JPH0454400B2 - - Google Patents

Info

Publication number
JPH0454400B2
JPH0454400B2 JP1196371A JP19637189A JPH0454400B2 JP H0454400 B2 JPH0454400 B2 JP H0454400B2 JP 1196371 A JP1196371 A JP 1196371A JP 19637189 A JP19637189 A JP 19637189A JP H0454400 B2 JPH0454400 B2 JP H0454400B2
Authority
JP
Japan
Prior art keywords
mold
lower mold
synthetic resin
electromagnetic shielding
molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1196371A
Other languages
Japanese (ja)
Other versions
JPH02275698A (en
Inventor
Toshihiro Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hosokawa Seisakusho Co Ltd
Original Assignee
Hosokawa Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hosokawa Seisakusho Co Ltd filed Critical Hosokawa Seisakusho Co Ltd
Priority to JP19637189A priority Critical patent/JPH02275698A/en
Publication of JPH02275698A publication Critical patent/JPH02275698A/en
Publication of JPH0454400B2 publication Critical patent/JPH0454400B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は電磁遮蔽筺体の製造方法に関し、そ
の目的はデイジタル機器から放射される電磁波ノ
イズをシールドするとともに厚さが薄く、機械的
強度の強い電磁遮蔽筺体を少ない工程で、かつ電
磁遮蔽物を筺体内に均一に内填させることのでき
る電磁遮蔽筺体の製造方法を提供することにあ
る。 (従来の技術およびその問題点) 近年、デイジタル機器(コンピユータ、ミニコ
ン、マイコン等)の普及とともに、これらのデイ
ジタル機器が内蔵するクロツク周波数の発振器か
ら発振される電磁波ノイズが、普通の家庭内の電
気機器への妨害電波となることが多く問題となつ
ている。 この電磁波ノイズの防止のために、筺体表面に
シールド塗装、亜鉛塗膜を溶射するという電磁遮
蔽技術の開示もあるが、シールド塗料は筺体を構
成する合成樹脂と塗料のビヒクルとにる合成樹脂
とのなじみ性が問題となり、どのような筺体でも
使用できるシールド塗料はないという欠点があつ
た。 更に塗膜の均一性が問題となると共にデイジタ
ル機器の使用環境が悪化した場合、該塗膜が損傷
しシールド能が低下することがあつた。 しかも製造上の問題として作業工程が多いとい
う欠点もあつた。 従つて、多くの場合、デイジタル機器の筺体表
面をシールド処理し、あるいはせずに使用し、こ
のデイジタル機器の筺体全体を覆う大形状の金属
性筺体を被せて電磁遮蔽をしているのが現状で、
デイジタル機器のために大スペースを占有する嫌
いがあつた。 一方、第3図A,B図示の如く合成樹脂を上下
分離型の金型1,2を用いて成形する圧縮成形法
によつてメツシユメタル、金網等の電磁遮蔽物3
を熔融合成樹脂4と同時に成形することが本発明
者らによつて試みられている。 この方法によれば、インジエクシヨン法に較べ
加圧力が少なく大形状物を均一の厚みで成形でき
る。 またこの方法で製造された筺体5はシールド塗
装の筺体に較べてシールド効果に優れている上、
製造作業性に優れたものである。 しかしこの方法で製造された筺体5は第3図B
に図示の如く、電磁遮蔽物3の内填性が不良で、
A箇所やB箇所に示すように、筺体5の表面に電
磁遮蔽物3が顕出し、外観が不良であり、また実
際電気機器に使用する筺体としてはデイジタル機
器そのものへの悪影響が懸念される。 しかも、この方法では電磁遮蔽物3自身の保形
力が要求され、相当太い金属繊維からなる電磁遮
蔽物3を使用しなければならないという欠点があ
つた。 また、圧縮成形された電磁遮蔽筺体として特開
昭58−73198号公報及び特開昭58−73199号公報に
開示のものがある。 この電磁遮蔽筺体は補強用のガラス繊維やポリ
エステル繊維に炭素繊維状、金属繊維状または非
金属繊維状の材料をメタライズ加工したネツト等
を積層し、前記ネツト等に導電性複合高分子のマ
トリツクスが積層されたものでありシールド能と
引張強度が向上された電磁遮蔽筺体として開示さ
れている。 しかし、この電磁遮蔽筺体はネツト等に導電性
複合高分子のマトリツクスを積層して圧縮成形す
るものであるため、前述と同様、ネツト等がマト
リツクスの表面から顕出してしまうことがあつ
た。 また、加熱加圧成型される内外異色の成型物の
製造方法として特公昭43−7450号公報に開示の技
術がある。 この内外異色の成型物の製造方法は第1工程で
雌型に外色(或いは内色)となる公知の成型材料
を充填し加熱加圧成型して未完全硬化状態の成型
品を成型し、次に型を開き、第2工程で熱流動性
を有し速硬化性の着色成型材料を前記成型品上に
(或いは該成型品と雌型との間に)添加し、金型
にて再び加熱加圧成型してなる内外異色の成型物
の製造方法として開示されている。 特に、第1工程で内色となる成型品を成型し、
第2工程で外色となる成型品を成型する場合に問
題があつた。 即ち、第2工程で前記雌型上に熱流動性・速硬
化性がある前記成型材料が直接接触するから、硬
化時間が短くなりすぐに固まつてしまい、その固
まつてしまうことにより展延性がなくなり、所期
目的の形状に前記成型材料を前記雌型上で成型す
るのが困難であつた。 また、加熱加圧成型される内外異色の成型物の
製造方法として特公昭37−13779号公報に開示の
技術がある。 この内外異色の成型物の製造方法は、第1工程
で雌型及び雄型により合成樹脂粉末を加熱加圧し
て外層を成型し、第2工程でその雌型の最内層と
して第1工程で成型した外層と雄型により外層と
異色の合成樹脂粉末を加熱加圧して内層を成型し
てなる内外異色の成型物の製造方法として開示さ
れている。 しかし、この開示技術においては、外層は成型
した後に内層を成型するので、最初に内層を成型
し、次いで外層を被覆する成型体には適用するこ
とができなかつた。 また、特開昭54−60504号において「電波遮蔽
材料」も開示されていた。 この開示技術は、母材となる板状の樹脂と、こ
の樹脂と一体的に結合され、且つ板状の面と実質
的に平行に保持された導電性繊維の布帛状物とか
らなり、サンドイツチ構造を採ることもできる電
波遮蔽材料として開示されている。 しかし、サンドイツチ構造を採ると、電波遮蔽
材料が肉厚のものとなり、電波遮蔽筺体に用いる
には不向きであつた。 すなわち、電磁遮蔽筺体としては外形を小さく
且つ内容積をより大きく形成させるため、その厚
みをできるだけ薄くし、且つ機械的強度にも優れ
た構造のものでなければならなかつた。 (問題点を解決するための手段) この発明は、上下分離型の金型を使用し、この
金型の下金型に電磁遮蔽物を敷設しかつこの下金
型内に機械的強度の弱い熔融合成樹脂を供給した
後、上下金型を噛合させる第1工程と、この第1
工程で形成された成形体を別途調製された上下分
離型の金型の下金型内に挿入し、次いで前記成形
体と下金型の上面との間に該下金型の略中央部に
設けられた樹脂供給孔を介して熔融合成樹脂を供
給した後、この上下金型を噛合させる第2工程と
からなる電磁遮蔽筺体の製造方法によつて上記問
題点を悉く解決する。 (実施例) 以下、図面に基づいてこの発明の一実施例を説
明する。 第2図A乃至Gにこの発明方法を示し、まず第
