JPH0530321B2 - - Google Patents

Info

Publication number
JPH0530321B2
JPH0530321B2 JP59125764A JP12576484A JPH0530321B2 JP H0530321 B2 JPH0530321 B2 JP H0530321B2 JP 59125764 A JP59125764 A JP 59125764A JP 12576484 A JP12576484 A JP 12576484A JP H0530321 B2 JPH0530321 B2 JP H0530321B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
protective layer
mold
fiber
reinforced resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59125764A
Other languages
Japanese (ja)
Other versions
JPS614304A (en
Inventor
Tatsuya Kanayama
Hitoshi Toyoda
Akihiko Tanaka
Yutaka Yamanaka
Toshikazu Shinogaya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59125764A priority Critical patent/JPS614304A/en
Publication of JPS614304A publication Critical patent/JPS614304A/en
Publication of JPH0530321B2 publication Critical patent/JPH0530321B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/141Apparatus or processes specially adapted for manufacturing reflecting surfaces
    • H01Q15/142Apparatus or processes specially adapted for manufacturing reflecting surfaces using insulating material for supporting the reflecting surface

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の利用分野] 本発明は電磁波反射板、電磁シールド板等に用
いられる電磁波反射体の製造方法に関する。 [背景技術] 電波通信用のパラボラアンテナに用いる電磁波
反射板、パーソナルコンピユーター、フアクシミ
リ、複写機等のオフイスオートメーシヨン機器に
用いる電磁(electro magnetic interference)
シールド板には電磁波反射体が必要である。 肉厚が0.3mm以上の電波反射体が必要な場合
には、アルミニウム等の金属板、金属箔等を用い
ればよいが、これらは変形しやすく、かつ復元性
が無い。またこれらの反射体の裏面に繊維強化樹
脂を補強用として用いる場合にはこの繊維強化樹
脂と一体成型することが困難である。 そこで柔軟性を有する金網、織布、不織布等を
導電反射材として用い、これらを補強材料ととも
に一体成形すれば、反射面として曲面を必要とす
る場合に最適となる。 この保護層成形の方法としては、第1にゲルコ
ートをパラボラ鏡面側の型上に吹きつけておき、
反射材及びガラスマツト等を積層するハンドレイ
アツプやレジンインジエクシヨンによる方法、第
2に反射材をSMC(シートモールデイングコンパ
ウンド)やガラスクロスプリプレグ等のシート状
樹脂材料の間に挟み込み圧縮成形、真空成形によ
り一体成形する方法、第3に反射材をパラボラ鏡
面に沿うように樹脂材料と一体成形した後、スプ
レー塗装、静電塗装等により塗膜を鏡面上に形成
する方法が代表的である。 ところが上記の第1の方法では、ゲルコートを
吹きつける工数を必要とし、生産性が低い。また
第2の方法は生産性は向上するが、反射材の波打
ち、切れ、リブ中への入り込み等が生じ易く、ま
たその確認作業は不可能である。さらに第3の方
法では専用設備を必要とし、工数も増大し、ゆず
肌、ピンホールやたれといつた表面欠陥が生じや
すい。 [発明の目的] 本発明は上記事実を考慮し、樹脂材料の間へ電
磁波反射材料を挟持して積層構造の電磁波反射体
を得る場合の製造方法であり、成形時に電磁波反
射材料の変形が生じ難く、また成形時に反射材料
の成形状況を確認できる電磁波反射体の製造方法
を得ることが目的である。 [発明の概要] 本発明に係る電磁波反射体の製造方法では、繊
維強化樹脂材料とこれへ載置した電磁波反射材料
とを型内で加圧加熱して半硬化状態とする。その
後、型を開放して保護層となるべき流動性樹脂を
電磁波反射材料上に配置し加圧加熱することによ
り一体的な積層構造を得るようになつている。 したがつて保護層の成形前であつて電磁波反射
材料と繊維強化樹脂材料との成形後に型を開放し
た状態で、表面に露出している電磁波反射材料の
成形状態を確認することができ、場合によつては
電磁波反射材料を整形することができる。このた
め電磁波反射体の鏡面精度を確保しつつ反射体の
リブ、ボスへの樹脂材料の入り込みを防止でき、
表面保護層の圧みも0.7mm以下とすることができ
る。この厚さはガラス繊維やコーテイング樹脂の
粘度を調整して自由に変更可能である。 しかし、保護層を成形する前に、繊維強化樹脂
材料が未硬化状態であることが必要であり、完全
硬化後に表面保護層を成形する場合には繊維強化
樹脂材料及び電磁波反射材料と保護層との密着性
が低下する。 本発明に用いる電磁波反射材料としては多孔質
等の導電材が適用でき、炭素繊維、金属メツキ有
機繊維、アルミコートガラス繊維、金属繊維、こ
れらによる織布、網、組み物、編物、不織布紙及
びこれらの塊状物、金属メツキフオーム、及びこ
れらの圧縮体、アルミ箔等の金属箔、及びこれら
に打抜き処理をしたもの等が適用できる。 また繊維強化樹脂材料(FRP)としては耐候
性、耐着雪性、耐熱性を有することが好ましく、
ガラス短繊維を含んだ樹脂材料、一般的にシート
モールデイングコンパウンド(SMC)と呼ばれ
るシート材料が適用可能である。またこのシート
モールデイングコンパウンドをさらに厚くしたシ
ツクモールデイングコンパウンド(TMC)、バル
クモールデイングコンパウンド(BMC)、や繊維
強化ポリプロピレン(商品名:AZDEL)も適用
できる。 必要に応じて繊維強化樹脂材料と電磁波反射体
との間にガラス繊維のサーフエスマツト、クロ
ス、コンテイニユアスマツト等の中間層を介在す
ることができ、この中間層は電磁波反射材料が炭
素繊維クロスやアルミコートガラスクロスや金網
等の引張強度に優れた材料である場合には省略し
てもよい。 また保護層はウレタン系、ビニルエステル系、
エポキシ系、エポキシアクリレート系、フラン系
等の熱硬化型の樹脂を硬化剤と混合したものを用
いることができる。この保護層はガラス繊維のサ
ーフエスヤツトのクロスを用いることにより塗膜
が強度を増大し、塗膜圧も0.1〜0.7mmまで調整可
能であり、耐候性が向上する。さらにガラス繊維
の織布及び不織布の樹脂含浸シートも保護層とし
て適用できる。 保護層の上にさらに表面コーテイング剤も施す
ことができ、保護層を成形した後に型を開放して
コーテイング剤を塗布し、再び型内へ加圧加熱す
ることにより表面光沢を向上し、また混合される
トナーを変更して所望の色調外観を得ることがで
きる。 このようにしてガラス含量30重量%以下、厚さ
0.7mm以下の強固でかつ表面外観に優れた表面保
護層をアンテナ鏡面上に形成することができる。 なお、本発明に用いる電磁波反射材料、補強
材、中間層はこれらを複数枚重ねて多重積層構造
としてもよい。 [発明の実施例] 実施例 1 本発明をFRPパラボラアンテナの製造に適用
した。第1図に示される電磁波反射材料10とし
ては、金属染色アクリル繊維(商品名サンダーロ
ン)の編物を用い、繊維強化樹脂材料12として
ガラス短繊維強化不飽和ポエステル樹脂シート
(SMC)が用いられており、電磁波反射材料10
及び繊維強化樹脂材料12が中間層13を挟持す
ると共に反射面に沿うように下型14上へ積層さ
れている。下型14は成形品の背面に補強リブ1
8を形成するための凹部が設けられている。 この第1図では、繊維強化樹脂材料12上へ電
磁波反射材料10を載置した後に上型22を下型
14へ密着し、成形温度140℃、成形圧力50Kg/
cm2で2分間加圧し成形した。 第2図に示される如く上型22を上昇して型を
