JPS614304A - Production of electromagnetic wave reflector - Google Patents

Production of electromagnetic wave reflector

Info

Publication number
JPS614304A
JPS614304A JP59125764A JP12576484A JPS614304A JP S614304 A JPS614304 A JP S614304A JP 59125764 A JP59125764 A JP 59125764A JP 12576484 A JP12576484 A JP 12576484A JP S614304 A JPS614304 A JP S614304A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
protective layer
materials
wave reflecting
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59125764A
Other languages
Japanese (ja)
Other versions
JPH0530321B2 (en
Inventor
Tatsuya Kanayama
達也 金山
Hitoshi Toyoda
豊田 等
Akihiko Tanaka
昭彦 田中
Yutaka Yamanaka
豊 山中
Toshikazu Shinogaya
利和 篠ケ谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59125764A priority Critical patent/JPS614304A/en
Publication of JPS614304A publication Critical patent/JPS614304A/en
Publication of JPH0530321B2 publication Critical patent/JPH0530321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Abstract

PURPOSE:To reduce the deformation of electromagnetic wave reflecting materials and to confirm forming conditions of a reflector at the forming time by forming a surface protective layer after forming fiber reinforced resin materials and electromagnetic wave reflecting materials. CONSTITUTION:After electromagnetic wave reflecting materials 10 are placed on a fiber reinforced resin materials 12, a top force 22 is brought closely into contact with a bottom force 14, and 50kg/cm<2> molding pressure is applied for 2min to mold them. The top force 22 is raised to open the mold, and molding conditions of electromagnetic wave reflecting materials 10 are confirmed. A glass surface mat 25 (about 30g/m<2>) is placed as a protective layer 24 on electromagnetic wave reflecting materials 10, and an unsaturated vinylester resin compound is mixed with a hardener and is supplied from a resin supply device 26, an the top force 22 is brought closely into contact with the bottom force 14 again to form them by pressurizing and heating. Thus, the electromagnetic wave reflector where electromagnetic wave reflectin materials 10, fiber reinforced resin materials 12, an the protective layer 24 are laminated into one body is obtained.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は電磁波反射板、電磁シールド板等に用いられる
電磁波反射体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing an electromagnetic wave reflector used for an electromagnetic wave reflecting plate, an electromagnetic shielding plate, etc.

[背景技術] 電波通信用のパラボラアンテナに用いる電磁波反射板、
パーソナルコンピューター、ファクシミリ、複写機等の
オフィスオートメーション機器に用いる−E磁(ele
ctro  magneticinterferenc
e)シールド板には電磁波反射体が必要である。
[Background technology] Electromagnetic wave reflector used in parabolic antenna for radio communication,
Used in office automation equipment such as personal computers, facsimile machines, and copiers - E-magnetic
ctro magnetic interference
e) The shield plate requires an electromagnetic wave reflector.

肉厚が0゜3mm以上の電波反射体が必要な場合には、
アルミニウム等の金属板、金属箔等を用いればよいが、
これらは変形しやすく、かつ復元性が無い。またこれら
の反射体の裏面に繊維強化樹脂を補強用として用いる場
合にはこの繊維強化樹脂と一体成型することが困難であ
る。
If you need a radio wave reflector with a wall thickness of 0°3mm or more,
A metal plate such as aluminum, metal foil, etc. may be used, but
These are easily deformed and have no restorability. Furthermore, when a fiber-reinforced resin is used for reinforcement on the back surface of these reflectors, it is difficult to integrally mold the reflector with the fiber-reinforced resin.

そこで柔軟性を有する金網、織布、不織布等を導電反射
材として用い、これらを補強材料とともに一体成形すれ
ば、反射面として曲面を必要とする場合に最適となる。
Therefore, if a flexible wire mesh, woven fabric, non-woven fabric, etc. is used as the conductive reflective material and these are integrally molded together with a reinforcing material, it becomes optimal when a curved surface is required as the reflective surface.

