の学習モデルを生成する。
 学習部56cは、記録装置52に記憶された変化の教師データを取得する。学習部56cは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。
(Step S12-8)
The terminal device 45c transmits the created diagnosis result notification to the monitoring device 50c.
(Step S13-8)
In the monitoring device 50c, the communication device 51 receives the diagnosis result notification transmitted by the terminal device 45c. The learning unit 56c acquires the diagnosis result notification received by the communication device 51, and acquires information indicating the supernatant water image included in the acquired diagnosis result notification, the diagnosis result of the internal state of the solid-liquid separation tank, and the diagnosis result. information that specifies how to deal with the problem and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
The learning unit 56c includes teacher data of diagnosis results that associates information indicating the acquired supernatant water image with diagnosis results of the internal state of the solid-liquid separation tank, and information indicating the supernatant water image and the internal state of the solid-liquid separation tank. The teacher data of the cause is associated with the information that specifies the cause of the diagnosis result of the condition, the teacher data of the countermeasure is associated with the information indicating the supernatant water image and the information that specifies how to deal with the diagnosis result, The recording device 52 stores change teacher data in which information indicating a clear water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
(Step S14-8)
In the monitoring device 50c, the learning unit 56c acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired training data of the diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the separation tank.
The learning unit 56c acquires the teacher data of the cause stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant water image and information for specifying the cause of the diagnosis result of the internal state of the solid-liquid separation tank based on the acquired teacher data of the cause. A learning model of the cause is generated in association with information that specifies the cause of the diagnostic result of the internal state of the liquid separation tank.
The learning unit 56c acquires training data of coping methods stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant water image and information specifying how to deal with the internal state of the solid-liquid separation tank, based on the acquired teaching data of the countermeasure method. A learning model of how to deal with the internal state of the separation tank is generated in association with information specifying how to deal with the situation inside the separation tank.
The learning unit 56c acquires the change teacher data stored in the recording device 52. The learning unit 56c performs machine learning on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data. , a change learning model is generated that associates a supernatant water image with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained.
 (ステップS15-8)
 監視装置50cにおいて、学習部56cは、生成した診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを記録装置52に記憶させる。
(Step S15-8)
In the monitoring device 50c, the learning unit 56c causes the recording device 52 to store the generated diagnostic result learning model, cause learning model, countermeasure learning model, and change learning model.
 なお、診断結果通知は、上澄水画像ではなく監視画像に基づいて診断された結果であってもよい。つまり、ステップS7-8において端末装置45cが監視画像要求を作成し、ステップS8-8において端末装置45cが作成した監視画像要求を監視装置50cへ送信し、ステップS9-8において監視装置50cが監視画像を作成し、ステップS10-8において監視装置50cが監視画像応答を端末装置45cへ送信してもよい。 Note that the diagnosis result notification may be the result of diagnosis based on the monitoring image instead of the supernatant water image. That is, in step S7-8, the terminal device 45c creates a surveillance image request, in step S8-8 the terminal device 45c transmits the created surveillance image request to the surveillance device 50c, and in step S9-8, the surveillance device 50c monitors the An image may be created, and the monitoring device 50c may transmit a monitoring image response to the terminal device 45c in step S10-8.
 図21は、実施形態の変形例3に係る監視システムの動作の例2を示す図である。図21を参照して、監視装置50cが、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50cが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-9からS6-9は、図7のステップS1-1からS6-1を適用できるため、ここでの説明は省略する。
 (ステップS7-9)
 監視装置50cにおいて、現状判定部55aは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。
 (ステップS8-9)
 監視装置50cにおいて、現状判定部55aは、記録装置52に記憶された診断結果の学習モデルを取得する。
 (ステップS9-9)
 監視装置50cにおいて、現状判定部55aは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。
 (ステップS10-9)
 監視装置50cにおいて、原因判定部57bは、現状判定部55aから固液分離槽の内部の状態の判定結果を取得する。原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であるかを判定する。原因判定部57bが、取得した固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもないと判定した場合にはステップS15-9へ移行する。
 (ステップS11-9)
 監視装置50cにおいて、原因判定部57bは、取得した固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合に、記録装置52に記憶された原因の学習モデルを取得する。
 (ステップS12-9)
 監視装置50cにおいて、原因判定部57bは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を判定する。
 (ステップS13-9)
 監視装置50cにおいて、対処方法判定部58cは、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。対処方法判定部58cは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。
FIG. 21 is a diagram illustrating a second example of the operation of the monitoring system according to the third modification of the embodiment. Referring to FIG. 21, monitoring device 50c acquires the digital signal transmitted by data processing device 30, and creates a supernatant water image based on the acquired digital signal. A process in which the monitoring device 50c determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described.
Since steps S1-1 to S6-1 in FIG. 7 can be applied to steps S1-9 to S6-9, the explanation here will be omitted.
(Step S7-9)
In the monitoring device 50c, the current state determination unit 55a acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data.
(Step S8-9)
In the monitoring device 50c, the current state determining unit 55a acquires the learning model of the diagnosis result stored in the recording device 52.
(Step S9-9)
In the monitoring device 50c, the current state determining unit 55a determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result.
(Step S10-9)
In the monitoring device 50c, the cause determination unit 57b acquires the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. The cause determination unit 57b determines whether the obtained determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. If the cause determination unit 57b determines that the obtained determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormality, the process moves to step S15-9.
(Step S11-9)
In the monitoring device 50c, the cause determination unit 57b acquires the learning model of the cause stored in the recording device 52 when the acquired determination result of the internal state of the solid-liquid separation tank is determined to be malfunctioning or abnormal. .
(Step S12-9)
In the monitoring device 50c, the cause determining unit 57b determines the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause.
(Step S13-9)
In the monitoring device 50c, the countermeasure determination unit 58c acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55a. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58c acquires a learning model of the countermeasure stored in the recording device 52.
 (ステップS14-9)
 監視装置50cにおいて、対処方法判定部58cは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
 (ステップS15-9)
 監視装置50cにおいて、変化予兆導出部59は、記録装置52に記憶された変化の学習モデルを取得する。監視装置50cにおいて、変化予兆導出部59は、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態の変化の予兆を検出する。
 (ステップS16-9)
 監視装置50cにおいて、変化予兆導出部59は、現状判定部55aから上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果を取得する。変化予兆導出部59は、原因判定部57bから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。変化予兆導出部59は、上澄水画像を示す情報と画像固液分離槽の内部の状態の判定結果と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と固液分離槽の内部の状態の変化の予兆の検出結果と含む、情報処理装置40cを宛先とする状態通知情報を作成する。
 (ステップS17-9)
 監視装置50cにおいて、変化予兆導出部59は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、対処方法判定部58cが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40cへ送信する。
 なお、ステップS7-9において監視装置50は上澄水画像を作成するが一例に過ぎない。例えば、監視装置50が画素データに基づいて監視画像を作成し、その後のステップにおいて汚泥界面より深い部分を無視するなどにより、上澄水画像に着目していればよい。
 監視装置50cが、情報処理装置40cが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
(Step S14-9)
In the monitoring device 50c, the countermeasure determination unit 58c determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
(Step S15-9)
In the monitoring device 50c, the change sign deriving unit 59 acquires the learning model of change stored in the recording device 52. In the monitoring device 50c, the change sign deriving unit 59 detects a sign of a change in the state inside the solid-liquid separation tank in the acquired supernatant water image based on the acquired change learning model.
(Step S16-9)
In the monitoring device 50c, the change sign deriving unit 59 acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current state determining unit 55a. The change sign deriving unit 59 acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determining unit 57b. The change sign deriving unit 59 extracts information indicating the supernatant water image, the determination result of the internal state of the solid-liquid separation tank, information specifying the cause of the internal state of the solid-liquid separation tank, and the information indicating the internal state of the solid-liquid separation tank. Status notification information addressed to the information processing device 40c is created, including information specifying how to deal with the situation and the detection result of a sign of a change in the internal status of the solid-liquid separation tank.
(Step S17-9)
In the monitoring device 50c, the change sign deriving unit 59 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the countermeasure method determining unit 58c, and transmits the acquired status notification information to the information processing device 40c.
Note that the monitoring device 50 creates a supernatant water image in step S7-9, but this is just an example. For example, the monitoring device 50 may create a monitoring image based on pixel data and focus on the supernatant water image by ignoring the portion deeper than the sludge interface in subsequent steps.
Since FIG. 9 can be applied to the process in which the monitoring device 50c transmits information indicating the supernatant water image based on the tank internal state information request transmitted by the information processing device 40c, a description thereof will be omitted.
 前述した実施形態の変形例3では、1つの下水処理設備10に監視システム100cが接続されている場合について説明したが、この例に限られない。例えば、複数の下水処理設備10に監視システム100cが接続されてもよいし、1つの下水処理設備10に複数の監視システム100cが接続されてもよい。仮に、複数の下水処理設備10に監視システム100cが接続された場合には、Aという設備で経験のない非定常状態が生じた場合に、Bという設備でその非定常状態が生じた経験があれば、“異常”として判断し、その異常の原因を特定する情報と、対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とが判定され、出力される可能性が高い。つまり、監視装置50cは、より多くの学習が可能となるため、判定に使用できる事例数を増加させることができる。このため、異常又は不調と判断できる非定常状態を増加させることができる。
 前述した実施形態の変形例3では、監視装置50cが機械学習を行う場合について説明したが、この例に限られない。例えば、機械学習を行う装置を監視装置50cとは別の装置で実現してもよい。この場合、学習装置は、実施形態の変形例2で説明した学習装置において、学習装置は、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを監視装置50cからを取得する。学習装置の学習部は、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを機械学習(教師あり機械学習)によって生成する。
 実施形態の変形例3において、情報処理装置40cは、状態通知に含まれる固液分離槽の内部の状態の変化を特定する情報を下水処理設備10のオペレータに通知してもよい。
In the third modification of the embodiment described above, a case has been described in which the monitoring system 100c is connected to one sewage treatment facility 10, but the present invention is not limited to this example. For example, the monitoring system 100c may be connected to a plurality of sewage treatment facilities 10, or the plurality of monitoring systems 100c may be connected to one sewage treatment facility 10. If the monitoring system 100c is connected to a plurality of sewage treatment facilities 10, if an unsteady state that has never been experienced occurs in equipment A, it will be possible to detect whether an unsteady state has occurred in equipment B. For example, it is determined to be an "abnormality" and information is used to identify the cause of the abnormality, information to identify countermeasures, and changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. There is a high possibility that the information will be determined and output. In other words, since the monitoring device 50c is capable of learning more, it is possible to increase the number of cases that can be used for determination. Therefore, it is possible to increase the number of unsteady states that can be determined to be abnormal or malfunctioning.
In the third modification of the embodiment described above, a case has been described in which the monitoring device 50c performs machine learning, but the present invention is not limited to this example. For example, a device that performs machine learning may be implemented as a device different from the monitoring device 50c. In this case, in the learning device described in the second modification of the embodiment, the learning device specifies the supernatant water image and the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. information from the monitoring device 50c. The learning section of the learning device analyzes the supernatant water image and the internal state of the solid-liquid separation tank based on the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. A fourth learning model representing a relationship with information specifying a change in state is generated by machine learning (supervised machine learning).
