JP5044916B2 - Method for producing carbon fiber reinforced plastic with integrated radio wave absorber - Google Patents

Method for producing carbon fiber reinforced plastic with integrated radio wave absorber Download PDF

Info

Publication number
JP5044916B2
JP5044916B2 JP2005283738A JP2005283738A JP5044916B2 JP 5044916 B2 JP5044916 B2 JP 5044916B2 JP 2005283738 A JP2005283738 A JP 2005283738A JP 2005283738 A JP2005283738 A JP 2005283738A JP 5044916 B2 JP5044916 B2 JP 5044916B2
Authority
JP
Japan
Prior art keywords
radio wave
resin
carbon fiber
fabric
wave absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005283738A
Other languages
Japanese (ja)
Other versions
JP2007096014A5 (en
JP2007096014A (en
Inventor
浩司 小谷
透 菅原
信雄 浅原
美紀 笠坊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005283738A priority Critical patent/JP5044916B2/en
Publication of JP2007096014A publication Critical patent/JP2007096014A/en
Publication of JP2007096014A5 publication Critical patent/JP2007096014A5/ja
Application granted granted Critical
Publication of JP5044916B2 publication Critical patent/JP5044916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacturing Of Multi-Layer Textile Fabrics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Aerials With Secondary Devices (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、たとえば、船舶や航空機などの輸送用機器、橋梁、鉄塔などの構造物、電波暗室、無線通信のための装置や設備、ビルなどの建築物、オフィス用品に適用し、電波障害を防止するような場合に好適な電波吸収体と、その製造する方法に関する。   The present invention is applied to, for example, transportation equipment such as ships and airplanes, structures such as bridges and steel towers, anechoic chambers, devices and facilities for wireless communication, buildings such as buildings, and office supplies, and to prevent radio interference. The present invention relates to a radio wave absorber suitable for prevention and a method for manufacturing the same.

電波吸収体は、到来電波の反射を防止するインピーダンス整合層、到来した電波を取り込んで減衰させる電波吸収層、電波吸収層を通過した電波を電波吸収層に反射する電波反射層からなる。なお、所望の電波吸収性能を満たせば、インピーダンス整合層と電波反射層は無くても良い。   The radio wave absorber includes an impedance matching layer that prevents reflection of incoming radio waves, a radio wave absorption layer that captures and attenuates incoming radio waves, and a radio wave reflection layer that reflects radio waves that have passed through the radio wave absorption layer to the radio wave absorption layer. Note that the impedance matching layer and the radio wave reflection layer may be omitted as long as the desired radio wave absorption performance is satisfied.

電波吸収層は取り込んだ電波を自身の電気的損失や磁気的損失を利用して吸収するように構成されている。インピーダンス整合層は、表面から見た規格化インピーダンスを1または可能な限り1に近くして到来電波の反射を防止し、到来電波が電波吸収層により多く取り込まれるように作用するものである。電波反射層は、電波吸収層を通過した電波を電波吸収層に反射し、1回の通過では吸収しきれなかった電波を電波吸収層で再び吸収させるように作用するものである。   The radio wave absorption layer is configured to absorb the captured radio waves using its own electrical loss and magnetic loss. The impedance matching layer has a normalized impedance viewed from the surface of 1 or as close to 1 as possible to prevent reflection of incoming radio waves, and acts so that more of the incoming radio waves are captured by the radio wave absorption layer. The radio wave reflection layer acts to reflect the radio wave that has passed through the radio wave absorption layer to the radio wave absorption layer, and to absorb again the radio wave that could not be absorbed in one pass.

そのような電波吸収体およびその製造方法には多種多様なものがある。   There are a wide variety of such radio wave absorbers and methods for manufacturing the same.

たとえば、フェライトや金属片などの磁性、導電粉末を混用し、その混用比によって所定の電波吸収性を得る方法(特許文献1,2参照)、磁気的損失と電気的損失層の2層効果を持つもの(特許文献3参照)などが知られている。しかしながら、これらの従来の電波吸収体は、電気的損失材や磁気的損失材を基材の中に均一になるように混合するのが非常に困難であるため製造コストが高く、また、軽量性、力学的特性に劣るなどの欠点があった。   For example, magnetic and conductive powders such as ferrite and metal pieces are mixed, and a method for obtaining a predetermined radio wave absorption by the mixing ratio (see Patent Documents 1 and 2), a two-layer effect of magnetic loss and electrical loss layer. What has (refer patent document 3) etc. are known. However, these conventional electromagnetic wave absorbers are expensive to manufacture because it is very difficult to mix an electrical loss material and a magnetic loss material in a base material so that they are uniform. There were drawbacks such as poor mechanical properties.