この保護層成形の方法としては、第1にゲルコーI・を
パラボラ鏡面側の型上に吹きつけておき、反射材及びガ
ラスマット等を積層するハンドレイアップやレジンイン
ジェクションによる方法、第2に反射材をSMC(シー
トモールディングコンパウンド)やガラスク′ロスプリ
プレグ等のシート状樹脂材料の間に挟み込み圧縮成形、
真空・成形により一体成形する方法、t53に反射材を
パラボラ鏡面に沿うように樹脂材料と〜・体成形した後
、スプレー塗装、静電塗装等により塗膜を鏡面上に形成
する方法が代表的である。
The methods for forming this protective layer include: first, spraying Gelco I on the mold on the parabolic mirror side, and then layering reflective material, glass mat, etc. by hand lay-up or resin injection; Compression molding is performed by sandwiching the material between sheet-like resin materials such as SMC (sheet molding compound) and glass cloth prepreg.
Typical methods include integral molding by vacuum molding, and methods in which the reflective material is molded with a resin material along the parabolic mirror surface at t53, and then a coating film is formed on the mirror surface by spray painting, electrostatic painting, etc. It is.

ところが上記の第1の方法では、ゲルコートを吹きつけ
る工数を必要とし、生産性が低い。また第2の方法は生
産性は向上するが、反射劇の波打ち、−切れ、リブ中へ
の入り込み等が生じ易く、またその確認作業は不可能で
ある。さらに第3の方法では専用設備を必要とし、]二
数も増大し、ゆず肌、ピンホールやたれどいつだ表面欠
陥が生じやすい。
However, the first method described above requires many man-hours to spray the gel coat, resulting in low productivity. Although the second method improves productivity, it tends to cause reflections to wave, break, or get into the ribs, and it is impossible to check them. Furthermore, the third method requires specialized equipment, increases the number of layers, and is susceptible to surface defects such as orange skin, pinholes, and dripping.

[発明の目的] 本発明は上記事実を考慮し、樹脂材料の間へ電磁波反射
材料を挟持して積層構造の電磁波反射体を得る場合の製
造方法であり、成形時に電磁波反射材料の変形が生じ難
く、また成形1■5に反射材料の成形状況を確認できる
電磁波反射体の製造方法1     を得ることが目的
である。
[Object of the Invention] Taking the above facts into consideration, the present invention is a manufacturing method for obtaining an electromagnetic wave reflector with a laminated structure by sandwiching an electromagnetic wave reflective material between resin materials, and in which deformation of the electromagnetic wave reflective material occurs during molding. The purpose is to obtain a manufacturing method 1 for an electromagnetic wave reflector that is difficult to manufacture and that also allows the molding status of the reflective material to be checked during molding 1 and 5.

[発明の概要] 本発明に係る電磁波反射体の製造方法では、繊維強化樹
脂材料とこれへ載置した電磁波反射材料とを型内で加圧
加熱して半硬化状態とする。その後、型を開放して保護
層となるべき流動性樹脂を゛−′U磁波反射材料」―に
配置し加圧加熱することにより一体的な積層構造を得る
ようになっている。
[Summary of the Invention] In the method for manufacturing an electromagnetic wave reflector according to the present invention, a fiber-reinforced resin material and an electromagnetic wave reflective material placed thereon are heated under pressure in a mold to be in a semi-cured state. Thereafter, the mold is opened, and the fluid resin to be the protective layer is placed on the ``-'U magnetic wave reflective material'' and heated under pressure to obtain an integral laminated structure.