In modification 3 of the embodiment, the information processing device 40c may notify the operator of the sewage treatment facility 10 of information that specifies a change in the internal state of the solid-liquid separation tank, which is included in the state notification.
 実施形態の変形例3に係る監視システム100cによれば、監視装置50cは、実施形態に係る監視装置50bにおいて、上澄水画像と上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した変化の学習モデルとしての第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出する変化予兆導出部59を備える。出力部は、診断の対象である固液分離槽の上澄水画像と第4学習モデルとを用いて変化予兆導出部が検出した固液分離槽の内部の状態の変化の予兆を特定する情報をさらに出力する。
 このように構成することによって、監視装置50cは、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出できるため、固液分離槽の内部の状態の変化を監視できる。第4学習モデルを用いて、診断の対象である固液分離槽の上澄水画像から固液分離槽の内部の状態の変化の予兆を検出できることによって、人が経験に基づいて固液分離槽の内部の状態の変化の予兆を検出する場合と比較して、人の経験は不要であり、診断結果のバラツキも低減できる。
According to the monitoring system 100c according to the third modification of the embodiment, the monitoring device 50c monitors the supernatant water image and the internal state of the solid-liquid separation tank after the supernatant water image is obtained in the monitoring device 50b according to the embodiment. Diagnosis is performed using the fourth learning model as a change learning model that has learned the relationship between the supernatant water image and the information identifying changes in the internal state of the solid-liquid separation tank. The apparatus includes a change sign deriving unit 59 that detects a sign of a change in the internal state of the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank, which is the object of the process. The output unit outputs information that identifies a sign of a change in the internal state of the solid-liquid separation tank detected by the change sign derivation unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the fourth learning model. Output more.
With this configuration, the monitoring device 50c uses the fourth learning model that has learned the relationship between the supernatant water image and the information specifying the change in the internal state of the solid-liquid separation tank to detect the target of diagnosis. Since signs of changes in the internal state of the solid-liquid separation tank can be detected from the supernatant water image of the solid-liquid separation tank, changes in the internal state of the solid-liquid separation tank can be monitored. By using the fourth learning model, it is possible to detect signs of changes in the internal state of the solid-liquid separation tank from images of the supernatant water of the solid-liquid separation tank, which is the target of diagnosis. Compared to the case of detecting signs of changes in internal conditions, human experience is not required and variations in diagnostic results can be reduced.
 [実施形態の変形例4]
 (監視システム)
 図22は、本発明の実施形態の変形例4に係る監視システムの構成例を示す図である。実施形態の変形例4に係る監視システム100dは、実施形態の変形例3において、監視装置50dを、ネットワークNWを介さずにデータ処理装置30dとゲートウェイ装置31との間に接続したものである。実施形態の変形例4に係る監視システム100dは、沈殿槽、濃縮槽などの固液分離槽の汚泥堆積状態を診断し、変化の予兆を検出する。実施形態の変形例4では、実施形態と同様に、固液分離槽を備える設備の一例として、下水処理設備10を適用する。図22においては下水処理設備10については省略されている。
[Modification 4 of embodiment]
(Monitoring system)
FIG. 22 is a diagram illustrating a configuration example of a monitoring system according to modification 4 of the embodiment of the present invention. A monitoring system 100d according to a fourth modification of the embodiment is the same as the third modification of the embodiment in which a monitoring device 50d is connected between the data processing device 30d and the gateway device 31 without going through the network NW. The monitoring system 100d according to the fourth modification of the embodiment diagnoses the state of sludge accumulation in solid-liquid separation tanks such as settling tanks and thickening tanks, and detects signs of change. In modification 4 of the embodiment, the sewage treatment facility 10 is applied as an example of a facility including a solid-liquid separation tank, similarly to the embodiment. In FIG. 22, the sewage treatment equipment 10 is omitted.
 (監視システム100d)
 監視システム100dは、超音波センサ20と、データ処理装置30dと、監視装置50dと、ゲートウェイ装置31と、情報処理装置40dと、端末装置45dとを備える。
 ゲートウェイ装置31と、情報処理装置40dと、端末装置45dとは、ネットワークNWを介して接続される。
 データ処理装置30dでは、データ演算部34は、デジタル信号を、監視装置50dへ送信する。
(Monitoring system 100d)
The monitoring system 100d includes an ultrasonic sensor 20, a data processing device 30d, a monitoring device 50d, a gateway device 31, an information processing device 40d, and a terminal device 45d.
The gateway device 31, the information processing device 40d, and the terminal device 45d are connected via the network NW.
In the data processing device 30d, the data calculation unit 34 transmits the digital signal to the monitoring device 50d.
 (監視装置50d)
 図23は、本実施形態の変形例4に係る監視システムの監視装置の一例を示す図である。監視装置50dは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。監視装置50dは、通信装置51と、記録装置52と、情報処理部53dと、各構成要素を図23に示されているように電気的に接続するためのアドレスバスやデータバス等のバスラインBLとを備える。
 記録装置52には、監視装置50dにより実行されるプログラム(監視アプリ)が記憶される。また、記録装置52には、情報処理部53dが出力する画素データが記憶される。
 記録装置52には、監視画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、上澄水画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果となる原因を特定する情報とを関連付けた原因の教師データと、原因の教師データに基づいて、上澄水画像と固液分離槽の内部の状態となる原因を特定する情報との関係を機械学習することによって得られた原因の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを関連付けた対処方法の教師データと、対処方法の教師データに基づいて、上澄水画像と固液分離槽の内部の状態への対処方法を特定する情報との関係を機械学習することによって得られた対処方法の学習モデルとが記憶される。
 記録装置52には、上澄水画像を示す情報とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関連付けた変化の教師データと、変化の教師データに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を機械学習することによって得られた変化の学習モデルとが記憶される。
(Monitoring device 50d)
FIG. 23 is a diagram illustrating an example of a monitoring device of a monitoring system according to modification example 4 of the present embodiment. The monitoring device 50d is realized by a device such as a personal computer, a server, or an industrial computer. The monitoring device 50d includes a communication device 51, a recording device 52, an information processing section 53d, and bus lines such as an address bus and a data bus for electrically connecting each component as shown in FIG. It is equipped with BL.
The recording device 52 stores a program (monitoring application) executed by the monitoring device 50d. The recording device 52 also stores pixel data output by the information processing section 53d.
The recording device 52 contains training data of diagnosis results that associates information indicating a monitoring image with a diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, and supernatant water based on the training data of the diagnosis results. A learning model of the diagnosis result obtained by machine learning of the relationship between the image and the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores cause teacher data in which information indicating a supernatant water image is associated with information specifying a cause resulting in a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and cause teacher data. Based on this, a learning model of the cause obtained by machine learning of the relationship between the supernatant water image and information specifying the cause of the internal state of the solid-liquid separation tank is stored.
The recording device 52 stores training data of a countermeasure method in which information indicating a supernatant water image is associated with information specifying a countermeasure method for a diagnostic result of the internal state of the solid-liquid separation tank based on the supernatant water image, and a countermeasure method. A learning model of a countermeasure obtained by machine learning of the relationship between the supernatant water image and information specifying a countermeasure for the internal state of the solid-liquid separation tank is stored based on the training data.
The recording device 52 stores change teacher data in which information indicating a supernatant water image is associated with information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, and change teacher data. Based on the data, a learning model of changes obtained by machine learning of the relationship between the supernatant water image and information specifying changes in the internal state of the solid-liquid separation tank is stored.
 情報処理部53dは、例えば、グラフィック化部54dと、現状判定部55dと、学習部56dと、原因判定部57dと、対処方法判定部58dと、変化予兆導出部59dとして機能する。
 グラフィック化部54dは、通信装置51が受信したデジタル信号を取得する。グラフィック化部54dは、取得したデジタル信号の値を画素データに変換する。グラフィック化部54dは、デジタル信号の変換後の画素データを記録装置52に記憶させる。
 グラフィック化部54dは、通信装置51が受信した上澄水画像要求を取得する。グラフィック化部54dは、取得した上澄水画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54dは、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54dは、作成した上澄水画像を示す情報を含む、情報処理装置40dを宛先とする上澄水画像応答を作成する。グラフィック化部54dは、作成した上澄水画像応答を通信装置51へ出力する。
 グラフィック化部54dは、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54dは、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。グラフィック化部54dは、作成した上澄水画像を示す情報を含む、情報処理装置40dを宛先とする槽内状態情報応答を作成する。グラフィック化部54dは、作成した槽内状態情報応答を通信装置51へ出力する。
The information processing unit 53d functions as, for example, a graphic generation unit 54d, a current status determination unit 55d, a learning unit 56d, a cause determination unit 57d, a countermeasure determination unit 58d, and a change sign derivation unit 59d.
The graphic generator 54d acquires the digital signal received by the communication device 51. The graphic converting unit 54d converts the value of the acquired digital signal into pixel data. The graphic converting unit 54d causes the recording device 52 to store the pixel data after converting the digital signal.
The graphic generation unit 54d acquires the supernatant water image request received by the communication device 51. The graphic generation unit 54d acquires pixel data stored in the recording device 52 based on the acquired supernatant water image request. The graphic section 54d creates a supernatant water image based on the acquired pixel data. The graphic generation unit 54d creates a clear water image response addressed to the information processing device 40d, which includes information indicating the created clear water image. The graphic generator 54d outputs the created supernatant water image response to the communication device 51.
The graphic generating unit 54d acquires the tank internal state information request received by the communication device 51. The graphic generating unit 54d acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a supernatant water image based on the acquired pixel data. The graphic generating unit 54d creates an in-tank state information response addressed to the information processing device 40d, which includes information indicating the created supernatant water image. The graphic generator 54d outputs the created tank state information response to the communication device 51.
 現状判定部55dは、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、上澄水画像を作成する。現状判定部55dは、記録装置52に記憶された診断結果の学習モデルを取得する。現状判定部55dは、取得した診断結果の学習モデルに基づいて、作成した上澄水画像の固液分離槽の内部の状態を判定する。現状判定部55dは、固液分離槽の内部の状態の判定結果が不調又は異常である場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40dを宛先とする状態通知情報を作成する。現状判定部55dは、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55dが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40dへ送信する。
 現状判定部55dは、上澄水画像を作成する場合に、計測したデータをそのまま使用してもよいし、間引きすることによって限られた表示幅に長時間の間に計測されたデータを含めてもよい。限られた表示幅に長時間の間に計測されたデータを含めることによって、より長い時間の変化を監視できる。仮に、静止画であるならば、任意の適当な間隔で画素データをピックアップして切替表示させることができるが、本実施形態の変形例4では常に計測を行なって新しいデータが追加されていくため、任意の適当な間隔で画素データをピックアップして切替表示させた場合にはデータ処理に遅延や阻害をきたすおそれがあり、画像表示のために計測が不安定となっては本末転倒となる。そこで、本実施形態の変形例4では、予めプリセットされた表示時間幅がいくつか用意され、複数の表示時間幅の各々に対応する時間幅用のデータ格納領域が作成される。本実施形態では、新規データを追加する間隔(インターバル)が指定され、複数のインターバルの各々に対応する画像データベース(データ格納領域(番地))が作成される。
The current state determination unit 55d acquires the pixel data stored in the recording device 52, and creates a supernatant water image based on the acquired pixel data. The current state determination unit 55d acquires the learning model of the diagnosis result stored in the recording device 52. The current state determining unit 55d determines the internal state of the solid-liquid separation tank in the created supernatant water image based on the learning model of the acquired diagnosis result. If the determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the current status determination unit 55d sends the information processing device 40d containing information indicating the determination result of the internal state of the solid-liquid separation tank as a destination. Create status notification information. The current status determination unit 55d outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the current status determination unit 55d, and transmits the acquired status notification information to the information processing device 40d.