また、導電体と無機質中空体の粉粒体を無機接着剤で接着した電波吸収体(特許文献4)が、従来例に比較し力学的特性と軽量性に優れる方法として知られている。しかしながら、該電波吸収体は、比重は軽いものの、所望の電波吸収効果を得るためには板厚が厚くなるため、構造体とした時の重量が重くなる。また、力学的特性も従来例に比較して向上はしているものの、構造体として使用するためには、構造体に用いられる材料の力学特性と比較すると圧倒的に低いと言う問題があった。   In addition, a radio wave absorber (Patent Document 4) in which a conductor and a powder of an inorganic hollow body are bonded with an inorganic adhesive is known as a method that is superior in mechanical properties and light weight as compared with a conventional example. However, although the specific gravity of the radio wave absorber is light, the plate thickness is increased in order to obtain a desired radio wave absorption effect, so that the weight of the structure is increased. In addition, although the mechanical properties have been improved compared to the conventional examples, there is a problem that the mechanical properties are overwhelmingly lower than the mechanical properties of the materials used in the structure for use as a structure. .

それらの課題を解決するための方法として、特許文献5に示すような、炭素短繊維および非導電性短繊維と樹脂とを含む複合材料からなる電波吸収層からなる電波吸収体が知られている。該電波吸収体の製造方法としては、該混抄紙のプリプレグを成形する方法が主に用いられている。しかしながら、該電波吸収体の製造方法の場合、混抄紙のプリプレグ化の工程が必要であり、さらに、プリプレグを成形して電波吸収体を製造する際には、加熱、加圧するための高価な設備、たとえばプレス機やオートクレーブが必要であった。また、混抄紙のプリプレグは樹脂が含浸されているため、賦形性が良くなく、たとえば曲面などの形状を成形する場合には、皺が入るなどの問題があり、複雑形状への適用は困難であった。   As a method for solving these problems, a radio wave absorber made of a radio wave absorption layer made of a composite material including carbon short fibers and non-conductive short fibers and a resin as shown in Patent Document 5 is known. . As a method for producing the radio wave absorber, a method of forming a prepreg of the mixed paper is mainly used. However, in the case of the method for producing the radio wave absorber, a prepreg process of mixed paper is necessary, and moreover, an expensive facility for heating and pressurizing when producing the radio wave absorber by forming a prepreg For example, a press or an autoclave was required. Also, because the prepreg of mixed paper is impregnated with resin, it does not have good shapeability. For example, when forming a shape such as a curved surface, there is a problem of wrinkles and it is difficult to apply it to complicated shapes. Met.

また、従来の技術では、インピーダンス整合層、電波吸収層、電波反射層を別々に製造した後、機械的あるいは2次接着により接合する方法が一般的である。各層の接合には、接合の材料・作業に要するコスト、接合部材による重量増、あるいは、接合の強度・耐久性の問題があった。
特開昭51−58046号公報 特開昭58−71698号公報 特公昭50−4423号公報 特開2000−082892号公報 特開2004−119450号公報
In the conventional technique, an impedance matching layer, a radio wave absorption layer, and a radio wave reflection layer are manufactured separately and then joined by mechanical or secondary bonding. The bonding of each layer has a problem of bonding material and cost required for the work, weight increase due to the bonding member, or bonding strength and durability.
JP-A 51-58046 JP 58-71698 A Japanese Patent Publication No. 50-4423 JP 2000-082892 A JP 2004-119450 A

そこで本発明の課題は、従来通り優れた電波吸収性能を有するとともに、軽量性、力学的特性に優れ、さらに複雑形状に成形することができる電波吸収体を一体化した炭素繊維強化プラスチックの製造方法を、安価に提供することにある。 Therefore object of the present invention has a conventional street excellent electromagnetic absorption performance, light weight, excellent in mechanical properties, yet the production of carbon fiber reinforced plastic with integrated wave absorber can be formed into complex shapes The method is to provide an inexpensive method .

上記課題を達成するために、本発明は以下の各手段をとる。すなわち、本発明は、少なくとも導電性短繊維と非導電性短繊維とを含む不織布と樹脂で構成される電波吸収層と、炭素繊維布帛と樹脂で構成される電波反射層とを有する電波吸収体を一体化した炭素繊維強化プラスチックの製造方法であって、電波反射層と電波吸収層が同一組成の樹脂で一体的に構成されていることを特徴とする電波吸収体を一体化した炭素繊維強化プラスチックの製造方法である。
そして、かかる電波吸収体を一体化した炭素繊維強化プラスチックの製造方法は、成形型内に、少なくとも前記不織布と、該不織布のいずれかの片面側に設けられるように炭素繊維布帛を配置し、樹脂容器と連通させ、前記成形型内と前記容器内の間に圧力差を生じせしめ、その差圧により、前記成形型内に樹脂を注入すると同時に前記不織布と前記炭素繊維布帛に樹脂を含浸し、硬化させることすることで、前記不織布と前記炭素繊維布帛とを同一組成の樹脂で一体化することにより得られる。
In order to achieve the above object, the present invention takes the following means. That is, the present invention relates to a radio wave absorber having a radio wave absorption layer composed of a non-woven fabric containing at least conductive short fibers and non-conductive short fibers and a resin, and a radio wave reflection layer composed of a carbon fiber fabric and a resin. a method of manufacturing a carbon fiber reinforced plastic with an integrated, carbon fiber radio wave reflecting layer and the radio wave absorbing layer are integrated with wave absorber characterized in that it is constructed integrally with the resin of the same composition a reinforced plastic manufacturing method of.
The manufacturing method of a wave absorber of carbon fiber reinforced plastic with integrated is in a mold, and placed at least the nonwoven fabric, the carbon fiber fabric as provided in any of one side of the nonwoven fabric, Communicating with a resin container, creating a pressure difference between the mold and the container, and by injecting the resin into the mold by the differential pressure, the nonwoven fabric and the carbon fiber fabric are impregnated with the resin. By curing, the non-woven fabric and the carbon fiber fabric are integrated with a resin having the same composition.