開き電磁波反射材料10の成形状況を確認でき
る。保護層24としてガラスサフエスマツト25
(約30g/m2)を電磁波反射材料10上へ載置し、
不飽和ビニルエステル系樹脂コンパウンドを硬化
剤と混合して樹脂供給装置26から供給し、上型
22を再び下型14へ密着させ、加圧加熱成形し
た。 これによつて第3図に示される如く電磁波反射
材料10、繊維強化樹脂材料12、保護層24が
一体的に積層された電磁波反射体が出来上がつ
た。保護層24は電磁波反射材料10を浸透して
繊維強化樹脂材料12へ至ることがないので、電
磁波反射材料10に変形、たれが生ずることはな
い。 さらに第4図に示される如く上型22を開放し
た後に樹脂供給装置28から2液性ウレタン樹脂
を供給して加圧加熱圧縮成形することにより、表
面コーテイング層が形成されてさらに光沢が向上
する。この樹脂供給装置28へ各種の色トナーを
混入することによりさまざまの色調を得ることが
できる。 実施例 2 電磁波反射材料10及び繊維強化樹脂材料12
は実施例1と同一の材料を用いて同じ条件で成形
した。 上型を開放した後にガラスクロス(200g/m2
を投入し、実施例1と同一の樹脂を70g供給して
再度加熱圧縮成形して電磁波反射体を製造した。 実施例 3 電磁波反射材料10及び繊維強化樹脂材料12
は実施例1と同一であり、電磁波反射材料10は
2枚のガラスサーフエスマツトの間に挟んで
SMCと一体成形し、型開き後2液性のウレタン
系樹脂を供給して加圧加熱した。 実施例 4 電磁波反射材料10として炭素繊維マツト(ト
レカBO−050)を用い、これを2放のガラスク
ロス(約200g/m2)の間に挟んでSMCと一体成
形した。型開きの後1液性のウレタン系樹脂を供
給して加熱圧縮成形した。 実施例 5 電磁波反射材料10及び繊維強化樹脂材料12
は実施例1と同一の材料を用いて同じ条件で成形
した。 上型を開放した後に2液性ウレタン系樹脂を供
給して加圧加熱し保護層を形成した。
[Field of Application of the Invention] The present invention relates to a method of manufacturing an electromagnetic wave reflector used for an electromagnetic wave reflecting plate, an electromagnetic shielding plate, etc. [Background technology] Electromagnetic wave reflecting plates used in parabolic antennas for radio communication, electromagnetic interference used in office automation equipment such as personal computers, facsimile machines, and copying machines.
The shield plate requires an electromagnetic wave reflector. If a radio wave reflector with a wall thickness of 0.3 mm or more is required, a metal plate such as aluminum, metal foil, etc. may be used, but these are easily deformed and have no restorability. Furthermore, when a fiber-reinforced resin is used for reinforcement on the back surface of these reflectors, it is difficult to integrally mold the reflector with the fiber-reinforced resin. Therefore, if a flexible wire mesh, woven fabric, non-woven fabric, etc. is used as the conductive reflective material and these are integrally molded together with a reinforcing material, it becomes optimal when a curved surface is required as the reflective surface. The method for forming this protective layer is as follows: First, gel coat is sprayed onto the mold on the parabolic mirror side.
The second method is by hand lay-up or resin injection, in which reflective materials and glass mats are laminated.The second method is to sandwich the reflective materials between sheet-like resin materials such as SMC (sheet molding compound) or glass cloth prepreg, and use compression molding or vacuum. Typical methods include integral molding by molding, and thirdly, a method in which the reflective material is integrally molded with a resin material along the parabolic mirror surface, and then a coating film is formed on the mirror surface by spray painting, electrostatic coating, etc. However, the first method described above requires many man-hours to spray the gel coat, resulting in low productivity. Although the second method improves productivity, the reflective material is likely to be wavy, cut, or get into the ribs, and it is impossible to confirm this. Furthermore, the third method requires specialized equipment, increases the number of man-hours, and is prone to surface defects such as orange skin, pinholes, and sag. [Object of the Invention] Taking the above facts into consideration, the present invention is a manufacturing method for obtaining an electromagnetic wave reflector with a laminated structure by sandwiching an electromagnetic wave reflective material between resin materials, and in which deformation of the electromagnetic wave reflective material occurs during molding. The object of the present invention is to obtain a method for manufacturing an electromagnetic wave reflector that is difficult to manufacture and that also allows checking the molding status of the reflective material during