When creating a supernatant water image, the current status determination unit 55d may use the measured data as is, or may include data measured over a long period of time in a limited display width by thinning out the data. good. By including data measured over a long period of time in a limited display width, changes over a longer period of time can be monitored. If it is a still image, pixel data can be picked up at arbitrary appropriate intervals and switched and displayed, but in the fourth modification of the present embodiment, new data is constantly added through measurement. If pixel data is picked up and switched and displayed at arbitrary and appropriate intervals, there is a risk that data processing will be delayed or hindered, and if measurement becomes unstable due to image display, it will be a waste of money. Therefore, in the fourth modification of the present embodiment, several preset display time widths are prepared, and data storage areas for time widths corresponding to each of the plurality of display time widths are created. In this embodiment, an interval at which new data is added is specified, and an image database (data storage area (address)) corresponding to each of a plurality of intervals is created.
 監視装置50dに対して、表示を切り替える操作が行われるとともに、表示時間幅が選択される。現状判定部55dは、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。仮に、時間表示幅を切り替え操作が行われた場合には、選択された時間表示幅に対応したデータベースからデータを取得し、取得したデータを使用して上澄水画像を作成する。このように構成することによって、データが格納されるデータベースのデータを加工することなく、上澄水画像を作成するタイムラグもなく、スムーズな切り替えができる。
 学習部56dは、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる上澄水画像を示す情報とその上澄水画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56dは、記録装置52に記憶された診断結果の教師データを取得する。学習部56dは、取得した診断結果の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。診断結果の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。学習部56dは、生成した診断結果の学習モデルを記録装置52に記憶させる。
 学習部56dは、記録装置52に記憶された対処方法の教師データを取得する。学習部56dは、取得した対処方法の教師データに基づいて、上澄水画像とその上澄水画像による固液分離槽の内部の状態の診断結果への対処方法を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像と固液分離槽の内部の状態への対処方法とを関係付けた対処方法の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。対処方法の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、固液分離槽の内部の状態への対処方法を特定する情報のいずれかに分類される。学習部56dは、生成した対処方法の学習モデルを記録装置52に記憶させる。
An operation to switch the display is performed on the monitoring device 50d, and a display time width is selected. The current status determination unit 55d acquires data from the database corresponding to the selected time display width, and creates a supernatant water image using the acquired data. If the time display width is switched, data is acquired from the database corresponding to the selected time display width, and a supernatant water image is created using the acquired data. With this configuration, smooth switching can be performed without processing the data in the database in which the data is stored and without the time lag of creating a supernatant water image.
The learning unit 56d acquires the diagnosis result notification received by the communication device 51, and obtains information indicating a supernatant water image included in the acquired diagnosis result notification and the state of the inside of the solid-liquid separation tank (inside the tank) based on the supernatant water image. The recording device 52 stores the teacher data of the diagnosis result in association with the diagnosis result of the diagnosis result. The learning unit 56d acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56d performs machine learning (supervised learning) on the supernatant water image and the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the acquired diagnostic result training data. A learning model for diagnosis results that correlates clear water images and the internal state of the solid-liquid separation tank is generated. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the learning model of the diagnosis result classifies the supernatant water image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank. The learning unit 56d causes the recording device 52 to store the generated learning model of the diagnosis result.
The learning unit 56d acquires training data of coping methods stored in the recording device 52. The learning unit 56d performs machine learning (supervised training) on the supernatant water image and information for specifying a response method to the diagnosis result of the internal state of the solid-liquid separation tank based on the supernatant water image, based on the obtained training data of the countermeasure method. By doing this, a learning model of how to deal with the internal state of the solid-liquid separation tank is created by associating the supernatant water image with how to deal with the internal state of the solid-liquid separation tank. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the learning model of the countermeasure method classifies the supernatant water image into one of the information that specifies the countermeasure method for the internal state of the solid-liquid separation tank. The learning unit 56d causes the recording device 52 to store the generated learning model of the coping method.
 学習部56dは、記録装置52に記憶された変化の教師データを取得する。学習部56dは、取得した変化の教師データに基づいて、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを機械学習(教師あり学習)することによって、上澄水画像とその上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを関係付けた変化の学習モデルを生成する。例えば、学習部56dは、畳み込みニューラルネットワークを使用して、上澄水画像を認識する。変化の学習モデルによって、上澄水画像を示す情報に基づいて、上澄水画像が、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報のいずれかに分類される。学習部56dは、生成した変化の学習モデルを記録装置52に記憶させる。 The learning unit 56d acquires the change teacher data stored in the recording device 52. The learning unit 56d performs machine learning (supervised learning) on the supernatant water image and information specifying the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained, based on the acquired change training data. learning) to generate a learning model of changes that associates a supernatant water image with information that specifies changes in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. For example, the learning unit 56d uses a convolutional neural network to recognize the supernatant water image. Based on the information indicating the supernatant water image, the change learning model classifies the supernatant water image into one of the information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image was obtained. be done. The learning unit 56d causes the recording device 52 to store the generated learning model of change.
 原因判定部57dは、現状判定部55dから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。原因判定部57dは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された原因の学習モデルを取得する。原因判定部57dは、取得した原因の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を判定する。原因判定部57dは、上澄水画像を示す情報と固液分離槽の内部の状態を示す情報と固液分離槽の内部の状態となる原因を特定する情報の判定結果を示す情報と含む、情報処理装置40dを宛先とする状態通知情報を作成する。原因判定部57dは、作成した状態通知情報を通信装置51へ出力する。通信装置51は、原因判定部57dが出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40dへ送信する。 The cause determination unit 57d acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55d. When the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the cause determination unit 57d acquires the learning model of the cause stored in the recording device 52. The cause determination unit 57d determines information specifying the cause of the state inside the solid-liquid separation tank of the acquired supernatant water image based on the acquired learning model of the cause. The cause determining unit 57d generates information including information indicating the supernatant water image, information indicating the internal state of the solid-liquid separation tank, and information indicating the determination result of information specifying the cause of the internal state of the solid-liquid separation tank. Status notification information destined for the processing device 40d is created. The cause determination unit 57d outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the cause determination unit 57d, and transmits the acquired status notification information to the information processing device 40d.
 対処方法判定部58dは、現状判定部55dから上澄水画像を示す情報と固液分離槽の内部の状態の判定結果とを取得する。対処方法判定部58dは、取得した固液分離槽の内部の状態の判定結果が不調又は異常である場合には、記録装置52に記憶された対処方法の学習モデルを取得する。対処方法判定部58dは、取得した対処方法の学習モデルに基づいて、取得した上澄水画像の固液分離槽の内部の状態への対処方法を判定する。
 対処方法判定部58dは、原因判定部57dから上澄水画像の固液分離槽の内部の状態となる原因を特定する情報を取得する。対処方法判定部58dは、上澄水画像を示す情報と固液分離槽の内部の状態となる原因を特定する情報と固液分離槽の内部の状態への対処方法を特定する情報と含む、情報処理装置40dを宛先とする状態通知情報を作成する。対処方法判定部58dは、作成した状態通知情報を通信装置51へ出力する。
The countermeasure determination unit 58d acquires information indicating the supernatant water image and the determination result of the internal state of the solid-liquid separation tank from the current status determination unit 55d. If the acquired determination result of the internal state of the solid-liquid separation tank is poor or abnormal, the countermeasure determination unit 58d acquires the learning model of the countermeasure stored in the recording device 52. The countermeasure determination unit 58d determines a countermeasure method for the internal state of the solid-liquid separation tank in the obtained supernatant water image based on the acquired learning model of the countermeasure method.
The countermeasure determination unit 58d acquires information specifying the cause of the state inside the solid-liquid separation tank in the supernatant water image from the cause determination unit 57d. The countermeasure determination unit 58d generates information including information indicating the supernatant water image, information specifying the cause of the internal state of the solid-liquid separation tank, and information specifying a countermeasure method for the internal state of the solid-liquid separation tank. Status notification information destined for the processing device 40d is created. The countermeasure determination unit 58d outputs the created status notification information to the communication device 51.
 変化予兆導出部59dは、現状判定部55dから上澄水画像を示す情報を取得する。変化予兆導出部59dは、記録装置52に記憶された変化の学習モデルを取得する。変化予兆導出部59dは、取得した変化の学習モデルに基づいて、取得した上澄水画像の固液分離槽の変化の予兆を導出する。
 情報処理部53dの全部または一部は、例えば、CPUなどのプロセッサが記録装置52に格納された監視アプリなどのプログラムを実行することにより実現される機能部(以下、ソフトウェア機能部と称する)である。なお、情報処理部53cの全部または一部は、LSI、ASIC、またはFPGAなどのハードウェアにより実現されてもよく、ソフトウェア機能部とハードウェアとの組み合わせによって実現されてもよい。
 情報処理装置40dは、情報処理装置40を適用できる。
The change sign deriving unit 59d acquires information indicating the supernatant water image from the current state determining unit 55d. The change sign deriving unit 59d acquires the learning model of change stored in the recording device 52. The change sign deriving unit 59d derives a sign of change in the solid-liquid separation tank from the acquired supernatant water image based on the acquired change learning model.
All or part of the information processing unit 53d is a functional unit (hereinafter referred to as a software functional unit) that is realized by a processor such as a CPU executing a program such as a monitoring application stored in the recording device 52. be. Note that all or part of the information processing section 53c may be realized by hardware such as LSI, ASIC, or FPGA, or may be realized by a combination of a software function section and hardware.
The information processing device 40 can be applied to the information processing device 40d.
 (端末装置45d)
 端末装置45dは、パーソナルコンピュータ、サーバー、又は産業用コンピュータ等の装置によって実現される。端末装置45dの一例は、下水処理設備10を監視する監視センタに設置される。
 ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45dを操作することによって、上澄水画像を要求する情報を含む、監視装置50dを宛先とする上澄水画像要求を作成させる。端末装置45dは、ユーザーの操作に基づいて、上澄水画像要求を作成する。端末装置45dは、作成した上澄水画像要求を監視装置50dへ送信する。
 端末装置45dは、監視装置50dへ送信した上澄水画像要求に対して監視装置50dが送信した上澄水画像応答を受信する。端末装置45dは、上澄水画像応答に含まれる上澄水画像を表示する。ユーザーは、端末装置45dが表示した上澄水画像を参照し、上澄水画像に含まれる固液分離槽の内部の状態を診断し、さらに固液分離槽の内部の状態となる原因を推定し、固液分離槽の内部の状態への対処方法を特定し、その上澄水画像が得られた後の固液分離槽の内部の状態を推測し、その変化を特定する。
 ユーザーは、端末装置45dを操作することによって、上澄水画像を示す情報と、固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、固液分離槽の内部の状態への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを含む、監視装置50dを宛先とする診断結果通知を作成させる。端末装置45dは、ユーザーの操作に基づいて、診断結果通知を作成する。端末装置45dは、作成した診断結果通知を監視装置50dへ送信する。
(Terminal device 45d)
The terminal device 45d is realized by a device such as a personal computer, a server, or an industrial computer. An example of the terminal device 45d is installed in a monitoring center that monitors the sewage treatment facility 10.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45d to create a supernatant water image request addressed to the monitoring device 50d that includes information requesting a supernatant water image. . The terminal device 45d creates a supernatant water image request based on the user's operation. The terminal device 45d transmits the created supernatant water image request to the monitoring device 50d.