本発明に係る電波吸収体を一体化した炭素繊維強化プラスチックの製造方法によれば、従来通り優れた電波吸収性能を有した上に、軽量性、力学的特性に優れ、さらに、複雑形状への成形を可能にした安価な電波吸収体を一体化した炭素繊維強化プラスチックの製造方法を得ることができる。

According to the method of producing a carbon fiber reinforced plastic with integrated radio wave absorber according to the present invention, on having an excellent electromagnetic absorption performance conventional street light weight, excellent mechanical properties, further, the complex shape method of producing a carbon fiber reinforced plastic with integrated possible the inexpensive wave absorber molding can be obtained in the.

以下に、本発明を実施するための最良の形態を、図面を参照しながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1は、本発明の一実施態様に係る電波吸収体1の断面図を示している。図1に示すように、本発明は、導電性短繊維および非導電性短繊維を含む不織布と樹脂の複合材料からなる電波吸収層12を含む電波吸収体1およびその製造方法に関する。本実施態様では、電波吸収層12と、この電波吸収層12の第1の面に設けたインピーダンス整合層11、電波吸収層12の第2の面に設けた電波反射層13を有する構成を示しているが、インピーダンス整合層11は無くても良い。インピーダンス整合層11の材料は、到来電波を反射させにくい材料であれば特に限定はしないが、電波吸収層12と一体化する点から、少なくとも非導電性繊維布帛と樹脂で構成される複合材料からなることが好ましい。また、電波反射層13の材料は特に限定されるものでは無いが、電波吸収層12と一体化する点から、少なくとも導電性繊維布帛と樹脂で構成される複合材料からなることが好ましい。 FIG. 1 shows a cross-sectional view of a radio wave absorber 1 according to an embodiment of the present invention. As shown in FIG. 1, the present invention relates to a radio wave absorber 1 including a radio wave absorption layer 12 made of a composite material of a nonwoven fabric and a resin containing conductive short fibers and non-conductive short fibers , and a method for manufacturing the same. In the present embodiment, a configuration including a radio wave absorption layer 12, an impedance matching layer 11 provided on the first surface of the radio wave absorption layer 12, and a radio wave reflection layer 13 provided on the second surface of the radio wave absorption layer 12 is shown. However, the impedance matching layer 11 may be omitted. The material of the impedance matching layer 11 is not particularly limited as long as it is a material that hardly reflects incoming radio waves, but from the point of integration with the radio wave absorption layer 12, it is at least from a composite material composed of a non-conductive fiber fabric and resin. It is preferable to become. The material of the radio wave reflection layer 13 is not particularly limited, but is preferably made of a composite material composed of at least a conductive fiber fabric and a resin from the viewpoint of integration with the radio wave absorption layer 12.

図2は、本発明の一実施態様に係る電波吸収体1の製造方法を示している。図3は、本発明の一実施態様に係る積層体2の断面図を示している。   FIG. 2 shows a method for manufacturing the radio wave absorber 1 according to an embodiment of the present invention. FIG. 3 shows a cross-sectional view of the laminate 2 according to one embodiment of the present invention.