molding. [Summary of the Invention] In the method for manufacturing an electromagnetic wave reflector according to the present invention, a fiber-reinforced resin material and an electromagnetic wave reflective material placed thereon are heated under pressure in a mold to be in a semi-cured state. Thereafter, the mold is opened, and the fluid resin that will become the protective layer is placed on the electromagnetic wave reflective material and heated under pressure to obtain an integrated laminated structure. Therefore, before molding the protective layer and after molding the electromagnetic wave reflective material and the fiber-reinforced resin material, it is possible to check the molded state of the electromagnetic wave reflective material exposed on the surface with the mold open. In some cases, the electromagnetic wave reflecting material can be shaped. Therefore, it is possible to prevent resin material from entering the ribs and bosses of the reflector while ensuring the mirror accuracy of the electromagnetic wave reflector.
The pressure of the surface protective layer can also be 0.7 mm or less. This thickness can be freely changed by adjusting the viscosity of the glass fibers and coating resin. However, before molding the protective layer, it is necessary that the fiber-reinforced resin material is in an uncured state, and when molding the surface protective layer after complete curing, the fiber-reinforced resin material, electromagnetic wave reflecting material, and protective layer must be in an uncured state. adhesion is reduced. Porous and other conductive materials can be used as the electromagnetic wave reflecting material used in the present invention, including carbon fibers, metal-plated organic fibers, aluminum-coated glass fibers, metal fibers, woven fabrics, nets, braids, knitted fabrics, non-woven paper and These lumps, metal plating forms, compressed bodies thereof, metal foils such as aluminum foil, and punched materials thereof can be used. In addition, it is preferable that the fiber reinforced resin material (FRP) has weather resistance, snow accretion resistance, and heat resistance.
A resin material containing short glass fibers, generally a sheet material called sheet molding compound (SMC), can be applied. In addition, thick molding compound (TMC), bulk molding compound (BMC), which is a thicker version of this sheet molding compound, and fiber reinforced polypropylene (product name: AZDEL) can also be used. If necessary, an intermediate layer such as glass fiber surf mat, cloth, or continuous mat can be interposed between the fiber-reinforced resin material and the electromagnetic wave reflector. It may be omitted if the material has excellent tensile strength, such as cloth, aluminum-coated glass cloth, or wire mesh. In addition, the protective layer is urethane-based, vinyl ester-based,
A mixture of thermosetting resin such as epoxy, epoxy acrylate, or furan with a curing agent can be used. This protective layer uses glass fiber Surf Suit cloth to increase the strength of the coating film, the coating thickness can be adjusted from 0.1 to 0.7 mm, and weather resistance is improved. Furthermore, resin-impregnated sheets of woven and non-woven glass fibers can also be used as the protective layer. A surface coating agent can also be applied on top of the protective layer. After molding the protective layer, the mold is opened and the coating agent is applied, and the surface gloss is improved by pressurizing and heating the mold again. The toner used can be varied to obtain the desired tonal appearance. In this way the glass content is less than 30% by weight, the thickness