The terminal device 45d receives the supernatant water image response sent by the monitoring device 50d in response to the supernatant water image request sent to the monitoring device 50d. The terminal device 45d displays the supernatant water image included in the supernatant water image response. The user refers to the supernatant water image displayed by the terminal device 45d, diagnoses the internal state of the solid-liquid separation tank included in the supernatant water image, and further estimates the cause of the internal state of the solid-liquid separation tank, A method to deal with the internal state of the solid-liquid separation tank is specified, the internal state of the solid-liquid separation tank after the supernatant water image is obtained is estimated, and changes therein are identified.
By operating the terminal device 45d, the user can receive information showing the supernatant water image, a diagnosis result of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis result, and information indicating the internal state of the solid-liquid separation tank. Diagnosis results addressed to the monitoring device 50d, including information specifying how to deal with the internal condition and information specifying changes in the internal condition of the solid-liquid separation tank after the supernatant water image is obtained. Let notifications be created. The terminal device 45d creates a diagnosis result notification based on the user's operation. The terminal device 45d transmits the created diagnosis result notification to the monitoring device 50d.
 (監視システムの動作)
 図24は、実施形態の変形例4に係る監視システムの動作の例1を示す図である。図24を参照して、監視装置50dが、端末装置45dが送信した診断結果通知に含まれる上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とを蓄積し、蓄積した上澄水画像を示す情報と固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報と、診断結果への対処方法を特定する情報と、その上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルと対処方法の学習モデルと変化の学習モデルとを生成する処理について説明する。
 ステップS1-10からS10-10は、図7のステップS1-1からS10-1を適用でき、ステップS11-10からS15-10は、図20のステップS11-8からS15-8を適用できるため、ここでの説明は省略する。
(Operation of monitoring system)
FIG. 24 is a diagram illustrating an example 1 of operation of the monitoring system according to modification 4 of the embodiment. Referring to FIG. 24, the monitoring device 50d receives the information indicating the supernatant water image included in the diagnosis result notification sent by the terminal device 45d, the diagnosis result of the internal state of the solid-liquid separation tank, and the cause of the diagnosis result. information that specifies the diagnosis result, information that specifies how to deal with the diagnosis result, and information that specifies the change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. Information showing the clear water image, diagnosis results of the internal state of the solid-liquid separation tank, information specifying the cause of the diagnosis results, information specifying how to deal with the diagnosis results, and the supernatant water image are obtained. Machine learning is performed based on the information that identifies the change in the internal state of the solid-liquid separation tank after the solid-liquid separation tank, and a learning model of the diagnosis result, a learning model of the cause, a learning model of the countermeasure, and a learning model of the change are generated. The process to do this will be explained.
Steps S1-1 to S10-1 in FIG. 7 can be applied to steps S1-10 to S10-10, and steps S11-8 to S15-8 in FIG. 20 can be applied to steps S11-10 to S15-10. , the explanation here is omitted.
 図25は、実施形態の変形例4に係る監視システムの動作の例2を示す図である。図25を参照して、監視装置50dが、データ処理装置30dが送信したデジタル信号を取得し、取得したデジタル信号に基づいて、上澄水画像を作成する。監視装置50dが、作成した上澄水画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-11からS6-11は、図7のステップS1-1からS6-1を適用でき、ステップS7-11からS17-11は、図21のステップS7-9からS17-9を適用できるため、ここでの説明は省略する。
 監視装置50dが、情報処理装置40dが送信した槽内状態情報要求に基づいて、上澄水画像を示す情報を送信する処理については、図9を適用できるため、説明を省略する。
FIG. 25 is a diagram illustrating a second example of the operation of the monitoring system according to the fourth modification of the embodiment. Referring to FIG. 25, monitoring device 50d acquires the digital signal transmitted by data processing device 30d, and creates a supernatant water image based on the acquired digital signal. A process in which the monitoring device 50d determines the internal state of the solid-liquid separation tank based on the created supernatant water image will be described.
Steps S1-1 to S6-11 can be applied to steps S1-1 to S6-1 in FIG. 7, and steps S7-11 to S17-11 can be applied to steps S7-9 to S17-9 in FIG. , the explanation here is omitted.
Since FIG. 9 can be applied to the process in which the monitoring device 50d transmits information indicating the supernatant water image based on the in-tank state information request transmitted by the information processing device 40d, a description thereof will be omitted.
 前述した実施形態の変形例4では、実施形態の変形例3において、監視装置50dを、ネットワークNWを介さずにデータ処理装置30dとゲートウェイ装置31との間に接続した場合について接続したがこの例に限られない。例えば、実施形態において、監視装置50を、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。実施形態の変形例1において、監視装置50aを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。実施形態の変形例2において、監視装置50bを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続した場合にも適用できる。 In the modification 4 of the embodiment described above, in the modification 3 of the embodiment, the monitoring device 50d is connected between the data processing device 30d and the gateway device 31 without going through the network NW. Not limited to. For example, in the embodiment, the present invention can also be applied to a case where the monitoring device 50 is connected between the data processing device 30 and the gateway device 31 without going through the network NW. Modification 1 of the embodiment can also be applied to a case where the monitoring device 50a is connected between the data processing device 30 and the gateway device 31 without going through the network NW. In the second modification of the embodiment, the present invention can also be applied to a case where the monitoring device 50b is connected between the data processing device 30 and the gateway device 31 without going through the network NW.
 実施形態の変形例4に係る監視システム100dによれば、監視装置50dを、ネットワークNWを介さずにデータ処理装置30とゲートウェイ装置31との間に接続することによって、監視装置50dを下水処理設備10が設置されている現場に設置できる。このため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、データ処理装置30dのデータをリアルタイムに監視できる。
 監視装置50dによる判定、導出をリアルタイムに行うことができるため、判定、導出に要する時間を短縮できる。判定、導出に要する時間を短縮できるため、異常、不調と判定された場合の状態通知を即座に行うことができる。
 監視装置50dを下水処理設備10が設置されている現場に設置できるため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、データハッキング、システムへの攻撃リスクを低減できる。
 監視装置50dを下水処理設備10が設置されている現場に設置できるため、監視装置50dを、ネットワークNWを介して下水処理設備10が設置されている現場から離れた位置に設置した場合と比較して、その現場(設備)特有な状況の判定、原因判定、対処方法判定、予兆の導出が容易である。
 監視センタに設置された情報処理装置40dは、ネットワークNW、ゲートウェイ装置31を通じて、現場に設置された監視装置50dの記録装置52に記録された情報(プログラム、監視アプリ、学習モデル、画像データ、AI解析結果)を遠隔からアップデートすることができる。
 現場の設置された監視装置50dの記録装置52に記録された情報(主に画素データ、AI解析結果)は、ゲートウェイ装置31、ネットワークNWを通じて遠隔に設置された情報処理装置40dにアップデートすることができる。
According to the monitoring system 100d according to the fourth modification of the embodiment, the monitoring device 50d is connected to the sewage treatment facility by connecting the monitoring device 50d between the data processing device 30 and the gateway device 31 without going through the network NW. It can be installed at the site where 10 is installed. Therefore, the data of the data processing device 30d can be monitored in real time compared to the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW.
Since the monitoring device 50d can perform the determination and derivation in real time, the time required for the determination and derivation can be shortened. Since the time required for determination and derivation can be shortened, it is possible to immediately notify the status when it is determined that there is an abnormality or malfunction.
Since the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, it is compared with the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW. This reduces the risk of data hacking and system attacks.
Since the monitoring device 50d can be installed at the site where the sewage treatment equipment 10 is installed, it is compared with the case where the monitoring device 50d is installed at a location away from the site where the sewage treatment equipment 10 is installed via the network NW. Therefore, it is easy to determine the unique situation of the site (equipment), determine the cause, determine how to deal with it, and derive signs.
The information processing device 40d installed in the monitoring center collects information (programs, monitoring applications, learning models, image data, AI analysis results) can be updated remotely.
Information (mainly pixel data and AI analysis results) recorded in the recording device 52 of the monitoring device 50d installed at the site can be updated to the information processing device 40d installed remotely through the gateway device 31 and the network NW. can.
 以下、他の実施形態に係る監視システムについて説明する。他の実施形態に係る監視システムは、図1に示す監視システムと同様の構成であるが、以下の点で異なる。 Hereinafter, a monitoring system according to another embodiment will be described. A monitoring system according to another embodiment has a similar configuration to the monitoring system shown in FIG. 1, but differs in the following points.
 記録装置52には、監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の診断結果とを関連付けた診断結果の教師データと、診断結果の教師データに基づいて、監視画像と固液分離槽の内部の状態との関係を機械学習することによって得られた診断結果の学習モデルとが記憶される。
 診断結果の教師データは、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを関連付けたデータである。本実施形態では、一例として、複数の監視画像の各々に対して、診断結果として「正常」と「異常」と「不調」とのいずれかが関連付けられる。図6を用いて説明すると、(1)は、上澄水と汚泥堆積層とが分離しており、固液分離が良好な状態であるため、正常であると診断される。(2)は、汚泥の沈降性が悪化し、汚泥が浮上している状態であるため、異常であると診断される。(3)は、堆積汚泥の舞い上がりが見られるため、不調であると診断される。
The recording device 52 includes training data of diagnosis results that associates information indicating a monitoring image with a diagnosis result of the interior (inside the tank) of the solid-liquid separation tank based on the monitoring image, and monitoring data based on the training data of the diagnosis results. A learning model of the diagnosis result obtained by machine learning of the relationship between the image and the internal state of the solid-liquid separation tank is stored.
The training data of the diagnosis result is data that associates a monitoring image with a diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image. In this embodiment, as an example, one of "normal", "abnormal", and "disorder" is associated with each of the plurality of monitoring images as a diagnostic result. To explain using FIG. 6, (1) is diagnosed as normal because the supernatant water and the sludge accumulation layer are separated and the solid-liquid separation is in a good state. In case (2), the settling property of the sludge deteriorates and the sludge floats to the surface, so it is diagnosed as abnormal. In case (3), the accumulated sludge is seen to be floating up, so it is diagnosed as being in poor condition.
