TW202417396A - 包含熱固性聚合物之複合玻璃纖維材料 - Google Patents

包含熱固性聚合物之複合玻璃纖維材料 Download PDF

Info

Publication number
TW202417396A
TW202417396A TW112134143A TW112134143A TW202417396A TW 202417396 A TW202417396 A TW 202417396A TW 112134143 A TW112134143 A TW 112134143A TW 112134143 A TW112134143 A TW 112134143A TW 202417396 A TW202417396 A TW 202417396A
Authority
TW
Taiwan
Prior art keywords
vinyl
reactive diluent
ethylenically unsaturated
resin composition
curable resin
Prior art date
Application number
TW112134143A
Other languages
English (en)
Inventor
萊茵哈德 羅倫茲
馬錫耶 亞勒桑德 懷勒澤克
托本 雅德曼
克莉絲汀 格雷瑟
克里斯 利克 卡林琴
菲利克斯 托曼
Original Assignee
德商巴斯夫歐洲公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 德商巴斯夫歐洲公司 filed Critical 德商巴斯夫歐洲公司
Publication of TW202417396A publication Critical patent/TW202417396A/zh

Links

Abstract

一種複合玻璃纖維材料,其包含熱固性聚合物,該熱固性聚合物由可固化樹脂組成物獲得,該可固化樹脂組成物包含(i)烯系不飽和樹脂;及(ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 , 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分,其中反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在。