2図A乃至Cに示す如く上下分離型の金型12,
13を使用して第1工程を行なう。 まず、下金型13に電磁遮蔽物7を敷設する。 電磁遮蔽筺体7としては、メツシユ単位が2mm
乃至5mmのメツシユメタル、パンチングメタル等
の銅、鉄、ステンレス等の良伝導性金属部材が好
適に使用される。 下金型13内に熔融合成樹脂10を供給する。 ここで使用される熔融合成樹脂10としてはポ
リエチレン、ポリプロピレン等の機械的強度の弱
い汎用合成樹脂が好適に使用できる。 第2図Bに図示のように上金型12を駆動させ
て上下金型12,13を噛合させる。 そして第2図Cに示すように電磁遮蔽物7を熔
融合成樹脂中に内填した状態で賦形する。 このようにして、第2図Dに示すような成形体
14を得る。 この成形体14は大形状であつても、前述の圧
縮成形法の特徴(インジエクシヨン法に比べ低加
圧力でよい)によつて均一厚みの筺体に成形でき
る。 しかし、この成形体14では従来技術のところ
で述べたように、電磁遮蔽物7が表面に顕出して
いる部分が存在することが多い。 次に別途上下金型15,16を調製して第2工
程を行う(第2図E,F参照)。 この下金型16内に前記第1工程で製造した成
形体14を挿入する(第2図E)。 次いで、機械的強度の強い熔融合成樹脂11を
成形体14の表面と下金型16の上面との間に該
下金型16の略中央部に設けられた樹脂供給孔1
8を介して供給する。 このように、機械的強度の強い熔融合成樹脂1
1を下から樹脂供給孔18を介して供給すること
により、下金型16上に前記溶融合成樹脂11が
分散し、均一に内填することができる。 この第2工程で使用される熔融合成樹脂11と
しては前記熔融合成樹脂10と同一のものでもよ
いが好ましくはノリル(E.P.L社製(商品名))
等のエンジニアリングプラスチツクが好適であ
る。 この後、第2図Fに示す如く、上下金型15,
16を噛合させて被覆層9を成形する。 このようにして第2図Gまたは第1図A,Bに
示す電磁遮蔽筺体が得られる。 このように、この電磁遮蔽体は第1図A,B
に示すような構造とされ、機械的強度の弱い合成
樹脂8の表面が機械的強度の強い前記被覆層9に
よつて被覆されているため、電磁遮蔽物7が合成
樹脂8表面から顕出しても被覆層9によつて被覆
されることになる。 以下、試験例及び比較例を示す。 試験例 成形体をポリプロピレン樹脂から圧縮成形法に
よつて縦、横、高さが40cm、45cm、13cmで厚さ2
mmの開口体として構成し、この成形体内に5mmメ
ツシユのステンレス金網を内填した。 この金網は0.2mmのステンレス繊維からなる。 この成形体の表面には3ケ所、金網が顕出して
いた。 この成形体の表面にノリル(E.P.L社製(商品
名))によつてなる被覆層をこの発明方法の第2
工程での圧縮成形法で2mm厚で成形した。 比較例 1 縦、横、高さが45cm、45cm、13cmで厚さ4mmの
開口体をノリル(E.P.L社製(商品名))から通
常の方法で成形し、厚み0.02mmの鉛被膜を表面に
溶射した。 比較例 2 縦、横、高さが45cm、45cm、13cmで厚さ4mmの
開口体を前記ノリルから通常の方法で成形し、厚
み0.04mmの電磁遮蔽塗料を塗装した。 この電磁遮断塗料としてニツケル粉末を分散さ
せ、合成樹脂をビヒクルとする塗料を用いた。 損傷テスト これらの筺体を60℃、湿度40%の雰囲気中で1
分間に4回転(自転)させる装置中で表面を損傷
させるために1日放置した。 この損傷テストは2年間の使用に相当する。 これら筺体を日本データジエネラル社(株)製MV
−4000、32ビツトスーパーミニコンの筺体として
それぞれ使用し、この機器の放射妨害電波の電界
強度(30m、40MHz)を上記損傷テストの前後に
行つた。 結果を次表に示す。
(Industrial Application Field) This invention relates to a method for manufacturing an electromagnetic shielding case, and its purpose is to shield electromagnetic noise emitted from digital equipment, and to manufacture an electromagnetic shielding case that is thin and has strong mechanical strength in a few steps. It is an object of the present invention to provide a method for manufacturing an electromagnetic shielding casing, which also allows an electromagnetic shielding object to be uniformly placed inside the casing. (Prior art and its problems) In recent years, with the spread of digital devices (computers, minicomputers, microcomputers, etc.), the electromagnetic noise oscillated by the clock frequency oscillators built into these digital devices has become a major issue in the electricity supply in ordinary homes. This has become a problem as it often causes interference with equipment. In order to prevent this electromagnetic noise, there are disclosures of electromagnetic shielding technology that involves spraying a shield coating or zinc coating on the surface of the housing, but the shielding paint is a combination of the synthetic resin that makes up the housing and the synthetic resin that forms the paint vehicle. The problem was that there was no shielding paint that could be used on any type of housing. Furthermore, the uniformity of the coating film became a problem, and when the environment in which the digital equipment was used deteriorated, the coating film was damaged and the shielding ability was sometimes reduced. Moreover, there was also the drawback that there were many manufacturing steps. Therefore, in many cases, the surface of the digital device's case is treated with or without shielding, and the current situation is to cover the entire case of the digital device with a large metal case to provide electromagnetic shielding. in,
