TW202416588A - Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body - Google Patents

Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body Download PDF

Info

Publication number
TW202416588A
TW202416588A TW112129126A TW112129126A TW202416588A TW 202416588 A TW202416588 A TW 202416588A TW 112129126 A TW112129126 A TW 112129126A TW 112129126 A TW112129126 A TW 112129126A TW 202416588 A TW202416588 A TW 202416588A
Authority
TW
Taiwan
Prior art keywords
radio wave
wave reflector
mentioned
protective layer
layer
Prior art date
Application number
TW112129126A
Other languages
Chinese (zh)
Inventor
宮崎弾一
畠井宗宏
Original Assignee
日商積水化學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商積水化學工業股份有限公司 filed Critical 日商積水化學工業股份有限公司
Publication of TW202416588A publication Critical patent/TW202416588A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Aerials With Secondary Devices (AREA)
  • Laminated Bodies (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

The present invention makes it possible to protect a conductor without damaging radio wave reflection properties. A radio wave reflecting body 11 comprises: a conductor layer 16 that includes a conductor 12 which reflects radio waves; and a protective layer 15 that protects the conductor layer 16. If a pencil hardness test is performed on the radio wave reflecting body 11, the pencil hardness, with a surface load of 500g on the protective layer 15, is at least F.

Description

電波反射體、電波反射體之製造方法及電波反射體之施工方法Radio wave reflector, method for manufacturing radio wave reflector, and method for constructing radio wave reflector

本發明係關於一種電波反射體。The present invention relates to a radio wave reflector.

於行動電話或無線通訊中,使用被稱為厘米波或毫米波之3 GHz以上300 GHz以下左右之頻帶之電波。此種波長較短之電波由於直進性較強,即便存在障礙物亦不易回折,故而為了使電波到達較廣之範圍,而在建造物之牆壁或地板面、天花板、柱等建造物之表面(以下稱為「牆壁等」)設置反射板。In mobile phones and wireless communications, radio waves in the frequency band of about 3 GHz to 300 GHz, called centimeter waves or millimeter waves, are used. Since these short-wavelength radio waves have strong straightness, they are not easy to bend even if there are obstacles. Therefore, in order to make the radio waves reach a wider range, reflectors are installed on the walls, floors, ceilings, columns and other surfaces of buildings (hereinafter referred to as "walls, etc.").

例如專利文獻1中記載了一種通訊系統,其係將單極天線、及反射電波之金屬反射板配置於室內之地板下空間。藉由金屬反射板,而使自單極天線輸出之電波擴散至地板下空間,並且防止自地板下空間洩漏至起居室(建築物)外、或電波被建造物之地板部吸收。  [先前技術文獻]  [專利文獻]For example, Patent Document 1 describes a communication system that places a monopole antenna and a metal reflector for reflecting radio waves in the space under the floor of a room. The metal reflector diffuses the radio waves output from the monopole antenna to the space under the floor, and prevents the radio waves from leaking from the space under the floor to the outside of the living room (building) or being absorbed by the floor of the building. [Prior Technical Document] [Patent Document]

[專利文獻1]日本特開2010-258514號公報[Patent Document 1] Japanese Patent Application Publication No. 2010-258514

[發明所欲解決之課題][The problem that the invention wants to solve]

惟,以往之金屬反射板單純地為金屬製之反射板,為了進一步效率良好地反射電波,本發明人等考慮了將具有導電體之導電層、與保護其之保護層進行積層。However, conventional metal reflectors are simply reflectors made of metal. In order to reflect radio waves more efficiently, the inventors of the present invention considered laminating a conductive layer having a conductor and a protective layer for protecting the conductive layer.

但是,若保護層之表面之硬度較弱,則可能無法充分地保護導電體,可能會有損電波反射性。However, if the surface hardness of the protective layer is weak, it may not be able to fully protect the conductor and may impair the radio wave reflectivity.

本發明之目的在於提供一種能夠保護導電體且無損電波反射性之電波反射體。  [解決課題之技術手段]The purpose of the present invention is to provide a radio wave reflector that can protect the conductor without damaging the radio wave reflectivity. [Technical means to solve the problem]

為了達成上述目的,本發明包含以下項所記載之主題。In order to achieve the above-mentioned object, the present invention includes the subject matter described in the following items.

項1.一種電波反射體,其具備:  導電層,其包含反射電波之導電體;及  保護層,其保護上述導電層;且  於對上述電波反射體進行鉛筆硬度試驗之情形時,針對上述保護層之表面負載500 g時之鉛筆硬度為F以上。Item 1. A radio wave reflector, comprising: a conductive layer comprising a conductor for reflecting radio waves; and a protective layer for protecting the conductive layer; and when a pencil hardness test is performed on the radio wave reflector, the pencil hardness of the protective layer when a surface load of 500 g is applied is above F.

項2.如項1之電波反射體,其中,上述保護層之厚度為38 μm以上。Item 2. The radio wave reflector of Item 1, wherein the thickness of the protective layer is greater than 38 μm.

項3.如項1或項2之電波反射體,其中,於對上述保護層進行鉛筆硬度試驗之情形時,針對上述保護層之表面負載500 g時之鉛筆硬度為F以上。Item 3. The radio wave reflector of Item 1 or Item 2, wherein, when the protective layer is subjected to a pencil hardness test, the pencil hardness of the protective layer when a surface load of 500 g is applied is F or higher.

項4.如項1至項3中任一項之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,上述接著層之羥值為5 mgKOH/g以上。Item 4. The radio wave reflector according to any one of Items 1 to 3 further comprises a bonding layer, wherein the bonding layer is disposed between the conductive layer and the protective layer and bonds the conductive layer to the protective layer, and the hydroxyl value of the bonding layer is 5 mgKOH/g or more.

項5.如項1至項4之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,上述接著層之酸值為50 mgKOH/g以下。Item 5. The radio wave reflector according to Items 1 to 4 further comprises a bonding layer, wherein the bonding layer is disposed between the conductive layer and the protective layer and bonds the conductive layer to the protective layer, and the acid value of the bonding layer is 50 mgKOH/g or less.

項6.如項1至項5中任一項之電波反射體,其中,上述保護層在40℃、90%rh時之透濕度為20 g/m 2・24 h以下。 Item 6. The radio wave reflector according to any one of Items 1 to 5, wherein the moisture permeability of the protective layer at 40°C and 90% rh is not more than 20 g/m 2 · 24 h.

項7.如項1至項6中任一項之電波反射體,其中,上述保護層對被接著層之接著力於耐熱耐濕試驗後之降低率為50%以下。Item 7. The radio wave reflector as described in any one of Items 1 to 6, wherein the decrease rate of the adhesion of the protective layer to the adhered layer after a heat and moisture resistance test is 50% or less.

項8.如項1至7中任一項之電波反射體,其中,上述電波反射體之總光線穿透率為70%以上。Item 8. The radio wave reflector according to any one of Items 1 to 7, wherein the total light transmittance of the radio wave reflector is 70% or more.

項9.如項1至8中任一項之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,上述接著層不含有紫外線防止劑。Item 9. The radio wave reflector according to any one of Items 1 to 8, further comprising a bonding layer, wherein the bonding layer is disposed between the conductive layer and the protective layer and bonds the conductive layer to the protective layer, and the bonding layer does not contain an ultraviolet radiation inhibitor.

項10.如項1至9中任一項之電波反射體,其中,上述導電層具有無上述導電體之區域、及以包圍上述區域之方式形成之上述導電體,  上述區域包含複數個同一形狀之區域,  上述同一形狀之複數個區域係以一定間隔配置。Item 10. A radio wave reflector as described in any one of items 1 to 9, wherein the conductive layer has a region without the conductive body and the conductive body formed in a manner surrounding the region, the region includes a plurality of regions of the same shape, and the plurality of regions of the same shape are arranged at certain intervals.

項11.如項1至10中任一項之電波反射體,其中,耐熱耐濕試驗後之上述電波反射體之表面電阻率為100 Ω/□以下。Item 11. The radio wave reflector according to any one of Items 1 to 10, wherein the surface resistivity of the radio wave reflector after heat and moisture resistance tests is 100 Ω/□ or less.

項12.如項1至項11中任一項之電波反射體,其中,上述保護層係含有紫外線防止劑、或對表面實施了紫外線阻斷處理之至少任一種情況。Item 12. The radio wave reflector according to any one of Items 1 to 11, wherein the protective layer contains an ultraviolet radiation inhibitor or has its surface subjected to an ultraviolet radiation blocking treatment.

項13.如項1至項12中任一項之電波反射體,其中,上述電波反射體之霧度為30%以下。Item 13. The radio wave reflector according to any one of Items 1 to 12, wherein the haze of the radio wave reflector is 30% or less.

項14.如項1至項13中任一項之電波反射體,其中,耐光性試驗後之上述電波反射體之總光線穿透率為70%以上。Item 14. The radio wave reflector according to any one of Items 1 to 13, wherein the total light transmittance of the radio wave reflector after a light resistance test is 70% or more.

項15.如項1至項14中任一項之電波反射體,其中,耐光性試驗前後之上述電波反射體之黃變度Δb*為15以下。Item 15. The radio wave reflector according to any one of Items 1 to 14, wherein the yellowing degree Δb* of the radio wave reflector before and after the light resistance test is 15 or less.

項16.如項1至15中任一項之電波反射體,其具備積層有上述保護層與上述導電層之積層體,且  於俯視時,所有上述導電體被上述保護層覆蓋。Item 16. The radio wave reflector as described in any one of items 1 to 15 comprises a laminated body having the above-mentioned protective layer and the above-mentioned conductive layer, and when viewed from above, all the above-mentioned conductive bodies are covered by the above-mentioned protective layer.

項17.如項16之電波反射體,其中,上述積層體進而具備用以將上述保護層與上述導電層接著之接著層,  上述導電體於俯視時,配置於較上述保護層之端緣靠內側,且  上述導電體於側視時被上述接著層覆蓋。Item 17. A radio wave reflector as in Item 16, wherein the laminate further comprises a bonding layer for bonding the protective layer to the conductive layer, the conductive body being arranged on the inner side of the end edge of the protective layer when viewed from above, and the conductive body being covered by the bonding layer when viewed from the side.

項18.如項17之電波反射體,其中,上述導電層進而包含支持上述導電體之基材,  上述導電體位於上述基材與上述保護層之間,且於俯視時,配置於較上述基材之端緣靠內側。Item 18. A radio wave reflector as described in Item 17, wherein the conductive layer further includes a substrate supporting the conductive body, the conductive body is located between the substrate and the protective layer, and is arranged on the inner side of the edge of the substrate when viewed from above.

項19.如項16至18中任一項之電波反射體,其中,上述導電體於俯視時配置於距離上述保護層之端緣5 mm以上之內側。Item 19. The radio wave reflector of any one of Items 16 to 18, wherein the conductor is arranged at an inner side at least 5 mm away from an edge of the protective layer when viewed from above.

項20.如項16至19中任一項之電波反射體,其中,於上述積層體之周圍之至少與上述導電層對應之位置設置有用以不使上述導電體露出之密封材。Item 20. The radio wave reflector as described in any one of Items 16 to 19, wherein a sealing material for preventing the above-mentioned conductor from being exposed is provided at least at a position corresponding to the above-mentioned conductive layer around the above-mentioned laminate.

項21.如項16至20中任一項之電波反射體,其中,  耐熱耐濕試驗後之黃色指數與上述耐熱耐濕試驗前之黃色指數之差為3以下,  上述耐熱耐濕試驗係下述之試驗:於調整為溫度60℃、濕度95%RH之恆溫恆濕槽內將上述電波反射體放置500小時後,將上述電波反射體自上述槽取出,於常溫靜置4小時。Item 21. A radio wave reflector as described in any one of Items 16 to 20, wherein the difference between the yellowness index after the heat and humidity resistance test and the yellowness index before the heat and humidity resistance test is 3 or less, and the heat and humidity resistance test is the following test: after placing the radio wave reflector in a constant temperature and humidity tank adjusted to a temperature of 60°C and a humidity of 95%RH for 500 hours, the radio wave reflector is taken out of the tank and left to stand at room temperature for 4 hours.

項22.如項1至21中任一項之電波反射體,其中,  於對耐熱耐濕試驗後之上述電波反射體與上述耐熱耐濕試驗前之上述電波反射體,使3 GHz以上300 GHz以下之頻率之入射波正規反射時,至少存在一個上述耐熱耐濕試驗後之上述電波反射體之反射波之強度與上述耐熱耐濕試驗前之上述電波反射體之反射波之強度的差成為3 dB以內之入射波之頻率,  上述耐熱耐濕試驗係下述之試驗:於調整為溫度60℃、濕度95%RH之恆溫恆濕槽內將上述電波反射體放置500小時後,將上述電波反射體自上述槽取出,於常溫靜置4小時。Item 22. A radio wave reflector as described in any one of Items 1 to 21, wherein, when an incident wave with a frequency of 3 GHz to 300 GHz is normally reflected by the radio wave reflector after the heat and humidity resistance test and the radio wave reflector before the heat and humidity resistance test, there is at least one frequency of the incident wave for which the difference between the intensity of the reflected wave of the radio wave reflector after the heat and humidity resistance test and the intensity of the reflected wave of the radio wave reflector before the heat and humidity resistance test is within 3 dB, and the heat and humidity resistance test is the following test: after placing the radio wave reflector in a constant temperature and humidity tank adjusted to a temperature of 60°C and a humidity of 95%RH for 500 hours, the radio wave reflector is taken out from the tank and left to stand at room temperature for 4 hours.

項23.一種項20之電波反射體之製造方法,其包括:  形成上述積層體之步驟;及  設置用以不使上述導電體露出之密封材之步驟;且  上述電波反射體中,上述密封材位於上述積層體之周圍之至少與上述導電層對應之位置。Item 23. A method for manufacturing a radio wave reflector of Item 20, comprising: a step of forming the above-mentioned laminated body; and a step of providing a sealing material for preventing the above-mentioned conductor from being exposed; and in the above-mentioned radio wave reflector, the above-mentioned sealing material is located at a position around the above-mentioned laminated body at least corresponding to the above-mentioned conductive layer.

項24.一種項20之電波反射體之施工方法,其包括:  將上述積層體安裝於設置部位之步驟;及  設置用以不使上述導電體露出之密封材之步驟;且  上述電波反射體中,上述密封材位於上述積層體之周圍之至少與上述導電層對應之位置。Item 24. A method for constructing a radio wave reflector according to Item 20, comprising: a step of installing the above-mentioned laminate at a setting position; and a step of installing a sealing material for preventing the above-mentioned conductor from being exposed; and in the above-mentioned radio wave reflector, the above-mentioned sealing material is located at a position around the above-mentioned laminate at least corresponding to the above-mentioned conductive layer.

項25.如項24之電波反射體之施工方法,其中,於上述安裝步驟中,將複數個上述積層體空開間隔安裝於設置部位,  於上述設置密封材之步驟中,在將複數個上述積層體空開間隔安裝於設置部位時相鄰之上述積層體之間之空間內設置上述密封材。  [發明之效果]Item 25. A method for constructing a radio wave reflector as in Item 24, wherein, in the above-mentioned installation step, a plurality of the above-mentioned laminated bodies are installed at intervals at the installation location, and in the above-mentioned step of installing the sealing material, the above-mentioned sealing material is installed in the space between the adjacent above-mentioned laminated bodies when the plurality of the above-mentioned laminated bodies are installed at intervals at the installation location. [Effect of the Invention]

本發明之上述態樣之電波反射體具有能夠保護導電體且無損電波反射性之優點。The radio wave reflector of the present invention has the advantages of being able to protect the conductor without damaging the radio wave reflectivity.

<實施方式>  (電波反射體11之整體構成)  以下,參照圖式來說明本發明之實施方式。如圖1所示,本實施方式之電波反射體11係能夠反射電波之片狀構件。電波反射體11例如構成為反射自電波產生部20輸出之電波。由電波反射體11反射之電波被接收部21接收。如圖2所示,電波反射體11依序積層有包含導電體12之導電層16、接著層14、及保護層15。<Implementation>  (Overall structure of the radio wave reflector 11)  The implementation of the present invention is described below with reference to the drawings. As shown in FIG1 , the radio wave reflector 11 of the present implementation is a sheet-like component capable of reflecting radio waves. The radio wave reflector 11 is configured, for example, to reflect radio waves output from a radio wave generating unit 20. The radio waves reflected by the radio wave reflector 11 are received by a receiving unit 21. As shown in FIG2 , the radio wave reflector 11 is sequentially layered with a conductive layer 16 including a conductor 12, a bonding layer 14, and a protective layer 15.

本說明書所述之「片」意指該物體之厚度相對於俯視時之外緣間之最大長度為10%以下之形狀。於俯視時之形狀為矩形之情形時,「於俯視時之外緣間之最大長度」意指對角線之長度。又,於俯視時之形狀為圓形之情形時,「於俯視時之外緣間之最大長度」意指直徑之長度。本說明書中,膜、箔、薄膜等亦包含於「片」中。The "sheet" mentioned in this specification refers to a shape in which the thickness of the object is less than 10% of the maximum length between the outer edges when viewed from above. When the shape when viewed from above is a rectangle, the "maximum length between the outer edges when viewed from above" means the length of the diagonal. When the shape when viewed from above is a circle, the "maximum length between the outer edges when viewed from above" means the length of the diameter. In this specification, films, foils, thin films, etc. are also included in the "sheet".

電波產生部20係輸出電波之裝置。本實施方式之電波產生部20係具有發送天線之通訊裝置,該發送天線能夠輸出以電波作為介質之無線訊號。作為電波產生部20,例如可列舉:固定型基地台、行動電話基地台、電波式發送器、無線終端等。The radio wave generator 20 is a device that outputs radio waves. The radio wave generator 20 of this embodiment is a communication device having a transmission antenna, and the transmission antenna can output a wireless signal using radio waves as a medium. Examples of the radio wave generator 20 include: a fixed base station, a mobile phone base station, a radio wave transmitter, a wireless terminal, etc.

接收部21係能夠接收電波之機器。本實施方式之接收部21係具有接收天線之通訊機器。作為接收部21,例如可列舉:智慧型手機、行動電話、平板終端、筆記型PC、攜帶型遊戲機、中繼器、收音機、電視等。The receiving unit 21 is a device capable of receiving radio waves. The receiving unit 21 of this embodiment is a communication device having a receiving antenna. Examples of the receiving unit 21 include: a smart phone, a mobile phone, a tablet terminal, a notebook PC, a portable game console, a repeater, a radio, a television, and the like.

本實施方式之電波反射體11能夠反射之電波例如係入射波之頻率屬於3 GHz以上5 GHz以下、25 GHz以上30 GHz以下、及100 GHz以上300 GHz以下中之任一範圍之電波。此處所述之「能夠反射之電波」意指具有至少1個下述電波,該電波係相對於入射角為15度以上75度以下之任一入射波之強度,正規反射之出射波之強度(有時將其稱為「正規反射強度」)成為-30 dB以上0 dB以下。較佳為不論相對於入射角為15度以上75度以下中之哪個入射波,正規反射強度均成為-30 dB以上0 dB以下。The radio wave reflector 11 of the present embodiment can reflect radio waves, for example, the frequency of the incident wave is in any range of 3 GHz to 5 GHz, 25 GHz to 30 GHz, and 100 GHz to 300 GHz. The "radio wave that can be reflected" mentioned here means having at least one of the following radio waves, the intensity of the outgoing wave of regular reflection (sometimes referred to as "regular reflection intensity") is -30 dB to 0 dB relative to the intensity of any incident wave with an incident angle of 15 degrees to 75 degrees. It is preferred that the regular reflection intensity is -30 dB to 0 dB regardless of which incident wave with an incident angle of 15 degrees to 75 degrees.

更具體而言,較佳為於頻率28.5 GHz,正規反射強度相對於入射波成為-30 dB以上0 dB以下,更佳為於20 GHz以上60 GHz以下之整個頻帶中,正規反射強度相對於入射波成為-30 dB以上0 dB以下,進而較佳為於3 GHz以上300 GHz以下之整個頻帶中,正規反射強度相對於入射波成為-30 dB以上0 dB以下。More specifically, it is preferred that the regular reflection intensity be -30 dB or more and 0 dB or less with respect to the incident wave at a frequency of 28.5 GHz, and it is more preferred that the regular reflection intensity be -30 dB or more and 0 dB or less with respect to the incident wave in the entire frequency band from 20 GHz to 60 GHz, and it is further preferred that the regular reflection intensity be -30 dB or more and 0 dB or less with respect to the incident wave in the entire frequency band from 3 GHz to 300 GHz.

正規反射強度較佳為相對於入射波之衰減更小。相對於入射波之正規反射強度較佳為-25 dB以上0 dB以下,更佳為-22 dB以上0 dB以下,進而較佳為-20 dB以上0 dB以下,進而較佳為-15 dB以上0 dB以下。The regular reflection intensity is preferably smaller than the attenuation of the incident wave. The regular reflection intensity relative to the incident wave is preferably greater than -25 dB and less than 0 dB, more preferably greater than -22 dB and less than 0 dB, further preferably greater than -20 dB and less than 0 dB, and further preferably greater than -15 dB and less than 0 dB.

藉由使相對於入射波之正規反射強度為-30 dB以上,使得電波反射體11可於保持反射強度之狀態下反射電波。其結果為,接收部21可以具有實用性之強度接收電波。本說明書中之「反射強度」及「正規反射強度」意指反射點11a與測定點之間之距離為1 m之情形時之強度。又,正規反射強度係不使電波反射體11彎曲及曲折,而於平面狀之狀態下進行測定。By making the regular reflection intensity relative to the incident wave greater than -30 dB, the radio wave reflector 11 can reflect radio waves while maintaining the reflection intensity. As a result, the receiving unit 21 can receive radio waves with a practical intensity. The "reflection intensity" and "regular reflection intensity" in this specification refer to the intensity when the distance between the reflection point 11a and the measurement point is 1 m. In addition, the regular reflection intensity is measured in a flat state without bending or folding the radio wave reflector 11.

如圖3所示,本實施方式之電波反射體11於俯視時為四邊形(包含正方形、長方形)。作為電波反射體11之一邊之長度L10,例如較佳為20 cm以上,更佳為100 cm以上,進而較佳為200 cm以上。另一方面,電波反射體11之一邊之長度L10之上限並無特別限制,例如為400 cm以下。若一邊之長度L10為20 cm以上,則容易以充分之強度反射電波。As shown in FIG3 , the radio wave reflector 11 of this embodiment is a quadrilateral (including a square and a rectangle) when viewed from above. The length L10 of one side of the radio wave reflector 11 is preferably 20 cm or more, more preferably 100 cm or more, and further preferably 200 cm or more. On the other hand, the upper limit of the length L10 of one side of the radio wave reflector 11 is not particularly limited, and is, for example, 400 cm or less. If the length L10 of one side is 20 cm or more, it is easy to reflect radio waves with sufficient intensity.

作為電波反射體11之形狀,並不限於四邊形,例如亦可為三角形、五邊形、六邊形、圓形、橢圓形等幾何學形狀,亦可為非幾何學形狀。於電波反射體11中,端緣間之距離中之最大值之尺寸較佳為20 cm以上400 cm以下。關於「端緣間之距離中之最大值之尺寸」,於電波反射體11為長方形之情形時,係指對角之尺寸,於電波反射體11為圓形之情形時,係指直徑之尺寸,於電波反射體11為橢圓形之情形時,係指長軸之長度。The shape of the radio wave reflector 11 is not limited to a quadrilateral, and may be a geometric shape such as a triangle, a pentagon, a hexagon, a circle, an ellipse, or a non-geometric shape. In the radio wave reflector 11, the maximum value of the distance between the ends is preferably 20 cm to 400 cm. The "maximum value of the distance between the ends" refers to the size of the diagonal when the radio wave reflector 11 is a rectangle, the size of the diameter when the radio wave reflector 11 is a circle, and the length of the major axis when the radio wave reflector 11 is an ellipse.