Description

包含熱固性聚合物之複合玻璃纖維材料
本發明關於一種包含熱固性聚合物之複合玻璃纖維材料、一種製造複合玻璃纖維材料之方法、一種N-乙烯基唑烷酮在獲得複合玻璃纖維材料之製程中之用途以及一種可固化樹脂組成物。
複合纖維材料包含纖維增強聚合物基質,並且在包括汽車構造及工程之大量應用中用作例如模製部件。複合纖維材料之聚合物通常為熱固性聚合物,諸如環氧樹脂、乙烯基酯或聚酯熱固性聚合物。
EP 3 626 759 A1描述基於環狀及非環狀原料之高溫不飽和聚酯(unsaturated polyester;UP)樹脂,並且詳細描述此類樹脂在不同領域中之應用。
包含熱固性聚合物之複合纖維材料之製造涉及預聚物樹脂之固化。預聚物樹脂在固化之前適當地為可延展的或液態。為了最佳化流變性並且由此改善樹脂之可加工性,通常將至少一種反應性稀釋劑(減黏劑)添加到樹脂中。在樹脂固化期間,反應性稀釋劑與樹脂共聚合。
反應性稀釋劑典型地為低黏度之單、雙或多官能單體或低聚物。常用之反應性稀釋劑之實例包括苯乙烯及苯乙烯衍生物、乙烯基醚、丙烯酸酯及甲基丙烯酸酯,特別是苯乙烯。
然而,使用常見的反應性稀釋劑有數個缺點。例如,苯乙烯衍生物可能產生大量殘留單體,乙烯基醚易於水解,甲基丙烯酸酯表現出相對較低的反應性,並且丙烯酸酯可能導致所得聚合物之黏性。此外,由於氣味問題及對其毒性之擔憂,苯乙烯之使用尤其被認為是有問題的。
需要由反應性稀釋劑獲得之另外的複合纖維材料,其解決至少一些上述缺點。
本發明提供一種複合玻璃纖維材料,其包含熱固性聚合物,其中熱固性聚合物由包含以下之可固化樹脂組成物獲得: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在。
發現包含熱固性聚合物之複合玻璃纖維材料可有利地由包含反應性稀釋劑(ii)之可固化樹脂組成物獲得。一個特別的優點在於式(I)之N-乙烯基唑烷酮具有溶解具有相對高極性之不飽和樹脂之能力。不希望受到理論束縛,假設式(I)之N-乙烯基唑烷酮之高極性使得這些化合物與相對極性之不飽和樹脂高度相容。此外,與例如苯乙烯不同,式(I)之N-乙烯基唑烷酮通常表現出低毒性並且幾乎無氣味,特別是5-甲基-3-乙烯基-唑烷-2-酮。
在式(I)之N-乙烯基唑烷酮中,部分R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分。有機部分較佳包含1至8個碳原子,更佳1至6個碳原子,最佳1至4個碳原子,諸如1至3個碳原子。有機部分可包含雜原子,諸如氧、氮及/或硫,特別是氧及/或氮。
有機部分較佳選自C 1-C 10烷基及C 1-C 10烷氧基,更佳選自C 1-C 4烷基及C 1-C 4烷氧基,最佳為C 1-C 4烷基。較佳地,有機部分選自甲基、乙基及丙基,更佳選自甲基及乙基,最佳為甲基。
在一個較佳具體實例中,式(I)之N-乙烯基唑烷酮之特徵在於 -    R 1、R 2、R 3及R 4中之至少二者為氫原子,例如R 1、R 2、R 3及R 4中之各者為氫原子;或 -    R 1為C 1-C 4烷基,較佳甲基,並且R 2、R 3及R 4為氫原子;或 -    R 4為C 1-C 4烷基,較佳甲基,並且R 1、R 2及R 3為氫原子;或 -    R 1及R 2為氫原子,並且R 3及R 4為C 1-C 4烷基,較佳甲基。
式(I)之N-乙烯基唑烷酮化合物之合成為本領域眾所周知者。例如,N-乙烯基唑烷酮化合物可根據US 4,831,153藉由熱解N-(1-羥烷基)-2-唑烷酮來製備。特別地,N-乙烯基唑烷酮化合物可藉由使乙炔與唑烷酮化合物反應來合成(所謂之「Reppe Chemistry」)。
較佳的式(I)之N-乙烯基唑烷酮包括3-乙烯基唑烷-2-酮(NVO)及乙烯基甲基唑烷酮,諸如4-甲基-3-乙烯基-唑烷-2-酮(4-NVMO)及5-甲基-3-乙烯基-唑烷-2-酮(5-NVMO),特別是5-甲基-3-乙烯基-唑烷-2-酮。
乙烯基甲基唑烷酮為可商購的。例如,來自BASF SE之VMOX ®主要包含5-甲基-3-乙烯基-唑烷-2-酮,及另外的4-甲基-3-乙烯基-唑烷-2-酮。在一個具體實例中,乙烯基甲基唑烷酮包含5-甲基-3-乙烯基-唑烷-2-酮及至多20重量%,較佳至多10重量%,更佳至多5重量%之4-甲基-3-乙烯基-唑烷-2-酮,以乙烯基甲基唑烷酮之總量計,諸如至多1重量%或至多0.05重量%之4-甲基-3-乙烯基-唑烷-2-酮。
較佳地,反應性稀釋劑(ii)包含總量為至少90莫耳%,更佳至少95莫耳%,最佳至少98莫耳%之3-乙烯基唑烷-2-酮、5-甲基-3-乙烯基-唑烷-2-酮及4-甲基-3-乙烯基-唑烷-2-酮,相對於反應性稀釋劑(ii)之總量。在一個特別較佳具體實例中,反應性稀釋劑(ii)包含相對於反應性稀釋劑(ii)之總量量為至少90莫耳%,更佳至少95莫耳%,最佳至少98莫耳%之5-甲基-3-乙烯基-唑烷-2-酮及4-甲基-3-乙烯基-唑烷-2-酮。
可固化樹脂組成物包含烯系不飽和樹脂。烯系不飽和樹脂在其主鏈中帶有烯系不飽和雙鍵。在本文中,術語「烯系不飽和」是指帶有烯烴CC=C-雙鍵之部分,該烯烴CC=C-雙鍵不為芳環之一部分並且因此易於自由基聚合。典型地,烯系不飽和雙鍵作為乙烯基(-CH=CH-)雙鍵或亞乙烯基(>C=CH 2)雙鍵存在。
烯系不飽和樹脂(i)較佳選自烯系不飽和聚酯樹脂、乙烯基酯樹脂及胺甲酸乙酯(甲基)丙烯酸酯樹脂。特別地,烯系不飽和樹脂(i)為烯系不飽和聚酯樹脂。
烯系不飽和聚酯樹脂可藉由使以下反應來獲得:(i-a)至少一種不飽和二羧酸或其酯或酸酐,其中該不飽和二羧酸包含至少一種烯系不飽和二羧酸;及(i-b)至少一種多元醇。視情況地,用於形成烯系不飽和聚酯樹脂之單體可包含飽和二羧酸或其酯。烯系不飽和聚酯樹脂在其主鏈中帶有源自組分(i-a)之經聚合之烯系不飽和二羧酸之烯系不飽和雙鍵。
在不飽和二羧酸及飽和二羧酸之上下文中之術語「酯」可為適合用於聚酯形成反應之任何酯。典型地,術語「酯」意指烷基酯,特別是C 1-C 4烷基酯,尤其是甲酯或乙酯。
不飽和二羧酸可為至少一種烯系不飽和二羧酸,這意指其具有至少一個如本文所述之烯系不飽和雙鍵。不飽和二羧酸亦可為至少一種烯系不飽和二羧酸與一或多種芳族二羧酸之組合。不飽和二羧酸較佳包含至少50莫耳%,特別是至少80莫耳%之至少一種烯系不飽和二羧酸,以不飽和二羧酸之總量計。
技術人員將容易理解,在烯系不飽和聚酯之形成中,任何二羧酸亦可以其酯或其酸酐之形式使用。
烯系不飽和二羧酸包含二個羧基及至少一個烯系不飽和部分,即帶有不為芳環之一部分並且因此易於自由基聚合之烯烴雙鍵之部分。典型地,烯系不飽和二羧酸之烯系不飽和雙鍵作為乙烯基(-CH=CH-)雙鍵或亞乙烯基(>C=CH 2)雙鍵存在。烯系不飽和二羧酸可為直鏈的或支鏈的。烯系不飽和二羧酸較佳包含4至8個碳原子,更佳4至7個碳原子,最佳4或5個碳原子。
適合與至少一種烯系不飽和二羧酸組合之芳族二羧酸較佳包含6至9個,更佳6至8個,最佳8個碳原子。合適的芳族二羧酸包括鄰苯二甲酸、間苯二甲酸及對苯二甲酸。
化合物(i-a)較佳選自馬來酸、馬來酸酐、富馬酸、富馬酸二甲酯、衣康酸、衣康酸二甲酯、中康酸、檸康酸及四氫鄰苯二甲酸酐,或該等化合物中之至少一者與選自鄰苯二甲酸、鄰苯二甲酸酐、間苯二甲酸、對苯二甲酸、對苯二甲酸二甲酯、2,5-呋喃二羧酸及2,5-呋喃二羧酸二甲酯中之至少一種化合物之組合。化合物(i-a)更佳選自馬來酸、馬來酸酐、富馬酸、衣康酸及四氫鄰苯二甲酸酐,最佳選自富馬酸及馬來酸酐。
在一個具體實例中,烯系不飽和聚酯樹脂可在飽和脂族二羧酸之存在下獲得。合適的飽和二羧酸特別是脂族二羧酸,其典型地具有4至14個碳原子,諸如丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸及十三烷二酸。合適的飽和二羧酸亦包括脂環族二羧酸,其典型地具有6至14個碳原子,諸如1,2-、1,3-或1,4-環己烷二羧酸。通常,飽和二羧酸之量不超過在形成烯系不飽和聚酯之反應中所用之二羧酸之總量之50莫耳%,並且較佳不超過20莫耳%。
至少一種多元醇(i-b)為包含多個羥基之有機化合物。較佳地,多元醇(i-b)包含2至5個羥基,更佳2或3個羥基,最佳2個羥基。多元醇(i-b)可為直鏈的或支鏈的,較佳為直鏈的。多元醇(i-b)可為飽和的或不飽和的。
合適的多元醇包括脂族多元醇,諸如二醇,即脂族二醇,如乙二醇、丙二醇、二乙二醇、1,3-丁二醇、1,4-丁二醇、1,3-丙二醇、二丙二醇及新戊二醇;三醇,諸如甘油;及脂族糖醇,諸如山梨糖醇、木糖醇、赤藻糖醇;以及雜環多元醇,特別是包含至少一個環氧原子之雜環多元醇,諸如麥芽糖醇或異山梨醇。二醇及雜環多元醇為特別較佳的。
特別較佳的多元醇為異山梨醇。較佳地,多元醇(i-b)包含相對於多元醇(i-b)之總量總量為至少30莫耳%,更佳至少40莫耳%,最佳至少70莫耳%,諸如至少90莫耳%或至少99莫耳%之異山梨醇。
烯系不飽和聚酯樹脂(i)較佳可藉由使化合物(i-a)及(i-b)以1.2:1至1:1.2,更佳1.1:1至1:1.1,最佳1.05:1至1:1.05範圍內之莫耳比反應獲得。
或者,烯系不飽和樹脂(i)為乙烯基酯樹脂。乙烯基酯樹脂可藉由環氧樹脂與(甲基)丙烯酸之酯化獲得。術語(甲基)丙烯酸在本文中應理解是指丙烯酸及甲基丙烯酸二者。
用於製備乙烯基酯樹脂之環氧樹脂較佳為聚縮水甘油醚,其典型地每個分子平均具有2至4個縮水甘油基並且亦可具有1至4個可酯化羥基。較佳的乙烯基酯樹脂為芳族乙烯基酯樹脂。其中較佳的是芳族聚縮水甘油醚之反應產物,尤其是基於酚醛環氧樹脂者(諸如環氧苯酚酚醛(epoxyphenol novolak;EPN)或環氧甲酚酚醛(epoxycresol novolak;ECN))或基於雙酚(諸如雙酚A或雙酚F)與丙烯酸者。在典型具體實例中,雙酚A與表氯醇反應形成環氧化物,然後將其用丙烯酸酯化。
特別較佳的是數量平均分子量M n在500至4000 g/mol範圍內之乙烯基酯樹脂。特別較佳的是平均具有1.9至5個,尤其2至4個丙烯酸酯基團之芳族乙烯基酯樹脂。
不同於烯系不飽和聚酯樹脂,乙烯基酯樹脂僅包含末端雙鍵。低數量之雙鍵允許由乙烯基酯樹脂獲得熱固性聚合物,該聚合物表現出相對低的交聯密度並且因此表現出高衝擊強度、斷裂伸長率及拉伸強度。此外,由乙烯基酯樹脂獲得之熱固性聚合物比由烯系不飽和聚酯樹脂獲得之聚合物表現出更少的遊離鏈端,因此更不易水解並且更耐腐蝕。此外,由乙烯基酯樹脂獲得之熱固性聚合物之玻璃轉化比由烯系不飽和聚酯樹脂獲得之熱固性聚合物之玻璃轉化更受關注。
合適的可市售乙烯基酯樹脂特別包括來自BASF SE之Laromer ®產品LR8765(脂族)、LR8986、LR9019、LR9023、EA9081、EA9082、EA9097、EP9124、EA9138、EA9143及EA9145、EA9148;來自DSM Coating Resins B.V.之AgiSyn ®產品1010、1030、2020、3010、3020、3051、9720、9721、9750、9760、9771、9790及9792;來自Allnex S.a.r.l.之Ebecryl ®產品113、600、604、605、608、609、640、641、648、860、1606、1608、3105、3203、3300、3416、3420、3608、3639、3700、3700、3701、3702、3703、3708、3730、3740、5848及6040;來自Eternal Chemical Co. Ltd.之Etercure ®產品621、621、622、622、623、623、624、624、625、923、6209、6210、6211、6213、6215、6219、6231、6233、6233、6234、6235、6241、6261及620;來自IGM之Photomer ®產品3005、3015、3016、3072、3316、3317、3620及3660;來自Miwon Specialty Chemical Co., Ltd.之Miramer ®及Photocryl ®產品Miramer PE 110 H、Photocryl E 202、Photocryl E 203 /30PE、Photocryl E 207 /25TP、Photocryl E 207 /30PE、Photocryl E 07 /25HD、Miramer PE 210、Miramer PE 210 HA、Miramer PE 230、Miramer PE 250、Miramer PE 250 LS、Photocryl DP 296、Miramer PE 310、Photocryl DP 460、Miramer PE 2100、Miramer PE 2120 A、Miramer PE 2120 C、Miramer PE 2120 B、Miramer PE 130、Miramer ME 2500、Miramer SC 6345及Miramer SC 6400;來自Rahn AG之Genomer ®產品2235、2253、2255、2259、2263及2280;來自Sartomer之Sartomer ®CN及Kyrarad ®產品Sartomer CN 104 Y50、Sartomer CN 108、Sartomer CN 109、Sartomer CNUVE 110 /95、Sartomer CN 111、Sartomer CN 112 B70、Sartomer CN 12 C60、Sartomer CN 113 D70、Sartomer CNUVE 114 /95、Sartomer CN 115、Sartomer CN 116、Sartomer CN 116 D50、Sartomer CN 117、Sartomer CN 118、Sartomer CN 119、Sartomer CN 120、Sartomer CN 120 A75、Sartomer CN 120 A80、Sartomer CN 120 B60、Sartomer CN 120 B80、Sartomer CN 120 C60、Sartomer CN 120 C80、Sartomer CN 120 D80、Sartomer CN 120 E50、Sartomer CN 120 J90、Sartomer CN 120 M50、Sartomer CN 120 S80、Sartomer CN 121、Sartomer CN 122 A80、Sartomer CN 124、Sartomer CN 129、Sartomer CNUVE 130、Sartomer CN 131 B、Sartomer CN 132、Sartomer CN 133、Sartomer CN 136、Sartomer CN 148、Sartomer CNUVE 150/80、Sartomer CN 151、Sartomer CNUVE 151、Sartomer CN 152、Sartomer CN 56、Sartomer CN 159、Sartomer CN 173、Sartomer CN 186、Kayarad R 190、Kayarad R 205、Kayarad TCR 1094、Kayarad TCR 1096、Sartomer CN 1300、Sartomer CN 2003 EU、Kayarad EAM 2160及Kayarad EAM 2300;及來自Qualipoly Chemical Corporation之Qualicure ®GU產品GU1160C、GU1200W、GU1280A、GU1380A、GU1400Z、GU1475A、GU1480A、GU1600Y、GU1650X、GU1700W、GU1700P、GU1700T、GU1700Y、GU1700Z、GU1800W、GU1900W及GU1900Z,上述產品在某些情況下與單體摻合。
或者,烯系不飽和樹脂(i)為胺甲酸乙酯(甲基)丙烯酸酯樹脂。胺甲酸乙酯(甲基)丙烯酸酯可藉由使芳族或脂族二或低聚異氰酸酯與(甲基)丙烯酸羥烷基酯(諸如(甲基)丙烯酸羥乙酯或(甲基)丙烯酸羥丙酯)以及視需要選用之飽和多元醇(選自脂族多元醇、環脂族多元醇、聚醚醇、聚酯醇、聚醚酯醇及聚碳酸酯二醇)反應獲得。