I hated having digital devices take up so much space. On the other hand, as shown in FIGS. 3A and 3B, electromagnetic shielding material 3 such as mesh metal or wire mesh is formed by compression molding method in which synthetic resin is molded using upper and lower separated molds 1 and 2.
The present inventors have attempted to simultaneously mold the molten synthetic resin 4. According to this method, a large-sized object can be molded with a uniform thickness using less pressure than the injection method. In addition, the housing 5 manufactured by this method has a superior shielding effect compared to a shield-coated housing, and
It has excellent manufacturing workability. However, the housing 5 manufactured by this method is shown in Fig. 3B.
As shown in the figure, the electromagnetic shield 3 has poor filling properties,
As shown in locations A and B, the electromagnetic shield 3 is exposed on the surface of the casing 5, giving a poor appearance, and as a casing actually used for electrical equipment, there is concern that it may have an adverse effect on the digital equipment itself. Moreover, this method requires the electromagnetic shield 3 to maintain its own shape, and has the disadvantage that the electromagnetic shield 3 made of considerably thick metal fibers must be used. Moreover, compression-molded electromagnetic shielding casings are disclosed in Japanese Patent Laid-Open No. 58-73198 and Japanese Patent Laid-Open No. 58-73199. This electromagnetic shielding casing is made by laminating a reinforcing glass fiber or polyester fiber with a metallized carbon fiber, metal fiber, or non-metal fiber material, and the net is coated with a conductive composite polymer matrix. It is disclosed as an electromagnetic shielding casing that is laminated and has improved shielding ability and tensile strength. However, since this electromagnetic shielding casing is made by laminating a conductive composite polymer matrix on a net or the like and compression molding it, the net or the like may come out from the surface of the matrix, as described above. Furthermore, there is a technique disclosed in Japanese Patent Publication No. 43-7450 as a method for producing a molded article having different colors inside and outside by heat-pressing molding. In the first step, the method for manufacturing a molded product with different internal and external colors involves filling a female mold with a known molding material that will give the external color (or internal color) and molding under heat and pressure to form an incompletely cured molded product. Next, the mold is opened, and in the second step, a heat-flowable and fast-curing colored molding material is added onto the molded product (or between the molded product and the female mold), and the mold is refilled. It is disclosed as a method for manufacturing a molded product which is formed by heating and pressure molding and has a different color inside and outside. In particular, in the first step, the molded product with the internal color is molded,
There was a problem when molding a molded product with an external color in the second step. That is, in the second step, since the thermofluid and fast-curing molding material comes into direct contact with the female mold, the curing time is shortened and it hardens quickly, and the hardening reduces the spreadability. It was difficult to mold the molding material into the desired shape on the female mold. Further, there is a technique disclosed in Japanese Patent Publication No. 37-13779 as a method for producing a molded article having different colors inside and outside by heat-pressing molding. This method of manufacturing a molded