電波反射體11之厚度L1較佳為0.01 mm以上,更佳為0.05 mm以上,進而較佳為0.2 mm以上。另一方面,作為電波反射體11之厚度L1之上限,較佳為0.5 mm以下,更佳為0.4 mm以下。藉由使電波反射體11之厚度L1為0.01 mm以上,可在具有可撓性之同時保持強度。藉由使電波反射體11之厚度L1為0.5 mm以下,而在使電波反射體11彎曲時,不易彎折,結果導電體12不易發生應力集中。此處所述之「彎折」意指於電波反射體11之任一層中伴隨有塑性變形之彎曲。The thickness L1 of the radio wave reflector 11 is preferably 0.01 mm or more, more preferably 0.05 mm or more, and further preferably 0.2 mm or more. On the other hand, the upper limit of the thickness L1 of the radio wave reflector 11 is preferably 0.5 mm or less, and more preferably 0.4 mm or less. By making the thickness L1 of the radio wave reflector 11 0.01 mm or more, it is possible to maintain strength while having flexibility. By making the thickness L1 of the radio wave reflector 11 0.5 mm or less, when the radio wave reflector 11 is bent, it is not easy to bend, and as a result, stress concentration is not easy to occur in the conductor 12. The "bending" mentioned here means bending accompanied by plastic deformation in any layer of the radio wave reflector 11.

於對電波反射體11進行鉛筆硬度試驗之情形時,針對保護層15之表面負載500 g時之鉛筆硬度較佳為「F」以上,更佳為「H」以上,進而較佳為「4H」以上。本說明書所述之「鉛筆硬度試驗」係依據JIS K 5600-5-4(1999)之試驗。又,「表面負載500 g」係指若於鉛筆硬度試驗時對表面施加之負載為500 g±10 g,則包含於其中。When the radio wave reflector 11 is subjected to a pencil hardness test, the pencil hardness of the protective layer 15 when the surface load is 500 g is preferably "F" or higher, more preferably "H" or higher, and further preferably "4H" or higher. The "pencil hardness test" described in this specification is based on the test of JIS K 5600-5-4 (1999). In addition, "surface load 500 g" means that if the load applied to the surface during the pencil hardness test is 500 g ± 10 g, it is included therein.

又,電波反射體11較佳為於進行耐熱耐濕試驗後,保護層15之對被接著層之接著力之降低率為50%以下,更佳為45%以下,進而較佳為40%以下。本說明書中所述之「被接著層」意指直接接觸對象層之層。本實施方式中,保護層15之被接著層係接著層14。接著力之測定方法係藉由依據JIS K 6849(1994)之拉伸接著強度試驗進行測定。In addition, the radio wave reflector 11 preferably has a decrease rate of adhesion of the protective layer 15 to the adhered layer after the heat and moisture resistance test of 50% or less, more preferably 45% or less, and further preferably 40% or less. The "adhered layer" described in this specification means a layer that directly contacts the target layer. In this embodiment, the adhered layer of the protective layer 15 is the adhesive layer 14. The adhesion is measured by the tensile adhesion strength test according to JIS K 6849 (1994).

耐熱耐濕試驗係如下所述之試驗:將電波反射體11配置於調整為溫度60℃、濕度95%rh(相對濕度)之恆溫恆濕槽內靜置500小時後,將電波反射體11自恆溫恆濕槽取出,於常溫靜置4小時後,確認性狀之變化。The heat and humidity resistance test is a test as follows: the radio wave reflector 11 is placed in a constant temperature and humidity tank adjusted to a temperature of 60°C and a humidity of 95% rh (relative humidity) and left there for 500 hours. The radio wave reflector 11 is then taken out of the constant temperature and humidity tank and left there at room temperature for 4 hours to check changes in properties.

耐熱耐濕試驗後之電波反射體11之反射波之強度、與耐熱耐濕試驗前之電波反射體11之反射波之強度之差較佳為3 dB以內。此種耐熱耐濕試驗前後之反射波之強度之差成為3 dB以內之入射波之入射角較佳為至少存在於15度以上75度以下之1個角度,更佳為45度,更佳為15度以上75度以下之角度範圍之所有角度。耐熱耐濕試驗前後之反射波之強度之差成為3 dB以內之入射波之頻率較佳為於3 GHz以上300 GHz以下之間存在至少1個,較佳為,更佳為3 GHz以上300 GHz以下之頻帶之所有頻率。The difference between the intensity of the reflected wave of the radio wave reflector 11 after the heat and humidity test and the intensity of the reflected wave of the radio wave reflector 11 before the heat and humidity test is preferably within 3 dB. The incident angle of the incident wave for which the difference in the intensity of the reflected wave before and after the heat and humidity test is within 3 dB is preferably at least one angle between 15 degrees and 75 degrees, more preferably 45 degrees, and more preferably all angles within the angle range of 15 degrees and 75 degrees. The frequency of the incident wave for which the difference in the intensity of the reflected wave before and after the heat and humidity test is within 3 dB is preferably at least one between 3 GHz and 300 GHz, and more preferably, all frequencies in the frequency band between 3 GHz and 300 GHz.

又,電波反射體11中,耐熱耐濕試驗後之表面電阻率較佳為100 Ω/□以下,更佳為50 Ω/□以下,進而較佳為20 Ω/□以下。藉由使耐熱耐濕試驗後之表面電阻率為20 Ω/□以下,使得電波反射體11即便於高溫高濕環境下放置長時間,亦不會損害反射強度,而可維持具有實用性之電波反射體11。In addition, the surface resistivity of the radio wave reflector 11 after the heat and humidity resistance test is preferably 100 Ω/□ or less, more preferably 50 Ω/□ or less, and further preferably 20 Ω/□ or less. By making the surface resistivity after the heat and humidity resistance test 20 Ω/□ or less, the radio wave reflector 11 can be placed in a high temperature and high humidity environment for a long time without damaging the reflection strength, and can maintain the radio wave reflector 11 with practicality.

又,耐熱耐濕試驗前之電波反射體11之表面電阻率較佳為0.003 Ω/□以上10 Ω/□以下,更佳為0.01 Ω/□以上9 Ω/□以下,進而較佳為0.02 Ω/□以上8 Ω/□以下。再者,表面電阻率係將電波反射體11載置於由平面所構成之載置面之狀態下所測得之值。The surface resistivity of the radio wave reflector 11 before the heat and moisture resistance test is preferably 0.003 Ω/□ to 10 Ω/□, more preferably 0.01 Ω/□ to 9 Ω/□, and further preferably 0.02 Ω/□ to 8 Ω/□. The surface resistivity is a value measured when the radio wave reflector 11 is placed on a placement surface formed by a plane.

耐熱耐濕試驗後相對於耐熱耐濕試驗前之、電波反射體11之表面電阻率之變化率較佳為20%以下,更佳為17%以下,進而較佳為15%以下。將耐熱耐濕試驗前之表面電阻率設為r 1,並將耐熱耐濕試驗後之表面電阻率設為r 2時,變化率r可根據r=(r 1-r 2)/r 1×100而求出 The change rate of the surface resistivity of the radio wave reflector 11 after the heat and humidity test relative to that before the heat and humidity test is preferably 20% or less, more preferably 17% or less, and further preferably 15% or less. When the surface resistivity before the heat and humidity test is set as r1 and the surface resistivity after the heat and humidity test is set as r2 , the change rate r can be obtained by r = ( r1 - r2 ) / r1 × 100

電波之反射強度根據表面電阻率而變化,若波反射體11之表面電阻率之變化率r較小,則反射強度不易降低。由於電波反射體11之耐熱耐濕試驗時之表面電阻率之變化率r為20%以下,故而即便於耐熱耐濕試驗後,電波反射體11之反射強度亦不會大幅降低,而可實現充分之電波之反射強度。The reflection intensity of radio waves varies according to the surface resistivity. If the change rate r of the surface resistivity of the radio wave reflector 11 is small, the reflection intensity is not easy to decrease. Since the change rate r of the surface resistivity of the radio wave reflector 11 during the heat and humidity resistance test is less than 20%, the reflection intensity of the radio wave reflector 11 will not be greatly reduced even after the heat and humidity resistance test, and sufficient radio wave reflection intensity can be achieved.

又,關於電波反射體11,使電波反射體11沿著具有曲率半徑200 mm之曲面之構件之表面彎曲之狀態前後的表面電阻率之變化率(亦稱為「彎曲時之表面電阻率之變化率」)R可為-10%以上10%以下。彎曲時之表面電阻率之變化率R意指下述比率,即,相對於使電波反射體11變得平坦之狀態下之電波反射體11之表面電阻率R 1,使電波反射體11沿著具有曲率半徑200 mm之曲面之構件之表面彎曲之狀態下的表面電阻率R 2發生變化之比率。表面電阻率之變化率R可根據R=(R 2-R 1)/R 1×100而求出。 In addition, regarding the radio wave reflector 11, the change rate of the surface resistivity before and after the radio wave reflector 11 is bent along the surface of the member having a curvature radius of 200 mm (also referred to as "the change rate of the surface resistivity when bent") R can be not less than -10% and not more than 10%. The change rate of the surface resistivity when bent R means the ratio of the change in the surface resistivity R2 when the radio wave reflector 11 is bent along the surface of the member having a curvature radius of 200 mm relative to the surface resistivity R1 of the radio wave reflector 11 when the radio wave reflector 11 is flat. The change rate of the surface resistivity R can be obtained by R = ( R2 - R1 ) / R1 × 100.

電波之反射強度根據表面電阻率而變化。但是,由於電波反射體11之彎曲時之表面電阻率之變化率R為-10%以上10%以下,故而即便於使電波反射體11彎曲之狀態下,亦可與平坦狀態同樣地實現充分之電波之反射強度。The reflection intensity of radio waves varies according to the surface resistivity. However, since the change rate R of the surface resistivity when the radio wave reflector 11 is bent is between -10% and 10%, even when the radio wave reflector 11 is bent, sufficient reflection intensity of radio waves can be achieved as in the flat state.

本說明書中,表面電阻率意指每1 cm 2之表面電阻。表面電阻率可使測定端子接觸導電層之表面,依據JIS K 6911藉由四端子法進行測定。再者,表面電阻率係以導電層16之導電體12之表面電阻率之形式而測定。於利用樹脂片等實施了保護而未露出導電層16之導電體12之情形時,可使用非接觸式電阻測定器(Napson股份有限公司製造,商品名:EC-80P、或其同等品)藉由渦電流法進行測定。 In this specification, surface resistivity means the surface resistance per 1 cm2 . The surface resistivity can be measured by the four-terminal method in accordance with JIS K 6911 by bringing the measuring terminal into contact with the surface of the conductive layer. In addition, the surface resistivity is measured as the surface resistivity of the conductive body 12 of the conductive layer 16. In the case where the conductive body 12 of the conductive layer 16 is not exposed due to protection by a resin sheet or the like, it can be measured by the eddy current method using a non-contact resistance meter (manufactured by Napson Co., Ltd., trade name: EC-80P or its equivalent).

電波反射體11較佳為整體具有可見光穿透性。即,電波反射體11較佳為透明。導電層16、接著層14及保護層15可形成為具有可見光穿透性之材料及/或具有可見光穿透性之厚度。此處之「透明」意指能夠自另一側視認到位於電波反射體11之一側之物體,總光線穿透率可不為100%。「透明」包含半透明。又,電波反射體11可被著色。The radio wave reflector 11 is preferably transparent as a whole. That is, the radio wave reflector 11 is preferably transparent. The conductive layer 16, the bonding layer 14 and the protective layer 15 can be formed of a material having visible light transparency and/or a thickness having visible light transparency. "Transparent" here means that an object located on one side of the radio wave reflector 11 can be seen from the other side, and the total light transmittance may not be 100%. "Transparent" includes semi-transparency. In addition, the radio wave reflector 11 can be colored.

電波反射體11較佳為總光線穿透率為70%以上,更佳為75%以上,進而較佳為80%以上。本說明書中,「總光線穿透率」意指來自D65標準光源之光線之穿透率。總光線穿透率係依據JIS K 7375(2008)而測定。電波反射體11較佳為於下述耐光性試驗後總光線穿透率亦為70%以上,更佳為75%以上,進而較佳為80%以上。The radio wave reflector 11 preferably has a total light transmittance of 70% or more, more preferably 75% or more, and further preferably 80% or more. In this specification, "total light transmittance" means the transmittance of light from a D65 standard light source. The total light transmittance is measured in accordance with JIS K 7375 (2008). The radio wave reflector 11 preferably has a total light transmittance of 70% or more, more preferably 75% or more, and further preferably 80% or more after the following light resistance test.

電波反射體11較佳為霧度為30%以下。霧度意指電波反射體11之渾濁程度,由JIS-K7136:2000定義。尤其於耐光性試驗後,霧度亦較佳為30%以下。The radio wave reflector 11 preferably has a haze of 30% or less. Haze refers to the turbidity of the radio wave reflector 11 and is defined in JIS-K7136:2000. In particular, after a light resistance test, the haze is preferably 30% or less.

耐光性試驗係如下所述之試驗。於測定裝置(例如ATLAS公司製造之氙燈耐氣候光老化測試儀(Xenon Sunshine Weather Ometer)Ci4000)之槽內載置電波反射體11。將槽內設定為輻照度60 W/m 2(300~400 nm)、黑標溫度(BST)65±3℃、濕度50±5%RH、槽內溫度38℃,照射光1300小時(直射陽光1年量),確認電波反射體11之性狀之變化。 The light resistance test is a test as described below. The radio wave reflector 11 is placed in a tank of a measuring device (e.g., Xenon Sunshine Weather Ometer Ci4000 manufactured by ATLAS). The tank is set to an irradiance of 60 W/m 2 (300-400 nm), a black standard temperature (BST) of 65±3°C, a humidity of 50±5%RH, and a tank temperature of 38°C. The light is irradiated for 1300 hours (one year's worth of direct sunlight), and changes in the properties of the radio wave reflector 11 are confirmed.

上述耐光性試驗前後之電波反射體11之黃變度Δb*較佳為15以下。黃變度Δb*係指於CIE(國際照明委員會)所定義之L*a*b*表色系統中,耐光性試驗前之+b*之顏色(黃色)之強度b*1與耐光性試驗後之+b*之顏色(黃色)之強度b*2的差(b*2―b*1),值越大,則表示向黃色之變色越強。若黃變度Δb*為15以下,則不易視認出電波反射體11向黃色之變化,變色或劣化之影響較小。黃變度Δb*係依據JIS Z 8781-4而測定。The yellowing degree Δb* of the radio wave reflector 11 before and after the light fastness test is preferably 15 or less. The yellowing degree Δb* refers to the difference (b*2-b*1) between the intensity b*1 of the color (yellow) of +b* before the light fastness test and the intensity b*2 of the color (yellow) of +b* after the light fastness test in the L*a*b* color system defined by CIE (International Commission on Illumination). The larger the value, the stronger the color change to yellow. If the yellowing degree Δb* is 15 or less, the change of the radio wave reflector 11 to yellow is not easily visible, and the influence of color change or deterioration is small. The yellowing degree Δb* is measured in accordance with JIS Z 8781-4.

電波反射體11之耐熱耐濕試驗後之黃色指數與耐熱耐濕試驗前之黃色指數之差為3以下。黃色指數亦稱為黃度,意指色相自無色或白色偏向黃色方向之程度。黃色指數可藉由依據JISK7373:2006之方法而求出。黃色指數之差係評價作為電波反射體11之一種劣化現象之黃變的指標,黃色指數之差越小,則表示劣化越小。黃色指數與上述黃變度Δb*不同,黃色指數可使用CIE(國際照明委員會)所定義之XYZ表色系統而求出。The difference between the yellowness index of the radio wave reflector 11 after the heat and moisture resistance test and the yellowness index before the heat and moisture resistance test is 3 or less. The yellowness index is also called yellowness, which means the degree of hue from colorless or white to yellow. The yellowness index can be obtained by the method in accordance with JISK7373:2006. The difference in yellowness index is an indicator for evaluating yellowing, which is a deterioration phenomenon of the radio wave reflector 11. The smaller the difference in yellowness index, the smaller the deterioration. The yellowness index is different from the yellowness degree Δb* mentioned above. The yellowness index can be obtained using the XYZ color system defined by CIE (International Commission on Illumination).

電波反射體11之彎曲模數較佳為0.05 GPa以上4 GPa以下。藉由使彎曲模數處於上述範圍內,而使得電波反射體11具有可撓性,可不使電波反射體11發生曲折或斷裂,而使電波反射體11彎曲並貼附於曲面或球面。彎曲模數係依據JIS K7171而測定。本說明書中,「可撓性」意指即便於常溫常壓下施加彎曲之力,亦不發生斷裂或塑性變形而彎曲之性質。The bending modulus of the radio wave reflector 11 is preferably 0.05 GPa or more and 4 GPa or less. By making the bending modulus within the above range, the radio wave reflector 11 has flexibility, and the radio wave reflector 11 can be bent and attached to a curved surface or a spherical surface without bending or breaking the radio wave reflector 11. The bending modulus is measured in accordance with JIS K7171. In this specification, "flexibility" means the property of bending without breaking or plastic deformation even when a bending force is applied at normal temperature and pressure.

電波反射體11較佳為縱向彈性模數為0.01 GPa以上80 GPa以下。藉由使縱向彈性模數處於上述範圍內,使得電波反射體11容易發生變形,可不使電波反射體11斷裂而使電波反射體11彎曲,從而貼附於曲率半徑為200 mm以上之曲面。縱向彈性模數亦稱為楊氏模數、拉伸彈性模數,由JIS K7161-2014定義,係依據JIS K 7127(1999)而測定。The radio wave reflector 11 preferably has a longitudinal elastic modulus of 0.01 GPa or more and 80 GPa or less. By making the longitudinal elastic modulus within the above range, the radio wave reflector 11 can be easily deformed, and the radio wave reflector 11 can be bent without breaking the radio wave reflector 11, so that it can be attached to a curved surface with a curvature radius of 200 mm or more. The longitudinal elastic modulus is also called Young's modulus or tensile elastic modulus, which is defined by JIS K7161-2014 and is measured according to JIS K 7127 (1999).

本實施方式之電波反射體11至少具有能夠沿著曲率半徑為200 mm以上之曲面貼附之程度之可撓性,較佳為具有能夠沿著曲率半徑為100 mm以上之曲面貼附之程度之可撓性。The radio wave reflector 11 of this embodiment has at least the flexibility to be attached to a curved surface with a curvature radius of 200 mm or more, and preferably has the flexibility to be attached to a curved surface with a curvature radius of 100 mm or more.

電波反射體11可具有可塑性。可塑性意指如下性質:能夠藉由施加外壓而變形,於藉由加壓而賦予超過彈性極限之變形時,即便去掉力,亦維持變形之形狀。即可導電層16、接著層14及保護層15全部具有可塑性,又可導電層16、接著層14及保護層15中之至少1個具有可塑性。The radio wave reflector 11 may have plasticity. Plasticity means the property that it can be deformed by applying external pressure, and when the deformation exceeds the elastic limit by applying pressure, the deformed shape is maintained even if the force is removed. That is, the conductive layer 16, the bonding layer 14 and the protective layer 15 may all have plasticity, or at least one of the conductive layer 16, the bonding layer 14 and the protective layer 15 may have plasticity.

導電體12之表面粗糙度Sa並無特別限定,較佳為1 μm以上7 μm以下,更佳為1.03 μm以上6.72 μm以下。藉由使表面粗糙度Sa處於該範圍內,而容易使電波漫反射。The surface roughness Sa of the conductor 12 is not particularly limited, but is preferably 1 μm to 7 μm, and more preferably 1.03 μm to 6.72 μm. When the surface roughness Sa is within this range, radio waves can be easily diffusely reflected.

表面粗糙度Sa係利用ISO 25178之算術平均高度而求出,依據ISO 25178而測定。可使用雷射顯微鏡(製品名VK-X1000/1050,KEYENCE公司製造,或其同等品),於導電體12之表面之複數個部位測定表面粗糙度,計算出所獲得之測定值之平均值,藉此求出導電體12之表面粗糙度Sa。The surface roughness Sa is obtained by using the arithmetic mean height of ISO 25178 and is measured in accordance with ISO 25178. The surface roughness Sa of the conductor 12 can be obtained by measuring the surface roughness at a plurality of locations on the surface of the conductor 12 using a laser microscope (product name VK-X1000/1050, manufactured by KEYENCE, or its equivalent) and calculating the average value of the obtained measured values.

又,如圖1所示,電波反射體11較佳為於包含入射波A1與反射波之虛擬平面中,使反射波之接收角度位置相對於正規反射之反射波A2在-15度以上、+15度以下之角度範圍α內進行變化時,各接收角度位置處之反射波之強度之分佈之峰度成為-0.4以下。峰度更佳為-1.0以下,進而較佳為-1.1以下,進而更佳為-1.2以下。峰度之下限並無特別限定,例如為-0.5以上。虛擬平面上存在電波反射體11之反射面上之反射點11a、電波產生源20、及反射波之接收部21。峰度之測定係於使電波反射體11成為平面狀之狀態下進行。As shown in FIG1 , the radio wave reflector 11 is preferably such that when the receiving angle position of the reflected wave changes within the angle range α of more than -15 degrees and less than +15 degrees relative to the reflected wave A2 of the regular reflection in the virtual plane including the incident wave A1 and the reflected wave, the kurtosis of the distribution of the intensity of the reflected wave at each receiving angle position becomes less than -0.4. The kurtosis is more preferably less than -1.0, further preferably less than -1.1, and further preferably less than -1.2. The lower limit of the kurtosis is not particularly limited, for example, it is greater than -0.5. On the virtual plane, there are the reflection point 11a on the reflection surface of the radio wave reflector 11, the radio wave generation source 20, and the receiving part 21 of the reflected wave. The kurtosis is measured in a state where the radio wave reflector 11 is made into a planar state.

峰度係表示分佈偏離常態分佈何種程度之統計量,表示峰部之尖度與尾部之擴展度。如圖1所示,自電波產生源20輸出之電波相對於電波反射體11以入射角θ1入射,以出射角θ2進行正規反射。使接收部21之接收角度位置i相對於電波之正規反射之反射波A2,以反射點11a為中心每隔特定角度(例如每隔5度)在-15度以上+15度以下之角度範圍α內移動,測定反射強度x。接收部21之接收角度位置i位於以反射點11a為中心之圓弧上。將各接收角度位置i處之反射強度之值x i(i:1、2、…、n)之平均值設為 ,將標準偏差設為s時,峰度可根據下式而求出。 Kurtosis is a statistic that indicates the degree to which a distribution deviates from a normal distribution. It indicates the sharpness of the peak and the spread of the tail. As shown in FIG1 , the radio wave output from the radio wave generating source 20 is incident on the radio wave reflector 11 at an incident angle θ1 and is regularly reflected at an output angle θ2. The receiving angle position i of the receiving unit 21 is moved within an angle range α of -15 degrees to +15 degrees at specific angles (for example, every 5 degrees) with respect to the reflected wave A2 of the regular reflection of the radio wave, with the reflection point 11a as the center, and the reflection intensity x is measured. The receiving angle position i of the receiving unit 21 is located on an arc centered on the reflection point 11a. The average value of the reflection intensity x i (i: 1, 2, ..., n) at each receiving angle position i is set to , when the standard deviation is set to s, the kurtosis can be calculated according to the following formula.

於峰度為負值之情形時,表示各角度位置處之強度資料較常態分佈更扁平之分佈,即資料自平均值附近分散且分佈之尾部擴展開之狀態,峰度之值越小,則分佈越扁平。本實施方式中,藉由將峰度設定為-0.4以下,而於相對於正規反射之反射波為±15度之角度範圍α內,由接收角度位置所導致之反射強度之差變小。When the kurtosis is a negative value, it means that the intensity data at each angle position is flatter than the normal distribution, that is, the data is dispersed from the average value and the tail of the distribution is expanded. The smaller the kurtosis value, the flatter the distribution. In this embodiment, by setting the kurtosis to less than -0.4, the difference in reflection intensity caused by the receiving angle position becomes smaller within the angle range α of ±15 degrees relative to the reflected wave of the regular reflection.

(電波反射體11之各層之構成)  以下,更詳細地對電波反射體11之各層進行說明。以下說明中,將複數層重疊之方向定義為「上下方向」。又,於沿著上下方向觀察電波反射體11之情形時,定義「縱向」及「橫向」。但是,該等方向之定義僅用於進行說明,並非特定用途。又,各圖僅為示意性圖,並非表示嚴格之縮尺。(Structure of each layer of the radio wave reflector 11) Below, each layer of the radio wave reflector 11 is described in more detail. In the following description, the direction in which multiple layers are stacked is defined as the "up and down direction". In addition, when observing the radio wave reflector 11 along the up and down direction, "longitudinal" and "lateral" are defined. However, the definition of these directions is only for explanation and is not for specific use. In addition, each figure is only a schematic diagram and does not represent a strict reduction scale.