合適的可市售胺甲酸乙酯(甲基)丙烯酸酯樹脂包括胺甲酸乙酯(甲基)丙烯酸酯,更具體地含有胺甲酸乙酯基團之低聚物及聚合物,其平均具有1.8至10個,更具體地1.9至8.5個(甲基)丙烯酸酯基團,並且較佳可藉由芳族或脂族二或低聚異氰酸酯與(甲基)丙烯酸羥烷基酯之反應獲得。其實例為來自BASF SE之Laromer ®產品UA19T、UA9028、UA9030、UA8987、UA9029、UA9033、UA9047、UA9048、UA9050、UA9072、UA9065、UA9089、UA9073及UA9136;來自DSM Coating Resins B.V.之Neorad ®U產品10、20、25、42、60、61、6282及6288;來自DSM Coating Resins B.V.之AgiSyn ®產品230、236、250及670;來自Allnex S.a.r.l.之Ebecryl ®產品204、205、206、210、214、215、220、221、230、244、245、246、264、265、267、270、271、280、284、285、286、294、1258、1290、1290、1291、2002、2003、2221、4101、4150、4201、4220、4250、4265、4396、4491、4501、4510、4513、4587、4654、4666、4680、4683、4740、4765、4820、4858、4859、5021、5129、6202、8100、8110、8210、8213、8215、8232、8254、8296、8301、8307、8310、8311、8402、8405、8413、8415、8465及8602;來自Eternal Chemical Co. Ltd.之Etercure ®產品611、615、6072、6081、6101、6112、6113、6114、6115、6120、6121、6122、6123、6127、6130、6131、6134、6141、6142、6143、6144、6145、6145、6146、6147、6148、6148、6149、6150、6151、6152、6153、6153、6154、6154、6157、6158、6160、6161、6164、6165、6170、6171、6172、6175、6175、6175、6176、6181、6195、6196、6197、6198、8000、Etercure DR-U 6-1、Etercure DR-U 10、Etercure DR-U 11、Etercure DR-U 20、Etercure DR-U 21、Etercure DR-U 22、Etercure DR-U 24、Etercure DR-U 25、Etercure DR-U 26、Etercure DR-U 57、Etercure DR-U 91、Etercure DR-U 92、Etercure DR-U 95、Etercure DR-U 106、Etercure DR-U 116、Etercure DR-U 300、Etercure DR-U 301;來自IGM Resins B.V.之Photomer ®產品6008、6009、6010、6019、6184、6210、6230、6625、6628、6690、6720、6891、6892及6893;來自Miwon Specialty Chemical Co., Ltd.之Miramer ®產品256、307、320、340、360、375、610、620、622、662、664、2012、2030、2100、2152、2200、2404、2410、2421、2510、2560、2564、2565、2900、3100、3195、3201、3280、3304、3400、3420、3440、3450、3600、3603、3701、3710、3722、4100、4150、5000、5216、6140及9800;來自Rahn AG之Genomer ®產品1122、4188、4205、4215、4217、4256、4267、4269、4297、4302、4312、4316、4425、4590及4622;來自Sartomer之Sartomer ®CN產品902、910、914、916、922、925、929、936、944、945、945、945、956、959、961、961、962、963、963、963、963、963、964、965、966、967、968、970、971、972、973、975、976、977、978、980、981、982、983、984、985、989、990、991、992、994、996、997、998、999、1963、3000、3001、8000、8001、8002、8003、9001、9002、9004、9007、9010、9014、9026、9101、9102、9130、9143、9165、9167、9170、9196、9200、9245、9245、9250、9251、9260、9276、9278、9293、9761、9782、9783、9788、9800及9893;來自Qualipoly Chemical Corporation之Qualicure ®GU產品GU3001Z、GU3010Z、GU3030Z、GU3100W、GU3100Y、GU3100Z、GU3185A、GU3185B、GU3285A、GU3290M、GU3300W、GU3300Z、GU3370A、GU3400Y、GU3400Z、GU3501Q、GU4000Y、GU4075B、GU4100Y、GU4175X、GU4200Z、GU4280B、GU4300Y、GU4500Y、GU6100L、GU6200Y、GU6200Z、GU6300Y、GU6370F、GU7200Z、GU7400Z、GU7500Z、GU3680A、GU3700Y、GU3701W、GU3775A、GU3980A、GU4660A、GU4900Y、GU6600Y及GU7900Z及Qualicure ®GS產品GS4920C及GS5120C,上述產品在某些情況下與單體摻合。其中脂族胺甲酸乙酯丙烯酸酯為較佳的。特別較佳的是數量平均分子量M n在500至4,000 g/mol範圍內之脂族胺甲酸乙酯(甲基)丙烯酸酯。
合適的脂族多元醇包括乙二醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、三丙二醇、1,4-丁二醇及聚四氫呋喃。
合適的聚酯醇可衍生自己二酸及選自乙二醇、丙二醇、1,4-丁二醇、1,4-己二醇、二乙二醇及二丙二醇之多元醇。
合適的聚碳酸酯二醇包括基於1,5-戊二醇及1,6-己二醇之聚碳酸酯。
在一個具體實例中,烯系不飽和樹脂(i)具有以下特徵中之至少一者: -    藉由凝膠滲透層析法所測定,數量平均分子量(M n)在500至10,000 g/mol範圍內; -    酸值在5至80 mg KOH/g範圍內;及 -    羥值在5至80 mg KOH/g範圍內。
較佳地,烯系不飽和樹脂(i)具有以下特徵中之至少一者: -    藉由凝膠滲透層析法所測定,數量平均分子量(M n)在800至8,000 g/mol,較佳在1,000至5,000 g/mol範圍內; -    酸值在10至65 mg KOH/g,較佳在15至55 mg KOH/g範圍內;及 -    羥值在10至65 mg KOH/g,較佳在15至55 mg KOH/g範圍內。
酸值(中和數量)為中和一克烯系不飽和樹脂所需之氫氧化鉀(KOH)之量(以毫克為單位)。酸值表示每克化合物之羧酸基團數量,可經由DIN EN ISO 2114測定。酸值與烯系不飽和聚酯樹脂之表徵特別相關。
羥值為中和一克含有遊離羥基之化學物質乙醯化時所吸收之乙酸所需之氫氧化鉀(KOH)之量(以毫克為單位)。羥值表示每克化合物之遊離羥基數量,可經由DIN EN ISO 4692-2測定。
在另一個具體實例中,烯系不飽和樹脂(i)具有0.5至10 mol/kg範圍內之乙烯基密度,特別是在以下範圍內: -    當烯系不飽和樹脂(i)為烯系不飽和聚酯樹脂時,2.0至9.0 mol/kg,諸如4.0至7.5 mol/kg; -    當烯系不飽和樹脂(i)為乙烯基酯樹脂時,1.0至4.5 mol/kg,諸如2.5至4.5 mol/kg; -    當烯系不飽和樹脂(i)為胺甲酸乙酯(甲基)丙烯酸酯樹脂時,1.0至5.0 mol/kg,諸如3.0至5.0 mol/kg。
乙烯基密度表示每kg樹脂之乙烯基莫耳比例。乙烯基密度可經由核磁共振(nuclear magnetic resonance;NMR)光譜法測定。
發現式(I)之N-乙烯基唑烷酮特別適合溶解漢森溶解度參數δ p為至少5.5 MPa 1/2之烯系不飽和樹脂(i)。當烯系不飽和樹脂為烯系不飽和聚酯樹脂時,這特別適用。漢森溶解度參數δ p表示分子之間偶極分子間力之能量。。
不希望受到理論束縛,假設式(I)之N-乙烯基唑烷酮之高極性使得這些化合物與相對極性之不飽和樹脂高度相容,這反映在這些不飽和樹脂之相對高之漢森溶解度參數δ p中。
三維漢森溶解度空間中溶解度參數之定義及計算描述於C. M. Hansen:「The Three Dimensional Solubility parameter and Solvent Diffusion Coefficient - Their Importance in Surface Coating Formulation」,Danish Technical Press,Copenhagen,1967。
如上所述,δ p表示分子之間偶極分子間力之能量,δ d表示分子之間分散力之能量,並且δ h表示分子之間氫鍵之能量。該等參數之漢森溶解度參數之單位為MPa 1/2
許多化合物之漢森溶解度參數在標準著作中列出,諸如「Hansen Solubility Parameters: A User’s Handbook」,C. M. Hansen,2007,2nd Edition,CRC。眾所周知之建模軟體,諸如C. M. Hansen開發及發行之HSPIP 3.1.25(3rd Edition)或COSMOquick 2021,亦可用於基於化合物之化學結構計算漢森溶解度參數。漢森溶解度參數之計算假設室溫為約25°C。本文中,漢森溶解度參數(特別是δ p)是根據下面工作實施例描述之方法計算。
若漢森溶解度參數δ p低於所請之值,則烯系不飽和樹脂(i)在式(I)之N-乙烯基唑烷酮中之溶解度可能不足,並且反應性稀釋劑(ii)之有利性質不太明顯。此外發現,已知的反應性減黏劑苯乙烯不能可靠地為具有至少5.5 MPa 1/2之漢森溶解度參數δ p之烯系不飽和樹脂(i)提供足夠的溶解度。
在一個具體實例中,烯系不飽和樹脂(i)之特徵在於漢森溶解度參數δ p為至少5.7 MPa 1/2,諸如至少6.0 MPa 1/2,或至少6.3 MPa 1/2,更佳至少6.5 MPa 1/2,特別是至少7.0 MPa 1/2,最佳至少8.0 MPa 1/2。漢森溶解度參數δ p較佳為至多16 MPa 1/2,更佳至多12 MPa 1/2,最佳至多8.5 MPa 1/2
在另一個具體實例中,烯系不飽和樹脂(i)之特徵在於漢森溶解度參數δ d為至少15.0 MPa 1/2,較佳至少17.0 MPa 1/2,更佳至少17.5 MPa 1/2,最佳至少18.0 MPa 1/2,諸如至少18.5 MPa 1/2。漢森溶解度參數δ d較佳為至多22.0 MPa 1/2,更佳至多20.5 MPa 1/2,最佳至多19.5 MPa 1/2
在另一個具體實例中,烯系不飽和樹脂(i)之特徵在於漢森溶解度參數δ h為至少15.0 MPa 1/2,較佳至少15.5 MPa 1/2,更佳至少16.0 MPa 1/2,最佳至少17.0 MPa 1/2。漢森溶解度參數δ h較佳為至多30.0 MPa 1/2,更佳至多24.0 MPa 1/2,最佳至多18.0 MPa 1/2
在一個具體實例中,烯系不飽和樹脂(i)之特徵在於 -    漢森溶解度參數δ p為至少5.5 MPa 1/2,較佳至少5.7 MPa 1/2,諸如至少6.0 MPa 1/2,或至少6.3 MPa 1/2,更佳至少6.5 MPa 1/2,特別是至少7.0 MPa 1/2,最佳至少8.0 MPa 1/2,及 -    漢森溶解度參數δ d為至少15.0 MPa 1/2,較佳至少17.0 MPa 1/2,更佳至少17.5 MPa 1/2,最佳至少18.0 MPa 1/2,諸如至少18.5 MPa 1/2
上述上限為較佳的。
在另一個具體實例中,烯系不飽和樹脂(i)之特徵在於 -    漢森溶解度參數δ p為至少5.5 MPa 1/2,較佳至少5.7 MPa 1/2,諸如至少6.0 MPa 1/2,或至少6.3 MPa 1/2,更佳至少6.5 MPa 1/2,特別是至少7.0 MPa 1/2,最佳至少8.0 MPa 1/2; -    漢森溶解度參數δ d為至少15.0 MPa 1/2,較佳至少17.0 MPa 1/2,更佳至少17.5 MPa 1/2,最佳至少18.0 MPa 1/2,諸如至少18.5 MPa 1/2;及 -    漢森溶解度參數δ h為至少15.0 MPa 1/2,較佳至少15.5 MPa 1/2,更佳至少16.0 MPa 1/2,最佳至少17.0 MPa 1/2
上述上限為較佳的。
參數δ p、δ d及δ h可被視為三維(亦稱為漢森空間)中之點之坐標。二個分子在漢森空間中距離越近,其就越有可能相互溶解。為了測定二個分子(典型地為溶劑及聚合物)之參數是否在範圍內,通常歸因於欲溶解之物質之相互作用半徑(或R 0值)。R 0值測定了漢森空間中球體之半徑。所有合適的溶劑都位於球體內,而不合適的溶劑位於球體外。
相互作用半徑R 0由物質溶解時之最大距離R a值所定義。距離R a由所考慮物質之漢森溶解度參數計算得出。隨後,進行溶解度實驗測試。該等結果與R a參數之理論計算相關。R a之值可由下式計算:
關於如何測定R a及R 0值之詳細討論可在「Hansen Solubility Parameters: A User’s Handbook」,C. M. Hansen,2007,2nd Edition,CRC中找到。
根據R a及R 0值,根據RED = R a/R 0計算相對能量密度(relative energy density;RED)。若RED值小於1,則物質將溶解。若RED值為1,則物質將部分溶解。若RED值大於1,則物質將不溶解。
例如,苯乙烯之經實驗測定之R 0值為12.65。這意指,若根據苯乙烯及例如特定聚酯樹脂之漢森參數計算之R a值高於12.65,則RED值將高於1,並且該物質不溶於苯乙烯。
在一個具體實例中,烯系不飽和樹脂(i)之特徵在於,相對於苯乙烯,R a值大於12.65,較佳大於12.70或大於12.80。
若單個物質之漢森溶解度參數值為已知的,則可計算混合物之漢森溶解度參數值。將兩種物質之參數按體積比相加,分別計算出各參數: 其中φ 1為物質1之體積分數,φ 2為物質2之體積分數,δ 1為物質1之漢森溶解度參數(δ d、δ p或δ h),並且δ 2為物質2之漢森溶解度參數(δ d、δ p或δ h)。對於給定物質,存在溶劑之最佳比例(具有最小距離R a)。即使典型地不適合用於溶解化合物之二種(或更多種)物質亦可按一定比例成為合適的溶劑,因為混合物可位於溶解度球體R 0內。
可固化樹脂組成物較佳包含量為15至85重量%,更佳15至75重量%,最佳20至60重量%之烯系不飽和樹脂(i),以可固化樹脂組成物之總重量計。
可固化樹脂組成物較佳包含以可固化樹脂組成物之總重量計量為0.5至85重量%,例如3至85重量%或5至85重量%,較佳10至80重量%,更佳15至80重量%,諸如20至80重量%,甚至更佳25至80重量%,最佳40至80重量%,例如50至75重量%之反應性稀釋劑(ii)。
除了反應性稀釋劑(ii)之外,可固化樹脂組成物可包含一或多種選自苯乙烯及苯乙烯衍生物、環氧化物、乙烯基醚、丙烯酸酯及甲基丙烯酸酯之另外的反應性稀釋劑。在這種情況下,反應性稀釋劑(ii)充當溶解增強劑。苯乙烯衍生物包括3-甲基苯乙烯、4-甲基苯乙烯、4-三級丁基苯乙烯及α-甲基苯乙烯。合適的丙烯酸酯包括甲基丙烯酸甲酯、丙烯酸三級丁酯、丙烯酸環己酯、丙烯酸4-三級丁基環己酯、衣康酸二甲酯(DMI)、肉桂酸甲酯、肉桂酸乙酯、甲基丙烯酸2-羥乙酯、甲基丙烯酸3-羥丙酯、丙烯酸異莰酯、甲基丙烯酸異莰酯、1,4-丁二醇二甲基丙烯酸酯(1,4-BDDMA)、三乙二醇二甲基丙烯酸酯、三甲基丙烷三甲基丙烯酸酯及甲基丙烯酸丙酮乙醯氧基乙酯(AAEMA)。合適的乙烯基醚包括環己基乙烯基醚、二乙二醇二乙烯基醚、三乙二醇二乙烯基醚、環己烷-1,4-二甲醇二乙烯基醚及1,4-丁二醇二乙烯基醚。合適的環氧化物包括2,2-雙[4-(縮水甘油氧基)苯基]丙烷、雙-[4-(縮水甘油氧基)-苯基]甲烷及1,4-雙(2,3-環氧丙氧基)丁烷。
為了實現烯系不飽和樹脂(i)之高溶解度,反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%,較佳至少5重量%,更佳至少10重量%,諸如至少25重量%、至少40重量%、至少50重量%、至少60重量%或至少75重量%之量存在。
較佳地,可固化樹脂組成物中烯系不飽和樹脂(i)與反應性稀釋劑總量之重量比在15:85至85:15範圍內,更佳在25:75至75:25,特別是在30:70至70:30或30:70至60:40範圍內。