したがって保護層の成形前であって電磁波反射材ネ′1
と繊維強化樹脂材料との成形後に型を開放した状態で、
表面に露出している電磁波反射材料の成形状態を確認す
ることができ、場合によっては電磁波反射材料を整形す
ることができる。このため電磁波反射体の鏡面精度を確
保しつ2つ一反射体のリブ、ボスへの樹脂材料の入り込
みを防止でき、表面保護層の圧みも0.7mm以下とす
ることができる。この厚さはガラス繊維やコーティング
樹脂の粘度を調整して自由に変更可能である。
Therefore, before forming the protective layer, the electromagnetic wave reflecting material '1
After molding with fiber reinforced resin material, with the mold open,
The molded state of the electromagnetic wave reflective material exposed on the surface can be checked, and in some cases, the electromagnetic wave reflective material can be shaped. Therefore, the mirror precision of the electromagnetic wave reflector can be ensured, the resin material can be prevented from entering into the ribs and bosses of the two reflectors, and the pressure of the surface protective layer can also be made 0.7 mm or less. This thickness can be freely changed by adjusting the viscosity of the glass fibers and coating resin.

しかし、保護層を成形する前に、繊維強化樹脂材料が未
硬化状態であることが必要であり、完全硬化後に表面保
護層を成形する場合には繊維強化樹脂材料及び電磁波反
射材料と保護層との密着性が低下する。
However, before molding the protective layer, it is necessary that the fiber-reinforced resin material is in an uncured state, and when molding the surface protective layer after complete curing, the fiber-reinforced resin material, electromagnetic wave reflecting material, and protective layer must be in an uncured state. adhesion is reduced.

本発明に用いる電磁波反射材料としては多孔質等の導電
材が適用でき、炭素繊維、金属メッキ有機繊維、アルミ
コートガラスi維、金属縁1F、これらによる織布、網
、組み物、−物、不織布紙及びこれらの塊状物、金属メ
ッキフオーム、及びこれらの圧縮体、アルミ箔等の金属
箔、及びこれらに打抜き処理をしたもの等が適用できる
As the electromagnetic wave reflecting material used in the present invention, conductive materials such as porous materials can be used, including carbon fibers, metal-plated organic fibers, aluminum-coated glass i-fibers, metal edge 1F, woven fabrics, nets, braids, articles made of these, etc. Non-woven paper and lumps thereof, metal plated forms, compressed bodies thereof, metal foils such as aluminum foil, and punched products of these can be used.

また繊維強化樹脂材料(F RP)としては耐候性、耐
着雪性、耐熱性を有することが好ましく、ガラス短繊維
を含んだ樹脂材ネ1. ・般的にシートモールディング
コンパウンド(SMC)と11丁ばれるシート材料が適
用可能である。またこのシートモールディングコンパウ
ンドをさらに厚くしたシートモールディングコンパウン
ド(TMC)、/ヘルクモールデイングコンパウンド(
BMC)、や繊維強化ポリプロピレン(商品名: AZ
DEL)も適用できる。
The fiber reinforced resin material (FRP) preferably has weather resistance, snow accretion resistance, and heat resistance, and resin materials containing short glass fibers are preferred. -Sheet materials commonly referred to as sheet molding compounds (SMC) are applicable. In addition, sheet molding compound (TMC), which is a thicker version of this sheet molding compound, / Herc molding compound (
BMC), fiber reinforced polypropylene (product name: AZ
DEL) can also be applied.

必要に応じて繊維強化樹脂材料と電磁波反射体との間に
ガラス繊維のサーフェスマット、クロス、コンティニュ
アスマット等の中間層を介在することができ、この中間
層は電磁波反射材料が炭素縁M[クロスやアルミコート
ガラスクロス等の引張強面に優れた材料である場合には
省略してもよい。
If necessary, an intermediate layer such as a glass fiber surface mat, cloth, or continuous mat can be interposed between the fiber-reinforced resin material and the electromagnetic wave reflector, and this intermediate layer is made of a carbon edge M[ It may be omitted if the material has excellent tensile strength, such as cloth or aluminum-coated glass cloth.