如圖2所示,電波反射體11具備積層有複數層之積層體18。積層體18具備:導電層16,其包含用以反射電波之導電體12;及保護層15,其保護導電層16。積層體18可進而包含接著層14,該接著層14包含用以使導電層16與保護層15接著之接著劑。本實施方式中,電波反射體11係於導電層16之導電體12之上依序積層有接著層14、與保護層15。As shown in FIG2 , the radio wave reflector 11 has a laminate 18 having a plurality of layers. The laminate 18 has: a conductive layer 16 including a conductive body 12 for reflecting radio waves; and a protective layer 15 for protecting the conductive layer 16. The laminate 18 may further include a bonding layer 14 including a bonding agent for bonding the conductive layer 16 to the protective layer 15. In this embodiment, the radio wave reflector 11 has the bonding layer 14 and the protective layer 15 sequentially laminated on the conductive body 12 of the conductive layer 16.

(導電層16)  導電層16係具有導電體12之層。導電層16具備基材13、及用以反射電波之導電體12。導電體12位於基材13、與接著層14及保護層15之間。再者,導電層16亦可不包含基材13而由導電體12所構成。於該情形時,保護層15作為基材13而支持導電體12。(Conductive layer 16) The conductive layer 16 is a layer having a conductor 12. The conductive layer 16 includes a substrate 13 and a conductor 12 for reflecting radio waves. The conductor 12 is located between the substrate 13, the bonding layer 14, and the protective layer 15. Furthermore, the conductive layer 16 may not include the substrate 13 but may be composed of the conductor 12. In this case, the protective layer 15 supports the conductor 12 as the substrate 13.

(基材13)  基材13支持導電體12。本實施方式中,基材13形成為外形於俯視時為長方形(更具體而言為正方形)。基材13形成為厚度遍及整面地均勻。但是,作為基材13,厚度亦可不均勻,例如亦可形成為楔形,亦可局部具有球面、或形成為具有凹凸形狀之三維形狀。(Substrate 13) The substrate 13 supports the conductor 12. In the present embodiment, the substrate 13 is formed to have a rectangular shape (more specifically, a square shape) when viewed from above. The substrate 13 is formed to have a uniform thickness over the entire surface. However, the thickness of the substrate 13 may be uneven, for example, it may be formed in a wedge shape, it may partially have a spherical surface, or it may be formed in a three-dimensional shape with concave and convex shapes.

作為基材13,例如可列舉:合成樹脂、FRP(Fiber Reinforced Plastics)、碳、玻璃等。作為合成樹脂,例如可列舉由PET(聚對苯二甲酸乙二酯)、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚酯、聚甲醛、聚醯胺、聚苯醚、偏二氯乙烯、聚乙酸乙烯酯、聚乙烯縮醛、AS樹脂、ABS樹脂、丙烯酸樹脂、氟樹脂、尼龍樹脂、聚縮醛樹脂、聚碳酸酯樹脂、聚醯胺樹脂、聚胺酯樹脂(polyurethane resin)所組成之群中之一種以上。作為基材,亦可為該等合成樹脂之複合材料。本實施方式之基材13由PET片所構成。As the substrate 13, for example, synthetic resin, FRP (Fiber Reinforced Plastics), carbon, glass, etc. can be listed. As the synthetic resin, for example, one or more of the group consisting of PET (polyethylene terephthalate), polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyester, polyoxymethylene, polyamide, polyphenylene ether, vinylidene chloride, polyvinyl acetate, polyvinyl acetal, AS resin, ABS resin, acrylic resin, fluororesin, nylon resin, polyacetal resin, polycarbonate resin, polyamide resin, and polyurethane resin can be listed. As the substrate, it can also be a composite material of these synthetic resins. The substrate 13 of the present embodiment is composed of a PET sheet.

作為基材13之厚度L2,例如較佳為15 μm以上,更佳為20 μm以上,進而較佳為25 μm以上。另一方面,作為基材13之厚度L2之上限值,例如較佳為200 μm以下,更佳為150 μm以下,進而較佳為125 μm以下。The thickness L2 of the substrate 13 is preferably 15 μm or more, more preferably 20 μm or more, and further preferably 25 μm or more. On the other hand, the upper limit of the thickness L2 of the substrate 13 is preferably 200 μm or less, more preferably 150 μm or less, and further preferably 125 μm or less.

基材13較佳為具有可撓性。基材13較佳為縱向彈性模數比保護層15高。作為基材13之縱向彈性模數,例如較佳為1 GPa以上,更佳為1.2 GPa以上,進而較佳為1.5 GPa以上。另一方面,作為基材13之縱向彈性模數之上限,例如較佳為4 GPa以下,更佳為3.8 GPa以下,進而較佳為3.5 GPa以下。  (導電體12)The substrate 13 is preferably flexible. The substrate 13 preferably has a higher longitudinal elastic modulus than the protective layer 15. The longitudinal elastic modulus of the substrate 13 is, for example, preferably 1 GPa or more, more preferably 1.2 GPa or more, and further preferably 1.5 GPa or more. On the other hand, the upper limit of the longitudinal elastic modulus of the substrate 13 is, for example, preferably 4 GPa or less, more preferably 3.8 GPa or less, and further preferably 3.5 GPa or less. (Conductor 12)

導電體12係反射電波之導體。導電體12形成於基材13之上表面。導電體12例如係藉由濕式蝕刻或乾式蝕刻而形成。作為濕式蝕刻,例如可列舉:網版印刷法、光微影法、膠版印刷法等。作為乾式蝕刻,例如可列舉:反應性氣體蝕刻、反應性離子蝕刻、反應性離子束蝕刻、離子束蝕刻、反應性雷射光束蝕刻等。The conductor 12 is a conductor that reflects radio waves. The conductor 12 is formed on the upper surface of the substrate 13. The conductor 12 is formed, for example, by wet etching or dry etching. Examples of wet etching include screen printing, photolithography, offset printing, etc. Examples of dry etching include reactive gas etching, reactive ion etching, reactive ion beam etching, ion beam etching, reactive laser beam etching, etc.

又,導電體12亦可嵌埋於樹脂中而形成為薄膜狀。例如可使導電體膜成形後,藉由蝕刻來形成圖案,取出具有圖案之導電薄膜體。又,亦可於設置有剝離層之基礎薄膜上塗佈感光性抗蝕劑,藉由光微影法形成圖案,於圖案部填充導電體後,取出具有圖案之導電薄膜體。又,導電體12可接著金屬薄膜,亦可蒸鍍金屬。Furthermore, the conductor 12 may be embedded in a resin to form a thin film. For example, after the conductor film is formed, a pattern may be formed by etching, and the conductive thin film having the pattern may be taken out. Alternatively, a photosensitive anti-etching agent may be applied on a base film provided with a peeling layer, and a pattern may be formed by photolithography. After the conductor is filled in the patterned part, the conductive thin film having the pattern may be taken out. Furthermore, the conductor 12 may be connected to a metal thin film, or may be evaporated metal.

於使用薄膜狀之導電體12之情形時,具有導電體12之薄膜(導電膜層)係積層於基材13而構成導電層16。When a thin film conductor 12 is used, a thin film (conductive film layer) having the conductor 12 is laminated on the substrate 13 to form the conductive layer 16 .

作為導電體12,例如可列舉:銀、金、銅、鉑、鋁、鈦、聚矽氧、氧化銦錫、及合金(例如含有鎳、鉻及鉬之合金)中之一種以上等。作為含有鎳、鉻及鉬之合金,例如可列舉:赫史特合金B-2、B-3、C-4、C-2000、C-22、C-276、G-30、N、W、X等各種等級。As the conductor 12, for example, at least one of silver, gold, copper, platinum, aluminum, titanium, polysilicon, indium tin oxide, and alloys (for example, alloys containing nickel, chromium, and molybdenum) can be cited. As alloys containing nickel, chromium, and molybdenum, for example, various grades of Herschel alloys such as B-2, B-3, C-4, C-2000, C-22, C-276, G-30, N, W, and X can be cited.

作為導電體12之厚度L3,較佳為5 nm以上,更佳為0.05 μm以上。另一方面,作為導電體12之厚度L3之上限值,較佳為10 μm以下。若導電體12之厚度L3為5 nm以上,則可確保適當之電波強度。The thickness L3 of the conductor 12 is preferably 5 nm or more, more preferably 0.05 μm or more. On the other hand, the upper limit of the thickness L3 of the conductor 12 is preferably 10 μm or less. If the thickness L3 of the conductor 12 is 5 nm or more, appropriate radio wave intensity can be ensured.

導電層16較佳為被覆率為1%以上50%以下,更佳為1%以上10%以下。被覆率意指於俯視時在基材13之上表面設置有導電體12之區域中,每單位面積之導電體12所占之面積之比率。所謂設置有導電體12之區域係指自基材13之上表面區域去除基材13之周端部(基材13之端緣13a與導電體12之間之部分)所得之區域。被覆率係使用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、光學顯微鏡等而測定。The conductive layer 16 preferably has a coverage of 1% to 50%, more preferably 1% to 10%. The coverage refers to the ratio of the area occupied by the conductor 12 per unit area in the area where the conductor 12 is provided on the upper surface of the substrate 13 when viewed from above. The area where the conductor 12 is provided refers to the area obtained by removing the peripheral end of the substrate 13 (the portion between the edge 13a of the substrate 13 and the conductor 12) from the upper surface area of the substrate 13. The coverage is measured using a scanning electron microscope (SEM), a transmission electron microscope (TEM), an optical microscope, etc.

如圖3(B)所示,導電體12之圖案由無導電體12之複數個區域(此處,有時稱為「第1區域12a」)、及包圍第1區域12a之導電體12所構成。第1區域12a中可填充有下述接著層之一部分,亦可填充有形成導電層16之樹脂。複數個第1區域12a形成為同一形狀,於本實施方式中為正方形,但亦可為長方形。同一形狀之複數個第1區域12a係以一定間隔配置。As shown in FIG. 3 (B), the pattern of the conductor 12 is composed of a plurality of regions without the conductor 12 (herein, sometimes referred to as "first regions 12a") and the conductor 12 surrounding the first regions 12a. The first regions 12a may be filled with a portion of the bonding layer described below, or may be filled with a resin forming the conductive layer 16. The plurality of first regions 12a are formed in the same shape, which is a square in this embodiment, but may also be a rectangle. The plurality of first regions 12a of the same shape are arranged at a certain interval.

更詳細地對本實施方式之導電體12進行說明,第1區域12a被由平行之2個第1線狀體12A、及平行之2個第2線狀體12B所構成之長方形導電體12包圍。第1線狀體12A與第2線狀體12B相互正交。Describing the conductor 12 of this embodiment in more detail, the first region 12a is surrounded by a rectangular conductor 12 formed of two parallel first linear bodies 12A and two parallel second linear bodies 12B. The first linear bodies 12A and the second linear bodies 12B are orthogonal to each other.

於相鄰之第1區域12a之間,存在共通之1個線狀體12A、12B。在第1線狀體12A與第2線狀體12B之交點處電性連接。線狀體之寬度L6較佳為設定為0.05 μm以上15 μm以下。There is a common linear body 12A and 12B between adjacent first regions 12a. The first linear body 12A and the second linear body 12B are electrically connected at the intersection. The width L6 of the linear body is preferably set to be not less than 0.05 μm and not more than 15 μm.

第1區域12a中之邊緣之間之最大長度L7、或相鄰之第1線狀體12A、相鄰之第2線狀體12B之間隔L8係設定為大於可見光線之波長,且小於由電波反射體11反射之電波之波長。第1區域12a之邊中之最大長度較佳為設定為2 μm以上10 cm以下,更佳為20 μm以上1 cm以下,進而較佳為25 μm以上1 mm以下,進而較佳為30 μm以上250 μm以下。藉此,能夠使最大長度L7大於可見光線之波長,且小於由電波反射體11反射之電波之波長。The maximum length L7 between the edges in the first region 12a, or the interval L8 between the adjacent first linear bodies 12A and the adjacent second linear bodies 12B is set to be greater than the wavelength of visible light and less than the wavelength of the radio wave reflected by the radio wave reflector 11. The maximum length of the side of the first region 12a is preferably set to be greater than 2 μm and less than 10 cm, more preferably greater than 20 μm and less than 1 cm, further preferably greater than 25 μm and less than 1 mm, further preferably greater than 30 μm and less than 250 μm. In this way, the maximum length L7 can be greater than the wavelength of visible light and less than the wavelength of the radio wave reflected by the radio wave reflector 11.

導電層16之厚度(L2+L3)中,基材13之厚度占主導地位。作為導電層之厚度(L2+L3),例如較佳為0.1 μm以上,更佳為0.2 μm以上,進而較佳為0.3 μm以上。另一方面,作為導電層之厚度(L2+L3)之上限值,例如較佳為20 μm以下,更佳為15 μm以下,進而較佳為10 μm以下。The thickness of the substrate 13 dominates the thickness (L2+L3) of the conductive layer 16. The thickness (L2+L3) of the conductive layer is preferably 0.1 μm or more, more preferably 0.2 μm or more, and further preferably 0.3 μm or more. On the other hand, the upper limit of the thickness (L2+L3) of the conductive layer is preferably 20 μm or less, more preferably 15 μm or less, and further preferably 10 μm or less.

再者,關於電波反射體11之端部中之導電體12之配置之詳情,將於下文敍述。Furthermore, the details of the arrangement of the conductor 12 at the end of the radio wave reflector 11 will be described below.

(導電體12之圖案之變化例)  導電體12之圖案並不限於如實施方式之格子狀,例如亦可為如圖5(A)至(E)所示之圖案。再者,圖5(A)~圖5(E)為了說明而僅圖示了導電體12。其他導電體12之構成與圖3(B)相同。(Variations of the pattern of the conductor 12)  The pattern of the conductor 12 is not limited to the lattice shape as in the embodiment, and may be, for example, a pattern as shown in FIGS. 5(A) to 5(E). For the purpose of illustration, FIGS. 5(A) to 5(E) only illustrate the conductor 12. The structure of the other conductors 12 is the same as that of FIG. 3(B).

一變化例中,如圖5(A)所示,可為砌磚狀圖案。即,複數個第1線狀體12A在橫向排列於一直線上,且於一直線上排列之第1線狀體12A在縱向空開間隔而配置。第2線狀體12B將在縱向相鄰之第1線狀體12A彼此連接,但在縱向相鄰之第2線狀體12B相互錯開。In a variation, as shown in FIG. 5 (A), a brick-like pattern may be used. That is, a plurality of first linear bodies 12A are arranged in a straight line in the horizontal direction, and the first linear bodies 12A arranged in a straight line are arranged at intervals in the vertical direction. The second linear bodies 12B connect the first linear bodies 12A adjacent to each other in the vertical direction, but the second linear bodies 12B adjacent to each other in the vertical direction are staggered.

一變化例中,如圖5(B)所示,可為三角形圖案。本變化例中,作為無導電體12之複數個區域,具備三角形之第1區域12a、及倒三角形之第2區域12b。第2區域12b配置於相鄰之第1區域12a之間。第1區域12a及第2區域12b分別由第1線狀體12A、第2線狀體12B、及第3線狀體12C包圍。複數個第1區域12a在橫向及縱向,以一定間隔配置。又,複數個第2區域12b亦在橫向及縱向,以一定之間隔排列。而且,由第1區域12a及第2區域12b所構成之形狀以相同之週期排列。In a variation, as shown in FIG. 5 (B), a triangular pattern may be used. In this variation, as the plurality of regions without the conductive body 12, there are a first region 12a of a triangle and a second region 12b of an inverted triangle. The second region 12b is arranged between adjacent first regions 12a. The first region 12a and the second region 12b are respectively surrounded by a first linear body 12A, a second linear body 12B, and a third linear body 12C. The plurality of first regions 12a are arranged at certain intervals in the horizontal and vertical directions. In addition, the plurality of second regions 12b are also arranged at certain intervals in the horizontal and vertical directions. Moreover, the shapes formed by the first region 12a and the second region 12b are arranged in the same period.

再者,區域12a及區域12b各者之形狀為等邊三角形,例如亦可為等腰三角形或3邊之長度不同之三角形。Furthermore, each of the regions 12a and 12b is in the shape of an equilateral triangle, for example, it may also be an isosceles triangle or a triangle with three sides of different lengths.

一變化例中,如圖5(C)所示,可為由線狀之導電體12所包圍之正六邊形之第1區域12a。複數個第1區域12a在縱向及橫向,以一定之間隔排列。In a variation, as shown in Fig. 5(C), the first region 12a may be a regular hexagonal region surrounded by a linear conductor 12. A plurality of first regions 12a are arranged at regular intervals in the longitudinal and transverse directions.

一變化例中,如圖5(D)所示,亦可具有形狀不同之多種無導電體12之區域。即,一變化例中,作為無導電體12之區域,具備由線狀之導電體12所包圍之正五邊形之第1區域12a、倒正五邊形之第2區域12b、及菱形之第3區域12c。複數個第1區域12a在橫向及縱向,以一定之間隔配置。又,複數個第2區域12b亦在橫向及縱向,以一定之間隔排列。又,複數個第3區域12c亦在橫向及縱向,以一定之間隔排列。而且,由第1區域12a、第2區域12b及第3區域12c所構成之形狀以相同之週期排列。In a variation, as shown in FIG. 5 (D), it is also possible to have a plurality of regions without a conductor 12 of different shapes. That is, in a variation, as a region without a conductor 12, there are a first region 12a of a regular pentagon surrounded by a linear conductor 12, a second region 12b of an inverted regular pentagon, and a third region 12c of a rhombus. A plurality of first regions 12a are arranged at a certain interval in the horizontal and vertical directions. In addition, a plurality of second regions 12b are also arranged at a certain interval in the horizontal and vertical directions. In addition, a plurality of third regions 12c are also arranged at a certain interval in the horizontal and vertical directions. Moreover, the shapes formed by the first region 12a, the second region 12b, and the third region 12c are arranged in the same period.

一變化例中,可為如圖5(E)所示之圖案。即,作為無導電體12之區域,可具備由線狀之導電體12所包圍之圓形之第1區域12a、大致三角形之第2區域12b、及大致倒三角形之第3區域12c。In a variation, the pattern shown in FIG5(E) may be adopted. That is, as the region without the conductor 12, there may be a circular first region 12a surrounded by the linear conductor 12, a substantially triangular second region 12b, and a substantially inverted triangular third region 12c.

(接著層14)  接著層14設置於導電層16與保護層15之間,將導電層16與保護層15加以接著。作為接著層14,較佳為遍及導電層16與保護層15之間之整面而設置,但亦可僅設置於導電層16與保護層15之間之一部分。作為接著層14,例如可列舉:合成樹脂、橡膠製之黏著片等。作為合成樹脂,例如可列舉:丙烯酸樹脂、或聚矽氧樹脂、聚乙烯醇樹脂等。作為接著層14,可藉由在導電層與保護層之間填充具有流動性之接著劑並使其硬化而構成,亦可將具有黏著面之黏著片配置於導電層16與保護層15之間。(Adhesive layer 14) The adhesive layer 14 is provided between the conductive layer 16 and the protective layer 15 to connect the conductive layer 16 and the protective layer 15. The adhesive layer 14 is preferably provided over the entire surface between the conductive layer 16 and the protective layer 15, but may be provided only in a portion between the conductive layer 16 and the protective layer 15. Examples of the adhesive layer 14 include synthetic resins, rubber adhesive sheets, and the like. Examples of synthetic resins include acrylic resins, silicone resins, polyvinyl alcohol resins, and the like. The adhesive layer 14 may be formed by filling a fluid adhesive between the conductive layer and the protective layer and curing the adhesive, or an adhesive sheet having an adhesive surface may be disposed between the conductive layer 16 and the protective layer 15 .

接著層14之厚度L4較佳為5 μm以上,更佳為10 μm以上,進而較佳為15 μm以上。作為接著層14之厚度L4之上限,較佳為150 μm以下,更佳為125 μm以下,進而較佳為100 μm以下。The thickness L4 of the bonding layer 14 is preferably 5 μm or more, more preferably 10 μm or more, and further preferably 15 μm or more. The upper limit of the thickness L4 of the bonding layer 14 is preferably 150 μm or less, more preferably 125 μm or less, and further preferably 100 μm or less.

又,接著層14較佳為羥值為5 mgKOH/g以上,更佳為8 mgKOH/g以上,進而較佳為30 mgKOH/g以上,進而較佳為90 mgKOH/g以上。另一方面,接著層14之羥值之上限較佳為120 mgKOH/g以下。若接著層14之羥值為5 mgKOH/g以上,則有於高溫高濕環境下接著層14不易發泡及/或變白之優點。本說明書中,羥值係藉由依據JIS K 1557之試驗方法而測定。Furthermore, the hydroxyl value of the bonding layer 14 is preferably 5 mgKOH/g or more, more preferably 8 mgKOH/g or more, further preferably 30 mgKOH/g or more, further preferably 90 mgKOH/g or more. On the other hand, the upper limit of the hydroxyl value of the bonding layer 14 is preferably 120 mgKOH/g or less. If the hydroxyl value of the bonding layer 14 is 5 mgKOH/g or more, there is an advantage that the bonding layer 14 is not easy to foam and/or turn white in a high temperature and high humidity environment. In this specification, the hydroxyl value is measured by the test method based on JIS K 1557.

又,接著層14之酸值較佳為50 mgKOH/g以下,更佳為45 mgKOH/g以下,進而較佳為30 mgKOH/g以下,進而較佳為10 mgKOH/g以下。另一方面,接著層14之酸值之下限較佳為0.1 mgKOH/g以上。若接著層14之酸值為50 mgKOH/g以下,則可防止導電體12腐蝕,可提高電波反射性之經時性穩定性。本說明書中,酸值係藉由依據JIS K 2501之試驗方法而測定。Furthermore, the acid value of the bonding layer 14 is preferably 50 mgKOH/g or less, more preferably 45 mgKOH/g or less, further preferably 30 mgKOH/g or less, further preferably 10 mgKOH/g or less. On the other hand, the lower limit of the acid value of the bonding layer 14 is preferably 0.1 mgKOH/g or more. If the acid value of the bonding layer 14 is 50 mgKOH/g or less, corrosion of the conductor 12 can be prevented, and the stability of radio wave reflectivity over time can be improved. In this specification, the acid value is measured by the test method based on JIS K 2501.

接著層14較佳為不含有紫外線防止劑。若接著層14不含有紫外線防止劑,則有容易將接著層14調整為無色透明之優點。此處,「不含有」不僅包括完全不含有紫外線防止劑之情形,亦包括接著層14含有無損無色透明之程度之少許量之情形。紫外線防止劑係吸收紫外線或使其散射而防止紫外線之侵入者,可為紫外線吸收劑、紫外線散射劑之任一者。The bonding layer 14 preferably does not contain an ultraviolet light inhibitor. If the bonding layer 14 does not contain an ultraviolet light inhibitor, it is easy to adjust the bonding layer 14 to be colorless and transparent. Here, "does not contain" includes not only the case where the bonding layer 14 does not contain an ultraviolet light inhibitor at all, but also includes the case where the bonding layer 14 contains a small amount to the extent that the bonding layer 14 does not damage the colorless and transparent state. The ultraviolet light inhibitor absorbs or scatters ultraviolet light to prevent the intrusion of ultraviolet light, and can be any of an ultraviolet light absorber and an ultraviolet light scatterer.

接著層14較佳為使用介電損耗正切(tanδ)為0.018以下之材料。介電損耗正切之值越低越佳。作為介電損耗正切之下限值,例如可列舉0.0001以上。藉由使用介電損耗正切為0.018以下之接著層14,使得電波反射體11中之電波之電能損耗變少,可進一步增強反射強度。The bonding layer 14 is preferably made of a material having a dielectric loss tangent (tanδ) of 0.018 or less. The lower the dielectric loss tangent, the better. As the lower limit of the dielectric loss tangent, for example, 0.0001 or more can be listed. By using a bonding layer 14 having a dielectric loss tangent of 0.018 or less, the electric energy loss of the radio wave in the radio wave reflector 11 is reduced, and the reflection intensity can be further enhanced.

又,接著層14之合成樹脂材料較佳為相對介電常數根據電場之頻率而變化者。相對介電常數係指介質(本實施方式中為合成樹脂材料)之介電常數與真空之介電常數之比。藉由使相對介電常數根據電場而變化,可提高特定頻率之電場中之反射波之強度。相對介電常數較佳為於1.5以上7以下之間進行變化,更佳為於1.8以上6.5以下之間進行變化。Furthermore, the synthetic resin material of the next layer 14 is preferably one whose relative dielectric constant changes according to the frequency of the electric field. The relative dielectric constant refers to the ratio of the dielectric constant of the medium (synthetic resin material in this embodiment) to the dielectric constant of a vacuum. By making the relative dielectric constant change according to the electric field, the intensity of the reflected wave in the electric field of a specific frequency can be increased. The relative dielectric constant preferably changes between 1.5 and 7, and more preferably changes between 1.8 and 6.5.