在一個具體實例中,烯系不飽和聚酯樹脂組成物不包含另外的反應性稀釋劑。
在一個具體實例中,複合玻璃纖維材料包含以材料之總重量計量在10至90重量%,較佳15至85重量%,更佳20至80重量%範圍內之熱固性聚合物。
複合玻璃纖維材料包含玻璃纖維。纖維增強了複合玻璃纖維材料之機械性質及機械穩定性。玻璃纖維為由許多極細之玻璃纖維組成之材料,藉由擠壓細玻璃絲(諸如二氧化矽基玻璃)所形成。已發現,與已知之反應性稀釋劑(諸如苯乙烯)相比,使用式(I)之N-乙烯基唑烷酮作為反應性稀釋劑來獲得複合玻璃纖維材料增加了此等材料之衝擊強度。
對於每100重量份之烯系不飽和樹脂(i)及反應性稀釋劑之總量,較佳存在10至220重量份之玻璃纖維,更佳15至200重量份之玻璃纖維,最佳25至180重量份之玻璃纖維。該範圍內之玻璃纖維之量允許實現複合玻璃纖維材料之有用的物理性質。
除了玻璃纖維之外,該材料亦可包含選自碳纖維、陶瓷纖維、芳族聚醯胺纖維、硼纖維、玄武岩纖維、鋼纖維、天然纖維及/或尼龍纖維之纖維。
對於每100重量份之烯系不飽和樹脂(i)及反應性稀釋劑之總量,較佳存在10至220重量份纖維,更佳15至200重量份纖維,最佳25至180重量份纖維。
玻璃纖維以及上面討論之視需要選用之其他纖維可藉由其之長度與直徑比(縱橫比)來表徵。纖維應理解為具有至少10,特別是至少20,更特別是至少50或至少100之長度與直徑比之材料,並且亦包含例如藉由紡絲改質之纖維。在一個較佳具體實例中,纖維之長度與直徑比在20至100000,較佳50至100000,最佳100至100000範圍內。纖維之長度及直徑可經由合適的顯微鏡測定。
合適的玻璃纖維之長度典型地在1 mm至1 m,較佳2 mm至1 m,最佳3 mm至1 m範圍內。合適的玻璃纖維之直徑典型地在6至25 μm,較佳10至25 μm,最佳12至25 μm範圍內。
玻璃纖維可作為單獨的玻璃纖維、作為網、織物(包括針織及梭織織物)、非捲曲織物稀鬆布、粗紗等存在於材料中。
組成物可包含另外的組分,包括穩定劑;抑制劑;顏料及染料;填料;增稠劑;阻燃劑;殺菌劑;熱塑性收縮控制劑;增韌劑;固化劑;蠟及其他成膜劑;潤滑劑;脫模劑;潤濕劑;除氣劑;及/或偶聯劑。
特別地,組成物可包含至少一種穩定劑或穩定劑之混合物。合適的穩定劑包括硝醯基化合物,諸如1-氧基-2,2,6,6-四甲基哌啶或4-羥基-1-氧基-2,2,6,6-四甲基哌啶。此外,在苯酚基團之α位具有至少一個取代基之苯酚衍生物為合適的,諸如2,6-二-三級丁基-4-甲基苯酚、Irganox ®1330或Irganox ®3114以及生育酚。其他合適的穩定劑包括芳族胺及苯二胺、受阻胺,諸如Tinuvin ®NOR ®356、Tinuvin ®765及Tinuvin ®770、亞胺、磺醯胺、肟、羥胺、脲衍生物、含磷化合物、含硫化合物,諸如吩噻嗪、基於四氮雜環烯(TAA)之錯合劑及/或金屬鹽。含磷化合物為例如三苯膦、亞磷酸三苯酯、次磷酸、亞磷酸、亞磷酸三壬酯、亞磷酸三乙酯及二苯基異丙基膦。
合適地,烯系不飽和樹脂組成物包含總量在0.01至5重量%,較佳0.02至3重量%,更佳0.025至2.5重量%範圍內之穩定劑,相對於烯系不飽和樹脂組成物之總量。
合適的抑制劑包括氫醌、2-甲基氫醌、2-三級丁基氫醌、對苯醌、2-甲基-對苯醌、2-三級丁基-對苯醌、1,4-萘醌、4-三級丁基兒茶素(TBC)、1,2-二羥基萘、1,4-二羥基萘、N-亞硝基-N-苯基羥胺銨鹽及參(N-亞硝基-N-苯基羥基-胺基)鋁。
合適的顏料及染料為由於波長選擇性吸收而改變反射或透射光之顏色之材料。顏料之一個實例為二氧化鈦。
填料為增加不飽和聚酯樹脂組成物體積之惰性化合物。對於每100重量份之不飽和樹脂(i)及反應性稀釋劑(ii)之混合物,不飽和聚酯樹脂組成物中較佳存在20至280重量份之填料。填料之一個實例為碳酸鈣。
增稠劑增加不飽和聚酯樹脂組成物之黏度並且降低其黏性,從而改善組成物之操作性。增稠劑之實例為異氰酸酯,諸如4,4’-亞甲基-二苯基-二異氰酸酯、氧化鎂(MgO)、氫氧化鈣(Ca(OH) 2)及氧化鈣(CaO)。
阻燃劑為防止或減緩著火發展之物質。合適的阻燃劑包括固體阻燃劑,諸如三水合氧化鋁(alumina trihydrate;ATH)、氫氧化鎂(Mg(OH) 2)及聚磷酸銨(ammonium polyphosphate;APP)。其他合適的阻燃劑包括三苯基磷酸酯、間苯二酚四苯基二磷酸酯、雙酚A四苯基二磷酸酯、十溴二苯基乙烷、伸乙基-雙(四溴鄰苯二甲醯亞胺)、參(三溴苯基)三聚氰酸酯及/或十二氯五環十八二烯(DeloranePlus ®)。此外,鹵化阻燃劑可與增效劑(如三氧化銻(Sb 2O 3)或2,3-二甲基-2,3-二苯基-丁烷(Dicumene ®))組合使用。
殺菌劑為藉由化學或生物手段對任何有害生物進行破壞、阻止、使其無害或發揮控制作用之物質。合適的殺生物劑包括基於銀、銅或鋅之物質,其以鹽(吡硫鎓鋅鋅)或氧化物或藉由負載沸石或藉由奈米粒子提供。其他合適的殺生物劑包括殼聚醣、10,10’-氧代雙吩惡砒(10,10’-oxybisdphenoxarsine;OBPA)、異噻唑啉酮、2,4,4’-三氯-2’-羥基-二苯醚(三氯沙)、N-(氟二氯甲硫基)鄰苯二甲醯亞胺、涕必靈(TBZ)或甲硫基-環丙胺基-三級丁基胺基-對稱三嗪以及合成聚合物聚(三級丁基胺基乙基甲基丙烯酸酯)、聚(三級丁胺基甲基苯乙烯)及其活性共聚物。
熱塑性收縮控制劑為可用於片狀模料(sheet molding compound;SMC)及塊狀模料(bulk molding compound;BMC)技術之物質,以便藉由在固化期間在熱塑性相中形成微孔來補償收縮。合適的熱塑性收縮控制劑包括固體聚合物,諸如粉末狀聚乙烯,及由熱塑性聚合物(諸如聚苯乙烯及苯乙烯共聚物、聚甲基丙烯酸甲酯(polymethylmethacrylate;PMMA)、聚乙酸乙烯酯(polyvinylacetate;PVAc)及官能化PVAc、飽和(不可固化)聚酯及橡膠)製成之苯乙烯液體溶液。
增韌劑用於改善經固化之烯系不飽和聚酯樹脂組成物之耐損傷性。特別是,可增加斷裂伸長率及衝擊強度,同時可減少長期靜負載及動負載下裂紋之形成。合適的增韌劑包括橡膠、奈米粒子(即平均直徑小於1 μm之粒子)或形成此類奈米粒子之前驅物、不同於烯系不飽和樹脂(i)之熱塑性聚合物及不同於烯系不飽和樹脂(i)之嵌段共聚物。增韌劑可以2重量%至40重量%,較佳3重量%至30重量%,更佳5重量%至25重量%之量存在於樹脂組成物中,相對於可固化樹脂組成物之總量。
合適的橡膠包括丙烯腈-丁二烯-橡膠(NBR)、氫化NBR(H-NBR)、聚氯平(CR)、苯乙烯-丁二烯-橡膠(SBR)、天然橡膠(NR)、聚異丁烯(PIB)、乙烯-丙烯-橡膠(EPM)、乙烯-丙烯-二稀橡膠(EPDM)以及基於聚丙烯酸酯、丙烯酸酯-橡膠(AM)及氟橡膠之橡膠以及官能化橡膠,如端羧基NBR(CTBN)或端環氧基NBR(ETBN)。
合適的奈米粒子包括煙灰、碳黑(高耐磨爐、超高耐磨爐)、熱解矽酸、經表面改質之熱解矽酸、氣相二氧化矽、沉澱二氧化矽、來自聚氨酯回收之剛性相材料、藉由水解官能化矽烷之經改質之二氧化矽粒子、蒙脫石、膨潤土及片狀蒙脫石。
不同於烯系不飽和樹脂(i)之合適的熱塑性聚合物包括聚碸(PSU)、聚醚碸(PES)、聚苯碸(PPSU)、聚氧-2,6-二甲基-1,4-伸苯基(PPE)、基於雙酚A及雙酚TMC(APEC HT ®)之聚碳酸酯、苯乙烯及馬來酸酐之共聚物(XIRAN ®)、苯乙烯及馬來酸酐及N-苯基馬來醯亞胺之共聚物(XIRAN ®)、苯乙烯及縮水甘油甲基丙烯酸酯之共聚物、苯乙烯及丙烯腈之共聚物(SAN)、苯乙烯、丁二烯及丙烯腈之共聚物(ABS)、苯乙烯、丙烯酸酯單體及丙烯腈之共聚物(ASA)、丙烯腈及α-甲基苯乙烯之共聚物(AMSAN)、無定形聚醯胺、聚甲基丙烯醯亞胺、聚偏二氟乙烯(PVDF)、聚氟乙烯(PVF)、乙烯-四氟乙烯-共聚物(ETFE)及四氟乙烯及六氟丙烯之共聚物。
不同於烯系不飽和聚酯樹脂(i)之合適的嵌段共聚物包括苯乙烯-丁二烯-苯乙烯嵌段共聚物(SBS)、聚醚醯胺嵌段共聚物、聚醚酯嵌段共聚物、基於聚酯、聚醚及聚碳酸酯之熱塑性聚氨酯(TPU)。
固化劑為加速固化過程之化合物或化合物之混合物。
當固化在5℃至45℃之間之溫度下進行時,可稱為「冷固化」。冷固化可經由過氧化苯甲醯與胺促進劑組合;或經由氫過氧化物與金屬促進劑組合來進行。
合適的過氧化苯甲醯包括過氧化二苯甲醯及過氧化4,4’-二氯-二苯甲醯。合適的胺促進劑包括N,N-二甲基苯胺、N,N-二乙基苯胺、N,N-二甲基聯甲苯胺、N,N-二乙基聯甲苯胺、N,N-雙(2-羥乙基)苯胺、N,N-雙(2-羥乙基)-聯甲苯胺、N,N-雙(2-羥丙基)-苯胺及/或N,N-雙(2-羥丙基)聯甲苯胺。
合適的氫過氧化物包括過氧化氫、三級丁基氫過氧化物、三級戊基氫過氧化物、過氧化甲基乙基酮、過氧化環己酮、過氧化乙醯丙酮、過氧化三甲基環己酮、過氧化異丁基甲基酮。合適的金屬促進劑包括Co(II)、Mn(II)、Cu(I)、Cu(II)或Fe(II)之有機鹽,諸如乙基己酸鹽或環烷酸鹽之金屬鹽。
當固化在高於45℃至120℃之溫度下進行時,可稱為「熱固化」。熱固化可使用一或多種熱引發劑作為固化劑來進行。合適的熱引發劑包括過氧化物、偶氮化合物及C-C不穩定化合物。
合適的過氧化物包括過氧化甲基乙基酮、過氧化2,4-戊二酮、過氧化甲基異丁基酮、過氧化環己酮、過氧化二苯甲醯、過氧化新癸酸三級丁酯、2,5-二甲基-2,5-二-(2-乙基-己醯基過氧化)己烷、過氧化2-乙基己酸三級戊酯、過氧化2-乙基己酸三級丁酯、過氧化3,5,5-三甲基己酸三級丁酯、過氧化2-甲基苯甲酸三級丁酯、過氧化2-乙基己基碳酸三級丁酯、過氧化異丙基碳酸三級丁酯、過氧化苯甲酸三級戊酯、過氧化苯甲酸三級丁酯、1,1-二-(三級戊基過氧化)環己烷、1,1-二-(三級丁基過氧化)-3,3,5-三甲基環己烷、1,1-二-(三級丁基過氧化)-環己烷、2,2-二-(三級戊基過氧化)丁烷、4,4-二-(三級丁基過氧化)戊酸正丁酯、過氧化二月桂醯、二-(2-三級丁基過氧化異丙基)苯、過氧化二異丙苯、2,5-二甲基-2,5-二-(三級丁基過氧化)己烷、二-三級丁基過氧化物、二-三級戊基過氧化物、過氧化二異丙苯、二(三級丁基過氧化異丙基)苯、2,5-二甲基-2,5-二(三級戊基過氧化)己烷、過氧化三級丁基異丙苯、2,5-二甲基-2,5-二(三級丁基過氧化)己炔-3,3,6,9-三乙基-3,6,9-三甲基-1,4,7-三過氧環壬烷、二-(4-三級丁基環己基)過氧化二碳酸酯、二-(2-乙基己基)過氧化二碳酸酯、三級丁基氫過氧化物、氫過氧化異丙苯、氫過氧化異丙基異丙苯及1,1,3,3-四甲基丁基氫過氧化物。
合適的偶氮化合物包括2,2’-偶氮雙(2-異丁腈)、2,2’-偶氮雙(2-甲基丁腈)及1,1’-偶氮雙(六氫苯并腈)。
合適的C-C不穩定化合物包括2,3-二甲基-2,3-二苯基丁烷及3,4-二甲基-3,4-二苯基己烷。
其他合適的固化劑包括當用UV-A光(即波長315至380 nm之光)照射時產生自由基之化合物。此類固化劑可稱為光引發劑。合適的光引發劑包括安息香、二苯乙二酮、α-羥基酮、α-胺基酮、醯基膦氧化物、雙醯基膦氧化物或其組合之衍生物。較佳的光引發劑包括Irgacure ®369、Irgacure ®651、Irgacure ®184、Irgacure ®819、Irgacure ®907及Lucirin ®TPO。
在一個具體實例中,可固化樹脂組成物不包含固化劑。
複合玻璃纖維材料可由可固化樹脂組成物固化而獲得。在一個較佳具體實例中,固化藉由經由固化劑之自由基聚合來進行。合適的固化劑如上所述。或者,可在不存在固化劑之情況下進行固化。
固化可藉由高能輻射來進行。適合於固化之高能輻射之實例為電子輻射,或α-、β-或γ-輻射,較佳γ-輻射。
不飽和烯系不飽和聚酯樹脂組成物之固化較佳在高溫下進行,較佳在120℃至250℃範圍內進行。在固化過程期間可逐步升高溫度。
在一個較佳具體實例中,不飽和聚酯樹脂組成物之固化在15至50℃範圍內之溫度下進行2至200小時,然後在80至120℃下進行2至24小時。
在一個具體實例中,經固化之不飽和聚酯樹脂組成物進一步經受後固化製程。後固化之持續時間較佳為1至12小時。後固化較佳在80至200℃、特別是80至150℃之溫度下進行。
根據本發明之複合玻璃纖維材料可用於槽之製造、聚合物混凝土、人造石、儀器構造、醫療設備、鐵路設備、油氣田設備、汽車車身部件、卡車車身部件、頭燈反射器、凝膠塗層、面漆、保護層及其他塗層應用,諸如噴塗層、模內塗層及塗漆、油灰、鑄造產物、鈕扣、多孔材料(例如泡沫、膜等)、纖維之製造、工具之製造、電子裝置、阻燃劑熱固性材料、型材、容器、模製品、聚合物部件、長視場燈載體、油槽、片材/板材、鐵路內部部件、黏合及管道。
本發明另外提供一種製造複合玻璃纖維材料之方法,其包含使玻璃纖維與可固化樹脂組成物接觸,該可固化樹脂組成物包含: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在; 及將可固化樹脂組成物固化以形成熱固性聚合物,從而獲得複合玻璃纖維材料。
關於本發明之複合玻璃纖維材料之上述討論及具體實例應理解為同樣適用於本發明之方法。
本文所用之術語「接觸」應被廣義地理解並且包括產生其中玻璃纖維存在於經固化之樹脂組成物之基質中之材料之所有措施。這包括將玻璃纖維與可固化樹脂組成物混合、用可固化樹脂組成物浸漬玻璃纖維之針織或梭織織物、用可固化樹脂組成物浸漬玻璃纖維粗紗等。
本發明另外提供一種式(I)之N-乙烯基唑烷酮之用途 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其用於獲得複合玻璃纖維材料之製程。
在一個具體實例中,一種可固化樹脂組成物,其包含: (i)如上所定義之烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為如上所定義之式(I)之N-乙烯基唑烷酮; 其中反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在;其用於製造複合玻璃纖維材料。
關於本發明之複合玻璃纖維材料之上述討論及具體實例應理解為同樣適用於本發明之用途。
本發明另外提供一種可固化樹脂組成物,其包含: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在, 並且其中烯系不飽和樹脂(i)選自烯系不飽和聚酯樹脂、乙烯基酯樹脂及其組合。
關於本發明之複合玻璃纖維材料之上述討論及具體實例應理解為同樣適用於本發明之可固化樹脂組成物。
如上所述之可固化樹脂組成物可作為用於SMC技術(片狀模塑複合技術)、BMC技術(塊狀模塑技術)、樹脂傳遞模塑(RTM)、壓縮成型、熱成型、FCS技術(纖維複合材料噴灑技術)、注射成型、真空輔助樹脂灌注、連續片材製造、纏繞成型、旋轉成型、層壓、真空壓力浸漬(VPI製程)、拉擠成型、鑄造、捆紮、黏合、塗佈,諸如凝膠塗佈、頂塗佈、噴塗、填充、模內塗佈、刮塗、浸塗、滴塗、塗漆、鋼絲塗漆(搪瓷塗佈)、纖維紡絲及發泡中之增強及非增強熱固性材料之基質聚合物。
藉由隨後的實施例進一步詳細描述本發明。 實施例
如下所述獲得烯系不飽和樹脂。
下表提供工作實施例中使用之反應物、穩定劑及引發劑之概述。
材料 製造商
馬來酸酐 Möller Chemie GmbH & Co. KG
富馬酸 ESIM Chemicals
鄰苯二甲酸酐 Thermo Scientific Acros
四氫鄰苯二甲酸酐 Merck KGaA
丙二醇(99.0%) chemiekontor.de GmbH
二丙二醇 ACROS Organics™
二乙二醇 Thermo Scientific Acros
新戊二醇 Möller Chemie GmbH & Co. KG
2-甲基-2-丙基丙烷-1,3-二醇 BASF
氫醌(99.5%) TCI Deutschland GmbH
丁基錫酸(95.0%,Fascat ®4100) ACROS Organics
3,5-二-三級丁基-4-羥基甲苯 Thermo Fisher (Kandel) GmbH
4-甲氧基苯酚 Sigma-Aldrich Chemie GmbH
二丁基錫二月桂酸酯 Alfa Aesar
三苯基膦 Sigma-Aldrich Chemie GmbH
芐基二甲胺 Merck Schuchardt OHG
Lupranat MI ® Alfa Aesar
雙酚A-二縮水甘油醚 BASF SE
甲基丙烯酸 Sigma-Aldrich Chemie GmbH
丙烯酸三級丁酯 ACROS Organics
1,4-丁二醇丙烯酸酯 Thermo Fisher (Kandel) GmbH
1,4-丁二醇二甲基丙烯酸酯(1,4-BDDMA) BASF