図2に示すように、まず、成形下型30の上に、少なくとも前記不織布22を任意の枚数積層した積層体2を配置する。本実施態様では、不織布を任意の枚数積層して積層体2としているが、本発明で言う積層体2とは、不織布が単層(1層のみ)である場合も含まれる。その上から、積層体2全体を、バッグ基材としてのバッグフィルム34で覆う。バッグフィルム34には、真空ポンプ43へと接続された吸引管45と、樹脂を収容した樹脂槽42にバルブ40aを介して接続された樹脂送給管41とが接続されている。吸引管45の接続位置と樹脂送給管41の接続位置は、積層体2に関して互いに反対側となるように設定されている。積層体2の面積が大きい場合には、積層体2の表面上には、たとえば網状体からなる樹脂拡散媒体32を配置すると、積層体2の面内方向に樹脂が素早く拡散できる点から好ましい。   As shown in FIG. 2, first, the laminated body 2 in which an arbitrary number of the nonwoven fabrics 22 are laminated is disposed on the lower mold 30. In the present embodiment, an arbitrary number of nonwoven fabrics are laminated to form the laminate 2, but the laminate 2 referred to in the present invention includes a case where the nonwoven fabric is a single layer (only one layer). From then on, the entire laminate 2 is covered with a bag film 34 as a bag base material. The bag film 34 is connected to a suction pipe 45 connected to the vacuum pump 43 and a resin feed pipe 41 connected to a resin tank 42 containing resin via a valve 40a. The connection position of the suction pipe 45 and the connection position of the resin feed pipe 41 are set to be opposite to each other with respect to the laminate 2. When the area of the laminated body 2 is large, it is preferable to dispose a resin diffusion medium 32 made of, for example, a net on the surface of the laminated body 2 because the resin can quickly diffuse in the in-plane direction of the laminated body 2.

バッグフィルム34と、成形下型30との間には、シール部材としての両面テープ35が介装されており、全体を周囲からシールすることで成形型を形成している。この状態で、真空ポンプ43を作動させ、吸引管45を介しての吸引により、バッグフィルム34で覆われた内部(成形型内)を真空状態(減圧状態)にする。その状態にした後、バルブ40aを開いて樹脂槽42内の樹脂を樹脂送給管41を介してバッグフィルム34内に注入する。内部が真空状態にされているので、注入された樹脂は、樹脂拡散媒体32に沿って速やかに拡散されるとともに、積層体2へと含浸される。本発明の方法を用いれば、樹脂が積層体2全体に効率よくかつ速やかに含浸され、空洞や局部的な未含浸部分が生じにくい。   A double-sided tape 35 serving as a sealing member is interposed between the bag film 34 and the lower molding die 30, and the molding die is formed by sealing the whole from the periphery. In this state, the vacuum pump 43 is operated, and the inside (inside the mold) covered with the bag film 34 is brought into a vacuum state (reduced pressure state) by suction through the suction pipe 45. After that state, the valve 40 a is opened to inject the resin in the resin tank 42 into the bag film 34 through the resin feed pipe 41. Since the inside is in a vacuum state, the injected resin is quickly diffused along the resin diffusion medium 32 and impregnated into the laminate 2. If the method of this invention is used, resin will be efficiently and rapidly impregnated into the whole laminated body 2, and a cavity and a local unimpregnated part will not produce easily.

しかる後に、含浸させた樹脂を硬化し、バッグフィルム34と樹脂拡散媒体32を除去し、電波吸収体1を得る。   Thereafter, the impregnated resin is cured, the bag film 34 and the resin diffusion medium 32 are removed, and the radio wave absorber 1 is obtained.

本実施態様では、積層体2をバッグフィルム34で覆って内部を減圧しているが、樹脂の圧力との差圧により積層体2に樹脂を注入する製造方法であれば、特に制限は無い。たとえば、成型下型と成型上型の両面を金型にして積層体を含むキャビティを形成する場合も含まれ、この場合、樹脂槽42を大気圧以上に加圧して、樹脂圧力との差圧を利用して、樹脂を注入することもできる。   In this embodiment, the laminated body 2 is covered with the bag film 34 and the inside is depressurized. However, there is no particular limitation as long as it is a manufacturing method in which a resin is injected into the laminated body 2 by a differential pressure from the resin pressure. For example, it includes a case where a cavity including a laminate is formed by using both molds of the lower mold and the upper mold as molds. In this case, the resin tank 42 is pressurized to atmospheric pressure or higher, and the differential pressure from the resin pressure is included. It is also possible to inject a resin using

実質的に積層体を成形下型上に配置し、バッグ基材で覆い内部を真空状態にして、樹脂を注入するだけで良いため、高価な設備が必要となるプリプレグ法や手作業で基材に樹脂を含浸させるハンドレイアップ法と比較して、設備が非常に安価であり、かつ、簡便な製造方法であるため、製造コスト、ひいては電波吸収体製造全体に要するコストが極めて安価である。さらには、樹脂拡散媒体を使用することにより、面内方向に素早く樹脂を含浸させることができるため、従来法では困難であった、例えば10m以上の大型の電波吸収体を製造することも可能となった。   Substantially the laminated body is placed on the lower mold, covered with a bag base material, the inside is evacuated, and it is only necessary to inject the resin. Compared with the hand lay-up method in which the resin is impregnated with the resin, the equipment is very inexpensive and the manufacturing method is simple. Therefore, the manufacturing cost and the cost required for the entire production of the radio wave absorber are extremely low. Furthermore, since a resin diffusion medium can be used to quickly impregnate the resin in the in-plane direction, it is possible to manufacture a large wave absorber of, for example, 10 m or more, which was difficult with the conventional method. became.