 グラフィック化部54は、通信装置51が受信した監視画像要求を取得する。グラフィック化部54は、取得した監視画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含み、情報処理装置40を宛先とする監視画像応答を作成する。
 グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。グラフィック化部54は、エラー画像でないと判定した監視画像を含む監視画像応答を通信装置51へ出力する。
 図26はエラー画像の一例である。エラー画像は、超音波センサ20が故障する又は汚泥に埋まるなどの原因により処理槽25を測定できていないときに作成される監視画像である。エラー画像は信号強度が縦方向にも横方向にも弱い画像である。グラフィック化部54は、例えば信号強度が一定時間所定の深さから所定の大きさ以下であるとき、当該監視画像をエラー画像であると判定する。
The graphic conversion unit 54 acquires the monitoring image request received by the communication device 51. The graphic converting unit 54 obtains pixel data stored in the recording device 52 based on the obtained monitoring image request. The graphic generator 54 creates a monitoring image based on the acquired pixel data. The graphic creation unit 54 creates a monitoring image response that includes information indicating the created monitoring image and is addressed to the information processing device 40 .
The graphic generator 54 determines whether the created monitoring image is an error image. The graphic conversion unit 54 outputs a monitoring image response including the monitoring image determined not to be an error image to the communication device 51.
FIG. 26 is an example of an error image. The error image is a monitoring image created when the processing tank 25 cannot be measured due to reasons such as the ultrasonic sensor 20 malfunctioning or being buried in sludge. An error image is an image in which the signal strength is weak both in the vertical and horizontal directions. For example, when the signal strength is below a predetermined size from a predetermined depth for a predetermined period of time, the graphic generator 54 determines that the monitoring image is an error image.
 グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含み、情報処理装置40を宛先とする槽内状態情報応答を作成する。 The graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a monitoring image based on the acquired pixel data. The graphic generating unit 54 creates an in-tank state information response that includes information indicating the created monitoring image and is addressed to the information processing device 40 .
 現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、監視画像を作成する。現状判定部55は、作成した監視画像がエラー画像であるか否かを判定する。判定方法はグラフィック化部54による判定方法と同じである。現状判定部55は、エラー画像でないと判定した場合に、取得した診断結果の学習モデルに基づいて、作成した監視画像の固液分離槽の内部の状態を判定する。 The current status determination unit 55 acquires the pixel data stored in the recording device 52, and creates a monitoring image based on the acquired pixel data. The current status determination unit 55 determines whether the created monitoring image is an error image. The determination method is the same as the determination method by the graphic generator 54. When determining that the image is not an error image, the current status determination unit 55 determines the internal state of the solid-liquid separation tank in the created monitoring image based on the learning model of the acquired diagnosis result.
 学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。学習部56は、取得した診断結果の教師データに基づいて、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを機械学習(教師あり学習)することによって、監視画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。例えば、学習部56は、畳み込みニューラルネットワーク(CNN: Convolutional neural network)を使用して、監視画像を認識する。診断結果の学習モデルによって、監視画像を示す情報に基づいて、監視画像が、固液分離槽の内部の状態として、正常と、不調と、異常とのいずれかに分類される。 The learning unit 56 acquires the diagnosis result notification received by the communication device 51, and diagnoses the state inside the solid-liquid separation tank (inside the tank) based on information indicating a monitoring image included in the acquired diagnosis result notification and the monitoring image. The teacher data of the diagnosis result associated with the result is stored in the recording device 52. The learning unit 56 performs machine learning (supervised learning) on the monitoring image and the diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image, based on the acquired training data of the diagnosis result. A learning model of the diagnosis results is generated in relation to the internal state of the solid-liquid separation tank. For example, the learning unit 56 uses a convolutional neural network (CNN) to recognize the monitoring image. Based on the information indicating the monitored image, the learning model of the diagnosis result classifies the monitored image as one of normal, malfunctioning, and abnormal as the internal state of the solid-liquid separation tank.
 情報処理装置40は、受信した槽内状態情報応答に含まれる監視画像を取得する。情報処理装置40は、取得した監視画像を表示する。
ユーザーは、固液分離槽の内部の状態を診断する場合に、端末装置45を操作することによって、監視画像を要求する情報を含む、監視装置50を宛先とする監視画像要求を作成させる。端末装置45は、ユーザーの操作に基づいて、監視画像要求を作成する。端末装置45は、作成した監視画像要求を監視装置50へ送信する。
 端末装置45は、監視装置50へ送信した監視画像要求に対して監視装置50が送信した監視画像応答を受信する。端末装置45は、監視画像応答に含まれる監視画像を表示する。ユーザーは、端末装置45が表示した監視画像を参照し、監視画像に含まれる固液分離槽の内部の状態を診断する。
 ユーザーは、端末装置45を操作することによって、監視画像を示す情報と、固液分離槽の内部の状態の診断結果を含む、監視装置50を宛先とする診断結果通知を作成させる。
The information processing device 40 acquires the monitoring image included in the received tank state information response. The information processing device 40 displays the acquired monitoring image.
When diagnosing the internal state of the solid-liquid separation tank, the user operates the terminal device 45 to create a monitoring image request addressed to the monitoring device 50 that includes information requesting a monitoring image. The terminal device 45 creates a monitoring image request based on the user's operation. The terminal device 45 transmits the created monitoring image request to the monitoring device 50.
The terminal device 45 receives the monitoring image response sent by the monitoring device 50 in response to the monitoring image request sent to the monitoring device 50. The terminal device 45 displays the monitoring image included in the monitoring image response. The user refers to the monitoring image displayed by the terminal device 45 and diagnoses the internal state of the solid-liquid separation tank included in the monitoring image.
By operating the terminal device 45, the user creates a diagnosis result notification addressed to the monitoring device 50 that includes information indicating the monitored image and the diagnosis result of the internal state of the solid-liquid separation tank.
 つまり、他の実施形態に監視システムは、上澄水画像ではなく監視画像を用いる。また、監視画像がエラー画像であるか否かを判定する。なお、監視システムにおいて監視画像がエラー画像であるか否かを判定した後に監視画像から上澄水画像を作成してもよい。つまり、エラー画像であるか否かの判定は上記説明した実施形態及びその変形例に組み込むことが可能である。 That is, in other embodiments, the monitoring system uses monitoring images rather than supernatant water images. It is also determined whether the monitored image is an error image. Note that the supernatant water image may be created from the monitoring image after determining whether the monitoring image is an error image in the monitoring system. In other words, the determination as to whether or not it is an error image can be incorporated into the above-described embodiment and its modified examples.
 (監視システムの動作)
 図27は、他の実施形態に係る監視システムの動作の例1を示す図である。図27を参照して、監視装置50が、端末装置45が送信した診断結果通知に含まれる固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とを蓄積し、蓄積した固液分離槽の内部の状態の診断結果と、その診断結果となる原因を特定する情報とに基づいて機械学習を行い、診断結果の学習モデルと原因の学習モデルとを生成する処理について説明する。
(Operation of monitoring system)
FIG. 27 is a diagram illustrating an example 1 of operation of a monitoring system according to another embodiment. Referring to FIG. 27, monitoring device 50 accumulates the diagnosis result of the internal state of the solid-liquid separation tank included in the diagnosis result notification sent by terminal device 45, and information specifying the cause of the diagnosis result. Then, machine learning is performed based on the accumulated diagnosis results of the internal state of the solid-liquid separation tank and information specifying the causes of the diagnosis results, and a learning model of the diagnosis results and a learning model of the causes are generated. The process will be explained.
 (ステップS1-12)
 データ処理装置30において、超音波発信受信回路32は超音波を送信するための電気信号を生成し、生成した電気信号を超音波センサ20へ出力する。
 (ステップS2-12)
 データ処理装置30において、超音波発信受信回路32は超音波センサ20が出力した電気信号を受信する。
 (ステップS3-12)
 データ処理装置30において、超音波発信受信回路32は、受信した電気信号をデータ変換回路33へ出力する。データ変換回路33は、超音波発信受信回路32が出力した電気信号を取得する。データ変換回路33は、取得した電気信号を増幅する。データ変換回路33は、増幅した電気信号をマスキング処理する。データ変換回路33は、増幅した電気信号をマスキング処理した結果に基づいて、信号強度をデジタル処理化することによってデジタル信号へ変換する。データ演算部34は、データ変換回路33からデジタル信号を取得し、取得したデジタル信号について、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行う。
 (ステップS4-12)
 データ処理装置30において、データ演算部34は、位置(距離)情報に関わる温度補正演算、界面レベルの判定演算を行ったデジタル信号を、ゲートウェイ装置31を経由して監視装置50へ送信する。
 (ステップS5-12)
 監視装置50において、通信装置51は、データ処理装置30が送信したデジタル信号を受信する。グラフィック化部54は、通信装置51が受信したデジタル信号を取得する。グラフィック化部54は、取得したデジタル信号の値を画素データに変換する。
 (ステップS6-12)
 監視装置50において、グラフィック化部54は、デジタル信号に変換後の画素データを記録装置52に記憶させる。
 (ステップS7-12)
 端末装置45は、監視画像要求を作成する。
(Step S1-12)
In the data processing device 30 , the ultrasonic transmitter/receiver circuit 32 generates an electric signal for transmitting ultrasonic waves, and outputs the generated electric signal to the ultrasonic sensor 20 .
(Step S2-12)
In the data processing device 30, the ultrasonic transmitter/receiver circuit 32 receives the electrical signal output by the ultrasonic sensor 20.
(Step S3-12)
In the data processing device 30 , the ultrasonic transmission/reception circuit 32 outputs the received electrical signal to the data conversion circuit 33 . The data conversion circuit 33 acquires the electrical signal output by the ultrasonic transmission/reception circuit 32. The data conversion circuit 33 amplifies the acquired electrical signal. The data conversion circuit 33 performs masking processing on the amplified electrical signal. The data conversion circuit 33 converts the amplified electrical signal into a digital signal by digitally processing the signal intensity based on the result of masking processing. The data calculation unit 34 acquires a digital signal from the data conversion circuit 33, and performs a temperature correction calculation related to position (distance) information and an interface level determination calculation on the acquired digital signal.
(Step S4-12)
In the data processing device 30 , the data calculation unit 34 transmits a digital signal on which temperature correction calculations related to position (distance) information and interface level determination calculations have been performed to the monitoring device 50 via the gateway device 31 .
(Step S5-12)
In the monitoring device 50, the communication device 51 receives the digital signal transmitted by the data processing device 30. The graphic generator 54 acquires the digital signal received by the communication device 51. The graphic converting unit 54 converts the values of the acquired digital signals into pixel data.
(Step S6-12)
In the monitoring device 50, the graphic converting unit 54 causes the recording device 52 to store the pixel data converted into digital signals.
(Step S7-12)
The terminal device 45 creates a monitoring image request.