A strong surface protective layer with a thickness of 0.7 mm or less and excellent surface appearance can be formed on the antenna mirror surface. Note that the electromagnetic wave reflecting material, reinforcing material, and intermediate layer used in the present invention may have a multilayer structure by stacking a plurality of these materials. [Embodiments of the Invention] Example 1 The present invention was applied to manufacturing an FRP parabolic antenna. As the electromagnetic wave reflecting material 10 shown in FIG. 1, a knitted fabric of metal-dyed acrylic fiber (trade name: Thunderon) is used, and as the fiber-reinforced resin material 12, short glass fiber-reinforced unsaturated polyester resin sheet (SMC) is used. Electromagnetic wave reflective material 10
A fiber-reinforced resin material 12 is laminated onto the lower mold 14 so as to sandwich the intermediate layer 13 and along the reflective surface. The lower mold 14 has reinforcing ribs 1 on the back of the molded product.
8 is provided. In FIG. 1, after placing the electromagnetic wave reflecting material 10 on the fiber-reinforced resin material 12, the upper mold 22 is brought into close contact with the lower mold 14, the molding temperature is 140°C, and the molding pressure is 50 kg/kg.
It was pressed and molded at cm 2 for 2 minutes. As shown in FIG. 2, the upper mold 22 is raised and the mold is opened so that the molding status of the electromagnetic wave reflecting material 10 can be checked. Glass safety mat 25 as protective layer 24
(approximately 30 g/m 2 ) is placed on the electromagnetic wave reflecting material 10,
An unsaturated vinyl ester resin compound was mixed with a curing agent and supplied from the resin supply device 26, and the upper mold 22 was brought into close contact with the lower mold 14 again, followed by pressure and heat molding. As a result, as shown in FIG. 3, an electromagnetic wave reflector in which the electromagnetic wave reflecting material 10, the fiber reinforced resin material 12, and the protective layer 24 were integrally laminated was completed. Since the protective layer 24 does not penetrate the electromagnetic wave reflective material 10 and reach the fiber reinforced resin material 12, the electromagnetic wave reflective material 10 will not be deformed or sag. Further, as shown in FIG. 4, after the upper mold 22 is opened, a two-component urethane resin is supplied from the resin supply device 28 and pressurized heating compression molding is performed, thereby forming a surface coating layer and further improving the gloss. . By mixing various color toners into this resin supply device 28, various color tones can be obtained. Example 2 Electromagnetic wave reflective material 10 and fiber reinforced resin material 12
was molded using the same material and under the same conditions as in Example 1. Glass cloth (200g/m 2 ) after opening the upper mold
70g of the same resin as in Example 1 was supplied and heat compression molded again to produce an electromagnetic wave reflector. Example 3 Electromagnetic wave reflective material 10 and fiber reinforced resin material 12
is the same as in Example 1, and the electromagnetic wave reflecting material 10 is sandwiched between two glass surf mats.
It was integrally molded with SMC, and after opening the mold, a two-component urethane resin was supplied and heated under pressure. Example 4 A carbon fiber mat (Trading Card BO-050) was used as the electromagnetic wave reflecting material 10, and this was sandwiched between two pieces of glass cloth (approximately 200 g/m 2 ) and integrally molded with the SMC. After opening the mold, a one-component urethane resin was supplied and heat compression molding was performed. Example 5 Electromagnetic wave reflective material 10 and fiber reinforced resin material 12
was molded using the same material and under the same conditions as in Example 1. After opening the upper mold, a two-component urethane resin was supplied and heated under pressure to form a protective layer.