また保護層はウレタン系、ビニルエステル系、エポキシ
系、フラン系等の熱硬化型の樹脂を硬化剤と混合したも
のを用いることができる。この保護層はカラス繊維のサ
ーフェスマットのり、ロスを、′用いることにより塗膜
が強度を増大し、塗膜圧も0.1〜0.7mmまで調整
可能であり、耐候性が向−1ニする。さらにガラス繊維
の織布及び不織布の樹脂含侵シートも保護層として適用
できる。
The protective layer may be made of a mixture of thermosetting resin such as urethane, vinyl ester, epoxy, furan, etc. with a curing agent. This protective layer increases the strength of the coating film by using glass fiber surface mat glue and loss, and the coating thickness can be adjusted from 0.1 to 0.7 mm, and the weather resistance is improved to the next level. do. Further, resin-impregnated sheets of woven and non-woven glass fibers can also be used as the protective layer.

保護層の」−にはさらに表面コーティング剤も施すこと
ができ′、保護層を成形した後に型を開放してコーティ
ング剤を塗布し、再び型内へ加圧加熱することにより表
面光沢を向上し、また混合されるトナーを変更して所望
の色調外観を得ることができる。
A surface coating agent can also be applied to the surface of the protective layer. After molding the protective layer, the mold is opened, the coating agent is applied, and the surface is heated and pressurized again to improve the surface gloss. , and the toners that are mixed can be varied to obtain the desired tonal appearance.

このようにしてガラス含量30重量%以下、厚さ0.7
mm以下の強固でかつ表面外観に優れた表面保護層をア
ンテナ鏡面上に形成することができる。
In this way, the glass content is 30% by weight or less and the thickness is 0.7%.
It is possible to form a strong surface protective layer with a diameter of 1 mm or less and an excellent surface appearance on the mirror surface of the antenna.

なお、本発明に用いる電磁波反射材#l、補強材、中間
層はこれらを複数枚重ねて多重積層構造としてもよい。
Note that the electromagnetic wave reflecting material #l, the reinforcing material, and the intermediate layer used in the present invention may have a multilayer structure by stacking a plurality of them.

[発明の実施例] (実施例1) 本発明をFRPパラボラアンテナの製造に適用した。第
1図に示される電磁波反射材料lOとしては、金属染色
アクリル繊維(商品名サンダーロン)の編物を用い、#
li維強化樹脂材料12とじてガラス短繊維強化不飽和
ポエステル樹脂シート(SMC)が用いられており、電
磁波反射材II 10及び繊維強化樹脂材料12が中間
層13を挟持すると共に反射面に沿うように下型141
.へ積層されている。下型14は成形1品の背面に補強
リブ18を形成するための凹部が設けられている。
[Embodiments of the Invention] (Example 1) The present invention was applied to manufacturing an FRP parabolic antenna. As the electromagnetic wave reflecting material 1O shown in FIG.
A short glass fiber reinforced unsaturated polyester resin sheet (SMC) is used as the Li fiber reinforced resin material 12, and the electromagnetic wave reflecting material II 10 and the fiber reinforced resin material 12 sandwich the intermediate layer 13 and are arranged along the reflective surface. Lower mold 141
.. are laminated to. The lower mold 14 is provided with a recess for forming reinforcing ribs 18 on the back surface of the molded product.

この第1図では、繊維強化樹脂材料12上へ電j  o
つ□ゎ1o、1□[11”22tTヤ14へ拌:着し、
成形温度140℃、成形圧力50K g / c m 
2で2分間加圧し成゛形した。
In this FIG. 1, electric current is applied onto the fiber reinforced resin material 12.
tsu□wa1o, 1□[11”22tTya14: Arrive,
Molding temperature 140℃, molding pressure 50K g/cm
2 for 2 minutes to form a shape.

第2−に示される如く上型22を上昇して型を開き電磁
波反射材料10の成形状況を確認できる。保5((層2
4としてガラスサフエスマット25(約30g/m2)
を電磁波反射材料10上へ載置12、不飽和ビニルエス
テル系樹脂コンパウンドを硬化剤と混合して樹脂供給装
置26から供給し、1−型2゛2を再び下型14へ密着
させ、加圧加熱成形した。
As shown in No. 2-, the upper mold 22 is lifted up and the mold is opened to confirm the molding status of the electromagnetic wave reflecting material 10. Ho 5 ((layer 2
4 as glass safe mat 25 (approx. 30g/m2)
12 is placed on the electromagnetic wave reflecting material 10, an unsaturated vinyl ester resin compound is mixed with a curing agent and supplied from the resin supply device 26, and the mold 1-2 is brought into close contact with the lower mold 14 again and pressurized. Heat molded.