 (ステップS8-12)
 端末装置45は、作成した監視画像要求を監視装置50へ送信する。
 (ステップS9-12)
 監視装置50において、通信装置51は、端末装置45が送信した監視画像要求を受信する。グラフィック化部54は、通信装置51が受信した監視画像要求を取得する。グラフィック化部54は、取得した監視画像要求に基づいて、記録装置52に記憶した画素データを取得する。グラフィック化部54は、取得した画素データに基づいて、監視画像を作成する。グラフィック化部54は、作成した監視画像を示す情報を含む。端末装置45を宛先とする監視画像応答を作成する。
 (ステップS9a―12)
 グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。
 (ステップS9b―12)
 グラフィック化部54は、作成した監視画像がエラー画像である場合に動作を終了する。これにより、教師データにエラー画像が含まれないようにすることができる。グラフィック化部54は、作成した監視画像がエラー画像である場合に端末装置45に監視画像がエラー画像であることを通知してもよい。
 (ステップS10-12)
 監視装置50において、グラフィック化部54は、作成した監視画像がエラー画像でない場合に、作成した監視画像応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した監視画像応答を取得し、取得した監視画像応答を端末装置45へ送信する。
 (ステップS11-12)
 端末装置45は、監視装置50が送信した監視画像応答を受信する。端末装置45は、受信した監視画像応答に含まれる監視画像を示す情報を画像処理することによって監視画像を表示する。端末装置45は、監視画像を示す情報と、監視画像を診断した結果とを含む診断結果通知を作成する。
 (ステップS12-12)
 端末装置45は、作成した診断結果通知を監視装置50へ送信する。
 (ステップS13-12)
 監視装置50において、通信装置51は、端末装置45が送信した診断結果通知を受信する。学習部56は、通信装置51が受信した診断結果通知を取得し、取得した診断結果通知に含まれる監視画像を示す情報とその監視画像による固液分離槽の内部(槽内)の状態の診断結果とを関連付けた診断結果の教師データを記録装置52に記憶させる。
 (ステップS14-12)
 監視装置50において、学習部56は、記録装置52に記憶された診断結果の教師データを取得する。学習部56は、取得した診断結果の教師データに基づいて、監視画像とその監視画像による固液分離槽の内部の状態の診断結果とを機械学習することによって、監視画像と固液分離槽の内部の状態とを関係付けた診断結果の学習モデルを生成する。
 (ステップS15-12)
 監視装置50において、学習部56は、生成した診断結果の学習モデルを記録装置52に記憶させる。
(Step S8-12)
The terminal device 45 transmits the created monitoring image request to the monitoring device 50.
(Step S9-12)
In the monitoring device 50, the communication device 51 receives the monitoring image request transmitted by the terminal device 45. The graphic conversion unit 54 acquires the monitoring image request received by the communication device 51. The graphic converting unit 54 obtains pixel data stored in the recording device 52 based on the obtained monitoring image request. The graphic generator 54 creates a monitoring image based on the acquired pixel data. The graphic section 54 includes information indicating the created monitoring image. A monitoring image response addressed to the terminal device 45 is created.
(Step S9a-12)
The graphic generator 54 determines whether the created monitoring image is an error image.
(Step S9b-12)
The graphic creation unit 54 ends the operation when the created monitoring image is an error image. This makes it possible to prevent error images from being included in the teacher data. When the created monitoring image is an error image, the graphic generation unit 54 may notify the terminal device 45 that the monitoring image is an error image.
(Step S10-12)
In the monitoring device 50, the graphic conversion unit 54 outputs the created monitoring image response to the communication device 51 when the created monitoring image is not an error image. The communication device 51 acquires the monitoring image response output by the graphic conversion unit 54 and transmits the acquired monitoring image response to the terminal device 45 .
(Step S11-12)
The terminal device 45 receives the monitoring image response sent by the monitoring device 50. The terminal device 45 displays the monitoring image by performing image processing on information indicating the monitoring image included in the received monitoring image response. The terminal device 45 creates a diagnosis result notification including information indicating the monitored image and the result of diagnosing the monitored image.
(Step S12-12)
The terminal device 45 transmits the created diagnosis result notification to the monitoring device 50.
(Step S13-12)
In the monitoring device 50, the communication device 51 receives the diagnosis result notification sent by the terminal device 45. The learning unit 56 acquires the diagnosis result notification received by the communication device 51, and diagnoses the state inside the solid-liquid separation tank (inside the tank) based on information indicating a monitoring image included in the acquired diagnosis result notification and the monitoring image. The teacher data of the diagnosis result associated with the result is stored in the recording device 52.
(Step S14-12)
In the monitoring device 50, the learning unit 56 acquires training data of the diagnosis results stored in the recording device 52. The learning unit 56 performs machine learning on the monitoring image and the diagnosis result of the internal state of the solid-liquid separation tank based on the monitoring image based on the acquired training data of the diagnosis result. Generates a learning model of diagnostic results that correlates with internal states.
(Step S15-12)
In the monitoring device 50, the learning unit 56 causes the recording device 52 to store the generated learning model of the diagnosis result.
 図28は、他の実施形態に係る監視システムの動作の例2を示す図である。図28を参照して、監視装置50が、データ処理装置30が送信したデジタル信号を取得し、取得したデジタル信号に基づいて、監視画像を作成する。監視装置50が、作成した監視画像に基づいて、固液分離槽の内部の状態を判定する処理について説明する。
 ステップS1-13からS6-13は、図27のステップS1-12からS6-12を適用できるため、ここでの説明は省略する。
 (ステップS7-13)
 監視装置50において、現状判定部55は、記録装置52に記憶された画素データを取得し、取得した画素データに基づいて、監視画像を作成する。
 (ステップS8-13)
 監視装置50において、現状判定部55は、記録装置52に記憶された診断結果の学習モデルを取得する。
 (ステップS8a―13)
 現状判定部55は、作成した監視画像がエラー画像であるか否かを判定する。
 (ステップS9b―12)
 現状判定部55は、作成した監視画像がエラー画像である場合に動作を終了する。現状判定部55は、作成した監視画像がエラー画像である場合に情報処理装置40に監視画像がエラー画像である状態通知を通信装置51を介して出力してもよい。
 (ステップS9-13)
 監視装置50において、現状判定部55は、取得した診断結果の学習モデルに基づいて、作成した監視画像の固液分離槽の内部の状態を判定する。
 (ステップS10-13)
 監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であるか否かを判定する。現状判定部55は、固液分離槽の内部の状態の判定結果が不調と異常とのいずれでもない、つまり正常と判定した場合には終了する。
 (ステップS11-13)
 監視装置50において、現状判定部55は、固液分離槽の内部の状態の判定結果が不調又は異常であると判定した場合には、固液分離槽の内部の状態の判定結果を示す情報を含む、情報処理装置40を宛先とする状態通知情報を作成する。
 (ステップS12-13)
 監視装置50において、現状判定部55は、作成した状態通知情報を通信装置51へ出力する。通信装置51は、現状判定部55が出力した状態通知情報を取得し、取得した状態通知情報を情報処理装置40へ送信する。
FIG. 28 is a diagram illustrating a second example of the operation of a monitoring system according to another embodiment. Referring to FIG. 28, monitoring device 50 acquires the digital signal transmitted by data processing device 30, and creates a monitoring image based on the acquired digital signal. A process in which the monitoring device 50 determines the internal state of the solid-liquid separation tank based on the created monitoring image will be described.
Steps S1-13 to S6-13 can be applied to steps S1-12 to S6-12 in FIG. 27, so the description thereof will be omitted here.
(Step S7-13)
In the monitoring device 50, the current state determining unit 55 acquires the pixel data stored in the recording device 52, and creates a monitoring image based on the acquired pixel data.
(Step S8-13)
In the monitoring device 50, the current state determining unit 55 acquires the learning model of the diagnosis result stored in the recording device 52.
(Step S8a-13)
The current status determination unit 55 determines whether the created monitoring image is an error image.
(Step S9b-12)
The current status determination unit 55 ends the operation when the created monitoring image is an error image. If the created monitoring image is an error image, the current status determination unit 55 may output a status notification that the monitoring image is an error image to the information processing device 40 via the communication device 51.
(Step S9-13)
In the monitoring device 50, the current state determining unit 55 determines the internal state of the solid-liquid separation tank in the created monitoring image based on the learning model of the acquired diagnosis result.
(Step S10-13)
In the monitoring device 50, the current state determination unit 55 determines whether the determination result of the internal state of the solid-liquid separation tank is malfunctioning or abnormal. The current state determination unit 55 terminates when the determination result of the internal state of the solid-liquid separation tank is neither malfunction nor abnormal, that is, it is determined to be normal.
(Step S11-13)
In the monitoring device 50, when the current state determination unit 55 determines that the internal state of the solid-liquid separation tank is malfunctioning or abnormal, the current status determination unit 55 transmits information indicating the determination result of the internal state of the solid-liquid separation tank. Create status notification information with the information processing device 40 as the destination.
(Step S12-13)
In the monitoring device 50, the current status determining unit 55 outputs the created status notification information to the communication device 51. The communication device 51 acquires the status notification information output by the current status determination unit 55 and transmits the acquired status notification information to the information processing device 40 .
 図29は、本実施形態に係る監視システムの動作の例3を示す図である。図9を参照して、監視装置50が、情報処理装置40が送信した槽内状態情報要求に基づいて、監視画像を示す情報を送信する処理について説明する。
 ステップS1-14からS6-14は、図7のステップS1-12からS6-12を適用できるため、ここでの説明は省略する。
 (ステップS7-14)
 情報処理装置40は、ユーザーの操作に基づいて、槽内状態情報要求を作成する。
 (ステップS8-14)
 情報処理装置40は、作成した槽内状態情報要求を監視装置50へ送信する。
 (ステップS9-14)
 監視装置50において、通信装置51は、情報処理装置40が送信した槽内状態情報要求を受信する。グラフィック化部54は、通信装置51が受信した槽内状態情報要求を取得する。グラフィック化部54は、取得した槽内状態情報要求に基づいて、記録装置52に記憶した画素データを取得し、取得した画素データに基づいて、監視画像を作成する。
 (ステップS9a―14)
 グラフィック化部54は、作成した監視画像がエラー画像であるか否かを判定する。
 (ステップS9b―14)
 グラフィック化部54は、作成した監視画像がエラー画像である場合に動作を終了する。グラフィック化部54は、作成した監視画像がエラー画像である場合に情報処理装置40に監視画像がエラー画像である情報を含む槽内状態情報応答を通信装置51を介して出力してもよい。
 (ステップS10-14)
 監視装置50において、グラフィック化部54は、作成した監視画像を示す情報を含む。情報処理装置40を宛先とする槽内状態情報応答を作成する。
 (ステップS11-3)
 監視装置50において、グラフィック化部54は、作成した槽内状態情報応答を通信装置51へ出力する。通信装置51は、グラフィック化部54が出力した槽内状態情報応答を取得し、取得した槽内状態情報応答を情報処理装置40へ送信する。
 ステップS11-3の後、情報処理装置40は、監視装置50が送信した槽内状態情報応答を受信し、受信した槽内状態情報応答に含まれる監視画像を示す情報を取得する。情報処理装置40は、取得した監視画像を示す情報を画像処理することによって、監視画像を表示する。このように構成することによって、情報処理装置40のユーザーは、固液分離槽の内部の状態を確認できる。
FIG. 29 is a diagram illustrating a third example of the operation of the monitoring system according to this embodiment. With reference to FIG. 9, a process in which the monitoring device 50 transmits information indicating a monitored image based on the tank internal state information request transmitted by the information processing device 40 will be described.
Steps S1-14 to S6-14 can be applied to steps S1-12 to S6-12 in FIG. 7, so the description thereof will be omitted here.
(Step S7-14)
The information processing device 40 creates an in-tank state information request based on the user's operation.
(Step S8-14)
The information processing device 40 transmits the created tank state information request to the monitoring device 50.