product with different colors inside and outside is as follows: In the first step, synthetic resin powder is heated and pressed using a female mold and a male mold to mold the outer layer, and in the second step, the innermost layer of the female mold is molded in the first step. This patent discloses a method for manufacturing a molded article with different inner and outer colors, in which the outer layer and the inner layer are molded by heating and pressing synthetic resin powders of different colors from the outer layer using a male mold. However, in this disclosed technique, since the inner layer is molded after the outer layer is molded, it cannot be applied to a molded body in which the inner layer is molded first and then the outer layer is covered. Furthermore, ``radio wave shielding material'' was also disclosed in Japanese Patent Application Laid-Open No. 54-60504. This disclosed technology consists of a plate-shaped resin serving as a base material, and a conductive fiber fabric that is integrally bonded to the resin and held substantially parallel to the plate-shaped surface, and is made of a sandwich fabric. It is disclosed as a radio wave shielding material that can also have a structure. However, when the sandwich structure is adopted, the radio wave shielding material becomes thick, making it unsuitable for use in a radio wave shielding case. That is, in order to form an electromagnetic shielding case with a small outer diameter and a large internal volume, it is necessary to have a structure that is as thin as possible and has excellent mechanical strength. (Means for Solving the Problems) This invention uses a mold with upper and lower parts separated, and an electromagnetic shield is placed in the lower mold of the mold, and the lower mold has a weak mechanical strength. After supplying the molten synthetic resin, a first step of interlocking the upper and lower molds;
The molded body formed in the process is inserted into the lower mold of a separately prepared top-bottom mold, and then placed between the molded body and the upper surface of the lower mold at the approximate center of the lower mold. All of the above problems are solved by a method for manufacturing an electromagnetic shielding casing, which comprises a second step of supplying molten synthetic resin through the provided resin supply hole and then engaging the upper and lower molds. (Example) Hereinafter, an example of the present invention will be described based on the drawings. The method of this invention is shown in FIGS. 2A to 2G. First, as shown in FIGS.
13 is used to carry out the first step. First, the electromagnetic shield 7 is placed on the lower mold 13. The mesh unit of the electromagnetic shielding case 7 is 2 mm.
A highly conductive metal member such as copper, iron, or stainless steel, such as a mesh metal or punched metal with a diameter of 5 mm to 5 mm, is preferably used. The molten synthetic resin 10 is supplied into the lower mold 13. As the molten synthetic resin 10 used here, general-purpose synthetic resins with low mechanical strength, such as polyethylene and polypropylene, can be suitably used. As shown in FIG. 2B, the upper mold 12 is driven to engage the upper and lower molds 12 and 13. Then, as shown in FIG. 2C, the electromagnetic shield 7 is filled in the molten synthetic resin and shaped. In this way, a molded body 14 as shown in FIG. 2D is obtained. Even if the molded body 14 has a large shape, it can be molded into a casing with a uniform thickness due to the above-mentioned characteristics of the compression molding method (lower pressure is