【表】 このようにして得られた保護層24の膜圧が第
1表に示されている。 実施例 6〜8 電磁波反射材料10及び繊維強化樹脂材料12
は第1実施例と同一材料を用い、加圧時間のみを
変え、他は同一条件で成形した。 上型開放後に2液性ウレタン樹脂を供給し、加
熱圧縮して保護層を形成した。 加圧時間及び得られた電磁波反射体の保護層の
密着性結果が第2表に示されている。ここに密着
性結果はJISK5400、碁盤目試験による剥離残存
数を示すものである。
[Table] Table 1 shows the film thickness of the protective layer 24 obtained in this manner. Examples 6 to 8 Electromagnetic wave reflective material 10 and fiber reinforced resin material 12
The same material as in the first example was used, only the pressurization time was changed, and the other conditions were the same. After opening the upper mold, a two-component urethane resin was supplied and heated and compressed to form a protective layer. Table 2 shows the pressurization time and the adhesion results of the protective layer of the electromagnetic wave reflector obtained. The adhesion results here indicate the number of remaining peels according to JISK5400 and a grid test.

【表】 [発明の効果] 以上説明した如く本発明に係る電磁波反射体の
製造方法では、繊維強化樹脂材料と電磁波反射材
料とを成形したのちに表面保護層を成形するの
で、電磁波反射材料の変形が少なくかつ成形時に
反射体の成形状況を確認することができる優れた
効果を有する。
[Table] [Effects of the Invention] As explained above, in the method for manufacturing an electromagnetic wave reflector according to the present invention, the surface protective layer is molded after the fiber reinforced resin material and the electromagnetic wave reflective material are molded. It has the excellent effect of minimizing deformation and making it possible to check the molding status of the reflector during molding.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は本発明の製造手順を示す断面
図である。 10……電磁波反射材料、12……繊維強化樹
脂材料、14……下型、24……保護層。
1 to 4 are cross-sectional views showing the manufacturing procedure of the present invention. 10... Electromagnetic wave reflective material, 12... Fiber reinforced resin material, 14... Lower mold, 24... Protective layer.