三乙二醇二甲基丙烯酸酯 Evonik Performance Materials GmbH
甲基丙烯酸2-羥丙酯 Evonik Performance Materials GmbH
環己基乙烯基醚 Evonik Performance Materials GmbH
4-甲基苯乙烯 BASF
4-三級丁基苯乙烯 Sigma-Aldrich Chemie GmbH
二乙烯基苯 Thermo Fisher (Kandel) GmbH
甲基丙烯酸丙酮乙醯氧基乙酯(AAEMA) Merck KGaA
衣康酸二甲酯(DMI) Merck KGaA
5-甲基-3-乙烯基-唑烷-2-酮 (> 94.0%,VMOX ®,包含約4%之4-甲基-3-乙烯基-唑烷-2-酮) ACROS Organics
Tinuvin ®765 (雙(1,2,2,6,6-五甲基-4-哌啶基)癸二酸酯及1,2,2,6,6-五甲基-4-哌啶基癸二酸甲酯之混合物) BASF
Irganox ®819(雙(2,4,6-三甲基苯甲醯基)苯基膦氧化物) BASF
過氧化苯甲酸三級丁酯(TBPB) (98.0%) BASF
過氧化甲基乙基酮(MEKP) ACROS Organics™
BÜFA®-Accelerator Co 1 Thermo Scientific Acros
Trigonox ®21(過氧化2-乙基己酸三級丁酯) United Initiators GmbH
A-1.      烯系不飽和聚酯樹脂之製造
藉由使下表中指定之化合物以指定之莫耳比反應獲得烯系不飽和聚酯樹脂。採用熔融聚縮合法製備不飽和聚酯樹脂。
提供四頸燒瓶(2 L)。在中間頸部中安裝有一個帶有單葉片之攪拌器。將攪拌器之軸承殼不斷用水冷卻。在另外三個頸部上提供熱電偶、絕緣填充塔及塞子。塔上安裝有帶有研磨接合溫度計(ground-joint thermometer)之蒸餾橋,以監測聚縮合期間系統之頂部溫度。將量筒(250 mL)連接到蒸餾橋以收集並且測量冷凝水之量。將熱電偶連接到Julabo實驗室控制器(PID),並且經由計算機程式(JULABO EasyTemp Professional)控制反應器溫度。加熱套包作為熱源,同樣由Julabo實驗室控制器控制。
在反應開始時,添加相對於總反應混合物500 ppmw之氫醌作為自由基清除劑。在反應開始時,添加相對於總反應混合物400 ppmw之Fascat 4100(丁基錫酸)作為酯化催化劑。反應在氮氣氛圍(99.999%氮氣)下在如上所述帶有攪拌器及溫度計之四頸燒瓶(2 L)中進行。
經由程式控制從室溫加熱至135℃,盡可能快地加熱,同時避免過熱。在80℃時,馬來酸酐發生開環並且發生放熱反應。關閉加熱以免熔體過熱。放熱反應完成之後,將溫度進一步升高至110℃。隨後,反應溫度每小時升高10℃直到190℃。在135至145°C時,首次觀察到水之形成。一旦不飽和聚酯之熔體達到190℃,就停止反應。將聚合物冷卻並且以其固體形式放置過夜。
隨後,藉由加熱至190℃使聚合物再次熔融。進行反應直到獲得所需的酸值。對於含有鄰苯二甲酸酐之聚酯,將熔體冷卻至155℃並且攪拌一小時。隨後,將不飽和聚酯倒入淺矩形模具中,在模具中將其冷卻並且固化。
酸值(中和數量)為中和一克烯系不飽和樹脂所需之氫氧化鉀(KOH)之質量(以毫克為單位)。酸值表示每克化合物之羧酸基團數量,可根據DIN EN ISO 2114經由滴定測定。
羥值為中和一克含有遊離羥基之化學物質乙醯化時所吸收之乙酸所需之氫氧化鉀(KOH)之量(以毫克為單位)。羥值表示每克化合物之游離羥基數量,根據DIN EN ISO 4692-2經由滴定測定。
乙烯基密度表示每kg樹脂之乙烯基莫耳比例。乙烯基密度可經由核磁共振(NMR)光譜法測定。
烯系不飽和聚酯樹脂之玻璃轉化溫度T g是經由差示掃描量熱法(Differential Scanning Calorimetry;DSC)所測定。使用Netzsch之DSC裝置Sirius 3500進行DSC測量。使用可氣密封之Tzero鋁盤。對於DSC測量,將約15 mg之不飽和聚酯樹脂添加到Tzero盤中。然後將Tzero蓋放在盤上並且藉助壓力密封,將盤插入DSC中並且開始測量。
在第一加熱循環中,首先將盤冷卻至0°C,然後以10 K/min將其加熱至100°C。在第二加熱循環中,將盤冷卻至-80°C,然後以10 K/min將其加熱至100°C。從第二加熱循環測定T g
質量平均分子量M w及數量平均分子量M n是藉由凝膠滲透層析法測定,特別是使用苯乙烯-二乙烯基苯共聚物作為固定相及四氫呋喃(tetrahydrofuran;THF)作為溶析液,並且使用經定義分子量之聚苯乙烯進行校準。凝膠滲透層析法可使用PSS聚合物標準溶液之SECcurity GPC Systems儀器來進行。多分散指數Q計算為M w/M n
特別地,使用PSS聚合物標準溶液之分析塔作為分離塔。固定相由苯乙烯-二乙烯基苯共聚物(SDV)組成,粒徑為3 μm,標稱孔徑為100 Å。溶析液為四氫呋喃(THF)。將分離塔在塔烘箱中調溫至35°C。注入樣品體積為50 μL,樣品濃度為4.94 g/L,在樣品製備中相當於50 mg樣品配9 g溶析液。溶析液之流速為0.5 mL/min。使用折射率檢測器及紫外可見檢測器檢測樣品,每秒記錄一次測量信號。對每種聚酯進行二個GPC測量系列。使用PSS WinGPC UniChrom軟體評估層析圖。使用合適的苯乙烯低聚物及聚合物標準套件進行校準。
根據下表在100°C或150°C下經由Epprecht Control & Instrument(FIC)之ICI-錐板黏度計測定熔體黏度。使用標準錐體C(Ø=19.5 mm,錐角0.5°)進行測量。使用約0.5 g之固體不飽和聚酯樹脂進行測量。
下表顯示不飽和樹脂之組成及性質。
# 烯系不飽和樹脂 (反應物之莫耳比) AV 1[mg (KOH)] EGD 2[g/mol] T G[°C] M n[g/mol] M w[g/mol] Q 3 T v 4[°C] 剪切 速率 [s -1] η 5[mPa·s]
1-1 馬來酸酐-鄰苯二甲酸酐-丙二醇 (1.0:2.0:3.3) 45 591.30 9.5 570 1500 2.6 150 2500 2640
1-2 馬來酸酐-鄰苯二甲酸酐-丙二醇 (1.0:0.5:1.65) 35 270.63 11.1 950 2600 2.7 150 2500 2600
1-3 馬來酸酐-丙二醇-新戊二醇 (1.0:0.93:0.20) 25 171.63 1.2 2200 5650 2.6 150 2500 2560
1-4 馬來酸酐-四氫鄰苯二甲酸酐-二乙二醇(1.0:0.5:1.59) 46 315.83 -25.7 800 2100 2.6 100 10000 220
1-5 馬來酸酐-鄰苯二甲酸酐-丙二醇-二丙二醇 (1.0:0.2:1.0:0.3) 25 225.67 0.0 1721 4932 2.9 100 2500 2053
1AV = 酸值 2EGD = 乙烯基密度 3Q = 多分散指數 4T V= 進行黏度測量時之溫度 5η = 黏度
B.   不飽和樹脂之漢森溶解度參數之預測
使用軟體COSMOquick 2021根據相應的低聚物預測不飽和聚酯樹脂之漢森參數。首先,在內涵JChemPaint模組中將分子繪製為12聚體低聚物。然後,產生相應的SMILES字串。最後,使用定量結構活性關係(quantitative structure-activity relationship;QSPR)模型獲得漢森溶解度參數。將QSPR結果與經實驗發表之漢森值進行擬合(「Hansen Solubility Parameters: A User’s Handbook」,C. M. Hansen,2007,2nd Edition,CRC)。結果如下表所示。
# 不飽和樹脂 漢森溶解度參數[MPa 1/2]
δ p δ d δ h
1-1 馬來酸酐-鄰苯二甲酸酐-丙二醇(1.0:2.0:3.3) 5.019 17.527 14.101
1-2 馬來酸酐-鄰苯二甲酸酐-丙二醇(1.0:0.5:1.65) 4.735 17.381 14.263
1-3 馬來酸酐-丙二醇-新戊二醇(1.0:0.93:0.20) 4.162 16.345 9.130
1-4 馬來酸酐-四氫鄰苯二甲酸酐-二乙二醇(1.0:0.5:1.59) 6.006 17.908 15.614
C.   可固化樹脂組成物
C-1.       可固化樹脂組成物之製造
使用錘子粉碎根據項目A-1獲得之經固化之烯系不飽和樹脂。若不飽和樹脂在室溫下不固化,則用液氮將其冷卻,然後在冷態中粉碎。根據下表,使用經粉碎之樹脂來製造可固化樹脂組成物。首先,將不飽和樹脂粒子稱量到玻璃瓶中。隨後,添加根據下表之反應性稀釋劑或反應性稀釋劑混合物。將Tinuvin ®765(1,000 ppmw)添加到樹脂中,並且使用VMOX ®作為反應性稀釋劑從而抑制凝膠化。將瓶子放置在滾筒混合器上並且混合數天。當不飽和樹脂粒子完全溶解在反應性稀釋劑或反應性稀釋劑混合物中時,可固化樹脂組成物被認為可供使用。
C-2.       溶解度
將根據項目C1獲得之瓶子放置在滾筒混合器上並且混合數天。隨後將根據項目C-1獲得之瓶子(其中可固化樹脂組成物包含環己基乙烯基醚)放置在烘箱中在60℃下3小時。定期目視檢查烯系不飽和樹脂粒子在反應性稀釋劑中之溶解度。
溶解度測試之結果如下表所示。
不飽和樹脂 反應性稀釋劑 溶解度之觀察
1-1 VMOX ®(50重量%) 澄清溶液
VMOX ®(60重量%) 澄清溶液
VMOX ®(70重量%) 澄清溶液
丙烯酸三級丁酯(60重量%) 渾濁溶液
1,4-丁二醇二丙烯酸酯(60重量%) 澄清溶液
環己基乙烯基醚(70重量%) 澄清溶液
4-甲基苯乙烯(50重量%) 澄清溶液
4-甲基苯乙烯(70重量%) 渾濁溶液
4-三級丁基苯乙烯(50重量%) 不溶的
4-三級丁基苯乙烯(70重量%) 不溶的
二乙烯基苯(50重量%) 澄清溶液
二乙烯基苯(70重量%) 渾濁溶液
1-2 VMOX ®(50重量%) 澄清溶液
VMOX ®(60重量%) 澄清溶液
VMOX ®(70重量%) 澄清溶液
丙烯酸三級丁酯(60重量%) 澄清溶液
1,4-丁二醇二丙烯酸酯(60重量%) 澄清溶液
環己基乙烯基醚(70重量%) 溶液最初渾濁, 60°C時幾乎澄清
4-甲基苯乙烯(50重量%) 渾濁溶液
4-甲基苯乙烯(70重量%) 渾濁溶液
4-三級丁基苯乙烯(50重量%) 不溶的
4-三級丁基苯乙烯(70重量%) 不溶的
二乙烯基苯(50重量%) 渾濁溶液
二乙烯基苯(70重量%) 渾濁溶液, 二相
1-3 VMOX ®(50重量%) 澄清溶液
VMOX ®(60重量%) 澄清溶液
VMOX ®(70重量%) 澄清溶液
丙烯酸三級丁酯(60重量%) 溶液最初澄清, 二週後渾濁
1,4-丁二醇二丙烯酸酯(60重量%) 澄清溶液
環己基乙烯基醚(70重量%) 最初溶液混濁, 60°C時二相
4-甲基苯乙烯(50重量%) 渾濁溶液
4-甲基苯乙烯(70重量%) 渾濁溶液
4-三級丁基苯乙烯(50重量%) 不溶的
4-三級丁基苯乙烯(70重量%) 不溶的
二乙烯基苯(50重量%) 渾濁溶液
二乙烯基苯(70重量%) 渾濁溶液, 二相
1-4 VMOX ®(50重量%) 澄清溶液
VMOX ®(60重量%) 澄清溶液
VMOX ®(70重量%) 澄清溶液
丙烯酸三級丁酯(60重量%) 澄清溶液
環己基乙烯基醚(70重量%) 最初溶液混濁, 60°C時二相
4-甲基苯乙烯(50重量%) 渾濁溶液
4-甲基苯乙烯(70重量%) 渾濁溶液, 二相
4-三級丁基苯乙烯(50重量%) 不溶的
4-三級丁基苯乙烯(70重量%) 不溶的
二乙烯基苯(50重量%) 渾濁溶液
二乙烯基苯(70重量%) 渾濁溶液, 二相
渾濁溶液表明溶解未完全實現。顯然,VMOX ®允許所測試不飽和樹脂完全溶解。
C-3.       表面黏性及固化性質
以丙烯酸酯為反應性稀釋劑之樹脂製成之不飽和聚酯熱固性材料在空氣下固化後,其表面可能會有黏性。熱固性表面之黏性為由自由基固化過程期間之氧抑制所引起。比較由分別包含丙烯酸三級丁酯或VMOX ®之可固化樹脂組成物獲得之熱固性聚合物之黏性。
如下表所示,將不飽和聚酯樹脂1-2溶解在60重量%之丙烯酸三級丁酯或VMOX ®中,以獲得可固化樹脂組成物。將1重量%之Trigonox 21添加到每種可固化樹脂組成物中。使用以下固化曲線來固化可固化樹脂組成物:在60℃下2小時,然後在80℃下2小時,然後在100℃下2小時。結果如下表所示。
不飽和樹脂 反應性稀釋劑(60重量%) 觀察結果
1-2 丙烯酸三級丁酯 - 固化後表面稍有黏性
1-2 - VMOX ®* 固化後表面無黏性
*      添加1000 ppmw之Tinuvin ®765(相對於可固化樹脂組成物之總量)以及VMOX ®以改善儲存穩定性。
兩種可固化樹脂組成物均可固化以產生具有光滑表面之熱固性聚合物,其中由包含VMOX ®之可固化樹脂組成物獲得之熱固性聚合物不表現出表面黏性。值得注意的是,儘管存在Tinuvin ®765(其可能在固化過程中充當抑制劑),這種效果是在包含VMOX ®之樹脂組成物中所實現。
此外,測試不飽和樹脂1-1至1-4在1,4-丁二醇二丙烯酸酯中之固化性質。將各別不飽和樹脂溶解在60重量%之1,4-丁二醇二丙烯酸酯中以獲得可固化樹脂組成物。將1重量%之Trigonox 21添加到每種可固化樹脂組成物中。使用以下固化曲線來固化可固化樹脂組成物:在60℃下2小時,然後在80℃下2小時,然後在100℃下2小時以獲得熱固性聚合物。
發現每種具有1,4-丁二醇二丙烯酸酯作為反應性稀釋劑之樹脂在空氣下熱固化期間發泡。所得之熱固性聚合物之表面不均勻並且粗糙,其品質不足以進行進一步研究。
C-4.       玻璃轉化溫度T g
比較根據下表由包含不同反應性稀釋劑之可固化樹脂組成物獲得之熱固性聚合物之玻璃轉化溫度。可固化樹脂組成物各自包含1重量%之過氧化苯甲酸三級丁酯。使用以下固化曲線來固化可固化樹脂組成物以獲得熱固性聚合物:A)在60°C下2小時,然後在80°C下2小時,然後在100°C下2小時;或B)在80°C下1小時,然後在160°C下1小時。結果如下表所示。
可固化樹脂組成物 熱固性聚合物之T g
50重量%之VMOX ®中之樹脂1-3 (固化曲線A) 209℃
50重量%之1,4-丁二醇二甲基丙烯酸酯中之樹脂1-3 (固化曲線A) 166℃
50重量%之三乙二醇二甲基丙烯酸酯中之樹脂1-3 (固化曲線A) 165℃
50重量%之VMOX ®中之樹脂1-1 (固化曲線B) 106℃
70重量%之VMOX ®中之樹脂1-1 (固化曲線B) 144℃
50重量%之4-甲基苯乙烯中之樹脂1-1 (固化曲線B) 113℃
50重量%之二乙烯基苯中之樹脂1-1 (固化曲線B) 94℃
顯然,與使用1,4丁二醇二甲基丙烯酸酯或三乙二醇二甲基丙烯酸酯作為反應性稀釋劑相比,VMOX ®作為反應性稀釋劑致使了使用樹脂1-3所獲得之熱固性聚合物之玻璃轉化溫度高至少40℃。此外,很明顯,VMOX ®作為高濃度之反應性稀釋劑致使了高玻璃轉化溫度,而使用4-甲基苯乙烯或二乙烯基苯則無法獲得這種溫度,因為在這些反應性稀釋劑濃度相對較高時存在溶解度問題。
C-5.       冷固化
比較藉由使用VMOX ®或1,4-丁二醇二甲基丙烯酸酯(1,4-BDDMA)作為反應性稀釋劑對根據下表之可固化樹脂組成物進行冷固化而獲得之熱固性聚合物之性質。甲基丙烯酸丙酮乙醯氧基乙酯(AAEMA)及衣康酸二甲酯(DMI)用作另外的反應性稀釋劑。在固化之前,將1.5重量%之鈷促進劑(BÜFA®-Accelerator Co 1)添加到可固化樹脂組成物中,並且將該組成物在滾筒混合器中均質化1小時。隨後,添加1.5重量%之過氧化甲基乙基酮(MEKP),並且使用木抹刀將其與可固化樹脂組成物混合。在添加MEKP之後立即加工可固化樹脂組成物。
將約10 g之樹脂放置在金屬模具(尺寸:10 cm × 10 cm)上。將樹脂均勻分佈,並且將一層雙軸玻璃纖維織物(831 g/m 2,0°/90°,來自Saertex之商品號S14EB490-00831-01300-474000,尺寸:10 cm × 10 cm)放置在樹脂中。使用木抹刀除去所有氣泡後,添加第二層樹脂。第二玻璃纖維織物層與第一層成90°角放置,並且亦用樹脂潤濕。再次重複該過程,使得金屬盤包含彼此成90°之三層玻璃纖維及約30 g樹脂組成物。
在約25°C之溫度下進行冷固化。在白天期間,以約6小時之固定時間間隔,以觸覺控制所獲得之樣品之黏性。結果如下表所示。
不飽和樹脂 [40重量%] VMOX ®[重量%] 1,4-BDDMA [重量%] AAEMA [重量%] DMI [重量%] 樣品表面不黏之時間
1-1 60 - - - 5天
58 - 2 - 4天
- 56 4 - 7天