required than in the injection molding method). However, as described in the related art section, this molded body 14 often has a portion where the electromagnetic shield 7 is exposed on the surface. Next, upper and lower molds 15 and 16 are separately prepared and a second step is performed (see FIG. 2 E and F). The molded body 14 produced in the first step is inserted into the lower mold 16 (FIG. 2E). Next, a molten synthetic resin 11 having strong mechanical strength is passed through a resin supply hole 1 provided approximately in the center of the lower mold 16 between the surface of the molded body 14 and the upper surface of the lower mold 16.
8. In this way, melt-fused synthetic resin 1 with strong mechanical strength
By supplying molten synthetic resin 11 from below through the resin supply hole 18, the molten synthetic resin 11 can be dispersed on the lower mold 16 and uniformly filled therein. The melt-fused synthetic resin 11 used in this second step may be the same as the melt-fused synthetic resin 10, but is preferably Noryl (manufactured by EPL (trade name)).
Engineering plastics, such as, are suitable. After this, as shown in FIG. 2F, the upper and lower molds 15,
16 are engaged with each other to form the covering layer 9. In this way, the electromagnetic shielding casing 6 shown in FIG. 2G or FIGS. 1A and 1B is obtained. In this way, this electromagnetic shield 6 is shown in FIGS.
Since the surface of the synthetic resin 8 with weak mechanical strength is covered with the coating layer 9 with strong mechanical strength, the electromagnetic shield 7 is exposed from the surface of the synthetic resin 8. will also be covered with the covering layer 9. Test examples and comparative examples are shown below. Test example: Molded objects were made from polypropylene resin by compression molding, and the length, width, and height were 40 cm, 45 cm, and 13 cm, and the thickness was 2.
The molded body was constructed as an open body with a diameter of 5 mm, and a 5 mm mesh stainless wire gauze was placed inside the molded body. This wire mesh is made of 0.2mm stainless steel fiber. Wire mesh was exposed at three locations on the surface of this molded product. In the second method of this invention, a coating layer made of Noryl (manufactured by EPL (trade name)) is applied to the surface of this molded body.
It was molded to a thickness of 2 mm using the compression molding method in the process. Comparative Example 1 Apertures with length, width, and height of 45 cm, 45 cm, and 13 cm and a thickness of 4 mm were formed from Noryl (manufactured by EPL (trade name)) using the usual method, and a lead coating with a thickness of 0.02 mm was applied to the surface. Sprayed. Comparative Example 2 Opening bodies with length, width, and height of 45 cm, 45 cm, and 13 cm and a thickness of 4 mm were formed from the Noryl in a conventional manner, and coated with electromagnetic shielding paint 0.04 mm thick. As this electromagnetic shielding paint, we used a paint in which nickel powder was dispersed and a synthetic resin was used as a vehicle. Damage test These casings were tested in an atmosphere of 60℃ and 40% humidity.
It was left for one day to damage the surface in an apparatus that rotates 4 revolutions per minute (rotation). This damage test corresponds to two years of use. These casings are manufactured by Nippon Data General Co., Ltd.
-4000 and 32-bit super minicomputers, respectively, and the field strength of the radiated interference radio waves (30 m, 40 MHz) was measured before and after the above damage test. The results are shown in the table below.