これによって第3図に示される如く電磁波反射材料lO
,繊維強化樹脂材料12、保護層24が−・体的に積層
された電磁波反射体が出来上かった。保護層24は電磁
波反射材料10を浸透してH&維強化樹脂材料12へ至
ることがないので、電磁波反射材料lOに変形、だれが
生ずることはない。
As a result, as shown in FIG. 3, the electromagnetic wave reflecting material lO
, the fiber-reinforced resin material 12, and the protective layer 24 were physically laminated to form an electromagnetic wave reflector. Since the protective layer 24 does not permeate the electromagnetic wave reflective material 10 and reach the H&fiber reinforced resin material 12, the electromagnetic wave reflective material 10 is not deformed or sagged.

さらに第4図に示される如く上型22を開放した後に樹
脂供給装置28から2液性ウレタン樹脂を供給して加圧
加熱圧縮成形することにより、表    ・面コーティ
ング層が形成されてさらに光沢が向」;する。この樹脂
供給装置28へ各種の色トナーを混入することによりさ
まざまの色調を得ることができる。
Furthermore, as shown in FIG. 4, after opening the upper mold 22, a two-component urethane resin is supplied from the resin supply device 28 and the resin is pressurized, heated and compression molded, thereby forming a surface coating layer and further increasing the gloss. "Toward"; to do. By mixing various color toners into this resin supply device 28, various color tones can be obtained.

(実施例2) 電磁波反射材料lO及び繊維強化樹脂材料12は実施例
1と同、−の材料を用いて同じ条引で成形した。
(Example 2) The electromagnetic wave reflecting material 1O and the fiber reinforced resin material 12 were molded using the same material as in Example 1, using the same material with -.

上型を開放した後にガラスクロス(200g/m2)を
投入し、実施例1と同一の樹脂を70g供給して再度加
熱圧縮成形して電磁波反射体を製造した。
After opening the upper mold, a glass cloth (200 g/m2) was introduced, and 70 g of the same resin as in Example 1 was supplied, followed by heat compression molding again to produce an electromagnetic wave reflector.

(実施例3) 電磁波反射材料10及び繊維強flZ樹脂材$412は
実施例1と同一であり、電磁波反射材料10は2枚のガ
ラスサーフェスマットの間に挟んでSMCと一体成形し
、型開き後2液性のウレタン系樹脂を供給して加圧加熱
した。
(Example 3) The electromagnetic wave reflective material 10 and the fiber-reinforced flZ resin material $412 are the same as in Example 1, and the electromagnetic wave reflective material 10 is sandwiched between two glass surface mats and integrally molded with SMC, and the mold is opened. Then, a two-component urethane resin was supplied and heated under pressure.

(実施例4) 電磁波反射材料10として炭素繊維マット(トレカBO
−050)を用い、これを2枚のカラスクロス(約20
0 g/m2) c7)間に挟んでsMcと−・体成形
した。型開きの後l液性のウレタン系樹脂を供給して加
熱圧縮成形した。
(Example 4) Carbon fiber mat (Trading Card BO
-050), and use two pieces of crow cloth (approximately 20
0 g/m2) c7) It was sandwiched between sMc and body molding. After opening the mold, a l-liquid urethane resin was supplied and heat compression molding was performed.

(実施例5) 電磁波反射材料10及び繊維強化樹脂材料12は実施例
1と同一の材料を用いて同じ条件で成形した。
(Example 5) The electromagnetic wave reflecting material 10 and the fiber reinforced resin material 12 were molded using the same materials as in Example 1 under the same conditions.

4−型をl5)開放した後に2液性ウレタン系樹脂を供
給して加圧加熱し保護層を形成した。
After the mold 4 was opened (l5), a two-component urethane resin was supplied and heated under pressure to form a protective layer.