また、本発明にかかる製造方法においては、前記樹脂を自由に選択することができ、粘度の低い樹脂を使用することにより、不織布22の密度が高い場合にも均一に含浸させることができる。さらに、内部を減圧することによって、ボイドを極めて少なく成形することができ、品質、特に力学的特性に優れる電波吸収体を容易に製造することができる。前記樹脂は、たとえば、エポキシ樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、フェノール樹脂、ポリイミド樹脂、ポリビスマレイミド樹脂等の熱硬化性樹脂を用いることが好ましい。特に、力学特性に優れた電波吸収体を得る点では、エポキシ樹脂やビニルエステル樹脂を使用することが好ましい。   Moreover, in the manufacturing method concerning this invention, the said resin can be selected freely and even when the density of the nonwoven fabric 22 is high, it can be made to impregnate uniformly by using resin with low viscosity. Furthermore, by reducing the pressure inside, it is possible to form a void with very few, and it is possible to easily manufacture a radio wave absorber that is excellent in quality, particularly mechanical characteristics. The resin is preferably a thermosetting resin such as an epoxy resin, an unsaturated polyester resin, a vinyl ester resin, a phenol resin, a polyimide resin, or a polybismaleimide resin. In particular, it is preferable to use an epoxy resin or a vinyl ester resin in terms of obtaining a radio wave absorber excellent in mechanical properties.

また、本発明にかかる製造方法によれば、電波吸収性能に影響を与える板厚や表面の平滑性の点においても、金型、あるいは、バッグフィルムなどにより、積層体に均一に圧力が付加されるため、従来例に比較して、板厚の均一性および表面の平滑性、ひいては電波吸収性能に優れた電波吸収体を得ることができる。   Further, according to the manufacturing method of the present invention, pressure is evenly applied to the laminate by a mold or a bag film in terms of plate thickness and surface smoothness that affect radio wave absorption performance. Therefore, it is possible to obtain a radio wave absorber that is superior in thickness uniformity and surface smoothness, and thus excellent in radio wave absorption performance, as compared with the conventional example.

また、プリプレグは樹脂が含浸されたシートであるため、賦形性が低く、曲面などの複雑形状では変形が追従しない部分に皺が生じるという問題があったが、前記積層体2は布帛であるため、賦形性に優れており、曲面などの複雑形状であっても追従することができるため、複雑形状の電波吸収体を容易に製造することができる。   Further, since the prepreg is a sheet impregnated with a resin, there is a problem that the formability is low, and there is a problem that wrinkles occur in a portion where deformation does not follow in a complicated shape such as a curved surface, but the laminate 2 is a fabric. For this reason, it is excellent in formability and can follow even a complicated shape such as a curved surface, so that it is possible to easily manufacture a radio wave absorber having a complicated shape.

本発明では、前記積層体2において、不織布22のいずれか片面側に導電性繊維布帛23が含まれ、前記不織布22と一体的に樹脂を注入・硬化すると良い。こうすることで、導電性繊維布帛23と樹脂の複合材料は電波反射層13を形成することができ、電波吸収層12と電波反射層13を同一組成の樹脂で一体化することができる。従来技術における電波吸収層12と電波反射層13の接合は、各層を別々に製造した後に、ボルトなどの機械的接合、接着剤などによる2次接着が一般的であった。本発明にかかる製造方法を用いれば、不織布22と導電性繊維布帛23を積層して樹脂を注入・硬化させることで、電波吸収層12および電波反射層13の形成と接合が1度のプロセスでできるため、接合にかかる材料・作業時間を減少させることができることから、コストが削減できる上、接合にかかる重量を減少させることができる。また、従来の技術における接合は、両層の接合強度、特に耐久性の点で問題があったが、本発明の製造方法によれば、電波吸収層12と電波反射層13は同一組成の樹脂で化学的に一体化されるため、接合強度が問題となることはない。 In the present invention, the in the laminate 2, it includes a conductive fiber cloth 23 on either one side of the nonwoven fabric 22, the nonwoven fabric 22 and may you injecting and curing the integrally resins. By doing so, the composite material of the conductive fiber fabric 23 and the resin can form the radio wave reflection layer 13, and the radio wave absorption layer 12 and the radio wave reflection layer 13 can be integrated with a resin having the same composition. In the prior art, the radio wave absorption layer 12 and the radio wave reflection layer 13 are generally bonded by mechanical bonding such as bolts or secondary bonding using an adhesive after each layer is manufactured separately. If the manufacturing method concerning this invention is used, the formation and joining of the radio wave absorption layer 12 and the radio wave reflection layer 13 are performed in one process by laminating the nonwoven fabric 22 and the conductive fiber fabric 23 and injecting and curing the resin. can therefore, since it can Rukoto reduce such material-working time in the bonding, onto which can reduce the cost, it is possible to reduce the weight applied to the junction. In addition, the bonding in the conventional technique has a problem in the bonding strength between both layers, particularly in terms of durability. However, according to the manufacturing method of the present invention, the radio wave absorption layer 12 and the radio wave reflection layer 13 are resins having the same composition. Therefore, bonding strength does not become a problem.