(Step S9-14)
In the monitoring device 50, the communication device 51 receives the tank state information request transmitted by the information processing device 40. The graphic generation unit 54 acquires the tank internal state information request received by the communication device 51. The graphic generating unit 54 acquires pixel data stored in the recording device 52 based on the acquired tank state information request, and creates a monitoring image based on the acquired pixel data.
(Step S9a-14)
The graphic generator 54 determines whether the created monitoring image is an error image.
(Step S9b-14)
The graphic creation unit 54 ends the operation when the created monitoring image is an error image. When the created monitoring image is an error image, the graphic generation unit 54 may output an in-tank state information response including information indicating that the monitoring image is an error image to the information processing device 40 via the communication device 51.
(Step S10-14)
In the monitoring device 50, the graphic generation unit 54 includes information indicating the created monitoring image. An in-tank status information response addressed to the information processing device 40 is created.
(Step S11-3)
In the monitoring device 50 , the graphic section 54 outputs the created tank state information response to the communication device 51 . The communication device 51 acquires the in-tank state information response outputted by the graphic generator 54 and transmits the obtained in-tank state information response to the information processing device 40 .
After step S11-3, the information processing device 40 receives the in-tank state information response transmitted by the monitoring device 50, and acquires information indicating the monitoring image included in the received in-tank state information response. The information processing device 40 displays the surveillance image by performing image processing on information indicating the acquired surveillance image. With this configuration, the user of the information processing device 40 can check the internal state of the solid-liquid separation tank.
 監視装置50は、エラー画像である監視画像を学習モデルの作成に使用しない。また、監視装置50は、エラー画像に対しては学習モデルを用いた判定を行わない。これにより、エラー画像が正常であると学習モデルにより誤って診断されることを防ぐことができる。また、監視画像から上澄水画像を作成する場合には、監視画像がエラー画像であるとき、エラー画像において信号強度が小さい部分が上澄水画像として作成され、学習モデルの作成や学習モデルを用いた判定に使用され、誤った診断につながる可能性がある。そのため、エラー画像を取り除くことでエラー画像から上澄水の測定結果に基づかない偽の上澄水画像が作成されるのを防ぐことができる。 The monitoring device 50 does not use monitoring images that are error images to create a learning model. Furthermore, the monitoring device 50 does not perform determination using the learning model on error images. This can prevent the learning model from erroneously diagnosing the error image as normal. In addition, when creating a supernatant water image from a monitoring image, if the monitoring image is an error image, the portion of the error image where the signal strength is small is created as a supernatant water image, and when creating a learning model or using a learning model. used for diagnosis and may lead to incorrect diagnosis. Therefore, by removing the error image, it is possible to prevent a false supernatant water image that is not based on the measurement result of supernatant water from being created from the error image.
 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上述した各装置の機能を実現するためのコンピュータプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行するようにしてもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、DVD(Digital Versatile Disc)等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。
Although the embodiment of the present invention has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes and the like may be made without departing from the gist of the present invention.
For example, a computer program for realizing the functions of each device described above may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read into a computer system and executed. Note that the "computer system" here may include hardware such as an OS and peripheral devices.
Furthermore, "computer-readable recording media" refers to flexible disks, magneto-optical disks, ROMs, writable non-volatile memories such as flash memory, portable media such as DVDs (Digital Versatile Discs), and media built into computer systems. A storage device such as a hard disk.
 さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。
 また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。
 また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であっても良い。
Furthermore, "computer-readable recording medium" refers to volatile memory (for example, DRAM (Dynamic It also includes those that retain programs for a certain period of time, such as Random Access Memory).
Further, the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in a transmission medium. Here, the "transmission medium" that transmits the program refers to a medium that has a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
Moreover, the above-mentioned program may be for realizing a part of the above-mentioned functions. Furthermore, it may be a so-called difference file (difference program) that can realize the above-mentioned functions in combination with a program already recorded in the computer system.
 本発明によれば、排水を固液分離するための固液分離槽の槽内状態を監視できる監視システム、学習装置、監視方法、学習方法およびプログラムを提供できるという効果がある。 According to the present invention, it is possible to provide a monitoring system, a learning device, a monitoring method, a learning method, and a program that can monitor the internal state of a solid-liquid separation tank for solid-liquid separation of wastewater.
10…下水処理設備、11…前沈殿槽、12…濃縮槽、13…貯留槽、14…脱水機、15…コンテナ、16…曝気槽、17…後沈殿槽、18…ポンプ、19…設備制御装置、20…超音波センサ、21発振部、22…受信部、23…懸濁物堆積層、24…上澄水、25…処理槽、26…界面、27…高さ、30、30d…データ処理装置、31…ゲートウェイ装置、32…超音波発信受信回路、33…データ変換回路、34…データ演算部、35…画像データ格納部、36…表示切替操作部、37…画像データ表示部、40、40a、40b、40c、40d…情報処理装置、45、45a、45b、45c、45d…端末装置、50、50a、50b、50c、50d…監視装置、51…通信装置、52…記録装置、53、53a、53b、53c…情報処理部、54、54d…グラフィック化部、55、55a、55d…現状判定部、56、56a、56b、56c、56d…学習部、57、57b、57d…原因判定部、58、58c、58d…対処方法判定部、59、59d…変化予兆導出部、100、100a、100b、100c、100d…監視システム 10... Sewage treatment equipment, 11... Pre-sedimentation tank, 12... Concentration tank, 13... Storage tank, 14... Dehydrator, 15... Container, 16... Aeration tank, 17... Post-sedimentation tank, 18... Pump, 19... Equipment control Apparatus, 20... Ultrasonic sensor, 21 Oscillator, 22... Receiver, 23... Suspension deposit layer, 24... Supernatant water, 25... Treatment tank, 26... Interface, 27... Height, 30, 30d... Data processing Device, 31...Gateway device, 32...Ultrasonic transmission/reception circuit, 33...Data conversion circuit, 34...Data calculation section, 35...Image data storage section, 36...Display switching operation section, 37...Image data display section, 40, 40a, 40b, 40c, 40d... Information processing device, 45, 45a, 45b, 45c, 45d... Terminal device, 50, 50a, 50b, 50c, 50d... Monitoring device, 51... Communication device, 52... Recording device, 53, 53a, 53b, 53c...Information processing section, 54, 54d...Graphicization section, 55, 55a, 55d...Current status determination section, 56, 56a, 56b, 56c, 56d...Learning section, 57, 57b, 57d...Cause determination section , 58, 58c, 58d... Coping method determining unit, 59, 59d... Change sign deriving unit, 100, 100a, 100b, 100c, 100d... Monitoring system

Claims (20)

  1.  排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定する判定部と、
     診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
     を有する監視システム。
    Based on the supernatant water image, which is an image representing the supernatant water inside the solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image, the supernatant water image and the inside of the solid-liquid separation tank are a determination unit that determines the internal state of the solid-liquid separation tank from a supernatant water image representing the supernatant water inside the solid-liquid separation tank that is a diagnosis target, using the first learning model that has learned the relationship with the state of the solid-liquid separation tank; and,
    an output unit that outputs information specifying the internal state of the solid-liquid separation tank determined by the determination unit using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model; A monitoring system with
  2.  排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部を表した監視画像から固液分離槽の内部の状態を判定する判定部と、
     診断の対象である前記固液分離槽の前記監視画像と前記第1学習モデルとを用いて前記判定部が判定した前記固液分離槽の内部の状態を特定する情報を出力する出力部と
     を有し、
     前記監視画像は、測定不良時の画像であるエラー画像を含まない、
     監視システム。
    Based on a monitoring image that is an image representing the inside of a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the monitoring image of the inside of the solid-liquid separation tank, the monitoring image and the solid-liquid separation tank are a determination unit that determines the internal state of the solid-liquid separation tank from a monitoring image representing the inside of the solid-liquid separation tank that is the subject of diagnosis, using a first learning model that has learned the relationship with the internal state of the solid-liquid separation tank;
    an output unit that outputs information specifying the internal state of the solid-liquid separation tank determined by the determination unit using the monitoring image of the solid-liquid separation tank that is a diagnosis target and the first learning model; have,
    The monitoring image does not include an error image that is an image at the time of a measurement failure.
    Monitoring system.
  3.  前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
     請求項1に記載の監視システム。
    The supernatant water image does not include an error image that is an image at the time of poor measurement.
    The monitoring system according to claim 1.
  4.  前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を学習した第2学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態となる原因を特定する情報を判定する原因判定部を有し、
     前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第2学習モデルとを用いて前記原因判定部が判定した固液分離槽の内部の前記状態となる原因を特定する情報をさらに出力する、請求項1に記載の監視システム。
    Learning the relationship between the supernatant water image and information that specifies the cause of the diagnosis result inside the solid-liquid separation tank based on the supernatant water image and information that specifies the cause of the diagnosis result based on the supernatant water image. a cause determination unit that determines information for specifying the cause of the state inside the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank that is the object of diagnosis, using the second learning model obtained by ,
    The output unit is configured to determine the cause of the state inside the solid-liquid separation tank determined by the cause determination unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the second learning model. The monitoring system according to claim 1, further outputting identifying information.
  5.  前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を学習した第3学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態への対処方法を特定する情報を判定する対処方法判定部を有し、
     前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第3学習モデルとを用いて前記対処方法判定部が判定した固液分離槽の内部の前記状態への対処方法を特定する情報をさらに出力する、請求項1に記載の監視システム。
    A relationship between the supernatant water image and information specifying how to deal with the diagnosis result inside the solid-liquid separation tank based on the supernatant water image and information specifying how to deal with the diagnosis result based on the supernatant water image. A countermeasure method determination method that determines information that specifies a countermeasure method for the condition inside the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank that is the target of diagnosis using a third learning model that has learned the above. has a department;
    The output unit determines how to deal with the state inside the solid-liquid separation tank determined by the countermeasure determination unit using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the third learning model. The monitoring system according to claim 1, further outputting information specifying the method.
  6.  前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を学習した第4学習モデルを用いて、診断の対象である前記固液分離槽の前記上澄水画像から固液分離槽の内部の前記状態の変化の予兆を検出する変化予兆導出部を備え、
     前記出力部は、診断の対象である前記固液分離槽の前記上澄水画像と前記第4学習モデルとを用いて前記変化予兆導出部が検出した固液分離槽の内部の前記状態の変化の予兆を特定する情報をさらに出力する、請求項1に記載の監視システム。
    Identifying a supernatant water image and a change in the internal state of the solid-liquid separation tank based on the supernatant water image and information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. a change sign that detects a sign of a change in the state inside the solid-liquid separation tank from the supernatant water image of the solid-liquid separation tank that is a diagnosis target using a fourth learning model that has learned a relationship with information to be diagnosed; Equipped with a lead-out part,
    The output unit is configured to output a change in the state inside the solid-liquid separation tank detected by the change sign derivation unit using the supernatant water image of the solid-liquid separation tank to be diagnosed and the fourth learning model. The monitoring system according to claim 1, further outputting information for identifying a sign.
  7.  前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項1に記載の監視システム。 The monitoring system according to claim 1, wherein the diagnostic result is generated based on either or both of a deposited state of solid matter and a suspended state of solid matter included in the supernatant water image.