Claims (1)

【特許請求の範囲】[Claims] 1 繊維強化樹脂材料と保護層との間に電磁波反
射材料を一体的に挟持した積層構造の電磁波反射
体を得る電磁波反射体の製造方法であつて、前記
繊維強化樹脂材料とこれへ載置した電磁波反射材
料とを型内で加圧加熱して半硬化状態とし、その
後型を開放して流動性樹脂を前記電磁波反射材料
上に配置し加圧加熱し保護層を形成することを特
徴とした電磁波反射体の製造方法。
1. A method for producing an electromagnetic wave reflector for obtaining an electromagnetic wave reflector having a laminated structure in which an electromagnetic wave reflective material is integrally sandwiched between a fiber reinforced resin material and a protective layer, the method comprising: the fiber reinforced resin material and a protective layer placed thereon; The electromagnetic wave reflecting material is heated under pressure in a mold to bring it into a semi-cured state, and then the mold is opened and a fluid resin is placed on the electromagnetic wave reflective material and heated under pressure to form a protective layer. A method for manufacturing an electromagnetic wave reflector.
JP59125764A 1984-06-19 1984-06-19 Production of electromagnetic wave reflector Granted JPS614304A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59125764A JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59125764A JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Publications (2)

Publication Number Publication Date
JPS614304A JPS614304A (en) 1986-01-10
JPH0530321B2 true JPH0530321B2 (en) 1993-05-07

Family

ID=14918242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59125764A Granted JPS614304A (en) 1984-06-19 1984-06-19 Production of electromagnetic wave reflector

Country Status (1)

Country Link
JP (1) JPS614304A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2606704A1 (en) * 1986-11-18 1988-05-20 Mecelec Sa Method for producing electrically conducting components by the compression moulding technique, sandwich sheets for implementing the said method and electrically conducting components obtained
EP0476228A1 (en) * 1990-08-20 1992-03-25 Bridgestone Corporation Reflector and method of and apparatus for fabricating the same
EP0543664A3 (en) * 1991-11-21 1993-09-22 Nifco Inc. Parabolic antenna and method of manufacturing reflector body of the same
US5840383A (en) * 1996-02-12 1998-11-24 Bgf Industries, Inc. Electromagnetic wave reflective fabric
JP5366251B2 (en) * 2009-10-14 2013-12-11 信越ポリマー株式会社 Lens for ultrasonic diagnostic apparatus and manufacturing method thereof
WO2024029575A1 (en) * 2022-08-02 2024-02-08 積水化学工業株式会社 Radio wave reflecting body, manufacturing method for radio wave reflecting body, construction method for radio wave reflecting body

Also Published As

Publication number Publication date
JPS614304A (en) 1986-01-10

Similar Documents

Publication Publication Date Title
EP1314548A1 (en) Composite material, formed product, and prepreg
US4599255A (en) Composite structures having conductive surfaces
CN108274829A (en) A kind of light-weighted shielding wallboard of shelter and preparation method thereof with radar invisible function
US4191604A (en) Method of constructing three-dimensionally curved, knit wire reflector
US4242686A (en) Three-dimensionally curved, knit wire electromagnetic wave reflector
JP2020505763A (en) Electromagnetic wave shielding material using perforated metal sheet and method of manufacturing the same
JPH0530321B2 (en)
US6682619B2 (en) Composite pre-preg ply having tailored dielectrical properties and method of fabrication thereof
EP0186517B1 (en) Electromagnetic reflection body
JP5044916B2 (en) Method for producing carbon fiber reinforced plastic with integrated radio wave absorber
JPS59201504A (en) Manufacture of reinforced plastic-made parabolic antenna
JPH02291703A (en) Radar dome made of fiber reinforced plastic
JPS60192404A (en) Manufacture of electromagnetic wave reflecting body
JPS59167103A (en) Parabolic reflective plate for antenna
JPS5930307A (en) Synthetic resin made parabola reflector and its manufacture
JPH025305A (en) Electric conductive reinforced thermosetting type formation and its manufacture
JPS60153606A (en) Radio wave reflecting body and its manufacture
JP3148477B2 (en) Light-weight reinforcing material, light-weight structure using the same, and method of manufacturing the same
JPS59201505A (en) Manufacture of reinforced plastic-made parabolic antenna
KR100442479B1 (en) A sheet having electromagnetic shielding effect and manufacturing method thereof
JPH06101647B2 (en) Reflector and manufacturing method thereof
JPH01239999A (en) Electromagnetic wave reflector
JPH0297103A (en) Reflection mirror for parabolic antenna and its production
JPH0454400B2 (en)
JPH04224830A (en) Composite molding