53 * - 2 - 4天
43 * - 2 10 2天
1-2 60 - - - 4天
58 - 2 - 3天
56 - 4 - 1天
- 56 4 - 7天
1-3 60 - - - 2天
58 - 2 - 1天
- 56 4 - 7天
*    使用45重量%之不飽和樹脂進行
顯然,含有VMOX ®作為反應性稀釋劑之樹脂之冷固化比含有1,4-BDDMA作為反應性稀釋劑之樹脂進行得更快。
C-6.       具有另外的反應性稀釋劑之可固化樹脂組成物
根據項目A-1提供由富馬酸及2-甲基-2-丙基丙烷-1,3-二醇(莫耳比1.0:1.02,δ p= 5.702 MPa 1/2)獲得之烯系不飽和聚酯樹脂。將不飽和樹脂用液氮冷卻,然後冷態粉碎。經粉碎之不飽和樹脂用於製造可固化樹脂組成物。首先,將不飽和樹脂粒子稱量到玻璃瓶中。隨後,根據下表添加苯乙烯及VMOX ®之混合物以及穩定劑。
將瓶子放置在滾筒混合器上。定期目視檢查不飽和聚酯粒子在反應性稀釋劑中之溶解度或溶解過程之進展。一旦所有物質都溶解,樹脂組成物就被認為可供使用。
溶解度測試之結果顯示在下表中。為了測定苯乙烯及VMOX ®之混合物之漢森溶解度參數,使用下式將質量分數轉換為體積分數: 其中φ 1為組分1之體積分數,ω 1為組分1之質量分數,ω 2為組分2之質量分數,ρ 1為組分1之密度,並且ρ 2為組分2之密度。苯乙烯之密度為0.909 kg/m 3。VMOX ®之密度為1.098 kg/m 3
將苯乙烯及VMOX ®之混合物之漢森溶解度參數與不飽和聚酯樹脂之漢森溶解度參數進行比較,根據下式測定R a值:
反應性稀釋劑之混合物 反應性稀釋劑之混合物之漢森溶解度參數[MPa 1/2] 反應性稀釋劑之混合物之R a 在反應性稀釋劑之混合物中之溶解度
苯乙烯 [重量%] VMOX ®[重量%] δ d δ p δ h
70 0 18.600 1.000 4.100 12.779 渾濁溶液
69 1 18.592 1.095 4.121 12.721 澄清溶液
68 2 18.583 1.190 4.143 12.663 澄清溶液
67 3 18.575 1.286 4.164 12.605 澄清溶液
66 4 18.567 1.382 4.186 12.548 澄清溶液
65 5 18.558 1.479 4.208 12.491 澄清溶液
60 10 18.515 1.970 4.318 12.209 澄清溶液
50 20 18.426 2.990 4.548 11.675 澄清溶液
40 30 18.332 4.064 4.789 11.193 澄清溶液
反應性稀釋劑之混合物 反應性稀釋劑之混合物之漢森溶解度參數[MPa 1/2] 反應性稀釋劑之混合物之R a 在反應性稀釋劑之混合物中之溶解度
苯乙烯 [重量%] VMOX ®[重量%] δ d δ p δ h
60 0 18.600 1.000 4.100 12.779 渾濁溶液
59 1 18.590 1.111 4.125 12.711 渾濁溶液
58 2 18.581 1.222 4.150 12.644 澄清溶液
57 3 18.571 1.334 4.175 12.577 澄清溶液
56 4 18.561 1.447 4.200 12.510 澄清溶液
55 5 18.551 1.560 4.226 12.443 澄清溶液
50 10 18.501 2.136 4.356 12.117 澄清溶液
40 20 18.395 3.342 4.627 11.507 澄清溶液
30 30 18.283 4.623 4.915 10.978 澄清溶液
明顯地,與純苯乙烯相比,即使為少量VMOX ®之存在亦能改善所測試聚酯樹脂之溶解度。
C-7.       拉伸測試
使用根據C-1製備之可固化樹脂組成物來製備用於拉伸測試之樣品。在樣品製備之前,將0.3重量%之Irganox® 819及1重量%之過氧化苯甲酸三級丁酯(TBPB)添加到可固化樹脂組成物中。藉由真空灌注法製備用於拉伸測試之樣品。
出於此目的,將密封膠帶貼在玻璃板(28 × 17 cm)上,並且在長度上配備二根平行相對之螺旋軟管。將螺旋軟管牢固地壓在密封帶上,以避免可能的洩漏。將真空軟管插入每個螺旋軟管中約3 cm深度。真空軟管被小片密封帶覆蓋並且密封。這種結構代表真空灌注之框架。
隨後,將六層玻璃纖維織物(24 × 13 cm,831 g/m 2,0°/90°,來自Saertex之商品號S14EB490-00831-01300-474000)放置在玻璃板上。各層以45°角交替排列。施加具有與織物層相同之尺寸之離型膜(剝離層64 g/m 2(平織)150 cm,項目編號190181-150-5)及樹脂滲透層(具有ISONET之INFUPLEX,寬度145 cm,項目編號3903426)。離型膜為測試樣本提供光滑的表面。樹脂滲透層由二層系統組成:穿孔流動及流動助劑。該系統可滲透樹脂,並且允許通過精細的商業結構均勻並且完全地潤濕層壓板。最後,用真空箔將模具牢固密封。
在灌注過程之前,藉由真空泵將可固化樹脂組成物脫氣。為了進行灌注,將較短的真空軟管放置在樹脂中,並且將較長的真空軟管連接到真空迴路。該設置由真空泵、乾燥器及插入式冷阱組成。乾燥器包含用於剩餘流動樹脂之收集容器。板應在黑暗之地方製造,以避免可能的過早固化。一旦板最終層壓完畢,就用夾具壓縮真空軟管,然後將其切斷。接下來,將板在氙氣測試儀(Original Hanau,序列號7011,外形尺寸700 x 470 x 350 mm,電源:220 V / 50 Hz / 1500 W)中光化學固化20分鐘。將層壓板小心地從玻璃板上取下,並且在對流烘箱中在80℃下後固化1小時,在160℃下後固化1小時以獲得熱固性材料。將樣本在CNC機器上切割成四個相同尺寸之測試樣本,長度為200 mm,寬度為25 mm。
為了評估機械性質,根據DIN EN ISO 527-4在Zwick Z200上進行拉伸測試。對於每個測試,使用四個相同尺寸之測試樣本。所有樣本之寬度及厚度均用卡尺測量並且記錄各別測試。在室溫(約20℃)、100℃及120℃下測試由可固化樹脂組成物獲得之每種熱固性材料。對於100°C及120°C下之測量,將氣候室連接到Zwick Z200並且預熱至少一小時。在測量開始之前,將樣品加熱並且夾到Zwick Z200中10分鐘。重要的是要確保夾緊測試樣本時不會產生剪切力。這意指樣本必須垂直安裝在夾爪中。在測量期間必須關閉烘箱風扇產生之氣流。Zwick Z200負載樣品直到其最終破裂。記錄拉伸彈性模數(E t)、拉伸強度(σ m)及最大拉伸應力伸長率(ε m)。
測量結果如下表所示。
可固化樹脂組成物 測量溫度 [°C] 彈性E t[MPa] 拉伸強度σ m[MPa] 伸長率ε m[%]
50重量%樹脂1-3、 40重量%VMOX ®、 10重量%DMI 20 14,300(±1,980) 84.6(±0.75) 1.8(±0.34)
50重量%樹脂1-3、 50重量%VMOX ® 20 10,800(±439) 58.8(±3.18) 1.6(±0.28)
50重量%樹脂1-3、 40重量%VMOX ®、 10重量%DMI 100 10,200(±799) 65.6(±3.86) 2.7(±0.35)
50重量%樹脂1-3、 50重量%VMOX ® 100 7,120(±302) 44.2(±2.10) 2.1(±0.22)
50重量%樹脂1-3、 40重量%VMOX ®、 10重量%DMI 120 7,020(±642) 55.3(±2.31) 3.7(±0.30)
50重量%樹脂1-3、 50重量%VMOX ® 120 6,660(±349) 41.7(±1.22) 2.0(±0.27)
由可固化樹脂組成物獲得之所有熱固性材料都顯示出足夠的機械性質。值得注意的是,與VMOX ®本身相比,使用衣康酸二甲酯(DMI)作為另外的反應性稀釋劑可改善機械性質。不希望受到理論束縛,除了不飽和聚酯樹脂1-3之外,DMI可充當VMOX之共聚合伙伴。因此,不飽和聚酯樹脂與VMOX之間以及DMI與VMOX之間可發生自由基共聚合。VMOX與DMI之間之共聚合增加了不飽和聚酯樹脂鏈之間形成反應性稀釋劑橋之可能性,從而增加網絡之交聯密度及均勻性。
D.   複合玻璃纖維材料
D-1.      動力學分析
使用項目C-1之樹脂組成物製造玻璃纖維增強之測試樣本,其包含70重量%之VMOX ®。第一步,將過氧化苯甲酸三級丁酯(Acros Organics,98%)以1重量%之量添加到樹脂中。然後,將約10 g之樹脂放置在金屬盤(直徑:10 cm;深度:1 cm)中。將樹脂均勻分佈,並且將一層相同直徑之雙軸玻璃纖維織物(831 g/m 2,0°/90°,來自Saertex之商品號S14EB490-00831-01300-474000)放置於樹脂中。使用木抹刀除去所有氣泡後,添加第二層樹脂。第二玻璃纖維織物層與第一層成90°角放置,並且亦用樹脂潤濕。再次重複該過程,使得金屬盤包含彼此成90°之三層玻璃纖維及約30 g樹脂組成物。
用鋁箔包裹之砝碼(約500 g)對所得之樣本進行稱重,以將多餘的樹脂組成物從模具中擠出,從而獲得光滑的樣本表面。最後,將樣本及砝碼用鋁箔包裹。將樣本在實驗室烘箱中在空氣下在100°C下熱固化1小時,並且在160°C下熱固化1小時。冷卻後,將所得之複合纖維材料從模具中脫模,並且使用台鋸切割成10 × 50 mm之樣品。
隨後,使用Netzsch之DMA 242 C對樣品進行動態機械分析(Dynamic Mechanical Analysis;DMA)。使用三點彎曲樣本架。根據下表中規定之方法在83 mL/min之氮氣流量下測量樣品。測定經固化之烯系不飽和聚酯樹脂組成物之儲存模數、損耗模數及損耗因數(tan δ)對溫度之依賴性。tan δ曲線(T)之最大值被認為構成玻璃轉化溫度T G
溫度程式 開始
溫度 30°C
頻率 5.00 Hz
動態負載
溫度 250℃
加熱速率 2.0 K/min
頻率 10.00 Hz
機械參數 比例性 1.1
最大振幅 30.00 µm
樣品上之最大動態力 7.2 N
複合玻璃纖維材料之玻璃轉化溫度T g如下表所示。
# 不飽和聚酯樹脂 (反應物之莫耳比) T g
1-1 馬來酸酐-鄰苯二甲酸酐-丙二醇(1.0:2.0:3.3) 144℃
1-2 馬來酸酐-鄰苯二甲酸酐-丙二醇(1.0:0.5:1.65) 166℃
1-3 馬來酸酐-丙二醇-新戊二醇 (1.0:0.93:0.20) 195℃
1-4 馬來酸酐-四氫鄰苯二甲酸酐-二乙二醇(1.0:0.5:1.59) 142℃
D-2.      衝擊測試
使用衍生自根據項目C-1之不飽和樹脂1-3之樹脂組成物來製造複合材料測試樣本,其包含60重量%之VMOX ®或苯乙烯。添加Tinuvin ®765(1,000 ppmw)作為穩定劑從而抑制凝膠化。使用纖維長度為3 mm、直徑為13 µm(長度與直徑比:231)之短切玻璃纖維(HP-GS3、HP-Textiles)或滑石(細粉狀Mg 3[(OH) 2|Si 4O 10],來自Merck,30-0050)。二種材料之密度大致相同,即2.4至2.8 g/cm 3
使用圓輪攪拌器以約750 rpm之速度將鈷促進劑(BÜFA ®-Accelerator Co 1,Büfa Chemicals)添加到400 g之每種可固化樹脂組成物中。隨後,添加過氧化甲乙酮(MEKP,United Initiators)並且使用木抹刀將其與可固化樹脂組成物混合。對於包含苯乙烯之可固化樹脂組成物,使用各1.25重量%之鈷促進劑及MEKP。對於包含VMOX ®之可固化樹脂組成物,使用各0.5重量%之鈷促進劑及MEKP。
最後,添加如上所述之10重量%之短切玻璃纖維或滑石並且在750 rpm下將其混合到可固化樹脂組成物中120秒。混合後,將每種可固化樹脂組成物分成三個金屬盤(直徑:100 cm),使得樹脂均勻分佈,每個盤填充至10至12 mm之高度。使用壓力為10毫巴之乾燥器,在室溫下冷固化期間從組成物中除去氣泡。組成物冷固化完成之後(約1小時),將樣本在80℃下熱固化8小時。
將經固化之複合材料測試樣本從金屬盤中取出並且在CNC切割機器上切割成一定尺寸。對於每種複合材料獲得具有約8 mm之寬度、約4 mm之高度及約80 mm之長度之測試棒。
使用Zwick之衝擊測試裝置進行衝擊測試。衝擊擺之能量為0.5焦耳。在衝擊測試之前,使用卡規測定每根測試棒之寬度及高度。將測試樣本放置在衝擊測試儀中,使得衝擊擺集中撞擊窄邊中之一者,即具有可定義為長度×高度之面積之正面中之一者。
使用下式測定衝擊強度: 其中a CU為以kJ/m 2為單位之衝擊強度,W C為以J為單位之衝擊能量,h為樣本之高度,並且b為樣本之寬度。結果如下表所示。
表D-2-1:衍生自VMOX ®及滑石之複合材料樣本。
樣本 衝擊功W C[J] 高度h [mm] 寬度b [mm] 衝擊強度 a CU [kJ/m 2]
1 0.055 3.92 7.26 1.93
2 0.050 3.80 7.84 1.68
3 0.080 3.74 7.92 2.70
4 0.085 4.08 7.95 2.62
5 0.050 3.86 7.73 1.68
6 0.055 3.95 7.46 1.87
7 0.055 3.90 7.78 1.81
8 0.065 3.78 7.40 2.32
9 0.065 3.87 8.02 2.09
10 0.070 3.95 7.33 2.42
11 0.065 3.96 7.44 2.21
12 0.090 4.03 7.55 2.96
13 0.085 4.05 7.90 2.66
14 0.065 4.04 7.84 2.05
15 0.100 3.92 7.86 3.25
16 0.090 3.87 8.11 2.87
17 0.060 3.97 7.35 2.06
18 0.060 4.05 8.06 1.84
         平均 2.28
         標準差 0.46
表D-2-2:衍生自VMOX ®及玻璃纖維之複合材料樣本。
樣本 衝擊功W C[J] 高度h [mm] 寬度b [mm] 衝擊強度 a CU [kJ/m 2]
1 0.110 4.07 8.42 3.21
2 0.090 3.89 8.49 2.73
3 0.135 3.79 8.70 4.09
4 0.080 3.98 8.68 2.32
5 0.105 3.87 8.71 3.12
6 0.135 3.82 7.93 4.46
7 0.105 4.06 8.60 3.01
8 0.135 3.90 8.68 3.99
9 0.125 4.04 8.53 3.63
10 0.140 4.02 7.92 4.40
11 0.140 3.98 8.07 4.32
12 0.090 3.93 8.66 2.64
13 0.095 4.03 7.93 2.97
14 0.100 4.04 7.88 3.14
15 0.125 4.01 8.49 3.67
16 0.130 4.06 8.72 3.67
         平均 3.46
         標準差 0.64
表D-2-3:衍生自苯乙烯及玻璃纖維之複合材料樣本。
樣本 衝擊功W C[J] 高度h [mm] 寬度b [mm] 衝擊強度 a CU [kJ/m 2]
1 0.080 4.14 7.61 2.54
2 0.160 4.15 8.73 4.42
3 0.080 4.22 7.69 2.47
4 0.070 4.04 8.39 2.07
5 0.110 4.17 8.00 3.30
6 0.095 4.15 8.02 2.85
7 0.080 4.31 7.60 2.44
8 0.055 4.31 8.54 1.49
9 0.055 4.00 8.50 1.62
10 0.080 4.25 8.49 2.22
11 0.085 4.07 8.38 2.49
12 0.080 4.09 8.11 2.41
13 0.080 4.23 8.02 2.36
14 0.145 4.01 8.20 4.41
15 0.080 4.10 8.29 2.35
16 0.090 3.89 8.22 2.81
17 0.065 4.17 8.38 1.86
         平均 2.59
         標準差 0.79
表D-2-4:衝擊強度測試之總結
平均衝擊強度a CU [kJ/m 2] 標準差
VMOX ®及滑石 2.28 0.46
VMOX ®及玻璃纖維 3.46 0.64
苯乙烯及玻璃纖維 2.59 0.79
顯然,衍生自玻璃纖維之複合材料比滑石基複合材料具有更高的衝擊強度。此外,顯然,衍生自式(I)之N-乙烯基唑烷酮之複合玻璃纖維材料具有比苯乙烯基複合玻璃纖維材料更高的衝擊強度。此外,式(I)之N-乙烯基唑烷酮冷固化所需之引發劑比苯乙烯少。