【表】 以上の結果からこの発明方法によつて優れた電
磁遮蔽筺体が製造されることが判る。 (発明の効果) この発明は、上下分離型の金型を使用し、この
金型の下金型に電磁遮蔽物を敷設しかつこの下金
型内に機械的強度の弱い熔融合成樹脂を供給した
後、上下金型を噛合させる第1工程と、この第1
工程で成形された成形体を別途調製された上下分
離型の金型の下金型内に挿入し、次いで前記成形
体と前記下金型の上面との間に該下金型の略中央
部に設けられた樹脂供給孔を介して機械的強度の
強い溶融合成樹脂を供給した後、この上下金型を
噛合させる第2工程とからなる電磁遮蔽筺体の製
造方法であるので以下の効果を奏する。 すなわち、第1工程において埋入性の有る機械
的強度の弱い樹脂を用い、第2工程において保形
力の有る機械的強度の強い樹脂を用いて成形を行
い、また第2工程において下金型の略中央部に設
けられた樹脂配給孔により溶融樹脂が送り込まれ
るため、上記溶融樹脂が前記下金型上に万遍なく
分散される。 従つて、従来のように電磁遮蔽物が表面に顕出
することがなく、また電磁シールド塗料に比べて
電磁遮蔽効果が長時間接続でき、電磁遮蔽物自体
が補強材となつて機械的強度にも優れた厚みの薄
い電磁遮蔽筺体を極めて効率良く製造できるとい
う優れた効果を奏する。
[Table] From the above results, it can be seen that an excellent electromagnetic shielding casing can be manufactured by the method of the present invention. (Effects of the Invention) This invention uses a mold with upper and lower parts separated, an electromagnetic shield is laid in the lower mold of the mold, and a molten synthetic resin with low mechanical strength is supplied into the lower mold. After that, the first step is to engage the upper and lower molds, and this first step
The molded body formed in the process is inserted into a lower mold of a separately prepared upper and lower mold, and then a substantially central portion of the lower mold is inserted between the molded body and the upper surface of the lower mold. This method of manufacturing an electromagnetic shielding casing includes the second step of supplying a molten synthetic resin with strong mechanical strength through a resin supply hole provided in the resin supply hole, and then engaging the upper and lower molds, so that it has the following effects. . That is, in the first step, a resin with low mechanical strength that has embedding properties is used, and in the second step, a resin with strong mechanical strength that has shape retention is used for molding, and in the second step, the lower mold is Since the molten resin is fed through the resin distribution hole provided approximately at the center of the mold, the molten resin is evenly distributed over the lower mold. Therefore, the electromagnetic shielding material does not appear on the surface as in the past, and compared to electromagnetic shielding paint, the electromagnetic shielding effect can be maintained for a longer period of time, and the electromagnetic shielding material itself acts as a reinforcing material, increasing mechanical strength. The present invention has an excellent effect in that a thin electromagnetic shielding casing can be manufactured extremely efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図Aはこの発明方法で製造された電磁遮蔽
筺体の一部破断外観図、第1図Bは同上電磁遮蔽
筺体の断面図、第2図A乃至Gはこの発明方法の
各工程を示す断面説明図、第3図A,Bは従来例
の断面説明図である。 ……電磁遮蔽筺体、7……電磁遮蔽物、8…
…合成樹脂、9……被覆層、10,11……熔融
合成樹脂、12,13……第1工程で使用する上
下金型、14……第1工程によつて成形された成
形体、15,16……第2工程で使用する上下金
型、18……樹脂供給孔。
FIG. 1A is a partially cutaway external view of an electromagnetic shielding casing manufactured by the method of this invention, FIG. 1B is a sectional view of the same electromagnetic shielding casing, and FIGS. 2A to G show each step of the method of this invention. 3A and 3B are cross-sectional explanatory views of a conventional example. 6 ... Electromagnetic shielding casing, 7... Electromagnetic shielding, 8...
... Synthetic resin, 9 ... Covering layer, 10, 11 ... Molten synthetic resin, 12, 13 ... Upper and lower molds used in the first step, 14 ... Molded object molded in the first step, 15 , 16... Upper and lower molds used in the second step, 18... Resin supply hole.