また、前記導電性繊維布帛23が炭素繊維布帛であり、電波吸収層12が炭素繊維強化プラスチックであることが、より本発明の効果が得られる点で必要である。たとえば、航空機、船舶、自動車などの輸送機器に炭素繊維強化プラスチックの使用比率が高くなってきていることは言うまでも無いが、本発明の製造方法によれば、輸送機器の構造部材として炭素繊維強化プラスチックを用いる場合、炭素繊維布帛と前記不織布を積層するだけで、電波吸収体の機能を持つ炭素繊維強化プラスチック部材を製造することが可能となり、材料の無駄が省けることから非常に低コストで、かつ、高強度の電波吸収体を製造することができる。



In addition, it is necessary that the conductive fiber fabric 23 is a carbon fiber fabric and the radio wave absorption layer 12 is a carbon fiber reinforced plastic in terms of obtaining the effect of the present invention. For example, it goes without saying that the use ratio of carbon fiber reinforced plastic is increasing in transportation equipment such as aircraft, ships and automobiles, but according to the manufacturing method of the present invention, carbon fiber is used as a structural member of transportation equipment. When reinforced plastic is used, it is possible to manufacture a carbon fiber reinforced plastic member having a function of a radio wave absorber by simply laminating a carbon fiber fabric and the nonwoven fabric, and the waste of material can be saved at a very low cost. And a high intensity | strength electromagnetic wave absorber can be manufactured.



また、前記積層体2において、不織布22の第1の面側に非導電性繊維布帛が含まれ、前記不織布22と一体的に注入・硬化することもできる。非導電性繊維布帛21はインピーダンス整合層11を形成し、電波吸収層12とインピーダンス整合層11を同一組成の樹脂で一体化することが可能となる。前記非導電性繊維布帛21はガラス繊維、芳香族ポリアミド繊維、ポリフェニレンサルファイド繊維、ポリ乳酸繊維から選ばれる少なくとも1種の繊維布帛が含まれていることが好ましい。特にガラス繊維や芳香族ポリアミド繊維を使用することが、同一の樹脂で形成することにより、電波吸収層12及び電波反射層13を高強度、高剛性化することが可能となる点から好ましい。繊維の形態は、短繊維であっても長繊維であってもよく、また、織物、編物、不織布等の布帛形態であってもよい。また、不織布22の第2の面側に前記導電性繊維布帛23が含まれていても良く、電波吸収層12、電波反射層13、インピーダンス整合層11の3層同時に樹脂を注入・硬化させることもできる。 Moreover, in the said laminated body 2, a nonelectroconductive fiber fabric is contained in the 1st surface side of the nonwoven fabric 22, and it can also inject | pour and harden | cure with the said nonwoven fabric 22 integrally. The non-conductive fiber fabric 21 forms the impedance matching layer 11, and the radio wave absorption layer 12 and the impedance matching layer 11 can be integrated with a resin having the same composition. The non-conductive fiber fabric 21 preferably includes at least one fiber fabric selected from glass fiber, aromatic polyamide fiber, polyphenylene sulfide fiber, and polylactic acid fiber. In particular , it is preferable to use glass fiber or aromatic polyamide fiber because the radio wave absorption layer 12 and the radio wave reflection layer 13 can be made to have high strength and high rigidity by being formed of the same resin. The form of the fiber may be a short fiber or a long fiber, and may be a fabric form such as a woven fabric, a knitted fabric, or a non-woven fabric. Further, the conductive fiber fabric 23 may be included on the second surface side of the nonwoven fabric 22, and the resin is injected and cured simultaneously into the three layers of the radio wave absorption layer 12, the radio wave reflection layer 13, and the impedance matching layer 11. You can also.