Claims (16)

  1. 一種複合玻璃纖維材料,其包含熱固性聚合物,其中該熱固性聚合物由包含以下之可固化樹脂組成物獲得: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中該反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在。
  2. 如請求項1之材料,其中 -    R 1、R 2、R 3及R 4中之至少二者,例如R 1、R 2、R 3及R 4中之各者為氫原子;或 -    R 1為C 1-C 4烷基,並且R 2、R 3及R 4為氫原子;或 -    R 4為C 1-C 4烷基,並且R 1、R 2及R 3為氫原子;或 -    R 1及R 2為氫原子,並且R 3及R 4為C 1-C 4烷基。
  3. 如前述請求項中任一項之材料,其中該式(I)之N-乙烯基唑烷酮為3-乙烯基唑烷-2-酮、4-甲基-3-乙烯基-唑烷-2-酮或5-甲基-3-乙烯基-唑烷-2-酮,特別是5-甲基-3-乙烯基-唑烷-2-酮。
  4. 如前述請求項中任一項之材料,其中該烯系不飽和樹脂(i)選自烯系不飽和聚酯樹脂、乙烯基酯樹脂及胺甲酸乙酯(甲基)丙烯酸酯樹脂。
  5. 如前述請求項中任一項之材料,其中該可固化樹脂組成物中該烯系不飽和樹脂(i)與反應性稀釋劑總量之重量比在15:85至85:15範圍內,更佳在25:75至75:25,特別是在30:70至70:30或30:70至60:40範圍內。
  6. 如前述請求項中任一項之材料,其中該烯系不飽和樹脂(i)具有以下特徵中之至少一者: -    數量平均分子量在500至10,000 g/mol範圍內,藉由凝膠滲透層析法測定; -    酸值在5至80 mg KOH/g範圍內,根據DIN EN ISO 2114經由滴定測定;及 -    羥值在5至80 mg KOH/g範圍內,根據DIN EN ISO 4692-2經由滴定測定。
  7. 如前述請求項中任一項之材料,其中該烯系不飽和樹脂(i)具有0.5至10 mol/kg範圍內之乙烯基密度,特別是在以下範圍內: -    當該烯系不飽和樹脂(i)為烯系不飽和聚酯樹脂時,2.0至9.0 mol/kg; -    當該烯系不飽和樹脂(i)為乙烯基酯樹脂時,1.0至4.5 mol/kg; -    當該烯系不飽和樹脂(i)為胺甲酸乙酯(甲基)丙烯酸酯樹脂時,1.0至5.0 mol/kg; 其中該乙烯基密度表示每kg樹脂之乙烯基莫耳比例,經由核磁共振光譜法測定。
  8. 如前述請求項中任一項之材料,其中該可固化樹脂組成物較佳包含以可固化樹脂組成物之總重量計量為15至85重量%,更佳15至75重量%,最佳20至60重量%之該烯系不飽和樹脂(i)。
  9. 如前述請求項中任一項之材料,其中該可固化樹脂組成物可包含一或多種選自苯乙烯及苯乙烯衍生物、環氧化物、乙烯基醚、丙烯酸酯及甲基丙烯酸酯之另外的反應性稀釋劑。
  10. 如前述請求項中任一項之材料,其包含長度與直徑比在20至100000,較佳50至100000範圍內之玻璃纖維。
  11. 如前述請求項中任一項之材料,其包含以材料之總重量計量在10至90重量%範圍內之熱固性聚合物。
  12. 一種製造複合玻璃纖維材料之方法,其包含使玻璃纖維與可固化樹脂組成物接觸,該可固化樹脂組成物包含: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中該反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在; 及將該可固化樹脂組成物固化以形成熱固性聚合物,從而獲得該複合玻璃纖維材料。
  13. 一種式(I)之N-乙烯基唑烷酮之用途 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其用於獲得複合玻璃纖維材料之製程。
  14. 如請求項13之用途,其中可固化樹脂組成物包含以下: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮; 其中該反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在; 用於製造複合玻璃纖維材料。
  15. 一種可固化樹脂組成物,其包含: (i)烯系不飽和樹脂;及 (ii)反應性稀釋劑,其為式(I)之N-乙烯基唑烷酮 (I), 其中R 1、R 2、R 3及R 4彼此獨立地選自氫原子及包含1至10個碳原子之有機部分; 其中該反應性稀釋劑(ii)以相對於反應性稀釋劑(ii)及另外的反應性稀釋劑之總量至少0.5重量%之量存在; 並且其中該烯系不飽和樹脂(i)選自烯系不飽和聚酯樹脂、乙烯基酯樹脂及其組合。
  16. 如請求項15之可固化樹脂組成物,其中該可固化樹脂組成物包含以可固化樹脂組成物之總重量計量為15至85重量%,更佳15至75重量%,最佳20至60重量%之該烯系不飽和樹脂(i)。
TW112134143A 2022-09-07 2023-09-07 包含熱固性聚合物之複合玻璃纖維材料 TW202417396A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22194299.8 2022-09-07
EP22214107.9 2022-12-16