第  1  表 このようにして得られた保護層24の膜圧が第1表に示
されている。
Table 1 The film thickness of the protective layer 24 thus obtained is shown in Table 1.

(実施例6〜8) 電磁波反射材料10及び繊維強化樹脂材料12は第1実
施例と同一材料を用い、加圧時間のみを変え、他は同一
条件で成形した。、 上型開放後に2液性ウレタン樹IIIを供給し、加熱圧
縮して保護層を形成した。
(Examples 6 to 8) The electromagnetic wave reflecting material 10 and fiber reinforced resin material 12 were molded using the same materials as in the first example, only the pressurization time was changed, and other conditions were the same. After opening the upper mold, two-component urethane resin III was supplied and heated and compressed to form a protective layer.

加圧時間及び得られた電磁波反射体の保d1層の密着性
結果が第2表に示されている。こごに富η性結果はJI
SK5400.基盤]1試験による剥離残存数を示すも
のである。
Table 2 shows the pressurization time and the adhesion results of the obtained electromagnetic wave reflector's d1 layer. The rich η property results are JI
SK5400. Base] This shows the number of remaining peels in one test.

第  2  表 [発明の効果] 以り説明した如く本発明に係る電磁波反射体の製造方法
では、繊維強化樹脂材料と電磁波反射材料とを成形した
のちに表面保護層を成形するので、電磁波反射材料の変
形が少なくかつ成形時に反射体の成形状況を確認するこ
とができる優れた効果を有する。
Table 2 [Effects of the Invention] As explained above, in the method for manufacturing an electromagnetic wave reflector according to the present invention, the surface protective layer is molded after molding the fiber reinforced resin material and the electromagnetic wave reflective material. It has the excellent effect of minimizing deformation of the reflector and making it possible to check the molding status of the reflector during molding.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第4図は本発明の製造手順を示す断面図である
。 10・・・電磁波反射材料 12・・・S維強化樹脂材料 14Φ ・ ・ ド型 24・・・保護層
1 to 4 are cross-sectional views showing the manufacturing procedure of the present invention. 10... Electromagnetic wave reflecting material 12... S fiber reinforced resin material 14Φ ・ ・ Do type 24... Protective layer

Claims (1)

【特許請求の範囲】[Claims] (1)繊維強化樹脂材料と保護層との間に電磁波反射材
料を一体的に挟持した積層構造の電磁波反射体を得る電
磁波反射体の製造方法であって、前記繊維強化樹脂材料
とこれへ載置した電磁波反射材料とを型内で加圧加熱し
て半硬化状態とし、その後型を開放して流動性樹脂を前
記電磁波反射材料上に配置し加圧加熱し保護層を形成す
ることを特徴とした電磁波反射体の製造方法。
(1) A method for producing an electromagnetic wave reflector that obtains an electromagnetic wave reflector having a laminated structure in which an electromagnetic wave reflective material is integrally sandwiched between a fiber reinforced resin material and a protective layer, the method comprising: The electromagnetic wave reflecting material placed on the electromagnetic wave reflecting material is pressurized and heated in a mold to bring it into a semi-cured state, and then the mold is opened and a fluid resin is placed on the electromagnetic wave reflecting material and pressurized and heated to form a protective layer. A method for manufacturing an electromagnetic wave reflector.
JP59125764A 1984-06-19 1984-06-19 Production of electromagnetic wave reflector Granted JPS614304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125764A JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125764A JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Publications (2)

Publication Number Publication Date
JPS614304A true JPS614304A (en) 1986-01-10
JPH0530321B2 JPH0530321B2 (en) 1993-05-07

Family

ID=14918242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125764A Granted JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Country Status (1)