接著層14較佳為使用由介電損耗正切(tanδ)為0.018以下之合成樹脂材料所構成者。介電損耗正切越低越佳,但通常為0.0001以上。介電損耗正切係表示介電體內之電能損耗之程度者,越是介電損耗正切較大之材料,電能損耗越大。藉由使用介電損耗正切為0.018以下之接著層14,使得電波反射體11中之電波之電能損耗變少,可進一步增強反射強度。The bonding layer 14 is preferably made of a synthetic resin material with a dielectric loss tangent (tanδ) of 0.018 or less. The lower the dielectric loss tangent, the better, but it is usually above 0.0001. The dielectric loss tangent indicates the degree of electrical energy loss in a dielectric body. The larger the dielectric loss tangent, the greater the electrical energy loss. By using a bonding layer 14 with a dielectric loss tangent of 0.018 or less, the electrical energy loss of the radio wave in the radio wave reflector 11 is reduced, and the reflection intensity can be further enhanced.

(保護層15)  保護層15覆蓋導電層16之至少一面,保護導電層16。本實施方式之保護層15於俯視時具有與基材13對應之大小。作為保護層15,例如可列舉合成樹脂製之片(薄膜)等。作為合成樹脂,例如可列舉選自由PET(聚對苯二甲酸乙二酯)、COP(環烯烴聚合物)、聚乙烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲基丙烯酸甲酯、聚酯、聚甲醛、聚醯胺、聚苯醚、偏二氯乙烯、聚乙酸乙烯酯、聚乙烯縮醛、AS樹脂、ABS樹脂、丙烯酸樹脂、氟樹脂、尼龍樹脂、聚縮醛樹脂、聚碳酸酯樹脂、聚醯胺樹脂、聚胺酯樹脂所組成之群中之一種以上。(Protective layer 15) The protective layer 15 covers at least one side of the conductive layer 16 to protect the conductive layer 16. The protective layer 15 of the present embodiment has a size corresponding to the base material 13 when viewed from above. Examples of the protective layer 15 include a sheet (film) made of a synthetic resin. Examples of the synthetic resin include PET (polyethylene terephthalate), COP (cycloolefin polymer), polyethylene, polypropylene, polyvinyl chloride, polystyrene, polymethyl methacrylate, polyester, polyoxymethylene, polyamide, polyphenylene ether, vinylidene chloride, polyvinyl acetate, polyvinyl acetal, AS resin, ABS resin, acrylic resin, fluororesin, nylon resin, polyacetal resin, polycarbonate resin, polyamide resin, and polyurethane resin.

保護層15之厚度L5較佳為20 μm以上,更佳為38 μm以上,進而較佳為50 μm以上。另一方面,作為保護層15之厚度L5之上限值,較佳為200 μm以下,更佳為150 μm以下。The thickness L5 of the protective layer 15 is preferably 20 μm or more, more preferably 38 μm or more, and further preferably 50 μm or more. On the other hand, the upper limit of the thickness L5 of the protective layer 15 is preferably 200 μm or less, and more preferably 150 μm or less.

於僅對保護層15進行了鉛筆硬度試驗之情形時,針對保護層15之表面負載500 g時之鉛筆硬度較佳為「4B」以上,更佳為「B」以上,進而較佳為「F」以上。若於僅保護層15之鉛筆硬度試驗中為「4B」以上,則能夠保護導電體12。又,若於僅保護層15之鉛筆硬度試驗中為「F」以上,則可進一步堅固地保護導電體12。When only the protective layer 15 is subjected to a pencil hardness test, the pencil hardness of the protective layer 15 when the surface load is 500 g is preferably "4B" or higher, more preferably "B" or higher, and further preferably "F" or higher. If the pencil hardness of only the protective layer 15 is "4B" or higher, the conductor 12 can be protected. Furthermore, if the pencil hardness of only the protective layer 15 is "F" or higher, the conductor 12 can be protected more firmly.

保護層15在溫度40℃、濕度90%rh(相對濕度)之透濕度較佳為20 g/m 2・24 h以下,更佳為16 g/m 2・24 h以下,進而較佳為、12 g/m 2・24 h以下,進而較佳為10 g/m 2・24 h以下。若保護層15在溫度40℃、濕度90%rh(相對濕度)之透濕度為20 g/m 2・24 h以下,則有導電層16不易腐蝕、導電層16之表面電阻率不易上升之優點。本說明書中所述之「透濕度」係藉由依據JIS Z 0208(1976)之試驗方法而測定。 The moisture permeability of the protective layer 15 at a temperature of 40°C and a humidity of 90% rh (relative humidity) is preferably 20 g/m 2・24 h or less, more preferably 16 g/m 2・24 h or less, further preferably 12 g/m 2・24 h or less, and further preferably 10 g/m 2・24 h or less. If the moisture permeability of the protective layer 15 at a temperature of 40°C and a humidity of 90% rh (relative humidity) is 20 g/m 2・24 h or less, the conductive layer 16 is not easily corroded and the surface resistivity of the conductive layer 16 is not easily increased. The "moisture permeability" described in this specification is measured by the test method based on JIS Z 0208 (1976).

保護層15較佳為具有可撓性。作為保護層15之縱向彈性模數,例如較佳為1 GPa以上,更佳為1.2 GPa以上,進而較佳為1.5 GPa以上。另一方面,作為保護層15之縱向彈性模數之上限,例如較佳為4 GPa以下,更佳為3.8 GPa以下,進而較佳為3.5 GPa以下。The protective layer 15 is preferably flexible. The longitudinal elastic modulus of the protective layer 15 is preferably 1 GPa or more, more preferably 1.2 GPa or more, and further preferably 1.5 GPa or more. On the other hand, the upper limit of the longitudinal elastic modulus of the protective layer 15 is preferably 4 GPa or less, more preferably 3.8 GPa or less, and further preferably 3.5 GPa or less.

可對保護層15進行防眩處理或抗反射處理。例如於保護層15由薄膜所構成之情形時,可對薄膜之上表面(表面)、下表面(與接著層14對向之面)之至少一者實施防眩處理或抗反射處理。The protective layer 15 may be subjected to an anti-glare treatment or an anti-reflection treatment. For example, when the protective layer 15 is formed of a film, at least one of the upper surface (surface) and the lower surface (the surface opposite to the bonding layer 14) of the film may be subjected to an anti-glare treatment or an anti-reflection treatment.

防眩處理意指如下處理:於保護層15之至少一面形成凹凸形狀,使光散射而抑制照明等光源向保護層15之映入。作為實施防眩處理之方法,例如可列舉:將分散有微粒子之黏合劑樹脂塗佈於薄膜之面之方法、噴砂、化學蝕刻等。The anti-glare treatment means a treatment in which a concave-convex shape is formed on at least one surface of the protective layer 15 to scatter light and suppress the reflection of the light source such as lighting into the protective layer 15. Examples of methods for implementing the anti-glare treatment include a method of applying a binder resin in which fine particles are dispersed on the surface of the film, sandblasting, chemical etching, and the like.

抗反射處理意指如下處理:於保護層15之至少一面形成抗反射膜,藉由干涉而使自抗反射膜表面反射之反射光、與自抗反射膜與薄膜之界面反射之反射光衰減,抑制照明等光源之映入。抗反射膜可為單層,亦可為交替地積層折射率不同之薄膜而成者。The anti-reflection treatment means the following treatment: an anti-reflection film is formed on at least one side of the protective layer 15, and the reflected light reflected from the surface of the anti-reflection film and the reflected light reflected from the interface between the anti-reflection film and the thin film are attenuated by interference, thereby suppressing the reflection of the light source such as the lighting. The anti-reflection film can be a single layer or a film formed by alternately stacking thin films with different refractive indices.

保護層15亦可為於合成樹脂製之薄膜之單面或兩面貼附實施過防眩處理或抗反射處理後之薄膜而成者。The protective layer 15 may also be formed by attaching an anti-glare or anti-reflection film to one or both sides of a synthetic resin film.

保護層15可含有紫外線防止劑,亦可對保護層15之上表面(表面)實施紫外線阻斷處理,或者亦可含有紫外線防止劑及實施紫外線阻斷處理。紫外線阻斷處理意指藉由塗佈等來形成含有紫外線防止劑之膜之處理。根據該構成,紫外線不易侵入至電波反射體11之內部,因此即便於長期使用電波反射體11之情形時,亦能夠抑制由紫外線引起之電波反射體11之變色。紫外線防止劑如上所述可為紫外線吸收劑、紫外線散射劑之任一者。作為紫外線吸收劑,可例示甲氧基肉桂酸乙基己酯、第三丁基甲氧基二苯甲醯甲烷、二甲基PABA辛酯等,作為紫外線散射劑,可例示氧化鈦、氧化鋅等,但並不限於此。The protective layer 15 may contain an ultraviolet light preventer, or may be subjected to an ultraviolet light blocking treatment on the upper surface (surface) of the protective layer 15, or may contain an ultraviolet light preventer and be subjected to an ultraviolet light blocking treatment. The ultraviolet light blocking treatment means a treatment of forming a film containing an ultraviolet light preventer by coating or the like. According to this structure, ultraviolet light is not easy to penetrate into the inside of the radio wave reflector 11, so even when the radio wave reflector 11 is used for a long time, the discoloration of the radio wave reflector 11 caused by ultraviolet light can be suppressed. As described above, the ultraviolet light preventer may be any of an ultraviolet light absorber and an ultraviolet light scatterer. Examples of the ultraviolet absorber include ethylhexyl methoxycinnamate, tert-butylmethoxydiphenylmethane, and dimethyl PABA octyl ester, and examples of the ultraviolet scatterer include titanium oxide and zinc oxide, but are not limited thereto.

(電波反射體11之端部之構成)  對電波反射體11之周端部之構成進行詳細說明。構成導電層16之全部導電體12形成於基材13之上表面。導電體12較佳為配置於距離積層體18之端緣5 mm以上之內側。積層體18之端緣意指作為積層體18之一部分之基材13之端緣13a,於基材13為與保護層15、接著層14相同大小之情形時,亦可稱為保護層15、接著層14之各端緣。如圖4所示,較佳為於俯視時將積層體18之端緣(基材13之端緣13a)之任意位置P1、與最接近該任意位置P1之導電體12之間之距離L11設定為5 mm以上。於俯視時,導電體12被基材13、接著層14、保護層15等保持層覆蓋。(Construction of the end portion of the radio wave reflector 11) The construction of the peripheral end portion of the radio wave reflector 11 is described in detail. All the conductors 12 constituting the conductive layer 16 are formed on the upper surface of the substrate 13. The conductor 12 is preferably arranged at an inner side at least 5 mm away from the end portion of the laminate 18. The end portion of the laminate 18 means the end portion 13a of the substrate 13 which is a part of the laminate 18. When the substrate 13 is the same size as the protective layer 15 and the bonding layer 14, it may also be referred to as the respective ends of the protective layer 15 and the bonding layer 14. As shown in FIG4 , it is preferred that the distance L11 between an arbitrary position P1 of the edge of the laminate 18 (the edge 13a of the substrate 13) and the conductor 12 closest to the arbitrary position P1 be set to be 5 mm or more when viewed from above. When viewed from above, the conductor 12 is covered by a retaining layer such as the substrate 13, the bonding layer 14, and the protective layer 15.

進而,由於在包含積層體18之端緣之端部未配置導電體12,故而包含積層體18之端緣之端部成為於基材13之上表面積層有接著層14、保護層15之構成。因此,於側視時,導電體12被該等層覆蓋。因此,本實施方式之導電體12未露出至外部。Furthermore, since the conductor 12 is not disposed at the end of the laminate 18, the end of the laminate 18 has a structure in which the bonding layer 14 and the protective layer 15 are laminated on the upper surface of the substrate 13. Therefore, when viewed from the side, the conductor 12 is covered by these layers. Therefore, the conductor 12 of this embodiment is not exposed to the outside.

即,導電體12「未露出至外部」意指於俯視、側視時導電體12被基材13、接著層14、保護層15等保持層覆蓋。That is, the conductor 12 “is not exposed to the outside” means that the conductor 12 is covered by a retaining layer such as the base material 13, the adhesive layer 14, and the protective layer 15 in a plan view or a side view.

如本實施方式所示,於電波反射體11由積層體18所構成,且不具備下述密封材17之情形時,「未露出至外部」意指導電體12配置於較積層體18之端緣(基材13之端緣13a)更靠近內側,於俯視、側視時被基材13、接著層14、保護層15等保持層覆蓋。As shown in the present embodiment, when the radio wave reflector 11 is composed of a laminate 18 and does not have the sealing material 17 described below, "not exposed to the outside" means that the conductor 12 is arranged closer to the inside than the end edge of the laminate 18 (the end edge 13a of the substrate 13) and is covered by the substrate 13, the bonding layer 14, the protective layer 15 and other retaining layers when viewed from above or from the side.

一般而言,電波反射體11因導電體12受到環境影響而發生變色、腐蝕等,從而劣化。根據上述構成,由於導電體12未露出至外部,故而導電體12不易受到環境影響,電波反射體11之劣化得到預防,可具備耐久性。Generally, the radio wave reflector 11 deteriorates due to discoloration, corrosion, etc. caused by the environmental influence of the conductor 12. According to the above configuration, since the conductor 12 is not exposed to the outside, the conductor 12 is not easily affected by the environment, and the deterioration of the radio wave reflector 11 is prevented, and durability can be achieved.

(電波反射體11之端部之構成之變化例)  於圖7(A)、圖7(B)中示出端部之構成之變化例。本實施方式之電波反射體11係於積層體18之周圍且至少與構成導電層16之導電體12對應之位置,設置有覆蓋積層體18之側面之密封材17。密封材17只要以於電波反射體11之側視時至少導電體12不露出至外部之方式覆蓋積層體18之側面即可,如圖7(B)所示,可覆蓋基材13、導電層16、接著層14、保護層15各者之側面。密封材17具有接著性,與各層之側面接著。(Variations of the structure of the end of the radio wave reflector 11)  Variations of the structure of the end are shown in FIG. 7 (A) and FIG. 7 (B). The radio wave reflector 11 of the present embodiment is provided with a sealing material 17 covering the side of the laminate 18 around the laminate 18 and at least at a position corresponding to the conductor 12 constituting the conductive layer 16. The sealing material 17 only needs to cover the side of the laminate 18 in a manner that at least the conductor 12 is not exposed to the outside when the radio wave reflector 11 is viewed from the side. As shown in FIG. 7 (B), the sealing material 17 can cover the side of each of the substrate 13, the conductive layer 16, the bonding layer 14, and the protective layer 15. The sealing material 17 has adhesion and is bonded to the side of each layer.

本實施方式中,於俯視時,導電體12可配置於基材13上且與基材13之端緣13a一致之位置,亦可沿著基材13之端緣13a連續地設置。即,於俯視時,積層體18之端緣(基材13之端緣13a)之任意位置P1、與最接近該任意位置P1之導電體12之間之距離L11可為0。In this embodiment, the conductor 12 may be disposed on the substrate 13 and at a position that is consistent with the edge 13a of the substrate 13 when viewed from above, or may be disposed continuously along the edge 13a of the substrate 13. That is, when viewed from above, the distance L11 between an arbitrary position P1 of the edge of the laminate 18 (the edge 13a of the substrate 13) and the conductor 12 closest to the arbitrary position P1 may be 0.

於俯視時,導電體12至少以密封材17之量的程度配置於較電波反射體11之端緣更靠近內側,密封材17至少與導電體12之側面抵接而防止導電體12向外部露出。藉由密封材17而使導電體12不易受到環境之影響,電波反射體11之劣化得到預防,可具備耐久性。In a plan view, the conductor 12 is arranged at least by the amount of the sealing material 17, and is located closer to the inner side than the edge of the radio wave reflector 11. The sealing material 17 is in contact with at least the side surface of the conductor 12 to prevent the conductor 12 from being exposed to the outside. The sealing material 17 makes the conductor 12 less susceptible to environmental influences, and the radio wave reflector 11 is prevented from deteriorating, thereby achieving durability.

再者,導電體12可形成於較基材13之端緣13a更靠近內側。於該情形時,導電體12除了位於較基材13之端緣13a更靠近內側以外,亦藉由密封材17而更不易受到環境之影響,劣化得到預防,可具備耐久性。Furthermore, the conductor 12 may be formed further inwardly than the edge 13a of the substrate 13. In this case, the conductor 12 is not only further inwardly than the edge 13a of the substrate 13, but also less susceptible to environmental influences due to the sealant 17, and deterioration is prevented, thereby achieving durability.

再者,導電體12可形成於較基材13之端緣13a更靠近內側。於該情形時,導電體12除了位於較基材13之端緣13a更靠近內側以外,亦藉由密封材17而更不易受到環境之影響,劣化得到預防,可具備耐久性。Furthermore, the conductor 12 may be formed further inwardly than the edge 13a of the substrate 13. In this case, the conductor 12 is not only further inwardly than the edge 13a of the substrate 13, but also less susceptible to environmental influences due to the sealant 17, and deterioration is prevented, thereby achieving durability.

即,圖7所示之本實施方式中,導電體12「未露出至外部」意指於側視電波反射體11時導電體12被密封材17覆蓋,於俯視時導電體12被基材13、接著層14、保護層15覆蓋。That is, in the present embodiment shown in FIG. 7 , the conductor 12 “is not exposed to the outside” means that the conductor 12 is covered by the sealing material 17 when the radio wave reflector 11 is viewed from the side, and the conductor 12 is covered by the base material 13 , the adhesive layer 14 , and the protective layer 15 when viewed from above.

於俯視時,密封材17自積層體18突出之長度(密封材17之寬度)L12固定,較佳為0.01 mm以上10 mm以下。又,電波反射體11之一邊之長度L10係積層體18之一邊之長度L13加上密封材17之突出長度L12之2倍所得者。In a plan view, the length L12 of the sealant 17 protruding from the laminate 18 (the width of the sealant 17) is fixed and preferably 0.01 mm to 10 mm. The length L10 of one side of the radio wave reflector 11 is the length L13 of one side of the laminate 18 plus twice the protruding length L12 of the sealant 17.

作為密封材17,可使用合成樹脂,作為合成樹脂之例,可列舉:聚矽氧系樹脂、環氧系樹脂、聚酯樹脂、丙烯酸樹脂、胺酯樹脂、聚醯亞胺樹脂、聚氯乙烯樹脂、尼龍樹脂等。As the sealing material 17, a synthetic resin can be used. Examples of the synthetic resin include silicone resin, epoxy resin, polyester resin, acrylic resin, urethane resin, polyimide resin, polyvinyl chloride resin, nylon resin, and the like.

其他構成及作用與圖2~圖4所示之實施方式相同,因此藉由對所對應之構成標註相同之符號而省略詳細說明。The other structures and functions are the same as those of the embodiments shown in FIGS. 2 to 4 , and thus the corresponding structures are labeled with the same symbols and detailed descriptions are omitted.

(設置密封材17之實施方式之電波反射體11之製造方法)  圖7所示之實施方式之電波反射體11可於製造出電波反射體11後安裝於牆壁等設置部位。電波反射體11之製造方法如下所述。首先,進行積層體18之形成步驟。該步驟中,於基材13之上表面形成導電層16,於導電層16之上經由接著層14而接著保護層15,從而形成積層體18。繼而,進行設置密封材17之步驟。該步驟中,於積層體18之周圍之至少與導電層16對應之位置設置用以不使導電體12露出之密封材17。密封材17具有接著性,因此可安裝於積層體18之側面。藉由該等步驟,而製造圖7所示之實施方式之電波反射體11。(Manufacturing method of radio wave reflector 11 in the embodiment in which sealing material 17 is provided)  The radio wave reflector 11 in the embodiment shown in FIG7 can be installed on a wall or other installation location after the radio wave reflector 11 is manufactured. The manufacturing method of the radio wave reflector 11 is as follows. First, a step of forming a laminate 18 is performed. In this step, a conductive layer 16 is formed on the upper surface of the substrate 13, and a protective layer 15 is connected to the conductive layer 16 via a bonding layer 14, thereby forming a laminate 18. Next, a step of providing a sealing material 17 is performed. In this step, a sealing material 17 is provided at a position around the laminate 18 at least corresponding to the conductive layer 16 so as to prevent the conductor 12 from being exposed. The sealing material 17 has adhesiveness and can therefore be mounted on the side surface of the laminate 18. Through these steps, the radio wave reflector 11 of the embodiment shown in FIG. 7 is manufactured.

又,亦可先進行設置密封材17之步驟,繼而進行形成積層體18之步驟。於設置密封材17之步驟中,例如於剝離紙等之面上呈環狀配置密封材17。被密封材17包圍之空間於俯視時具有與積層體18相同之形狀、大小。繼而,如上所述進行形成積層體18之步驟。然後,進行將積層體18嵌入至被密封材17包圍之空間內之步驟。藉此製造電波反射體11。如此製造之電波反射體11中,密封材17位於積層體18之周圍之至少與導電層16對應之位置。Alternatively, the step of providing the sealing material 17 may be performed first, and then the step of forming the laminate 18 may be performed. In the step of providing the sealing material 17, the sealing material 17 is arranged in a ring shape on the surface of a release paper or the like. The space surrounded by the sealing material 17 has the same shape and size as the laminate 18 when viewed from above. Then, the step of forming the laminate 18 is performed as described above. Then, the step of embedding the laminate 18 into the space surrounded by the sealing material 17 is performed. Thus, the radio wave reflector 11 is manufactured. In the radio wave reflector 11 manufactured in this way, the sealing material 17 is located at a position around the laminate 18 at least corresponding to the conductive layer 16.

(設置密封材17之實施方式之電波反射體11之施工方法)  圖7所示之實施方式之電波反射體11可於以下施工方法中安裝於牆壁等設置面之設置部位。設置部位例如為建築物之牆壁、隔板、柱、橫擋(日文中的「鴨居」)、建築之外壁、窗等之面,可為平坦面,亦可為彎曲面。首先,進行將積層體18安裝於設置部位之步驟。該步驟中,將積層體18以基材13與設置部位相接之方式,利用雙面膠帶或接著劑等安裝手段安裝於設置部位。繼而,進行設置密封材17之步驟。該步驟中,於積層體18之周圍之至少與導電層16對應之位置,設置用以不使導電體12露出之密封材17。(Construction method of radio wave reflector 11 in implementation mode of installing sealing material 17)  The radio wave reflector 11 in the implementation mode shown in FIG7 can be installed at the installation location of the installation surface such as the wall in the following construction method. The installation location is, for example, the surface of the wall, partition, column, cross-block ("duck house" in Japanese), the outer wall of the building, window, etc., which can be a flat surface or a curved surface. First, the step of installing the multilayer body 18 at the installation location is performed. In this step, the multilayer body 18 is installed at the installation location in a manner that the base material 13 is connected to the installation location, using installation means such as double-sided tape or adhesive. Then, the step of installing the sealing material 17 is performed. In this step, a sealing material 17 is provided around the laminate 18 at least at a position corresponding to the conductive layer 16 so as to prevent the conductive body 12 from being exposed.

又,亦可先進行設置密封材17之步驟,繼而進行將積層體18安裝於設置部位之步驟。首先,於牆壁等設置面且積層體18之設置預定部位之周圍呈環狀設置密封材17。繼而,將積層體18以嵌入至密封材17所包圍之空間內之方式安裝於設置部位。藉此,將電波反射體11施工至設置部位。Alternatively, the step of installing the sealing material 17 may be performed first, and then the step of installing the laminate 18 at the installation location may be performed. First, the sealing material 17 is installed in a ring shape around the installation location of the laminate 18 on the installation surface such as a wall. Then, the laminate 18 is installed at the installation location in a manner of being embedded in the space surrounded by the sealing material 17. In this way, the radio wave reflector 11 is constructed at the installation location.