Publications (1)

Publication Number Publication Date
TW202417396A true TW202417396A (zh) 2024-05-01

Family

ID=

Similar Documents

Publication Publication Date Title
AU2013229383B2 (en) Acetoacetyl thermosetting resin for zero VOC gel coat
TWI434885B (zh) 可固化之聚合物混凝土混合物
BRPI1011702B1 (pt) processo para preparação de uma resina, composição de resina, objeto curado ou peça estrutural e uso dos mesmos e composição de revestimento em pó
Chaeichian et al. In situ polymerization of polyester-based hybrid systems for the preparation of clay nanocomposites
WO2020058460A1 (en) High-temperature-up-resins (ht-up resin) based on cyclic and non-cyclic raw materials (ht-up)
JP5057879B2 (ja) 成形材料及び成形品
WO2014191308A1 (en) Composite composition containing a polycyclic ether polypol
TW202417396A (zh) 包含熱固性聚合物之複合玻璃纖維材料
TW202415701A (zh) 烯系不飽和聚酯樹脂組成物
CN109071738B (zh) 自由基固化性树脂组合物及其固化物
JP2010150352A (ja) ラジカル重合型熱硬化性樹脂用硬化剤及びそれを含む成形材料
WO2019131101A1 (ja) 炭素繊維強化プラスチック成形用樹脂組成物、成形材料、成形品及び成形品の製造方法
JPS5829813A (ja) 硬化し得る成形組成物
JP7368366B2 (ja) 長いオープンタイムを有する、加速されたペルオキシド硬化樹脂組成物
JP6518045B2 (ja) 硬化性樹脂組成物およびそれを用いた補強構造物
JP2017014481A (ja) 熱硬化性樹脂組成物及びその樹脂成形物
Kandelbauer et al. Handbook of thermoset plastics: 6. Unsaturated polyesters and vinyl esters
TWI839808B (zh) 樹脂組成物、其製造方法及複合材料
JP2002317021A (ja) ラジカル硬化性樹脂組成物、その製造方法および該組成物からなる成形品
Katoch et al. Swelling Kinetics of Unsaturated Polyester–layered Silicate Nanocomposite Depending on the Fabrication Method
JPH06170955A (ja) 繊維強化熱硬化樹脂製品の製法
JP4053339B2 (ja) 低粘性パーオキサイド組成物
TW200401798A (en) Liquid duroplastics
WO2023052634A1 (en) Photo initiator compositions
WO2023017854A1 (ja) 樹脂組成物及びその製造方法、並びに複合材料