Country Link
JP (1) JPS614304A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606704A1 (en) * 1986-11-18 1988-05-20 Mecelec Sa Method for producing electrically conducting components by the compression moulding technique, sandwich sheets for implementing the said method and electrically conducting components obtained
EP0476228A1 (en) * 1990-08-20 1992-03-25 Bridgestone Corporation Reflector and method of and apparatus for fabricating the same
EP0543664A2 (en) * 1991-11-21 1993-05-26 Nifco Inc. Parabolic antenna and method of manufacturing reflector body of the same
US5840383A (en) * 1996-02-12 1998-11-24 Bgf Industries, Inc. Electromagnetic wave reflective fabric
JP2011083375A (en) * 2009-10-14 2011-04-28 Shin Etsu Polymer Co Ltd Lens for ultrasound diagnostic device and method for manufacturing the same
WO2024029575A1 (en) * 2022-08-02 2024-02-08 積水化学工業株式会社 Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606704A1 (en) * 1986-11-18 1988-05-20 Mecelec Sa Method for producing electrically conducting components by the compression moulding technique, sandwich sheets for implementing the said method and electrically conducting components obtained
EP0476228A1 (en) * 1990-08-20 1992-03-25 Bridgestone Corporation Reflector and method of and apparatus for fabricating the same
EP0543664A2 (en) * 1991-11-21 1993-05-26 Nifco Inc. Parabolic antenna and method of manufacturing reflector body of the same
US5840383A (en) * 1996-02-12 1998-11-24 Bgf Industries, Inc. Electromagnetic wave reflective fabric
JP2011083375A (en) * 2009-10-14 2011-04-28 Shin Etsu Polymer Co Ltd Lens for ultrasound diagnostic device and method for manufacturing the same
WO2024029575A1 (en) * 2022-08-02 2024-02-08 積水化学工業株式会社 Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body

Also Published As

Publication number Publication date
JPH0530321B2 (en) 1993-05-07

Similar Documents

Publication Publication Date Title
CN108274829A (en) A kind of light-weighted shielding wallboard of shelter and preparation method thereof with radar invisible function
US20200100405A1 (en) Electromagnetic wave shielding material using perforated metal thin plate and method of manufacturing same
JPS5984497A (en) Electromagnetic shielding or reflecting frp plate and methodof producing same
WO2018120488A1 (en) Pre-impregnated material used for circuit substrate, laminated board, preparation method therefor, and printed circuit board comprising same
CN108274830A (en) A kind of light-weighted wallboard of shelter and preparation method thereof with wideband function of shielding
JPS614304A (en) Production of electromagnetic wave reflector
CN108712951B (en) Method for producing composite material
US6682619B2 (en) Composite pre-preg ply having tailored dielectrical properties and method of fabrication thereof
KR101772088B1 (en) Method for designing electromagnetic properties using multi-layered stack with electromagnetic material printing
KR102007608B1 (en) Electro Magnetic Shielding Materials Using Metal Foil and Process for Producing The Same
JPH08118381A (en) Manufacture of cfrp molded product
JP5044916B2 (en) Method for producing carbon fiber reinforced plastic with integrated radio wave absorber
JP2020063334A (en) Production method of carbon fiber prepreg, production method of carbon fiber-reinforced resin formed part, and carbon fiber-reinforced formed part
JPH02291703A (en) Radar dome made of fiber reinforced plastic
JP2002248620A (en) Base material for molding fiber-reinforced plastic and molding method of fiber-reinforced plastic
JP2023045645A (en) Laminate for pressing and pressed laminate
JPS59201504A (en) Manufacture of reinforced plastic-made parabolic antenna
JP5693290B2 (en) Method for manufacturing antenna reflector
JPS6113701A (en) Production of sandwich type antenna reflector
US11858224B2 (en) Textile fiber-composite material precursor, and method for producing a component from fiber-composite material
JPH0489208A (en) Manufacture of prepreg
JPS60192404A (en) Manufacture of electromagnetic wave reflecting body
JPS5930307A (en) Synthetic resin made parabola reflector and its manufacture
JPH0297103A (en) Reflection mirror for parabolic antenna and its production
JPH01286811A (en) Manufacture of metal plated laminate