圖7所示之實施方式中,電波反射體11具備1個積層體18,電波反射體11亦可空開間隔配置有複數個積層體18。圖8之例中,配置有4個積層體18。於俯視小,在各積層體18之4邊中不存在相鄰之積層體18之邊設置密封材17,於相鄰之積層體18之間之空間中對整個空間填充密封材17。藉此,於各積層體18之周圍配置密封材17。此種電波反射體11之施工方法如下所述。首先,進行如下步驟,即,將複數個積層體18空開間隔,利用雙面膠帶或接著劑等安裝手段安裝於牆壁等設置部位。繼而,進行設置密封材17之步驟。該步驟中,於積層體18之4邊中不存在相鄰之積層體18之邊之至少與導電層對應之位置設置密封材17。然後,於相鄰之積層體18之間之整個空間內設置密封材17。藉此,將電波反射體11施工至設置部位。又,亦可先進行設置密封材17之步驟,繼而進行將積層體18安裝於設置部位之步驟。首先,於複數個積層體18之設置預定部位之周圍呈環狀設置密封材17。進而,將複數個積層體18空開間隔安裝於設置部位時,於相鄰之積層體18之間之空間內設置密封材。繼而,將積層體18以嵌入至密封材17所包圍之空間內之方式安裝於設置部位。In the embodiment shown in FIG. 7 , the radio wave reflector 11 has one laminate 18, but the radio wave reflector 11 may also be provided with a plurality of laminates 18 spaced apart. In the example of FIG. 8 , four laminates 18 are provided. In a plan view, a sealing material 17 is provided on the side where no adjacent laminate 18 exists among the four sides of each laminate 18, and the sealing material 17 is filled in the entire space between the adjacent laminates 18. In this way, the sealing material 17 is arranged around each laminate 18. The construction method of this radio wave reflector 11 is as follows. First, the following step is performed, that is, a plurality of laminates 18 are installed at intervals on a wall or other installation location using installation means such as double-sided tape or adhesive. Then, the step of installing the sealing material 17 is performed. In this step, the sealing material 17 is installed at least at the position corresponding to the conductive layer of the side of the four sides of the laminate 18 where there is no adjacent laminate 18. Then, the sealing material 17 is installed in the entire space between the adjacent laminates 18. In this way, the radio wave reflector 11 is constructed to the installation location. Alternatively, the step of installing the sealing material 17 may be performed first, and then the step of installing the laminate 18 at the installation location is performed. First, a sealing material 17 is placed in a ring shape around the predetermined installation position of the plurality of laminates 18. Then, when the plurality of laminates 18 are installed at intervals at the installation position, a sealing material is placed in the space between adjacent laminates 18. Then, the laminates 18 are installed at the installation position in a manner of being embedded in the space surrounded by the sealing material 17.

(使用方法)  上述實施方式之電波反射體11可利用接著劑等貼附於作為設置部位之建築物之牆壁、隔板、柱、橫擋、建築之外壁、窗等之面而使用。又,例如亦可用作內飾紙張或裝飾材料。內層紙係安裝於內飾材料之內表面之紙材料。作為內飾材料,例如可列舉:內壁、天花板、隔壁、地板材等。作為裝飾材料,例如可列舉:海報、裝飾貼紙、彩色玻璃風格貼紙等。裝飾材料可列舉:牆壁材料、地板材、門、照明罩、門楣(日文中的「欄間」)、柱、電視、桌子之頂板等。圖6中,圖示了將作為裝飾材料30A之海報安裝於牆面,將裝飾材料30B安裝於照明罩之例。(Usage) The radio wave reflector 11 of the above-mentioned embodiment can be attached to the surfaces of the walls, partitions, columns, baffles, outer walls of buildings, windows, etc. of the buildings as the installation locations by using adhesives, etc. In addition, it can also be used as interior decoration paper or decorative material, for example. The inner layer of paper is a paper material installed on the inner surface of the interior decoration material. As interior decoration materials, for example: inner walls, ceilings, partitions, floor materials, etc. can be listed. As decorative materials, for example: posters, decorative stickers, stained glass style stickers, etc. can be listed. Decorative materials can be listed: wall materials, floor materials, doors, lighting covers, door lintels ("railway" in Japanese), columns, televisions, top boards of tables, etc. FIG. 6 shows an example in which a poster as a decorative material 30A is installed on a wall, and a decorative material 30B is installed on a lighting cover.

藉由將包含電波反射體11之裝飾材料30A、30B安裝於室內之機器或建築材料,使得自室外通過窗33等進入室內之電波於裝飾材料30A、30B處反射。藉此,電波到達至室內空間S之更廣範圍,電波接收之方便性提昇。By installing the decorative materials 30A and 30B including the radio wave reflector 11 on indoor equipment or building materials, the radio waves entering the room from the outside through the window 33 are reflected at the decorative materials 30A and 30B. In this way, the radio waves reach a wider range of the indoor space S, and the convenience of radio wave reception is improved.

又,電波反射體11並不限於用作壁紙之例,例如亦可用於印刷合板之印刷紙。於該情形時,可使用包含電波反射體11之合板來構成門、牆面、隔壁、外牆壁材料、屋頂、天花板、地板材、壁腳板等。Furthermore, the radio wave reflector 11 is not limited to being used as wallpaper, and can also be used as printed paper for printing plywood. In this case, the plywood including the radio wave reflector 11 can be used to form doors, walls, partitions, exterior wall materials, roofs, ceilings, floor panels, baseboards, etc.

又,作為電波反射體11,並不限於呈平板狀使用,亦可呈球面使用。例如圖6(B)係在俯視時觀察室內所得之圖。表面具有電波反射體11之建築材料30係房屋之角落之具有球面之角柱30C。自窗33進入之電波於角柱30C進行反射,在室內空間S,電波在更廣範圍內發生擴展。再者,圖6(A)、圖6(B)僅為示出出射波之示意圖,並非表示實際之電波之反射範圍。Furthermore, the radio wave reflector 11 is not limited to a flat plate, but can also be a spherical surface. For example, FIG. 6 (B) is a diagram obtained by observing the interior of a room from a top view. The building material 30 having the radio wave reflector 11 on the surface is a spherical corner column 30C at the corner of the house. The radio waves entering from the window 33 are reflected at the corner column 30C, and the radio waves are expanded in a wider range in the indoor space S. Furthermore, FIG. 6 (A) and FIG. 6 (B) are only schematic diagrams showing the outgoing waves, and do not represent the actual reflection range of the radio waves.

<評價試驗A>  關於電波反射體11,製作實施例1~13,並且製作比較例1~8,關於鉛筆硬度試驗、保護層對被接著層之接著力、電波反射性、總光線穿透率、霧度、表面電阻率、發泡、變白、黃變度Δb*等進行評價試驗。但是,本發明之電波反射體11並不限於實施例1~13。<Evaluation Test A> Regarding the radio wave reflector 11, Examples 1 to 13 and Comparative Examples 1 to 8 were prepared, and evaluation tests were conducted on pencil hardness test, adhesion of the protective layer to the adhered layer, radio wave reflectivity, total light transmittance, haze, surface resistivity, foaming, whitening, yellowing degree Δb*, etc. However, the radio wave reflector 11 of the present invention is not limited to Examples 1 to 13.

(實施例及比較例之說明)  於實施例1~13及比較例1~8中,以如下方式製作試驗片。相對於下述接著劑100份添加交聯劑1份,攪拌3分鐘,藉此獲得接著劑組成物。繼而,於塗佈台鋪設保護層,滴加接著劑組成物,啟動調整至厚度25 μm之塗佈機,藉此獲得接著層。將其於溫度110℃乾燥5分鐘,然後於40℃加熱熟化48小時,藉此獲得試驗片之保護層及接著層。(Description of Examples and Comparative Examples) In Examples 1 to 13 and Comparative Examples 1 to 8, test pieces were prepared in the following manner. 1 part of a crosslinking agent was added to 100 parts of the following adhesive, and the mixture was stirred for 3 minutes to obtain an adhesive composition. Subsequently, a protective layer was laid on a coating table, the adhesive composition was dripped, and a coating machine adjusted to a thickness of 25 μm was started to obtain an adhesive layer. It was dried at a temperature of 110°C for 5 minutes, and then heated and aged at 40°C for 48 hours to obtain a protective layer and an adhesive layer of the test piece.

繼而,將導電層、與之前製作之保護層及接著層於40℃真空層壓6分鐘,藉此獲得試驗片。再者,於下述條件中,關於無接著層及保護層之試驗片,未進行獲得保護層及接著層之步驟。Then, the conductive layer, the previously prepared protective layer and the bonding layer were vacuum-laminated at 40° C. for 6 minutes to obtain a test piece. In addition, in the following conditions, for the test piece without the bonding layer and the protective layer, the step of obtaining the protective layer and the bonding layer was not performed.

(1)實施例1  作為實施例1,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  (格子狀圖案意指由導電體12所包圍之無導電體之區域12a之形狀為正方形之格子狀圖案(圖3(B)所示之導電體12之圖案);格子間距意指上述格子狀圖案中相鄰之平行之導電體12間之間隔L8)  ・接著層  接著劑:X313-295S-14(SAIDEN CHEMICAL INDUSTRY製造)  酸值:0.8 mgKOH/g  羥值:115 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (1) Example 1 As Example 1, the conditions for the test piece are as follows.・Conductive layer Shape: Square with a side length of 20 cm Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm (the grid pattern means a grid pattern in which the area 12a without a conductor surrounded by the conductor 12 is a square (the pattern of the conductor 12 shown in Figure 3 (B)); the grid spacing means the interval L8 between adjacent parallel conductors 12 in the above grid pattern) ・Adhesive layer Adhesive: X313-295S-14 (manufactured by SAIDEN CHEMICAL INDUSTRY) Acid value: 0.8 mgKOH/g Hydroxyl value: 115 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(2)實施例2  作為實施例2,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (2) Example 2 As Example 2, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(3)實施例3  作為實施例3,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2006HE(綜研化學製造)  酸值:30 mgKOH/g  羥值:10 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (3) Example 3 As Example 3, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2006HE (manufactured by Soken Chemical) Acid value: 30 mgKOH/g Hydroxyl value: 10 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(4)實施例4  作為實施例4,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2137KH(綜研化學製造)  酸值:10 mgKOH/g  羥值:8.0 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (4) Example 4 As Example 4, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2137KH (manufactured by Soken Chemical Co., Ltd.) Acid value: 10 mgKOH/g Hydroxyl value: 8.0 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(5)實施例5  作為實施例5,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:75 μm  鉛筆硬度試驗(僅保護層):F  透濕度:8.0 g/m 2・24 h (5) Example 5 As Example 5, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 75 μm Pencil hardness test (protective layer only): F Moisture permeability: 8.0 g/ m2・24 h

(6)實施例6  作為實施例6,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:50 μm  鉛筆硬度試驗(僅保護層):F  透濕度:12 g/m 2・24 h (6) Example 6 As Example 6, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 50 μm Pencil hardness test (protective layer only): F Moisture permeability: 12 g/ m2・24 h

(7)實施例7  作為實施例7,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距45 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (7) Example 7 As Example 7, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 45 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(8)實施例8  作為實施例8,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:1604N(綜研化學製造)  酸值:45 mgKOH/g  羥值:6.6 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (8) Example 8 As Example 8, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 1604N (manufactured by Soken Chemical Co., Ltd.) Acid value: 45 mgKOH/g Hydroxyl value: 6.6 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(9)實施例9  作為實施例9,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:1502C(綜研化學製造)  酸值:0.1 mgKOH/g  羥值:8.8 mgKOH/g  交聯劑:E-AX(綜研化學製造) 環氧系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (9) Example 9 As Example 9, the conditions for the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 1502C (manufactured by Soken Chemical) Acid value: 0.1 mgKOH/g Hydroxyl value: 8.8 mgKOH/g Crosslinking agent: E-AX (manufactured by Soken Chemical) Epoxy type ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(10)實施例10  作為實施例10,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2147(綜研化學製造)  酸值:4.0 mgKOH/g  羥值:32 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:125 μm  鉛筆硬度試驗(僅保護層):F  透濕度:4.8 g/m 2・24 h (10) Example 10 As Example 10, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2147 (manufactured by Soken Chemical Co., Ltd.) Acid value: 4.0 mgKOH/g Hydroxyl value: 32 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 125 μm Pencil hardness test (protective layer only): F Moisture permeability: 4.8 g/ m2・24 h

(11)實施例11  作為實施例11,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片(KIMOTO製造 KB125N05)  厚度:125 μm  鉛筆硬度試驗(僅保護層):3H  透濕度:4.8 g/m 2・24 h (11) Example 11 As Example 11, the conditions for the test piece were as follows.・Conductive layer Shape: Square with a side length of 20 cm Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical) Isocyanate type ・Protective layer Material: PET sheet (KB125N05 manufactured by KIMOTO) Thickness: 125 μm Pencil hardness test (protective layer only): 3H Moisture permeability: 4.8 g/m 2・24 h

(12)實施例12  作為實施例12,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:38 μm  鉛筆硬度試驗(僅保護層):F  透濕度:16 g/m 2・24 h (12) Example 12 As Example 12, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 38 μm Pencil hardness test (protective layer only): F Moisture permeability: 16 g/ m2・24 h

(13)實施例13  作為實施例13,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銅(Cu)所構成之格子狀、圓形圖案 線寬2.3 μm,線厚1.6 μm,格子間距100 μm  (格子狀、圓形圖案係指由導電體12所包圍之無導電體之區域12a之形狀包含正方形之圖案與圓形之圖案,意指下述變化例4(圖12)中所示之圖案;格子間距意指包圍正方形之區域12a之相鄰之平行之導電體12(圖12中為第1包圍部41)間之間隔L8;配置成圓形之導電體12(圖12中為第2包圍部51)之直徑等於格子間距)  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片(Toyobo Ester Film HB3UO)  厚度:50 μm  鉛筆硬度試驗(僅保護層):3H  透濕度:4.8 g/m 2・24 h (13) Example 13 As Example 13, the conditions for the test piece were as follows.・Conductive layer Shape: Square with a side length of 20 cm Material: PET sheet Conductor: Grid-shaped, circular pattern composed of copper (Cu) with a line width of 2.3 μm, a line thickness of 1.6 μm, and a grid spacing of 100 μm (the grid-shaped, circular pattern means that the shape of the area 12a without a conductor surrounded by the conductor 12 includes a square pattern and a circular pattern, which means the pattern shown in the following variation 4 (Figure 12); the grid spacing means the interval L8 between the adjacent parallel conductors 12 (the first surrounding portion 41 in Figure 12) surrounding the square area 12a; the diameter of the conductor 12 arranged in a circle (the second surrounding portion 51 in Figure 12) is equal to the grid spacing) ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical) Isocyanate-based Protective layer Material: PET sheet (Toyobo Ester Film HB3UO) Thickness: 50 μm Pencil hardness test (protective layer only): 3H Moisture permeability: 4.8 g/ m2・24 h

(14)比較例1  作為比較例1,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層、保護層  無(14) Comparative Example 1 As Comparative Example 1, the conditions of the test piece are as follows.   ・Conductive layer  Shape: Square with a side length of 20 cm  Material: PET sheet  Conductive body: Grid pattern composed of silver (Ag) Line width 0.8 μm, line thickness 0.5 μm, grid spacing 30 μm  ・Adhesive layer, protective layer  None

(15)比較例2  作為比較例2,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距45 μm  ・接著層、保護層  無(15) Comparative Example 2 As Comparative Example 2, the conditions of the test piece are as follows.   ・Conductive layer  Shape: Square with one side of 20 cm  Material: PET sheet  Conductive body: Grid pattern composed of silver (Ag) Line width 0.8 μm, line thickness 0.5 μm, grid spacing 45 μm  ・Adhesive layer, protective layer  None

(16)比較例3  作為比較例3,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:38 μm  鉛筆硬度試驗(僅保護層):F  透濕度:16 g/m 2・24 h (16) Comparative Example 3 As Comparative Example 3, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 38 μm Pencil hardness test (protective layer only): F Moisture permeability: 16 g/ m2・24 h

(17)比較例4  作為比較例4,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:38 μm  鉛筆硬度試驗(僅保護層):F  透濕度:16 g/m 2・24 h (17) Comparative Example 4 As Comparative Example 4, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 38 μm Pencil hardness test (protective layer only): F Moisture permeability: 16 g/ m2・24 h

(18)比較例5  作為比較例5,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:25 μm  鉛筆硬度試驗(僅保護層):F  透濕度:24 g/m 2・24 h (18) Comparative Example 5 As Comparative Example 5, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 25 μm Pencil hardness test (protective layer only): F Moisture permeability: 24 g/ m2・24 h

(19)比較例6  作為比較例6,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PET片  厚度:25 μm  鉛筆硬度試驗(僅保護層):F  透濕度:24 g/m 2・24 h (19) Comparative Example 6 As Comparative Example 6, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PET sheet Thickness: 25 μm Pencil hardness test (protective layer only): F Moisture permeability: 24 g/ m2・24 h

(20)比較例7  作為比較例7,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:PP片  厚度:50 μm  鉛筆硬度試驗(僅保護層):B  透濕度:4.5 g/m 2・24 h (20) Comparative Example 7 As Comparative Example 7, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: PP sheet Thickness: 50 μm Pencil hardness test (protective layer only): B Moisture permeability: 4.5 g/ m2・24 h

(21)比較例8  作為比較例8,關於上述試驗片之條件如下所述。  ・導電層  形狀:一邊之長度為20 cm之正方形  材料:PET片  導電體:由銀(Ag)所構成之格子狀圖案 線寬0.8 μm,線厚0.5 μm,格子間距30 μm  ・接著層  接著劑:2980(綜研化學製造)  酸值:0.5 mgKOH/g  羥值:95 mgKOH/g  交聯劑:L-45K(綜研化學製造) 異氰酸酯系  ・保護層  材料:LDPE片  厚度:50 μm  鉛筆硬度試驗(僅保護層):4B  透濕度:10 g/m 2・24 h (21) Comparative Example 8 As Comparative Example 8, the conditions of the test piece are as follows. ・Conductive layer Shape: Square with a length of 20 cm on one side Material: PET sheet Conductor: Grid pattern composed of silver (Ag) with a line width of 0.8 μm, a line thickness of 0.5 μm, and a grid spacing of 30 μm ・Adhesive layer Adhesive: 2980 (manufactured by Soken Chemical Co., Ltd.) Acid value: 0.5 mgKOH/g Hydroxyl value: 95 mgKOH/g Crosslinking agent: L-45K (manufactured by Soken Chemical Co., Ltd.) Isocyanate-based ・Protective layer Material: LDPE sheet Thickness: 50 μm Pencil hardness test (protective layer only): 4B Moisture permeability: 10 g/ m2・24 h

(測定方法)  (1)保護層之透濕度之測定  將保護層設置於測定器,於溫度40℃濕度90%rh之環境中放置48小時,自一方供給水蒸氣後,測定所透過之水分量,藉此獲得透濕度。(Measurement method) (1) Determination of moisture permeability of protective layer. Place the protective layer in a measuring device and place it in an environment with a temperature of 40℃ and a humidity of 90%rh for 48 hours. After supplying water vapor from one side, measure the amount of water that passes through to obtain the moisture permeability.

(2)接著力測定  將接著層及保護層貼附於切成25 mm見方之厚度188 μm之PET薄膜,利用自動立體測圖儀(Autograph)以300 mm/min之速度,相對於PET薄膜朝向180度方向拉拽,藉此獲得上述接著力。(2) Adhesion force measurement: The adhesive layer and the protective layer were attached to a PET film with a thickness of 188 μm and cut into 25 mm squares. The film was pulled at 180 degrees relative to the PET film using an autograph at a speed of 300 mm/min to obtain the above-mentioned adhesion force.

(3)電波反射性之評價  對於4.7 GHz及28 GHz之入射波,一面改變入射角及反射角,一面測定接收強度,藉由與鋁板之接收強度進行比較而進行評價。接收強度之評價係將與鋁板同等之情況評價為「◎」,將與鋁板之接收強度之差為-10 dB以上且未達-20 dB之情況評價為「○」,將與鋁板之接收強度之差為-20 dB以上之情況評價為「×」。(3) Evaluation of radio wave reflectivity For incident waves of 4.7 GHz and 28 GHz, the reception intensity was measured while changing the incident angle and reflection angle, and the evaluation was performed by comparing it with the reception intensity of the aluminum plate. The reception intensity was evaluated as "◎" when it was equal to that of the aluminum plate, "○" when the difference with the reception intensity of the aluminum plate was more than -10 dB but less than -20 dB, and "×" when the difference with the reception intensity of the aluminum plate was more than -20 dB.

(4)總光線穿透率測定、霧度測定  藉由將試驗片切成5 cm見方,利用測霧計HM-150(村上色彩技術研究所公司製造)藉由依據JIS-K7136:2000之測定方法來測定總光線穿透率、霧度而獲得。(4) Total light transmittance and haze measurement: The test piece was cut into 5 cm squares and the total light transmittance and haze were measured using a fog meter HM-150 (manufactured by Murakami Color Technology Laboratory Co., Ltd.) in accordance with the measurement method of JIS-K7136:2000.

(5)表面電阻率之測定  藉由對各試驗片實施下述(7)耐熱耐濕試驗後,使用Napson公司製造之EC-80P進行測定而獲得。(5) Surface resistivity: The surface resistivity was obtained by subjecting each test piece to the following (7) heat and moisture resistance test and then measuring it using EC-80P manufactured by Napson.

(6)鉛筆硬度試驗方法  依據JIS K 5600-5-4,施加500±10 g以內之負載,確認導電體之網格圖案發生變形時之堅硬程度,將較其更低1級之堅硬程度作為硬度。(6) Pencil hardness test method: According to JIS K 5600-5-4, a load of 500±10 g is applied to confirm the hardness of the grid pattern of the conductor when it is deformed. The hardness that is one level lower is taken as the hardness.

(7)耐熱耐濕試驗方法  將試驗片投入至調整為溫度60℃濕度95%rh之恆溫恆濕槽內靜置500小時後,取出試驗片,於常溫放置4小時後,以目視確認有無發泡及變白。然後,再次進行上述(2)接著力測定、(3)電波反射性之評價、(4)穿透率測定、霧度測定,以耐熱耐濕試驗前(初始)與耐熱耐濕試驗後進行比較。關於接著力,計算出耐熱耐濕試驗後之接著力相對於耐熱耐濕試驗前(初始)之接著力之比(初始比)。(7) Heat and humidity resistance test method: Place the test piece in a constant temperature and humidity tank adjusted to 60°C and 95%RH for 500 hours, then take out the test piece and place it at room temperature for 4 hours, then visually check for bubbling and whitening. Then, perform the above (2) adhesion measurement, (3) evaluation of radio wave reflectivity, (4) transmittance measurement, and haze measurement again, and compare before (initial) and after the heat and humidity resistance test. Regarding adhesion, calculate the ratio of the adhesion after the heat and humidity resistance test to the adhesion before (initial) the heat and humidity resistance test (initial ratio).

(8)耐光性試驗  將試驗片載置於ATLAS公司製造之氙燈耐氣候光老化測試儀Ci4000中,將槽內設定為輻照度60 W/m 2(300~400 nm)、黑標溫度(BST)65±3℃、濕度50±5%RH、槽內溫度38℃。測定照射1300小時(直射陽光1年量)前後之黃變度Δb*。然後,再次進行上述(3)電波反射性之評價、(4)穿透率測定、霧度測定,以耐光性試驗前(初始)與耐光性試驗後進行比較。 (8) Lightfastness Test Place the test piece in a xenon lamp weathering light aging tester Ci4000 manufactured by ATLAS, and set the chamber to an irradiance of 60 W/m 2 (300-400 nm), a black standard temperature (BST) of 65±3°C, a humidity of 50±5%RH, and a chamber temperature of 38°C. Measure the yellowing degree Δb* before and after 1300 hours of exposure (one year of direct sunlight). Then, perform the above (3) evaluation of radio wave reflectivity, (4) transmittance measurement, and haze measurement again, and compare the results before (initial) and after the lightfastness test.