本発明において、前記導電性繊維の短繊維としては、たとえば、炭素繊維、あるいは金、銀、銅、ニッケル、アルミニウム、鉄などの金属繊維のような繊維がある。導電性繊維は、特別な処理を施さなくてもそれ自身で導電性を有し、かつ高強度、高弾性、しかも比重が小さいという優れた特長を有する炭素繊維であることが好ましい。上記短繊維の長さは0.1〜20mmが好ましい。繊維長があまり短かすぎると、繊維同士が重なりにくくなって接点の数が減少するようになり、また、平均繊維長が長くなると、折れやすくなるため、接点数が効率的には増加しない。炭素短繊維は、電波吸収層中に0.02〜5重量%の範囲内で含まれているのが好ましい。すなわち、炭素短繊維の量は、電波吸収層の電気的損失に影響を与える。極端に少ないと電気的損失が低くなって電波吸収性能が低下するようになるし、極端に多いと電気的損失は高くなるものの反射される電波も増えるようになる。   In the present invention, examples of the short fibers of the conductive fibers include carbon fibers and fibers such as metal fibers such as gold, silver, copper, nickel, aluminum, and iron. The conductive fiber is preferably a carbon fiber having excellent characteristics such that it has conductivity by itself without any special treatment and has high strength, high elasticity, and low specific gravity. The length of the short fiber is preferably 0.1 to 20 mm. If the fiber length is too short, the fibers are unlikely to overlap each other and the number of contacts decreases, and if the average fiber length is increased, the fibers are easily broken, so the number of contacts does not increase efficiently. The short carbon fibers are preferably contained in the radio wave absorption layer within a range of 0.02 to 5% by weight. That is, the amount of short carbon fiber affects the electrical loss of the radio wave absorption layer. If it is extremely small, the electric loss is lowered and the radio wave absorption performance is lowered. If it is extremely large, the electric loss is increased but the reflected radio wave is also increased.

非導電性短繊維は、その体積抵抗率が炭素短繊維のそれよりも2桁以上大きい、たとえば、ポリエステル繊維、ナイロン繊維、ガラス繊維、芳香族ポリアミド繊維、ポリフェニレンサルファイド繊維、ポリエーテルエーテルケトン繊維、ポリパラフェニレンベンゾビスオキザゾール繊維、ポリ乳酸繊維がある。なかでも、ガラス繊維や芳香族ポリアミド繊維は剛性が高く、高強度、高弾性率の特性をもつ炭素繊維との相性がよいので好ましい。このような非導電性短繊維は、極端に少なかったり極端に多かったりすると、炭素短繊維間に介在する非導電性短繊維が少なくなり、炭素短繊維同士の重なり合いの制御が難しくなるので、電波吸収層中に30〜99重量%の範囲内で含まれるようにするのが好ましい。   Non-conductive short fibers have a volume resistivity two or more orders of magnitude greater than that of carbon short fibers, such as polyester fibers, nylon fibers, glass fibers, aromatic polyamide fibers, polyphenylene sulfide fibers, polyether ether ketone fibers, There are polyparaphenylene benzobisoxazole fibers and polylactic acid fibers. Among these, glass fibers and aromatic polyamide fibers are preferable because they have high rigidity and good compatibility with carbon fibers having high strength and high elastic modulus. If such non-conductive short fibers are extremely few or extremely large, the number of non-conductive short fibers interposed between the short carbon fibers decreases, and it becomes difficult to control the overlapping of the short carbon fibers. It is preferable to be contained within the range of 30 to 99% by weight in the absorbent layer.

前記導電性短繊維および非導電性短繊維を用いることにより、極めて軽量な電波吸収体を得ることができる。さらに、前記短繊維が樹脂の強度を向上させるため、力学特性に優れた電波吸収体を得ることができる。   By using the conductive short fibers and non-conductive short fibers, an extremely light wave absorber can be obtained. Furthermore, since the short fibers improve the strength of the resin, it is possible to obtain a radio wave absorber having excellent mechanical characteristics.

少なくとも導電性短繊維と非導電性短繊維とを含む繊維シートの形態は、両繊維を混合して不織布にしてシート化したものを用いる。不織布は短繊維が均一にシート状に分散されてなる形態のものであれば特に制約はされない。また、ここでいう不織布には紙状体も含まれる。ここでいう紙状体とは、周知の抄紙方法で得られるシートが含まれる。また、この紙の材料はパルプなどの植物性繊維や、ポリエステルやナイロン、芳香族ポリアミド繊維といった有機合成繊維や、ガラス繊維などの無機繊維などの繊維や、水酸化アルミニウム等の無機粒子が挙げられる。、不織布の目付は50〜200g/m2、厚みは50μm〜300μmの範囲内にあるのが望ましい。1枚当たりの目付が小さすぎると何枚も大量に積層しなければならず手間がかかり、逆に目付が大きすぎると重くなり、取り扱いが難しくなるため、使いやすさの面から、この範囲にあることが好ましい。 The form of the fiber sheet containing at least conductive short fibers and non-conductive short fibers is obtained by mixing both fibers into a non-woven fabric to form a sheet. The nonwoven fabric is not particularly limited as long as short fibers are uniformly dispersed in a sheet shape. The nonwoven fabric referred to here also includes a paper-like body. The paper-like body here includes a sheet obtained by a well-known paper making method. Examples of the paper material include vegetable fibers such as pulp, organic synthetic fibers such as polyester, nylon and aromatic polyamide fibers, fibers such as inorganic fibers such as glass fibers, and inorganic particles such as aluminum hydroxide. . The nonwoven fabric preferably has a basis weight of 50 to 200 g / m 2 and a thickness of 50 μm to 300 μm. If the basis weight per sheet is too small, many sheets must be stacked in large amounts, and conversely, if the basis weight is too large, it becomes heavy and difficult to handle. Preferably there is.