Claims (1)

【特許請求の範囲】 1 上下分離型の金型を使用し、この金型の下金
型に電磁遮蔽物を敷設しかつこの下金型内に機械
的強度の弱い熔融合成樹脂を供給した後、上下金
型を噛合させる第1工程と、この第1工程で成形
された成形体を別途調製された上下分離型の金型
の下金型内に挿入し、次いで前記成形体と前記下
金型の上面との間に該下金型の略中央部に設けら
れた樹脂供給孔を介して機械的強度の強い熔融合
成樹脂を供給した後、この上下金型を噛合させる
第2工程とからなる電磁遮蔽筺体の製造方法。 2 電磁遮蔽物としてメツシユ単位が2mm乃至5
mmの良伝導性金属部材が敷設される請求項1に記
載の電磁遮蔽筺体の製造方法。
[Scope of Claims] 1. After using a vertically separated mold, placing an electromagnetic shield in the lower mold of the mold, and supplying a molten synthetic resin with low mechanical strength into the lower mold. , a first step of interlocking the upper and lower molds, and inserting the molded object formed in this first step into a lower mold of a separately prepared upper and lower mold, and then inserting the molded object and the lower mold. A second step of interlocking the upper and lower molds after supplying a molten synthetic resin with strong mechanical strength through a resin supply hole provided approximately at the center of the lower mold between the upper surface of the mold and the upper mold. A method of manufacturing an electromagnetic shielding case. 2 Mesh unit is 2mm to 5mm as an electromagnetic shield
2. The method of manufacturing an electromagnetic shielding casing according to claim 1, wherein a highly conductive metal member of mm is laid.
JP19637189A 1989-07-27 1989-07-27 Manufacture of electromagnetic shielding housing Granted JPH02275698A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19637189A JPH02275698A (en) 1989-07-27 1989-07-27 Manufacture of electromagnetic shielding housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19637189A JPH02275698A (en) 1989-07-27 1989-07-27 Manufacture of electromagnetic shielding housing