(試驗結果)  於表1-1、表1-2中示出實施例之試驗結果,於表2中示出比較例之試驗結果。  [表1-1]    鉛筆硬度 透濕度 酸值 羥值 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 導電層 格子間距 30 μm             45 μm                               100 μm                               線寬 0.8 μm             2.3 μm                               線厚 0.5 μm             1.6 μm                               金屬種 Ag             Cu                               保護層 PET 厚度125 μm F 4.8             3H                         75 F 8.0                      50 F 12                      3H 4.8                         38 F 16                         25 F 24                         PP 50 B 4.5                         LDPE 50 4B 10                         接著層 接著劑 X313-295S-14       0.8 115                2980       0.5 95          2006HE       30 10                2137KH       10 8.0                1604N       45 6.6                   1502C       0.1 8.8                   2147       4.0 32                   交聯劑 L-45K             E-AX                               評價 接著力 初始             12.8 10.4 15.3 6.1 10.4 10.4 耐熱耐濕試驗後             24.5 12.6 14.8 13.1 12.6 12.6 初始比             1.9 1.2 1.0 2.1 1.2 1.2 電波反射性 初始             耐熱耐濕試驗後             耐光性試驗後             穿透率 初始             90 90 90 90 90 90 耐熱耐濕試驗後             90 90 90 90 90 90 耐光性試驗後             89 89 89 89 89 89 霧度 初始             1 1 1 1 1 1 耐熱耐濕試驗後             1 1 1 1 1 1 耐光性試驗後             2 1 1 1 1 1 表面電阻率                3.1 3.8 3.4 3.2 3.8 3.8 鉛筆硬度試驗                4H 4H 4H 4H 4H 4H 耐熱耐濕試驗 發泡             變白             耐光性試驗 黃變Δb*             4.1 4.8 5.1 5.3 4.8 4.8 [表1-2]    鉛筆硬度 透濕度 酸值 羥值 實施例7 實施例8 實施例9 實施例10 實施例11 實施例12 實施例13 導電層 格子間距 30 μm                   45 μm                               100 μm                               線寬 0.8 μm                2.3 μm                               線厚 0.5 μm                1.6 μm                               金屬種 Ag                Cu                               保護層 PET 厚度125 μm F 4.8                3H                         75 F 8.0                            50 F 12                            3H 4.8                         38 F 16                         25 F 24                            PP 50 B 4.5                            LDPE 50 4B 10                            接著層 接著劑 X313-295S-14       0.8 115                      2980       0.5 95          2006HE       30 10                      2137KH       10 8.0                      1604N       45 6.6                   1502C       0.1 8.8                   2147       4.0 32                   交聯劑 L-45K                E-AX                               評價 接著力 初始             10.4 19.3 11.1 7.6 10.4 10.4 10.4 耐熱耐濕試驗後             12.6 22.7 10.1 14.6 12.6 12.6 12.6 初始比             1.2 1.2 0.9 1.9 1.2 1.2 1.2 電波反射性 初始             耐熱耐濕試驗後             耐光性試驗後             穿透率 初始             90 90 88 90 90 90 78 耐熱耐濕試驗後             90 90 88 89 90 90 78 耐光性試驗後             89 87 85 86 89 89 78 霧度 初始             1 1 8 1 1 1 5 耐熱耐濕試驗後             1 1 8 8 1 1 5 耐光性試驗後             1 4 24 3 1 1 5 表面電阻率                3.8 3.5 3.6 3.7 3.8 3.8 0.7 鉛筆硬度試驗                4H 4H 4H 4H 4H 4H 4H 耐熱耐濕試驗 發泡             變白             耐光性試驗 黃變Δb*             4.8 5.7 10.4 5.3 4.8 4.8 2.3 [表2]    鉛筆硬度 透濕度 酸值 羥值 比較例1 比較例2 比較例3 比較例4 比較例5 比較例6 比較例7 比較例8 導電層 格子間距 30 μm                45 μm                                  100 μm                                     線寬 0.8 μm             2.3 μm                                     線厚 0.5 μm             1.6 μm                                     金屬種 Ag                   Cu                                     保護層 PET 厚度125 μm F 4.8                               3H                               75 F 8.0                               50 F 12                               3H 4.8                               38 F 16                         25 F 24                         PP 50 B 4.5                            LDPE 50 4B 10                            接著層 接著劑 X313-295S-14       0.8 115                         2980       0.5 95       2006HE       30 10                         2137KH       10 8.0                         1604N       45 6.6                         1502C       0.1 8.8                         2147       4.0 32                         交聯劑 L-45K                   E-AX                                     評價 接著力 初始             - - 10.4 10.4 10.4 10.4 10.4 10.4 耐熱耐濕試驗後             - - 12.6 12.6 12.6 12.6 12.6 12.6 初始比             - - 1.2 1.2 1.2 1.2 1.2 1.2 電波反射性 初始             × × × × × × × × 耐熱耐濕試驗後             × × × × × × × × 耐光性試驗後             × × × × × × × × 穿透率 初始             90 90 90 90 90 90 90 90 耐熱耐濕試驗後             - - - - - - - - 耐光性試驗後             - - - - - - - - 霧度 初始             - - - - - - - - 耐熱耐濕試驗後             - - - - - - - - 耐光性試驗後             - - - - - - - - 表面電阻率                214 221 - - - - - - 鉛筆硬度試驗                6B 6B B B B B 2B 5B 耐熱耐濕試驗 發泡             - - 變白             - - 耐光性試驗 黃變Δb*             - - - - - - - - (Test Results) The test results of the embodiment are shown in Table 1-1 and Table 1-2, and the test results of the comparative example are shown in Table 2. [Table 1-1] Pencil hardness Moisture permeability Acid value Hydroxyl value Embodiment 1 Embodiment 2 Embodiment 3 Embodiment 4 Embodiment 5 Embodiment 6 Conductive layer Grid spacing 30 μm 45 μm 100 μm Line width 0.8 μm 2.3 μm Line Thickness 0.5 μm 1.6 μm Metal Type Ag Cu Protective layer PET Thickness: 125 μm F 4.8 3H 75 F 8.0 50 F 12 3H 4.8 38 F 16 25 F twenty four PP 50 B 4.5 LDPE 50 4B 10 Next layer Follow-up agent X313-295S-14 0.8 115 2980 0.5 95 2006HE 30 10 2137KH 10 8.0 1604N 45 6.6 1502C 0.1 8.8 2147 4.0 32 Crosslinking agent L-45K E-AX Reviews Follow-up initial 12.8 10.4 15.3 6.1 10.4 10.4 After heat and moisture resistance test 24.5 12.6 14.8 13.1 12.6 12.6 Initial ratio 1.9 1.2 1.0 2.1 1.2 1.2 Radio wave reflectivity initial After heat and moisture resistance test After light fastness test Penetration initial 90 90 90 90 90 90 After heat and moisture resistance test 90 90 90 90 90 90 After light fastness test 89 89 89 89 89 89 Fog initial 1 1 1 1 1 1 After heat and moisture resistance test 1 1 1 1 1 1 After light fastness test 2 1 1 1 1 1 Surface resistivity 3.1 3.8 3.4 3.2 3.8 3.8 Pencil hardness test 4H 4H 4H 4H 4H 4H Heat and moisture resistance test Foaming without without without without without without Whitening without without without without without without Light fastness test Yellowing Δb* 4.1 4.8 5.1 5.3 4.8 4.8 [Table 1-2] Pencil hardness Moisture permeability Acid value Hydroxyl value Embodiment 7 Embodiment 8 Embodiment 9 Embodiment 10 Embodiment 11 Embodiment 12 Embodiment 13 Conductive layer Grid spacing 30 μm 45 μm 100 μm Line width 0.8 μm 2.3 μm Line Thickness 0.5 μm 1.6 μm Metal Type Ag Cu Protective layer PET Thickness: 125 μm F 4.8 3H 75 F 8.0 50 F 12 3H 4.8 38 F 16 25 F twenty four PP 50 B 4.5 LDPE 50 4B 10 Next layer Follow-up agent X313-295S-14 0.8 115 2980 0.5 95 2006HE 30 10 2137KH 10 8.0 1604N 45 6.6 1502C 0.1 8.8 2147 4.0 32 Crosslinking agent L-45K E-AX Reviews Follow-up initial 10.4 19.3 11.1 7.6 10.4 10.4 10.4 After heat and moisture resistance test 12.6 22.7 10.1 14.6 12.6 12.6 12.6 Initial ratio 1.2 1.2 0.9 1.9 1.2 1.2 1.2 Radio wave reflectivity initial After heat and moisture resistance test After light fastness test Penetration initial 90 90 88 90 90 90 78 After heat and moisture resistance test 90 90 88 89 90 90 78 After light fastness test 89 87 85 86 89 89 78 Fog initial 1 1 8 1 1 1 5 After heat and moisture resistance test 1 1 8 8 1 1 5 After light fastness test 1 4 twenty four 3 1 1 5 Surface resistivity 3.8 3.5 3.6 3.7 3.8 3.8 0.7 Pencil hardness test 4H 4H 4H 4H 4H 4H 4H Heat and moisture resistance test Foaming without without without without without without without Whitening without without without without without without without Light fastness test Yellowing Δb* 4.8 5.7 10.4 5.3 4.8 4.8 2.3 [Table 2] Pencil hardness Moisture permeability Acid value Hydroxyl value Comparison Example 1 Comparison Example 2 Comparison Example 3 Comparison Example 4 Comparison Example 5 Comparative Example 6 Comparison Example 7 Comparative Example 8 Conductive layer Grid spacing 30 μm 45 μm 100 μm Line width 0.8 μm 2.3 μm Line Thickness 0.5 μm 1.6 μm Metal Type Ag Cu Protective layer PET Thickness: 125 μm F 4.8 3H 75 F 8.0 50 F 12 3H 4.8 38 F 16 25 F twenty four PP 50 B 4.5 LDPE 50 4B 10 Next layer Follow-up agent X313-295S-14 0.8 115 2980 0.5 95 2006HE 30 10 2137KH 10 8.0 1604N 45 6.6 1502C 0.1 8.8 2147 4.0 32 Crosslinking agent L-45K E-AX Reviews Follow-up initial - - 10.4 10.4 10.4 10.4 10.4 10.4 After heat and moisture resistance test - - 12.6 12.6 12.6 12.6 12.6 12.6 Initial ratio - - 1.2 1.2 1.2 1.2 1.2 1.2 Radio wave reflectivity initial × × × × × × × × After heat and moisture resistance test × × × × × × × × After light fastness test × × × × × × × × Penetration initial 90 90 90 90 90 90 90 90 After heat and moisture resistance test - - - - - - - - After light fastness test - - - - - - - - Fog initial - - - - - - - - After heat and moisture resistance test - - - - - - - - After light fastness test - - - - - - - - Surface resistivity 214 221 - - - - - - Pencil hardness test 6B 6B B B B B 2B 5B Heat and moisture resistance test Foaming - - without without without without without without Whitening - - without without without without without without Light fastness test Yellowing Δb* - - - - - - - -

自表1-1、表1-2、表2亦可知,實施例1~13之對試驗片之鉛筆硬度試驗為「4H」,相對於此,比較例1~8為「6B」「B」「2B」「5B」。此時,實施例1~13之電波反射性之評價為「◎」,相對於此,比較例1~8之電波反射性之評價為「×」。As can be seen from Table 1-1, Table 1-2, and Table 2, the pencil hardness test of the test piece of Examples 1 to 13 is "4H", while that of Comparative Examples 1 to 8 is "6B", "B", "2B", and "5B". At this time, the evaluation of the radio wave reflectivity of Examples 1 to 13 is "◎", while that of Comparative Examples 1 to 8 is "×".

自該結果可知電波反射性之評價根據保護層之硬度而定,因此可知為了將電波反射性保持得良好,亦需要選定適當之保護層之硬度。又,關於比較例1、2,由於表面電阻率顯示較高之值,且電波反射性為「×」,故而於表面電阻率顯示較高之值之情形時,可知保護層發生剝離、或變形、或損傷,於該情形時,亦可知電波反射性變差。From this result, it can be seen that the evaluation of radio wave reflectivity depends on the hardness of the protective layer. Therefore, it can be seen that in order to maintain good radio wave reflectivity, it is also necessary to select an appropriate hardness of the protective layer. In addition, regarding Comparative Examples 1 and 2, since the surface resistivity shows a higher value and the radio wave reflectivity is "×", when the surface resistivity shows a higher value, it can be seen that the protective layer has peeled off, deformed, or damaged. In this case, it can also be seen that the radio wave reflectivity has deteriorated.

總而言之,可知實施例1~13由於鉛筆硬度試驗為「F」以上,故而能夠保護導電體,並且亦可無損電波反射性,可獲得具有實用性之電波反射性。In summary, it can be seen that Examples 1 to 13 can protect the conductor without damaging the radio wave reflectivity because the pencil hardness test is "F" or above, and thus can obtain practical radio wave reflectivity.

又,實施例1~13中,確認到耐熱耐濕試驗後及耐光性試驗之後,電波反射性之評價均為「◎」,無損電波反射性。又,確認到於該等試驗後,霧度小於30%,總光線穿透率為70%以上,可保持透明。進而,實施例1~13中,確認到耐光性試驗後之黃變度為15以下,未較嚴重地進行變色,而不易發生劣化。In Examples 1 to 13, the radio wave reflectivity was evaluated as "◎" after the heat and moisture resistance test and the light resistance test, and the radio wave reflectivity was not impaired. In addition, after the tests, the haze was less than 30%, the total light transmittance was 70% or more, and transparency was maintained. Furthermore, in Examples 1 to 13, the yellowing degree after the light resistance test was less than 15, and the color was not seriously changed, and it was not easy to deteriorate.

<評價試驗B>  製作實施例21~26、比較例21作為電波反射體11,關於該實施例21~26與比較例1,對黃色指數之差、耐熱耐濕試驗時之表面電阻率之變化率r、反射強度之差進行評價試驗。但是,本發明之電波反射體11不限於實施例21~26。<Evaluation Test B> Examples 21 to 26 and Comparative Example 21 were prepared as radio wave reflectors 11, and the difference in yellowness index, the rate of change r of surface resistivity during heat and moisture resistance tests, and the difference in reflection intensity between Examples 21 to 26 and Comparative Example 1 were evaluated. However, the radio wave reflector 11 of the present invention is not limited to Examples 21 to 26.

(實施例及比較例之說明)  (實施例21)  作為實施例21而製成之電波反射體11係具有與圖2~圖4所示之實施方式相同之構成之電波反射體11。電波反射體11之平面形狀為正方形,將一邊之長度L10設為20 cm,將電波反射體11之厚度L1設為250 μm。(Description of embodiments and comparative examples) (Embodiment 21) The radio wave reflector 11 manufactured as Embodiment 21 is a radio wave reflector 11 having the same structure as the embodiments shown in Figures 2 to 4. The plane shape of the radio wave reflector 11 is a square, the length L10 of one side is set to 20 cm, and the thickness L1 of the radio wave reflector 11 is set to 250 μm.

電波反射體11於3 GHz以上300 GHz以下之頻帶中,電波之反射強度為-30 dB以上。又,電波反射體11於反射3 GHz以上300 GHz以下之頻率之入射波時之電波之反射強度之最大值(以下,亦稱為「電波反射強度之最大值」)為-20 dB。The radio wave reflection intensity of the radio wave reflector 11 in the frequency band of 3 GHz to 300 GHz is not less than -30 dB. Furthermore, the maximum value of the radio wave reflection intensity when the radio wave reflector 11 reflects incident waves of frequencies of 3 GHz to 300 GHz (hereinafter also referred to as "the maximum value of the radio wave reflection intensity") is -20 dB.

使用由PET所構成之合成樹脂材料片(TORAY公司製造,Lumirror 50T60)作為基材13,將基材13之厚度L2設為50 μm。A synthetic resin material sheet made of PET (manufactured by TORAY, Lumirror 50T60) was used as the substrate 13, and the thickness L2 of the substrate 13 was set to 50 μm.

導電層16之導電體12係由銀(Ag)所構成之線狀金屬薄膜,將厚度(膜厚)L3設為500 nm,將線寬L6設為0.5 μm,將相鄰之導電體12之間之長度L7設為60 μm。導電層16之表面電阻率為1.7 Ω/□,導電體被覆率為3.3%。將積層體18之基材13之端緣13a(即,保護層15之端緣)與導電體12之間之距離L11設為10 mm。The conductor 12 of the conductive layer 16 is a linear metal thin film composed of silver (Ag), and the thickness (film thickness) L3 is set to 500 nm, the line width L6 is set to 0.5 μm, and the length L7 between adjacent conductors 12 is set to 60 μm. The surface resistivity of the conductive layer 16 is 1.7 Ω/□, and the conductor coverage is 3.3%. The distance L11 between the end 13a of the substrate 13 of the laminate 18 (i.e., the end of the protective layer 15) and the conductor 12 is set to 10 mm.

使用橡膠系接著劑作為接著層14。詳細而言,接著層14係向具備冷凝管、氮氣導入管、溫度計、滴加漏斗及攪拌裝置之反應容器中,添加橡膠系聚合物(苯乙烯-(乙烯-丙烯)-苯乙烯型嵌段共聚物50質量%與苯乙烯-(乙烯-丙烯)型嵌段共聚物50質量%之混合物,苯乙烯含有率15%,重量平均分子量13萬)100重量份、合成樹脂(三井化學公司製造,FMR-0150)40重量份、軟化劑(JX日礦日石能源公司製造,LV-100)20重量份、抗氧化劑(ADEKA公司製造,Adekastab AO-330)0.5重量份及甲苯150重量份,並於40℃攪拌5小時而獲得者。將接著層14之厚度L4設為150 μm。接著層14之介電損耗正切為0.04。A rubber adhesive is used as the adhesive layer 14. Specifically, the next layer 14 is obtained by adding 100 parts by weight of a rubber polymer (a mixture of 50% by weight of styrene-(ethylene-propylene)-styrene type block copolymer and 50% by weight of styrene-(ethylene-propylene) type block copolymer, 15% by weight of styrene content, and weight average molecular weight of 130,000), 40 parts by weight of a synthetic resin (FMR-0150 manufactured by Mitsui Chemicals, Inc.), 20 parts by weight of a softener (LV-100 manufactured by JX Nippon Mining & Petrochemicals, Ltd.), 0.5 parts by weight of an antioxidant (Adekastab AO-330 manufactured by ADEKA Corporation), and 150 parts by weight of toluene to a reaction vessel equipped with a condenser, a nitrogen inlet tube, a thermometer, a dropping funnel, and a stirring device, and stirring at 40°C for 5 hours. The thickness L4 of the bonding layer 14 is set to 150 μm. The dielectric loss tangent of the bonding layer 14 is set to 0.04.

使用由PET所構成之合成樹脂製片(TORAY公司製造,Lumirror 50T60)作為保護層15。將保護層15之厚度L5設為50 μm。A synthetic resin sheet made of PET (manufactured by TORAY, Lumirror 50T60) was used as the protective layer 15. The thickness L5 of the protective layer 15 was set to 50 μm.

實施例21中未設置有密封材17。再者,電波反射體11之厚度L1、導電體12之厚度L3、基材13之厚度L2、接著層14之厚度L4、及保護層15之厚度L5係藉由測定任意複數個部位,並計算出所獲得之測定值之平均值而求出。於測定厚度L1~L5時,例如使用了反射率分光式膜厚測定器(例如FILMETRICS股份有限公司製造,F3-CS-NIR)作為測量器。In Example 21, the sealing material 17 is not provided. Furthermore, the thickness L1 of the radio wave reflector 11, the thickness L3 of the conductor 12, the thickness L2 of the substrate 13, the thickness L4 of the bonding layer 14, and the thickness L5 of the protective layer 15 are obtained by measuring any plurality of locations and calculating the average value of the obtained measured values. When measuring the thicknesses L1 to L5, for example, a reflectivity spectroscopic film thickness measuring device (for example, F3-CS-NIR manufactured by FILMETRICS Co., Ltd.) is used as a measuring device.

對實施例21之電波反射體11之製造方法進行說明。首先,進行導電體12在基材13上之形成。於具有作為金屬層足夠之強度之5~200 μm厚度之銅箔之一表面,藉由電解或無電解鍍覆等方法形成0.01~3 μm之核心層。然後,於核心層之表面,藉由電解或無電解鍍覆等方法形成特定之配置圖案之導電體12。繼而,以基材13覆蓋導電體12之全部。基材13上預先塗佈有黏著劑。然後,蝕刻去除銅箔及核心層。藉此,將導電體12形成於基材13上。The manufacturing method of the radio wave reflector 11 of Example 21 is explained. First, the conductor 12 is formed on the substrate 13. On one surface of a copper foil with a thickness of 5 to 200 μm having sufficient strength as a metal layer, a core layer of 0.01 to 3 μm is formed by electrolysis or electroless plating. Then, on the surface of the core layer, a conductor 12 with a specific configuration pattern is formed by electrolysis or electroless plating. Then, the entire conductor 12 is covered with the substrate 13. An adhesive is pre-coated on the substrate 13. Then, the copper foil and the core layer are etched away. In this way, the conductor 12 is formed on the substrate 13.

然後,利用接著層14將保護層15隔著導電體12安裝於與基材13相反側。使用接著層14,以氣泡不進入之方式將保護層15貼附於基材13之導電體12上。藉此製造電波反射體11。Then, the protective layer 15 is installed on the opposite side of the substrate 13 via the conductor 12 using the adhesive layer 14. The protective layer 15 is attached to the conductor 12 of the substrate 13 using the adhesive layer 14 so that air bubbles do not enter. In this way, the radio wave reflector 11 is manufactured.

(實施例22)  作為實施例22而製成之電波反射體11與實施例21之不同之處在於積層體18之基材13之端緣與導電體12之間之距離L11,將距離L11設為5 mm。其他構成與實施例21相同。(Example 22) The difference between the radio wave reflector 11 manufactured as Example 22 and Example 21 is that the distance L11 between the edge of the substrate 13 of the laminate 18 and the conductor 12 is set to 5 mm. The other structures are the same as those of Example 21.

(實施例23)  作為實施例23而製成之電波反射體11與實施例21、實施例22不同,係具有與圖7所示之實施方式相同之構成之電波反射體11。於積層體18之周圍設置有密封材17,密封材17自積層體18突出之長度(密封材17之寬度)L12為5 mm。作為密封材17,使用了作為聚矽氧系樹脂之SEKISUI FULLER股份有限公司之SEKISUI silicon sealant Clear(型號SSBCL-333)。積層體18之端緣與導電體12之間之距離L11為0。導電體12位於積層體18之基材13之端緣。電波反射體11之一邊之長度L10為20.1 cm。其他構成與實施例21相同。(Example 23) The radio wave reflector 11 manufactured as Example 23 is different from Examples 21 and 22 in that it has the same structure as the embodiment shown in FIG7 . A sealing material 17 is provided around the laminate 18, and the length L12 of the sealing material 17 protruding from the laminate 18 (the width of the sealing material 17) is 5 mm. As the sealing material 17, SEKISUI silicon sealant Clear (model SSBCL-333) of SEKISUI FULLER Co., Ltd., which is a polysilicone resin, is used. The distance L11 between the end edge of the laminate 18 and the conductor 12 is 0. The conductor 12 is located at the end edge of the substrate 13 of the laminate 18. The length L10 of one side of the radio wave reflector 11 is 20.1 cm. The other structures are the same as those in Example 21.

(實施例24)  作為實施例24波而製成之電反射體11係與實施例23同樣地具有與圖7所示之實施方式相同之構成之電波反射體11。與實施例23不同之點在於密封材17,使用了丙烯酸系樹脂。丙烯酸系樹脂係PMMA(聚甲基丙烯酸甲酯)。其他構成與實施例23相同。(Example 24) The electric wave reflector 11 made as Example 24 is a radio wave reflector 11 having the same structure as the embodiment shown in Figure 7 as Example 23. The difference from Example 23 is that the sealing material 17 uses an acrylic resin. The acrylic resin is PMMA (polymethyl methacrylate). The other structures are the same as Example 23.

(實施例25)  作為實施例25而製成之電波反射體11係與實施例23同樣地具有與圖7所示之實施方式相同之構成之電波反射體11。與實施例23不同之點在於密封材17,使用了環氧系樹脂。環氧系樹脂包含Mitsubishi Chemical股份有限公司之jER828(環氧當量190)作為環氧主劑,且包含Mitsubishi Chemical股份有限公司之JERCURE YN100(胺值350 KOHmg/g,胺當量80.1)作為硬化劑。硬化時間為3天,硬化溫度為40度。其他構成與實施例23相同。(Example 25) The radio wave reflector 11 manufactured as Example 25 is a radio wave reflector 11 having the same structure as the embodiment shown in Figure 7 as Example 23. The difference from Example 23 is that an epoxy resin is used as the sealing material 17. The epoxy resin contains jER828 (epoxy equivalent 190) of Mitsubishi Chemical Co., Ltd. as the epoxy main agent, and contains JERCURE YN100 (amine value 350 KOHmg/g, amine equivalent 80.1) of Mitsubishi Chemical Co., Ltd. as the curing agent. The curing time is 3 days and the curing temperature is 40 degrees. The other structures are the same as Example 23.

(實施例26)  作為實施例26而製成之電波反射體11與實施例21之不同之處在於積層體18之基材13之端緣13a與導電體12之間之距離L11,將距離L11設為1 mm。其他構成與實施例21相同。(Example 26) The difference between the radio wave reflector 11 manufactured as Example 26 and Example 21 is that the distance L11 between the edge 13a of the substrate 13 of the laminate 18 and the conductor 12 is set to 1 mm. The other structures are the same as those of Example 21.