  8.  前記判定部は、診断の対象である固液分離槽の内部を表した前記上澄水画像から固液分離槽の内部の状態が、正常と不調と異常とのいずれであるかを判定する、請求項1に記載の監視システム。 The determination unit determines whether the internal state of the solid-liquid separation tank is normal, malfunctioning, or abnormal from the supernatant water image showing the inside of the solid-liquid separation tank that is the object of diagnosis. The monitoring system according to item 1.
  9.  前記判定部が、固液分離槽の内部の前記状態が不調と異常とのいずれかと判定した場合に固液分離槽の内部の前記状態が不調と異常とのいずれかの状態であることを通知する通知部
     をさらに有する、請求項1に記載の監視システム。
    When the determination unit determines that the state inside the solid-liquid separation tank is either malfunction or abnormality, it notifies that the state inside the solid-liquid separation tank is either malfunction or abnormality. The monitoring system according to claim 1, further comprising a notification section that performs.
  10.  排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の状態の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
     を有する学習装置。
    Based on a supernatant water image, which is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater, and a diagnosis result based on the supernatant water image of the internal state of the solid-liquid separation tank, A learning device that includes a learning unit that generates, through learning, a first learning model that represents a relationship between a supernatant water image and an internal state of a solid-liquid separation tank.
  11.  排水を固液分離するための固液分離槽の内部を表した画像である監視画像と前記固液分離槽の内部の状態の前記監視画像に基づく診断結果とに基づいて、監視画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成する学習部
     を有し、
     前記監視画像は、測定不良時の画像であるエラー画像を含まない、
    学習装置。
    Based on the monitoring image, which is an image representing the inside of a solid-liquid separation tank for separating wastewater into solid-liquid, and the diagnosis result based on the monitoring image of the internal state of the solid-liquid separation tank, the monitoring image and the solid-liquid separation tank are a learning unit that generates, through learning, a first learning model representing a relationship with the internal state of the separation tank;
    The monitoring image does not include an error image that is an image at the time of poor measurement.
    learning device.
  12.  前記上澄水画像は、測定不良時の画像であるエラー画像を含まない、
     請求項10に記載の学習装置。
    The supernatant water image does not include an error image that is an image at the time of poor measurement.
    The learning device according to claim 10.
  13.  前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果となる原因を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果となる原因を特定する情報との関係を表す第2学習モデルを学習によって生成する、
     請求項10に記載の学習装置。
    The learning unit generates information that identifies a cause that results in a diagnosis result for the inside of the supernatant water image and the solid-liquid separation tank, based on the supernatant water image and information that identifies a cause that results in a diagnosis result based on the supernatant water image. Generating a second learning model expressing the relationship between
    The learning device according to claim 10.
  14.  前記学習部は、前記上澄水画像と前記上澄水画像に基づく診断結果への対処方法を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の診断結果への対処方法を特定する情報との関係を表した第3学習モデルを学習によって生成する、
     請求項10に記載の学習装置。
    The learning unit specifies a method of handling the supernatant water image and the diagnosis result inside the solid-liquid separation tank based on the supernatant water image and information specifying a method of handling the diagnosis result based on the supernatant water image. generate a third learning model through learning that expresses the relationship with the information
    The learning device according to claim 10.
  15.  前記学習部は、前記上澄水画像と前記上澄水画像が得られた後の固液分離槽の内部の状態の変化を特定する情報とに基づいて、上澄水画像と固液分離槽の内部の状態の変化を特定する情報との関係を表した第4学習モデルを生成する、請求項10に記載の学習装置。 The learning unit is configured to calculate the supernatant water image and the internal state of the solid-liquid separation tank based on the supernatant water image and information specifying a change in the internal state of the solid-liquid separation tank after the supernatant water image is obtained. The learning device according to claim 10, which generates a fourth learning model representing a relationship with information specifying a change in state.
  16.  前記診断結果は、上澄水画像に含まれる固形物の堆積状態と固形物の浮遊状態とのいずれか一方又は両方に基づいて生成される、請求項10に記載の学習装置。 The learning device according to claim 10, wherein the diagnosis result is generated based on either or both of a deposited state of solids and a suspended state of solids included in the supernatant water image.
  17.  排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
     診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
     を有する、監視システムが実行する監視方法。
    Based on the supernatant water image, which is an image representing the supernatant water inside the solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image, the supernatant water image and the inside of the solid-liquid separation tank are a step of determining the internal state of the solid-liquid separation tank from a supernatant water image representing the supernatant water inside the solid-liquid separation tank to be diagnosed using the first learning model that has learned the relationship with the state of the solid-liquid separation tank; ,
    outputting information specifying the internal state of the solid-liquid separation tank determined in the determining step using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model; A monitoring method performed by a monitoring system having:
  18.  排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
     を有する、学習装置が実行する学習方法。
    Based on the supernatant water image, which is an image representing the supernatant water inside the solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image, the supernatant water image and the inside of the solid-liquid separation tank are A learning method executed by a learning device, comprising the step of generating, through learning, a first learning model representing a relationship between the state of
  19.  監視システムのコンピュータに、
     排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を学習した第1学習モデルを用いて、診断の対象である固液分離槽の内部の上澄水を表した上澄水画像から固液分離槽の内部の状態を判定するステップと、
     診断の対象である前記固液分離槽の前記上澄水画像と前記第1学習モデルとを用いて前記判定するステップで判定した前記固液分離槽の内部の状態を特定する情報を出力するステップと
     を実行させる、プログラム。
    on the surveillance system computer,
    Based on the supernatant water image, which is an image representing the supernatant water inside the solid-liquid separation tank for solid-liquid separation of wastewater, and the diagnosis result based on the supernatant water image, the supernatant water image and the inside of the solid-liquid separation tank are a step of determining the internal state of the solid-liquid separation tank from a supernatant water image representing the supernatant water inside the solid-liquid separation tank to be diagnosed using the first learning model that has learned the relationship with the state of the solid-liquid separation tank; ,
    outputting information specifying the internal state of the solid-liquid separation tank determined in the determining step using the supernatant water image of the solid-liquid separation tank that is a diagnosis target and the first learning model; A program to run.
  20.  学習装置のコンピュータに、
     排水を固液分離するための固液分離槽の内部の上澄水を表した画像である上澄水画像と前記固液分離槽の内部の前記上澄水画像に基づく診断結果とに基づいて、上澄水画像と固液分離槽の内部の状態との関係を表す第1学習モデルを学習によって生成するステップ
     を実行させる、プログラム。
    to the computer of the learning device,
    Based on a supernatant water image that is an image representing supernatant water inside a solid-liquid separation tank for solid-liquid separation of wastewater and a diagnosis result based on the supernatant water image inside the solid-liquid separation tank, supernatant water A program that executes a step of generating, by learning, a first learning model representing a relationship between an image and an internal state of a solid-liquid separation tank.
PCT/JP2023/025136 2022-07-28 2023-07-06 Monitoring system, learning device, monitoring method, learning method, and program WO2024024444A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022120673A JP7439865B2 (en) 2022-07-28 2022-07-28 Monitoring systems, learning devices, monitoring methods, learning methods and programs
JP2022-120673 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024024444A1 true WO2024024444A1 (en) 2024-02-01

Family

ID=89706132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025136 WO2024024444A1 (en) 2022-07-28 2023-07-06 Monitoring system, learning device, monitoring method, learning method, and program

Country Status (2)

Country Link
JP (1) JP7439865B2 (en)
WO (1) WO2024024444A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system
JP2021041338A (en) * 2019-09-11 2021-03-18 株式会社クボタ Control method and control device of water treatment process

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021960A1 (en) 2010-08-18 2012-02-23 Alberta Innovates - Technology Futures Flocculation method
CN107741738A (en) 2017-10-20 2018-02-27 重庆华绿环保科技发展有限责任公司 A kind of sewage disposal process monitoring intelligent early warning cloud system and sewage disposal monitoring and pre-alarming method
JP2019175409A (en) 2018-03-30 2019-10-10 国立大学法人横浜国立大学 Operation control device and operation control method of water treatment facility

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020065964A (en) * 2018-10-23 2020-04-30 水ing株式会社 Wastewater treatment method and wastewater treatment system
JP2021041338A (en) * 2019-09-11 2021-03-18 株式会社クボタ Control method and control device of water treatment process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AKIHIRO SUZUKI, TAKASHI KAWAKAMI, HIROSHI YAMAMURA,YUICHI NOMOTO, RYOSUKE OOC: "A Study of a Method for Predicting Turbidity after Flocculation with Deep Learning Using a Small Flocculation Plant", PROCEEDINGS OF THE JSME ANNUAL CONFERENCE ON ROBOTICS AND MECHATRONICS 2022; JUNE 1-4, 2022, 4 June 2022 (2022-06-04) - 4 June 2022 (2022-06-04), pages 1 - 2, XP009552619, DOI: 10.1299/jsmermd.2022.2P1-B10 *

Also Published As

Publication number Publication date
JP2024017788A (en) 2024-02-08
JP7439865B2 (en) 2024-02-28

Similar Documents

Publication Publication Date Title
CN205317446U (en) Survey silt start motion and measurement incipient velocity's model test device
CN103575810A (en) Measurement frequency variable ultrasonic imaging device
JP7012484B2 (en) Sludge evaluation system and sludge evaluation index acquisition system
CN101251749A (en) Ladle roughing slag detection, control method and system
JP7439865B2 (en) Monitoring systems, learning devices, monitoring methods, learning methods and programs
JP2011047760A (en) Detection method of interface level, and management method of solid-liquid separation tank
WO1997043027A1 (en) Method and apparatus for controlling thickeners, clarifiers and settling tanks
CN104913764A (en) Intelligent remote centralized control system for settlement meters and settlement measurement method of settlement meters
WO2023048017A1 (en) Water quality monitoring system
CN117173461A (en) Multi-visual task filling container defect detection method, system and medium
JP5564356B2 (en) Remote water purification system
CN110470669B (en) Leakage detection method and system for underwater pipeline and related device
JP2022110327A (en) Monitoring system, learning device, monitoring method, learning method and program
JPH05332915A (en) Hydrosphere monitoring apparatus and purifying apparatus
KR20190063188A (en) Method for controlling water purification using real-time image analysis
WO2018165972A1 (en) Online flaw detection monitoring system and method for steel wire rope, and multi-rope friction hoisting system for use in mining
CN116990381A (en) Scraper machine fault determination method and device and scraper machine fault determination system
JP5501146B2 (en) Flock formation state determination method, flock formation state determination device, agglomeration reaction tank, pH adjustment tank, and abnormality occurrence notification system
CN103808804A (en) Method for rapidly mapping and imaging pseudo-colors through ultrasonic microscopic technology
JP7439853B2 (en) Control device, turbidity meter, determination method, and learning method
KR102355264B1 (en) Vessel remote management system and method using vibration sensor and sound sensor
CN106768071A (en) Sewage monitoring system
CN106771289A (en) A kind of liquid transparency equipment
JP3235501B2 (en) Sludge interface measuring device
JPH02193219A (en) Turbidity display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23846176

Country of ref document: EP

Kind code of ref document: A1