Publications (2)

Publication Number Publication Date
JPH02275698A JPH02275698A (en) 1990-11-09
JPH0454400B2 true JPH0454400B2 (en) 1992-08-31

Family

ID=16356749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19637189A Granted JPH02275698A (en) 1989-07-27 1989-07-27 Manufacture of electromagnetic shielding housing

Country Status (1)

Country Link
JP (1) JPH02275698A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811245B2 (en) * 2006-11-27 2011-11-09 パナソニック電工株式会社 Electromagnetic wave shielding case body article and manufacturing method thereof
CN103921525B (en) * 2014-04-16 2016-01-13 曾芳勤 Dielectric film continuous shaping method is covered in radome

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460504A (en) * 1977-10-24 1979-05-16 Toray Industries Radio wave shielding material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5460504A (en) * 1977-10-24 1979-05-16 Toray Industries Radio wave shielding material

Also Published As

Publication number Publication date
JPH02275698A (en) 1990-11-09

Similar Documents

Publication Publication Date Title
JPH027198B2 (en)
US4629595A (en) Method of making a plastic casing with a conductive film
US20010041239A1 (en) Electronic equipment provided with a shell element
US4585686A (en) Two-layer structure molded by using thermoplastic resin
JPH0454400B2 (en)
JPS61215020A (en) Manufacture of thermosetting resin molded member having electrically-conductive surface layer
JPS5990994A (en) Method of producing electronic device plastic housing
JPH0557758B2 (en)
JPH025305A (en) Electric conductive reinforced thermosetting type formation and its manufacture
WO1993023226A1 (en) Injection co-molded emi/rfi shielding gasket
JPH0319862B2 (en)
JP2004128086A (en) Electromagnetic wave shield member and its manufacturing method
JPS59201504A (en) Manufacture of reinforced plastic-made parabolic antenna
JPS61152098A (en) Construction for electronic appliance and manufacture thereof
JPH05110283A (en) Plastic box body and molding method thereof
JPH05177651A (en) Production of resin molded product having metal layer
JPH02279316A (en) Manufacture of electromagnetic wave shielding molded product
JPS62221195A (en) Electromagnetic shielding molded unit
JPH07237243A (en) Electric wave shielding housing
JPH01188000A (en) Plastic box body for electromagnetic shielding and molding method thereof
JPH02187316A (en) Manufacture of electromagnetic wave shielding molded item
JPS58218196A (en) Method of producing electromagnetic wave shielding molded unit
JPS5874310A (en) Shaping method of hard urethane resin product having electroconductive film on surface thereof
JPH06101647B2 (en) Reflector and manufacturing method thereof
JPS62221198A (en) Electromagnetic shielding molded unit and manufacture of thesame