(比較例21)  作為比較例21而製成之電波反射體11與實施例21之不同之處在於以下方面。積層體18之基材13之端緣與導電體12之間之距離L11為0,導電體12沿著積層體18之基材13之端緣而存在。其他構成與實施例21相同。(Comparative Example 21) The radio wave reflector 11 manufactured as Comparative Example 21 is different from Example 21 in the following aspects. The distance L11 between the edge of the substrate 13 of the laminate 18 and the conductor 12 is 0, and the conductor 12 exists along the edge of the substrate 13 of the laminate 18. The other structures are the same as Example 21.

(測定方法及計算方法)  (黃色指數之測定及黃色指數之差之計算)  黃色指數之差係藉由以下方法而計算出。首先,對作為測定對象物之實施例21~26、比較例1(以下,亦稱為「試樣」)測定黃色指數(YI0)。繼而,對試樣實施耐熱耐濕試驗,對耐熱耐濕試驗後之試樣測定黃色指數(YI)。然後,自耐熱耐濕試驗後之黃色指數(YI)減去耐熱耐濕試驗前之黃色指數(YI0),求出黃色指數之差。即,黃色指數之差=YI-YI0。黃色指數之測定係藉由依據JISK7373之方法而進行。耐熱耐濕試驗係進行下述之試驗:於調整為溫度60℃、濕度95%RH(相對濕度為95%)之恆溫恆濕槽內將電波反射體11放置500小時後,將電波反射體11自恆溫恆濕槽取出,於常溫靜置4小時。(Measurement method and calculation method)  (Measurement of yellowness index and calculation of difference in yellowness index)  The difference in yellowness index is calculated by the following method. First, the yellowness index (YI0) of Examples 21 to 26 and Comparison Example 1 (hereinafter also referred to as "samples") as the measurement objects is measured. Then, a heat and moisture resistance test is performed on the samples, and the yellowness index (YI) of the samples after the heat and moisture resistance test is measured. Then, the difference in yellowness index is calculated by subtracting the yellowness index (YI0) before the heat and moisture resistance test from the yellowness index (YI) after the heat and moisture resistance test. That is, the difference in yellowness index = YI - YI0. The measurement of the yellowness index is performed by a method in accordance with JIS K7373. The heat and humidity resistance test is conducted as follows: after placing the radio wave reflector 11 in a constant temperature and humidity chamber adjusted to a temperature of 60°C and a humidity of 95%RH (relative humidity of 95%) for 500 hours, the radio wave reflector 11 is taken out of the constant temperature and humidity chamber and left at room temperature for 4 hours.

(表面電阻率之測定)  表面電阻率係對於耐熱耐濕試驗前之試樣,在試樣之製造時形成導電層16且導電層16露出之狀態下,使測定端子接觸導電層16之表面,依據JISK6911藉由四端子法進行測定。又,對於耐熱耐濕試驗後之試樣,由於導電層16未露出,故而使用非接觸式電阻測定器(Napson股份有限公司製造,商品名:EC-80P、或其同等品)藉由渦電流法而測定。(Measurement of surface resistivity)  The surface resistivity is measured by the four-terminal method in accordance with JIS K6911 with the measuring terminals in contact with the surface of the conductive layer 16 in a state where the conductive layer 16 is exposed and formed during the manufacture of the sample before the heat and moisture resistance test. In addition, for the sample after the heat and moisture resistance test, since the conductive layer 16 is not exposed, a non-contact resistance meter (manufactured by Napson Co., Ltd., trade name: EC-80P or its equivalent) is used to measure the surface resistivity.

(耐熱耐濕試驗時之表面電阻率之變化率之計算)  耐熱耐濕試驗時之表面電阻率之變化率r係藉由以下方法而計算出。首先,對耐熱耐濕試驗前之試樣測定表面電阻率。繼而,對試樣實施耐熱耐濕試驗,對耐熱耐濕試驗後之試樣測定表面電阻率。然後,根據耐熱耐濕試驗時之表面電阻率之變化率r=(耐熱耐濕試驗前之表面電阻率r1-耐熱耐濕試驗後之表面電阻率r2)/耐熱耐濕試驗前之表面電阻率r1×100之式而計算出耐熱耐濕試驗時之表面電阻率之變化率。將導電層16之導電體12之表面電阻率作為電波反射體11之表面電阻率。(Calculation of the rate of change of surface resistivity during the heat and humidity test)  The rate of change r of surface resistivity during the heat and humidity test is calculated by the following method. First, the surface resistivity of the sample before the heat and humidity test is measured. Then, the heat and humidity test is performed on the sample, and the surface resistivity of the sample after the heat and humidity test is measured. Then, the rate of change of surface resistivity during the heat and humidity test is calculated according to the formula: rate of change r of surface resistivity during the heat and humidity test = (surface resistivity r1 before the heat and humidity test - surface resistivity r2 after the heat and humidity test) / surface resistivity r1 before the heat and humidity test × 100. The surface resistivity of the conductor 12 of the conductive layer 16 is used as the surface resistivity of the radio wave reflector 11.

將表面電阻率之變化率小於10%之情況評價為「◎」,將表面電阻率之變化率為10%以上且小於20%之情況評價為「○」,將表面電阻率之變化率為20%以上之情況評價為「×」。於表面電阻率之變化率為「◎」、「○」之情形時,意指表面電阻率在耐熱耐濕試驗前後沒有較大變化,而在使用上具有實用性。The case where the change rate of surface resistivity is less than 10% is evaluated as "◎", the case where the change rate of surface resistivity is more than 10% and less than 20% is evaluated as "○", and the case where the change rate of surface resistivity is more than 20% is evaluated as "×". In the case where the change rate of surface resistivity is "◎" or "○", it means that the surface resistivity does not change significantly before and after the heat and moisture resistance test, and is practical in use.

(反射強度之測定)  試樣之反射波之強度與反射強度成為-30 dB以上之頻帶之測定係按照JISR1679:2007中所記載之反射量之測定方法而進行。將試樣於平坦之狀態下配置於試樣台座,根據電波之入射角θ1、反射角θ2(θ1、θ2=45度)配置發送天線及接收天線。將試樣與接收天線之間之距離及試樣與發送天線之間之距離設為1 m。自發送天線輸出使頻率自3 GHz變化至300 GHz之電波(3 GHz之電波、5 GHz之電波、30 GHz以上係以30 GHz為間隔變化至300 GHz(即30、60、90、120・・・300 GHz)之電波),測定與電波對應之反射量(反射強度)。又,求出反射量成為-30 dB以上之頻帶。(Measurement of reflection intensity) The intensity of the reflected wave of the sample and the frequency band where the reflection intensity becomes -30 dB or more are measured in accordance with the reflection quantity measurement method described in JISR1679:2007. The sample is placed on the sample stand in a flat state, and the transmitting antenna and the receiving antenna are arranged according to the incident angle θ1 and the reflection angle θ2 of the radio wave (θ1, θ2 = 45 degrees). The distance between the sample and the receiving antenna and the distance between the sample and the transmitting antenna are set to 1 m. Output radio waves with frequencies varying from 3 GHz to 300 GHz (3 GHz radio waves, 5 GHz radio waves, and above 30 GHz radio waves varying from 30 GHz to 300 GHz (i.e. 30, 60, 90, 120...300 GHz)) from the transmitting antenna, and measure the amount of reflection (reflection intensity) corresponding to the radio waves. Also, find the frequency band where the reflection amount becomes -30 dB or more.

首先,將基準金屬板(鋁A1050板,厚度3 mm)設置於試樣台座,使用純量網路分析儀測定接收位準並進行記錄。此時,利用純量網路分析儀將接收天線與發送天線之同軸纜線直接連結,將各頻率之信號位準校正為0。然後,再次構成裝置,進行測定。將基準金屬板自試樣台座取下,將試樣設置於試樣台座,測定接收位準並進行記錄。自所測得之接收位準減去基準金屬板之接收位準,求出測定對象電波反射體11之正規反射方向之反射量。對於各試樣反覆進行相同測定。再者,於電波之頻率為10 GHz以下之情形時,考慮到矩形號角天線之第一菲涅耳半徑,而適當地使用毫米波透鏡對試樣照射平面波。First, place a reference metal plate (aluminum A1050 plate, 3 mm thick) on the sample stand, and use a pure network analyzer to measure the receiving level and record it. At this time, use the pure network analyzer to directly connect the coaxial cable of the receiving antenna and the transmitting antenna, and calibrate the signal level of each frequency to 0. Then, reassemble the device and perform the measurement. Remove the reference metal plate from the sample stand, place the sample on the sample stand, measure the receiving level and record it. Subtract the receiving level of the reference metal plate from the measured receiving level to calculate the reflection amount in the regular reflection direction of the measured object radio wave reflector 11. Repeat the same measurement for each sample. Furthermore, when the frequency of radio waves is below 10 GHz, a millimeter wave lens is appropriately used to illuminate the sample with a plane wave in consideration of the first Fresnel radius of the rectangular horn antenna.

(反射強度之差)  關於耐熱耐濕試驗前後之電波反射體11,求出使頻率自3 GHz變化至300 GHz之電波(3 GHz之電波、5 GHz之電波、30 GHz以上係以30 GHz為間隔變化至300 GHz(即30、60、90、120・・・300 GHz))之反射強度。繼而,針對各頻率求出耐熱耐濕試驗前後之電波反射強度之差(絕對值)。將差之最大值示於表3中。若差(絕對值)小於2,則意味著電波反射體11之反射強度不降低,而在使用上具有實用性。(Difference in reflection intensity)  Regarding the radio wave reflector 11 before and after the heat and moisture resistance test, the reflection intensity of radio waves with a frequency changed from 3 GHz to 300 GHz (3 GHz radio waves, 5 GHz radio waves, and above 30 GHz are changed to 300 GHz at intervals of 30 GHz (i.e., 30, 60, 90, 120...300 GHz)) is determined. Then, the difference (absolute value) in radio wave reflection intensity before and after the heat and moisture resistance test is determined for each frequency. The maximum value of the difference is shown in Table 3. If the difference (absolute value) is less than 2, it means that the reflection intensity of the radio wave reflector 11 does not decrease, and it is practical in use.

(試驗結果)  於表3中示出試驗結果。實施例21、實施例22中,導電體12形成於與積層體18之基材13之端緣13a分別相距10 mm、5 mm之內側,耐熱耐濕試驗前後之黃色指數之差分別較小,為0.4、0.6。又,表面電阻率之變化率評價為「◎」。進而,於3 GHz以上300 GHz以下之全部頻帶中,實施例21之耐熱耐濕試驗前後之電波反射體11之反射強度為-20 dB。反射強度之差為零,反射強度完全未降低。如此,於實施例21、實施例22中,耐熱耐濕試驗前後未發現劣化。(Test results) The test results are shown in Table 3. In Example 21 and Example 22, the conductor 12 is formed on the inner side of the end edge 13a of the substrate 13 of the laminate 18 at a distance of 10 mm and 5 mm respectively, and the difference in the yellowness index before and after the heat and moisture resistance test is relatively small, which is 0.4 and 0.6 respectively. In addition, the change rate of the surface resistivity is evaluated as "◎". Furthermore, in all frequency bands above 3 GHz and below 300 GHz, the reflection intensity of the radio wave reflector 11 before and after the heat and moisture resistance test of Example 21 is -20 dB. The difference in reflection intensity is zero, and the reflection intensity is not reduced at all. In this way, in Example 21 and Example 22, no deterioration was found before and after the heat and moisture resistance test.

實施例26中,導電體12形成於與積層體18之端緣相距1 mm之內側,黃色指數之差為3.2,大於實施例21。但是,表面電阻率之變化率評價為「○」。於3 GHz以上300 GHz以下之頻帶中之頻率27.5 GHz,耐熱耐濕試驗前之電波反射體11之反射強度為-20 dB,耐熱耐濕試驗後之反射強度為-21 dB,反射強度之差為1,反射強度稍微降低,但仍在使用上具有實用性。In Example 26, the conductor 12 is formed 1 mm inside the edge of the laminate 18, and the difference in yellowness index is 3.2, which is greater than that in Example 21. However, the change rate of surface resistivity is evaluated as "○". At a frequency of 27.5 GHz in the frequency band between 3 GHz and 300 GHz, the reflection intensity of the radio wave reflector 11 before the heat and humidity resistance test is -20 dB, and the reflection intensity after the heat and humidity resistance test is -21 dB, and the difference in reflection intensity is 1. The reflection intensity is slightly reduced, but it is still practical in use.

實施例23~25中,雖然導電體12形成於積層體18之基材13之端緣13a,但導電體12被密封材17覆蓋。實施例23~25中,使用了聚矽氧系樹脂、丙烯酸系樹脂、環氧系樹脂作為密封材17。實施例23~25均黃色指數之差較小,為0.1,且表面電阻率之變化率評價為「◎」。進而,於3 GHz以上300 GHz以下之全部頻帶中,實施例21之耐熱耐濕試驗前後之電波反射體11之反射強度為-20 dB。反射強度之差為零,反射強度完全未降低。In Examples 23 to 25, although the conductor 12 is formed on the edge 13a of the substrate 13 of the laminate 18, the conductor 12 is covered by the sealing material 17. In Examples 23 to 25, silicone resin, acrylic resin, and epoxy resin are used as the sealing material 17. The difference in yellowness index of Examples 23 to 25 is small, which is 0.1, and the change rate of surface resistivity is evaluated as "◎". Furthermore, in all frequency bands above 3 GHz and below 300 GHz, the reflection intensity of the radio wave reflector 11 of Example 21 before and after the heat and humidity resistance test is -20 dB. The difference in reflection intensity is zero, and the reflection intensity is not reduced at all.

相對於此,比較例1中,導電體12形成於積層體18之基材13之端緣13a,且未設置有密封材17,導電體12露出至外部。黃色指數之差較大,為4.0,表面電阻率之變化率評價為「×」。於3 GHz以上300 GHz以下之頻帶中之頻率27.5 GHz,耐熱耐濕試驗前之電波反射體11之反射強度為-20 dB,耐熱耐濕試驗後之反射強度為-25 dB,反射強度之差為5,反射強度大幅度降低。In contrast, in Comparative Example 1, the conductor 12 is formed on the edge 13a of the substrate 13 of the laminate 18, and the sealing material 17 is not provided, so the conductor 12 is exposed to the outside. The difference in the yellow index is large, 4.0, and the surface resistivity change rate is evaluated as "×". At a frequency of 27.5 GHz in the frequency band above 3 GHz and below 300 GHz, the reflection intensity of the radio wave reflector 11 before the heat and humidity resistance test is -20 dB, and the reflection intensity after the heat and humidity resistance test is -25 dB, and the difference in reflection intensity is 5, which means that the reflection intensity is greatly reduced.

[表3]    實施例21 實施例22 實施例23 實施例24 實施例25 實施例26 比較例21 積層體之端緣與導電體之間之距離(mm) 10 5 0 0 0 1 0 密封材之有無 密封材之種類 - - 聚矽氧系 丙烯酸系 環氧系 - - 評價 黃色指數之差 0.4 0.6 0.1 0.1 0.1 3.2 4.0 耐熱耐濕試驗時之表面電阻率之變化率 × 反射強度之差 0 0 0 0 0 1 5 [table 3] Embodiment 21 Embodiment 22 Embodiment 23 Embodiment 24 Embodiment 25 Embodiment 26 Comparative Example 21 Distance between the edge of the laminate and the conductor (mm) 10 5 0 0 0 1 0 Whether there is sealing material without without have have have without without Types of sealing materials - - Polysilicone Acrylic Epoxy series - - Reviews Yellowness Index Difference 0.4 0.6 0.1 0.1 0.1 3.2 4.0 Change rate of surface resistivity during heat and humidity resistance test × Difference in reflection intensity 0 0 0 0 0 1 5

<變化例>  上述實施方式僅為本發明之各種實施方式之一種。實施方式只要可達成本發明之目的,便能夠根據設計等進行各種變更。以下,列舉實施方式之變化例。以下所說明之變化例能夠適當地組合而應用。<Variations> The above-mentioned implementation method is only one of the various implementation methods of the present invention. As long as the purpose of the present invention can be achieved, the implementation method can be variously modified according to the design, etc. The following lists the variations of the implementation method. The variations described below can be appropriately combined and applied.

(1)變化例1  導電層16例如可具有特異材料構造。特異材料構造係將作為介電體之片形狀之導電體12週期性地進行等排列而成者,藉由該週期排列構造而具有負介電常數,反射屬於基於週期間隔而確定之特定頻帶之電波。各導電體12之形狀並無限定,可為上述形狀,例如如圖9所示,各導電體12亦可為正方形。可以導電體12反射3 GHz以上300 GHz以下之頻率之電波之方式,設定一邊之長度L20及相鄰之導電體12之間之間隔L21。於該情形時,導電體12之一邊之長度L20可為0.7 mm以上800 mm以下,間隔L21可為1 μm以上1000 μm以下。導電體12之厚度L3較佳為350 nm(0.35 μm)以下,更佳為100 nm以下,進而更佳為50 nm以下。導電體12之數量係根據基材13之大小(面積)而適當設定。作為一例,導電體12可根據基材13之大小,在基材13上形成縱向2個、橫向2個之合計4個。於該情形時,各導電體12之一邊之長度L20設定為77.460 mm,相鄰之導電體12之間之間隔L21設定為100 μm,厚度L3設定為350 nm(0.35 μm)以下。導電層16並不限於特異材料構造,亦可為金屬奈米線積層膜、多層石墨烯、部分剝離石墨之任一者。(1) Variation 1 The conductive layer 16 may have a special material structure, for example. The special material structure is formed by periodically arranging sheet-shaped conductors 12 as dielectrics. The periodic arrangement structure has a negative dielectric constant and reflects radio waves belonging to a specific frequency band determined based on the periodic interval. The shape of each conductor 12 is not limited and may be the above-mentioned shape. For example, as shown in FIG. 9 , each conductor 12 may also be a square. The length L20 of one side and the interval L21 between adjacent conductors 12 may be set in such a way that the conductor 12 reflects radio waves with a frequency of more than 3 GHz and less than 300 GHz. In this case, the length L20 of one side of the conductor 12 can be greater than 0.7 mm and less than 800 mm, and the interval L21 can be greater than 1 μm and less than 1000 μm. The thickness L3 of the conductor 12 is preferably less than 350 nm (0.35 μm), more preferably less than 100 nm, and further preferably less than 50 nm. The number of conductors 12 is appropriately set according to the size (area) of the substrate 13. As an example, the conductor 12 can be formed on the substrate 13 in a total of 4, 2 in the longitudinal direction and 2 in the transverse direction, depending on the size of the substrate 13. In this case, the length L20 of one side of each conductor 12 is set to 77.460 mm, the interval L21 between adjacent conductors 12 is set to 100 μm, and the thickness L3 is set to less than 350 nm (0.35 μm). The conductive layer 16 is not limited to a special material structure, and can also be any one of metal nanowire laminated film, multi-layer graphene, and partially exfoliated graphite.

(2)變化例2  如圖10所示,電波反射體11可在上下方向積層複數層。例如於導電層16A之上經由接著層14A而接著有其他導電層16B,於導電層16B之上經由接著層14B而接著有保護層15。再者,導電層16A與實施方式同樣地具備基材13與導電體12。導電層16B同樣地具備基材13與導電體12。(2) Variation 2 As shown in FIG. 10 , the radio wave reflector 11 may be stacked in a plurality of layers in the vertical direction. For example, another conductive layer 16B is connected to the conductive layer 16A via the bonding layer 14A, and a protective layer 15 is connected to the conductive layer 16B via the bonding layer 14B. The conductive layer 16A has a substrate 13 and a conductor 12 in the same manner as in the embodiment. The conductive layer 16B has a substrate 13 and a conductor 12 in the same manner.

再者,形成於導電層16之導電體12亦可積層有3層以上。若積層導電體12之數量較多,則反射強度變大,但由於電波反射體11整體之厚度會變厚,故可撓性降低,又,可見光穿透性亦降低。因此,尤其於無需可撓性或透明性之處設置電波反射體11之情形時,可根據使用用途等適當地設定積層數,如使積層數變多等。Furthermore, the number of the conductors 12 formed on the conductive layer 16 may be three or more. If the number of the conductors 12 is increased, the reflection intensity increases, but since the thickness of the radio wave reflector 11 increases, the flexibility decreases, and the visible light transmittance also decreases. Therefore, when the radio wave reflector 11 is provided at a location where flexibility or transparency is not required, the number of layers may be appropriately set according to the intended use, such as increasing the number of layers.

(3)變化例3  導電體12例如亦可為如圖11所示之態樣。導電體12形成為如包含複數個第1包圍部41之第1導電部4、與包含複數個第2包圍部51之第2導電部5重疊之圖案。第1包圍部41與第2包圍部51於投影至與導電層平行之投影面之情形時,不具有彼此共有之部分。(3) Modification 3 The conductor 12 may be in a form as shown in FIG. 11 . The conductor 12 is formed into a pattern in which a first conductive portion 4 including a plurality of first surrounding portions 41 and a second conductive portion 5 including a plurality of second surrounding portions 51 overlap. The first surrounding portion 41 and the second surrounding portion 51 do not have a common portion when projected onto a projection plane parallel to the conductive layer.

第1導電部4中,包圍未形成有導電體12之第1區域R1之第1包圍部41以一定之間距反覆形成。此處,第1導電部4形成為格子狀,亦可形成為五邊形、六邊形、圓形等。In the first conductive portion 4, the first surrounding portion 41 surrounding the first region R1 where the conductive body 12 is not formed is repeatedly formed at a certain interval. Here, the first conductive portion 4 is formed in a lattice shape, but may also be formed in a pentagonal, hexagonal, circular, or the like.

第2導電部5中,包圍作為未形成有導電體12之區域之第4區域R4之第2包圍部51以一定之間距反覆形成。第4區域R4形成為跨及相鄰之複數個第1區域R1。第2導電部5可位於與第1導電部4相同之平面上,亦可位於不同之平面上。即,第2導電部5可相對於第1導電部4導通,亦可不導通。又,相鄰之第2導電部5相互分離,亦可相接。再者,第2導電部5形成為四邊形,亦可形成為五邊形、六邊形等。再者,圖11、下述圖12示出了俯視時之導電體12之配置,未圖示保護層15、接著層14。In the second conductive portion 5, the second surrounding portion 51 surrounding the fourth region R4 as a region where the conductor 12 is not formed is repeatedly formed at a certain interval. The fourth region R4 is formed to span a plurality of adjacent first regions R1. The second conductive portion 5 may be located on the same plane as the first conductive portion 4, or on a different plane. That is, the second conductive portion 5 may be conductive relative to the first conductive portion 4, or may not be conductive. In addition, the adjacent second conductive portions 5 may be separated from each other or may be connected. Furthermore, the second conductive portion 5 is formed into a quadrilateral, or may be formed into a pentagon, a hexagon, etc. Furthermore, FIG. 11 and FIG. 12 described below show the configuration of the conductor 12 when viewed from above, and the protective layer 15 and the bonding layer 14 are not shown.

根據變化例3之態樣之導電體12,能夠提昇電波之擴散性。此處所述之「電波之擴散性」意指正規反射強度、與正規反射之周圍之電波強度之差落在一定範圍內。The conductive body 12 of the modification 3 can improve the radio wave diffusivity. The "radio wave diffusivity" mentioned here means that the difference between the regular reflection intensity and the radio wave intensity around the regular reflection falls within a certain range.

(4)變化例4  導電體12例如可為如圖12所示之態樣。圖12之態樣與圖11之態樣之不同之處在於第2導電部5(第2包圍部51)之形狀,第2包圍部51為圓形。第2包圍部51之中心點配置成與形成為格子狀之第1導電部4之交點重疊,第2包圍部51之直徑與第1導電部4之格子間距相等。即,相鄰之第2包圍部51相互相接。再者,相鄰之第2包圍部51亦可相互分離。其他構成與變化例3相同,因此對所對應之構成標註相同之符號而省略說明。(4) Variation 4 The conductor 12 may be, for example, in the form shown in FIG. 12 . The difference between the form of FIG. 12 and the form of FIG. 11 lies in the shape of the second conductive portion 5 (second surrounding portion 51 ), and the second surrounding portion 51 is circular. The center point of the second surrounding portion 51 is arranged to overlap with the intersection of the first conductive portion 4 formed in a grid shape, and the diameter of the second surrounding portion 51 is equal to the grid spacing of the first conductive portion 4. That is, adjacent second surrounding portions 51 are connected to each other. Furthermore, adjacent second surrounding portions 51 may also be separated from each other. The other structures are the same as those of Variation 3, so the corresponding structures are marked with the same symbols and the description is omitted.

藉由如此具有圓形之第2包圍部51,可使俯視時對於電波反射體11之入射方向對反射強度所產生之影響變小。換言之,於該情形時,不論於俯視時電波自哪個方向入射至電波反射體11,亦可使與入射方向對應之擴散性之變動變小。By having the circular second surrounding portion 51, the effect of the incident direction on the reflection intensity of the radio wave reflector 11 in a plan view can be reduced. In other words, in this case, regardless of the direction from which the radio wave is incident on the radio wave reflector 11 in a plan view, the change in the diffusivity corresponding to the incident direction can be reduced.

(5)變化例5  電波反射體11之導電層16可不具備基材13。於該情形時,導電層16之所有導電體12由接著層14及保護層15支持,於俯視時,導電層16之所有導電體12被接著層14及保護層15覆蓋。再者,於保護層15具有接著性之情形時,亦可僅具備保護層15。換言之,保護層15亦可作為基材13而支持導電體12。(5) Variation 5 The conductive layer 16 of the radio wave reflector 11 may not have the base material 13. In this case, all the conductors 12 of the conductive layer 16 are supported by the bonding layer 14 and the protective layer 15, and when viewed from above, all the conductors 12 of the conductive layer 16 are covered by the bonding layer 14 and the protective layer 15. Furthermore, when the protective layer 15 has adhesion, only the protective layer 15 may be provided. In other words, the protective layer 15 may also serve as the base material 13 to support the conductor 12.

此種電波反射體11係設置成導電體12與設置部位之設置面對向,且導電體12與設置面直接相接、或經由接著層等而相接。導電體12於俯視時被接著層14及保護層15、與設置面覆蓋,導電體12未露出至外部,可預防劣化。The radio wave reflector 11 is arranged such that the conductor 12 faces the installation surface of the installation location, and the conductor 12 is directly in contact with the installation surface or is in contact with the installation surface via a bonding layer, etc. The conductor 12 is covered by the bonding layer 14 and the protective layer 15 and the installation surface in a plan view, and the conductor 12 is not exposed to the outside, thereby preventing deterioration.

(6)其他  上述實施方式中,電波反射體11形成為片狀,但本發明中並不限於此,例如可為板狀、塊狀、球狀、箱狀等形狀。又,電波反射體11之安裝對象並不限於建築材料,亦可為電器、建築構造物、汽車、電車、飛機等。(6) Others In the above-mentioned embodiments, the radio wave reflector 11 is formed into a sheet shape, but the present invention is not limited thereto, and may be in the shape of a plate, a block, a sphere, a box, etc. In addition, the installation object of the radio wave reflector 11 is not limited to building materials, and may also be electrical appliances, building structures, cars, trains, airplanes, etc.

上述實施方式中,電波反射體11於導電層16與保護層15之間具備接著層14,但若保護層15具有自接著力,則亦可無接著層14。又,保護層15亦可藉由相對於導電層16以密封材料來密封外緣部,而不依賴於接著層14進行固定。再者,保護層15未必需要固定於導電層16。In the above embodiment, the radio wave reflector 11 has the bonding layer 14 between the conductive layer 16 and the protective layer 15, but if the protective layer 15 has self-bonding force, the bonding layer 14 may be omitted. In addition, the protective layer 15 may be fixed to the conductive layer 16 by sealing the outer edge with a sealing material without relying on the bonding layer 14. Furthermore, the protective layer 15 does not necessarily need to be fixed to the conductive layer 16.

以上,對本發明之一實施方式進行了說明,但本發明並不限於上述實施方式,能夠於不偏離本發明之主旨之範圍內進行各種變更。作為實施方式而記載或示於圖式中之構成零件之尺寸、材質、形狀、其相對配置等並非旨在將本發明之範圍限定於此,僅為單純之說明例。例如「在某方向」、「沿著某方向」、「平行」、「正交」、「中心」、「同心」或「同軸」等表示相對或絕對配置之表達,不僅嚴格地表示此種配置,亦表示以公差、或能夠獲得相同功能之程度之角度或距離相對地發生了位移之狀態。例如「同一」、「相等」及「均質」等表示事物處於相等狀態之表達,不僅表示嚴格相等之狀態,亦表示存在公差、或能夠獲得相同功能之程度之差的狀態。例如四邊形或圓筒形等表示形狀之表達,不僅在幾何學上表示嚴格意義下之四邊形或圓筒形等形狀,亦表示在能夠獲得相同效果之範圍內包含凹凸部或倒角部等之形狀。「包括」、「含有」、「具備」、「包含」或「具有」一個構成要素之表達,並非將其他構成要素之存在排除在外之排他性表達。One embodiment of the present invention has been described above, but the present invention is not limited to the above-mentioned embodiment, and various changes can be made within the scope of the subject matter of the present invention. The dimensions, materials, shapes, relative configurations, etc. of the components recorded as embodiments or shown in the drawings are not intended to limit the scope of the present invention, but are merely illustrative examples. For example, expressions such as "in a certain direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" that indicate relative or absolute configurations not only strictly indicate such configurations, but also indicate a state in which displacement occurs relative to each other at a tolerance, or at an angle or distance to the extent that the same function can be obtained. For example, expressions such as "same", "equal" and "homogeneous" that indicate that things are in an equal state do not only indicate a state of strict equality, but also indicate a state in which there is a tolerance or a difference in the degree to which the same function can be obtained. For example, expressions such as quadrilateral or cylinder that indicate shapes do not only indicate shapes such as quadrilateral or cylinder in the strict sense of geometry, but also indicate shapes that include concave and convex parts or chamfered parts within the scope of being able to obtain the same effect. The expression "includes", "contains", "has", "includes" or "has" a constituent element is not an exclusive expression that excludes the existence of other constituent elements.

本說明書中,有時使用如「大致平行」、或「大致正交」般伴隨有「大致」之表達。例如,「大致平行」意指實質上「平行」,不僅為嚴格「平行」之狀態,亦意指包含幾度左右之誤差。其他伴隨有「大致」之表達亦同樣如此。In this specification, sometimes, expressions accompanied by "approximately" are used, such as "approximately parallel" or "approximately orthogonal". For example, "approximately parallel" means substantially "parallel", not only the state of strict "parallelism", but also means including errors of several degrees. The same applies to other expressions accompanied by "approximately".

又,本說明書中,使用有如「端部」及「端」等以有無「…部」來加以區分之表達。例如,「端」意指物體之末尾部分,「端部」意指具有包含「端」之一定範圍之區域。若為處於包含端之一定範圍內之點,均視為「端部」。其他伴隨有「…部」之表達亦同樣如此。In addition, in this specification, expressions such as "end" and "end" are distinguished by the presence or absence of "part". For example, "end" means the end of an object, and "end" means a region with a certain range including the "end". Any point within a certain range including the end is considered an "end". The same applies to other expressions accompanied by "part".

11:電波反射體 12:導電體 12a:第1區域(無導電體之區域) 12b:第2區域(無導電體之區域) 12c:第3區域(無導電體之區域) 13:基材 14:接著層 15:保護層 16:導電層 17:密封材 18:積層體11: Radio wave reflector 12: Conductor 12a: First region (region without conductor) 12b: Second region (region without conductor) 12c: Third region (region without conductor) 13: Substrate 14: Adhesive layer 15: Protective layer 16: Conductive layer 17: Sealing material 18: Laminated body

[圖1]係用以說明利用實施方式之電波反射體進行反射之反射波之角度範圍之示意圖。  [圖2]係實施方式之電波反射體之示意剖視圖。  [圖3]之圖3(A)係實施方式之電波反射體之整體之示意平面圖,圖3(B)係(A)之A部分之放大圖。  [圖4]係圖3(A)之C部分之放大圖。  [圖5]之圖5(A)~(E)係表示導電體之配置圖案之變化例之示意平面圖。  [圖6]之圖6(A)係表示實施方式之電波反射體之使用例之說明圖。圖6(B)係表示建築材料在室內之應用例之示意平面圖。  [圖7]之圖7(A)係另一實施方式之電波反射體之整體之示意平面圖,圖7(B)係另一實施方式之電波反射體之一部分之示意剖視圖。  [圖8]係另一實施方式之電波反射體之整體之示意平面圖。  [圖9]係變化例1之電波反射體之示意剖視圖。  [圖10]係變化例2之電波反射體之示意剖視圖。  [圖11]之圖11(A)係變化例3之電波反射體之示意平面圖。圖11(B)係圖11(A)之B部分之放大圖。  [圖12]之圖12(A)係變化例4之電波反射體之示意平面圖。圖12(B)係圖12(A)之B部分之放大圖。[Figure 1] is a schematic diagram for explaining the angle range of the reflected wave reflected by the radio wave reflector of the embodiment.   [Figure 2] is a schematic cross-sectional view of the radio wave reflector of the embodiment.   Figure 3 (A) of [Figure 3] is a schematic plan view of the entire radio wave reflector of the embodiment, and Figure 3 (B) is an enlarged view of the A part of (A).   [Figure 4] is an enlarged view of the C part of Figure 3 (A).   Figures 5 (A) to (E) of [Figure 5] are schematic plan views showing variations of the configuration pattern of the conductor.   Figure 6 (A) of [Figure 6] is an explanatory view showing an example of use of the radio wave reflector of the embodiment. Figure 6 (B) is a schematic plan view showing an example of indoor application of the building material. FIG. 7 (A) of [FIG. 7] is a schematic plan view of the entire radio wave reflector of another embodiment, and FIG. 7 (B) is a schematic cross-sectional view of a portion of the radio wave reflector of another embodiment.   [FIG. 8] is a schematic plan view of the entire radio wave reflector of another embodiment.   [FIG. 9] is a schematic cross-sectional view of the radio wave reflector of variation 1.   [FIG. 10] is a schematic cross-sectional view of the radio wave reflector of variation 2.   FIG. 11 (A) of [FIG. 11] is a schematic plan view of the radio wave reflector of variation 3. FIG. 11 (B) is an enlarged view of portion B of FIG. 11 (A).   FIG. 12 (A) of [FIG. 12] is a schematic plan view of the radio wave reflector of variation 4. FIG. 12 (B) is an enlarged view of portion B of FIG. 12 (A).

11:電波反射體 11: Radio wave reflector

12:導電體 12: Conductor

13:基材 13: Base material

14:接著層 14: Next layer

15:保護層 15: Protective layer

16:導電層 16: Conductive layer

18:積層體 18: Layered body

L1:電波反射體之厚度 L1: Thickness of radio wave reflector

L2:基材之厚度 L2: Thickness of substrate

L3:導電體之厚度 L3: Thickness of the conductor

L4:接著層之厚度 L4: Thickness of the next layer

L5:保護層之厚度 L5: Thickness of protective layer

Claims (25)

一種電波反射體,其具備:  導電層,其包含反射電波之導電體;及  保護層,其保護上述導電層;且  於對上述電波反射體進行鉛筆硬度試驗之情形時,針對上述保護層之表面負載500 g時之鉛筆硬度為F以上。A radio wave reflector, comprising: a conductive layer comprising a conductor for reflecting radio waves; and a protective layer for protecting the conductive layer; and when a pencil hardness test is performed on the radio wave reflector, the pencil hardness of the protective layer when a surface load of 500 g is applied is above F. 如請求項1之電波反射體,其中,上述保護層之厚度為38 μm以上。The radio wave reflector of claim 1, wherein the thickness of the protective layer is greater than 38 μm. 如請求項1之電波反射體,其中,於對上述保護層進行鉛筆硬度試驗之情形時,針對上述保護層之表面負載500 g時之鉛筆硬度為F以上。The radio wave reflector of claim 1, wherein, when the protective layer is subjected to a pencil hardness test, the pencil hardness of the protective layer when a surface load of 500 g is applied is F or higher. 如請求項1之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,  上述接著層之羥值為5 mgKOH/g以上。The radio wave reflector as claimed in claim 1 further comprises a bonding layer, wherein the bonding layer is disposed between the conductive layer and the protective layer and bonds the conductive layer to the protective layer, and the hydroxyl value of the bonding layer is greater than 5 mgKOH/g. 如請求項1之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,  上述接著層之酸值為50 mgKOH/g以下。The radio wave reflector as claimed in claim 1 further comprises a bonding layer, wherein the bonding layer is arranged between the conductive layer and the protective layer and bonds the conductive layer to the protective layer, and the acid value of the bonding layer is less than 50 mgKOH/g. 如請求項1之電波反射體,其中,上述保護層在40℃、90%rh時之透濕度為20 g/m 2・24 h以下。 The radio wave reflector of claim 1, wherein the moisture permeability of the protective layer at 40°C and 90% rh is less than 20 g/ m2 ·24 h. 如請求項1之電波反射體,其中,上述保護層對被接著層之接著力於耐熱耐濕試驗後之降低率為50%以下。The radio wave reflector of claim 1, wherein the adhesion of the protective layer to the adhered layer decreases by less than 50% after a heat and moisture resistance test. 如請求項1之電波反射體,其中,上述電波反射體之總光線穿透率為70%以上。The radio wave reflector of claim 1, wherein the total light transmittance of the radio wave reflector is greater than 70%. 如請求項1之電波反射體,其進而具備接著層,上述接著層設置於上述導電層與上述保護層之間且將上述導電層與上述保護層接著,  上述接著層不含有紫外線防止劑。The radio wave reflector as claimed in claim 1 further comprises a bonding layer, wherein the bonding layer is arranged between the conductive layer and the protective layer and connects the conductive layer to the protective layer, and the bonding layer does not contain an ultraviolet radiation inhibitor. 如請求項1之電波反射體,其中,上述導電層具有無上述導電體之區域、及以包圍上述區域之方式形成之上述導電體,  上述區域包含複數個同一形狀之區域,  上述同一形狀之複數個區域係以一定之間隔配置。As for the radio wave reflector of claim 1, the above-mentioned conductive layer has an area without the above-mentioned conductor, and the above-mentioned conductor is formed in a manner of surrounding the above-mentioned area, the above-mentioned area includes a plurality of areas of the same shape, and the above-mentioned plurality of areas of the same shape are arranged at certain intervals. 如請求項1之電波反射體,其中,耐熱耐濕試驗後之上述電波反射體之表面電阻率為100 Ω/□以下。The radio wave reflector of claim 1, wherein the surface resistivity of the radio wave reflector after heat and moisture resistance test is less than 100 Ω/□. 如請求項1之電波反射體,其中,上述保護層係含有紫外線防止劑、或對表面實施了紫外線阻斷處理之至少任一種情況。The radio wave reflector of claim 1, wherein the protective layer contains an ultraviolet ray inhibitor or has been subjected to an ultraviolet ray blocking treatment on its surface. 如請求項1之電波反射體,其中,上述電波反射體之霧度為30%以下。The radio wave reflector of claim 1, wherein the haze of the radio wave reflector is less than 30%. 如請求項1之電波反射體,其中,耐光性試驗後之上述電波反射體之總光線穿透率為70%以上。The radio wave reflector of claim 1, wherein the total light transmittance of the radio wave reflector after a light resistance test is greater than 70%. 如請求項1之電波反射體,其中,耐光性試驗前後之上述電波反射體之黃變度Δb*為15以下。The radio wave reflector of claim 1, wherein the yellowing degree Δb* of the radio wave reflector before and after the light resistance test is 15 or less. 如請求項1之電波反射體,其具備積層有上述保護層與上述導電層之積層體,且  於俯視時,所有上述導電體被上述保護層覆蓋。The radio wave reflector as claimed in claim 1 comprises a laminate having the protective layer and the conductive layer, and when viewed from above, all the conductive bodies are covered by the protective layer. 如請求項16之電波反射體,其中,上述積層體進而具備用以將上述保護層與上述導電層接著之接著層,  上述導電體於俯視時,配置於較上述保護層之端緣靠內側,且  上述導電體於側視時被上述接著層覆蓋。As for the radio wave reflector of claim 16, the above-mentioned laminate further has a bonding layer for connecting the above-mentioned protective layer and the above-mentioned conductive layer, the above-mentioned conductive body is arranged on the inner side of the end edge of the above-mentioned protective layer when viewed from above, and the above-mentioned conductive body is covered by the above-mentioned bonding layer when viewed from the side. 如請求項17之電波反射體,其中,上述導電層進而包含支持上述導電體之基材,  上述導電體位於上述基材與上述保護層之間,且於俯視時,配置於較上述基材之端緣靠內側。As in claim 17, the conductive layer further comprises a substrate supporting the conductive body, the conductive body is located between the substrate and the protective layer, and is arranged on the inner side of the edge of the substrate when viewed from above. 如請求項16之電波反射體,其中,上述導電體於俯視時,配置於距離上述保護層之端緣5 mm以上之內側。As for the radio wave reflector of claim 16, the above-mentioned conductor is arranged on the inner side more than 5 mm away from the edge of the above-mentioned protective layer when viewed from above. 如請求項16之電波反射體,其中,於上述積層體之周圍之至少與上述導電層對應之位置設置有用以不使上述導電體露出之密封材。The radio wave reflector of claim 16, wherein a sealing material is provided around the laminate at least at a position corresponding to the conductive layer so as to prevent the conductive body from being exposed. 如請求項16之電波反射體,其中,耐熱耐濕試驗後之黃色指數與上述耐熱耐濕試驗前之黃色指數之差為3以下,  上述耐熱耐濕試驗係下述之試驗:於調整為溫度60℃、濕度95%RH之恆溫恆濕槽內將上述電波反射體放置500小時後,將上述電波反射體自上述槽取出,於常溫靜置4小時。For the radio wave reflector as claimed in claim 16, the difference between the yellowness index after the heat and humidity resistance test and the yellowness index before the above-mentioned heat and humidity resistance test is less than 3, and the above-mentioned heat and humidity resistance test is the following test: after placing the above-mentioned radio wave reflector in a constant temperature and humidity tank adjusted to a temperature of 60°C and a humidity of 95%RH for 500 hours, the above-mentioned radio wave reflector is taken out from the above-mentioned tank and left at room temperature for 4 hours. 如請求項1之電波反射體,其中,於對耐熱耐濕試驗後之上述電波反射體與上述耐熱耐濕試驗前之上述電波反射體,使3 GHz以上300 GHz以下之頻率之入射波正規反射時,至少存在一個上述耐熱耐濕試驗後之上述電波反射體之反射波之強度與上述耐熱耐濕試驗前之上述電波反射體之反射波之強度的差成為3 dB以內之入射波之頻率,  上述耐熱耐濕試驗係下述之試驗:於調整為溫度60℃、濕度95%RH之恆溫恆濕槽內將上述電波反射體放置500小時後,將上述電波反射體自上述槽取出,於常溫靜置4小時。The radio wave reflector as claimed in claim 1, wherein, when the incident wave with a frequency of 3 GHz to 300 GHz is normally reflected by the radio wave reflector after the heat and humidity resistance test and the radio wave reflector before the heat and humidity resistance test, there is at least one frequency of the incident wave for which the difference between the intensity of the reflected wave of the radio wave reflector after the heat and humidity resistance test and the intensity of the reflected wave of the radio wave reflector before the heat and humidity resistance test is within 3 dB. The heat and humidity resistance test is the following test: after placing the radio wave reflector in a constant temperature and humidity tank adjusted to a temperature of 60°C and a humidity of 95%RH for 500 hours, the radio wave reflector is taken out from the tank and left to stand at room temperature for 4 hours. 一種請求項20之電波反射體之製造方法,其包括:  形成上述積層體之步驟;及  設置用以不使上述導電體露出之密封材之步驟;且  上述電波反射體中,上述密封材位於上述積層體之周圍之至少與上述導電層對應之位置。A method for manufacturing a radio wave reflector of claim 20, comprising: a step of forming the above-mentioned laminate; and a step of providing a sealing material for preventing the above-mentioned conductor from being exposed; and in the above-mentioned radio wave reflector, the above-mentioned sealing material is located at a position around the above-mentioned laminate at least corresponding to the above-mentioned conductive layer. 一種請求項20之電波反射體之施工方法,其包括:  將上述積層體安裝於設置部位之步驟;及  設置用以不使上述導電體露出之密封材之步驟;且  上述電波反射體中,上述密封材位於上述積層體之周圍之至少與上述導電層對應之位置。A construction method for a radio wave reflector of claim 20, comprising: a step of installing the above-mentioned laminate at a setting position; and a step of setting a sealing material for preventing the above-mentioned conductor from being exposed; and in the above-mentioned radio wave reflector, the above-mentioned sealing material is located at a position around the above-mentioned laminate at least corresponding to the above-mentioned conductive layer. 如請求項24之電波反射體之施工方法,其中,於上述安裝步驟中,將複數個上述積層體空開間隔安裝於設置部位,  於上述設置密封材之步驟中,在將複數個上述積層體空開間隔安裝於設置部位時相鄰之上述積層體之間之空間內設置上述密封材。A construction method for a radio wave reflector as claimed in claim 24, wherein, in the above-mentioned installation step, a plurality of the above-mentioned laminated bodies are installed at the installation position with spaced intervals, and in the above-mentioned step of installing the sealing material, the above-mentioned sealing material is installed in the space between the adjacent above-mentioned laminated bodies when the plurality of the above-mentioned laminated bodies are installed at the installation position with spaced intervals.
TW112129126A 2022-08-02 2023-08-02 Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body TW202416588A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-123578 2022-08-02
JP2022123578 2022-08-02
JP2022123574 2022-08-02
JP2022-123574 2022-08-02

Publications (1)

Publication Number Publication Date
TW202416588A true TW202416588A (en) 2024-04-16

Family

ID=89849426

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112129126A TW202416588A (en) 2022-08-02 2023-08-02 Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body

Country Status (2)

Country Link
TW (1) TW202416588A (en)
WO (1) WO2024029575A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5984497A (en) * 1982-11-06 1984-05-16 株式会社イナックス Electromagnetic shielding or reflecting frp plate and methodof producing same
JPS6024501A (en) * 1983-07-20 1985-02-07 Mitsubishi Electric Corp Manufacture of reflective plate
JPS614304A (en) * 1984-06-19 1986-01-10 Bridgestone Corp Production of electromagnetic wave reflector
JPH01204506A (en) * 1988-02-10 1989-08-17 Japan Synthetic Rubber Co Ltd Laminate and component for antenna using it
JPH10278147A (en) * 1997-04-09 1998-10-20 Yamaha Motor Co Ltd Radio wave reflecting frp molded object
US20220007553A1 (en) * 2018-11-30 2022-01-06 Sekisui Chemical Co., Ltd. Conductive nonwoven fabric

Also Published As

Publication number Publication date
WO2024029575A9 (en) 2024-03-21
WO2024029575A1 (en) 2024-02-08

Similar Documents

Publication Publication Date Title
US20240088570A1 (en) Structure and construction material
US20110260904A1 (en) Electromagnetic wave absorber
JP6524356B1 (en) Radio wave absorption sheet for millimeter wave band and millimeter wave radio wave absorption method
CN211149175U (en) Functional curtain
TW201043463A (en) Back surface protecting sheet for solar cell module, production method thereof, and solar cell module provided therewith
CN103543483A (en) Flexible reflector film of sunlight reflector
JP5549165B2 (en) Transparent antenna and method for manufacturing the transparent antenna
WO2020111159A1 (en) Quasi-millimeter wave/millimeter wave band electric wave absorption sheet and quasi-millimeter wave/millimeter wave band electric wave absorption method
JP2006179557A (en) Solar cell sheet member
KR20160138104A (en) Solar cell back sheet and solar cell module
TW202416588A (en) Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body
JP7497736B2 (en) Millimeter wave reflective building materials
CN109263186B (en) Shaping method of stealth glass
JP2023112644A (en) Radio reflector and building material
JP2024021077A (en) radio wave reflector
JP4195400B2 (en) Manufacturing method of electromagnetic wave absorber
TW202422949A (en) Radio wave reflector
JP2024021078A (en) Radio wave reflector, manufacturing method of radio wave reflector, and construction method of radio wave reflector
WO2023127710A1 (en) Radio wave reflector
WO2023149122A1 (en) Radio wave reflector and construction material
JP2024021079A (en) radio wave reflector
WO2024106405A1 (en) Radio wave reflector, method for producing radio wave reflector, radio wave reflection structure, radio wave reflection system, and radio wave reflection device
EP3640534A1 (en) Lamp reflector and laminate for reflector
WO2023233928A1 (en) Electromagnetic wave reflection device, electromagnetic wave reflection fence, and reflection panel
WO2024070455A1 (en) Reflective panel, electromagnetic-wave reflection device using same, electromagnetic-wave reflection fence, and method for manufacturing reflective panel