本発明にかかる電波吸収体1は、厚みは好ましくは1〜30mmの範囲内にあり、周波数2〜20GHzの帯域において、少なくとも幅1GHzの、10dB以上の反射損失を示す帯域を有することが、電波吸収性能の点で好ましい。   The radio wave absorber 1 according to the present invention preferably has a thickness in the range of 1 to 30 mm, and has a band exhibiting a reflection loss of 10 dB or more with a width of at least 1 GHz in a frequency band of 2 to 20 GHz. It is preferable in terms of absorption performance.

本発明の電波吸収体は、電波暗室、船舶や航空機等の移動体、橋梁、鉄塔等の構造物、無線通信のための装置や設備、ビル等の建築物、オフィス用品に貼り付けたり装着したりして電波障害を防止するのに使用することができる。   The electromagnetic wave absorber of the present invention is attached to or attached to an anechoic chamber, a moving body such as a ship or an aircraft, a structure such as a bridge or a steel tower, a device or equipment for wireless communication, a building such as a building, or an office article. Can be used to prevent radio interference.

以下、本発明の一実施例について、図面を参照しながら説明する。
(実施例1)
図2において、まず、表面に離型剤が塗布されたアルミ製の成形下型30上に、炭素短繊維(3重量%)とガラスチョップドファイバー(77重量%)と芳香族ポリアミドパルプ(20重量%)が湿式抄紙された東レ株式会社製の電波吸収材用混抄紙(目付100g/m)を6ply積層させた積層体2(厚み1.3mm、300mm×300mm)を配置した。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Example 1
In FIG. 2, first, a short carbon fiber (3% by weight), a glass chopped fiber (77% by weight), and an aromatic polyamide pulp (20% by weight) are formed on an aluminum molded lower mold 30 having a release agent coated on the surface. %) Was wet-made, and a laminate 2 (thickness 1.3 mm, 300 mm × 300 mm) obtained by laminating 6 ply of mixed paper for radio wave absorbing material (100 g / m 2 per unit area) manufactured by Toray Industries, Inc. was disposed.

つぎに、積層体2上に離型性のあるピールプライ31(ナイロン製タフタ)と樹脂拡散媒体32として#400メッシュのポリエチレン製網状体を配置した。   Next, a peelable ply 31 (nylon taffeta) having a releasability and a # 400 mesh polyethylene net as a resin diffusion medium 32 were arranged on the laminate 2.

次に樹脂拡散媒体32の左側にアルミ製のCチャンネル材の開口部を下にした樹脂注入口46を配置した。樹脂槽42は樹脂注入口の近くに設置して、樹脂送給管41で連通させた。一方、右側にはアルミ製のCチャンネル材を減圧吸引口47として配置した。減圧吸引口47はチューブを使用した吸引管45で真空トラップ44と真空ポンプ43と連通させた。   Next, on the left side of the resin diffusion medium 32, a resin injection port 46 with an opening of an aluminum C-channel material positioned downward is disposed. The resin tank 42 was installed near the resin injection port and communicated with the resin feed pipe 41. On the other hand, an aluminum C-channel material is disposed as a vacuum suction port 47 on the right side. The vacuum suction port 47 is a suction pipe 45 using a tube and communicated with the vacuum trap 44 and the vacuum pump 43.

次に、積層体2の周りに両面テープ35を配置して、バッグ材としてバッグフィルム34で全体を覆った。吸引側のバルブ40bを開き、減圧吸引口47よりバッグ内を1torrまで減圧した。   Next, the double-sided tape 35 was arrange | positioned around the laminated body 2, and the whole was covered with the bag film 34 as a bag material. The valve 40b on the suction side was opened, and the pressure in the bag was reduced to 1 torr from the vacuum suction port 47.

次に、注入側のバルブ40aを開放して、樹脂槽42の樹脂を樹脂注入口46より注入した。樹脂は昭和高分子製のビニルエステル樹脂R−806を使用した。樹脂は瞬時に樹脂注入口46に充填され、樹脂拡散媒体32内を1分あまりで拡散した後、積層体2に含浸した。   Next, the valve 40 a on the injection side was opened, and the resin in the resin tank 42 was injected from the resin injection port 46. As the resin, vinyl ester resin R-806 made by Showa High Polymer was used. The resin was instantaneously filled into the resin injection port 46 and diffused in the resin diffusion medium 32 in about 1 minute, and then impregnated into the laminate 2.

樹脂が積層体2全体に含浸を完了したため、注入側のバルブ40aを閉鎖した。次に、積層体2内の樹脂を硬化させた。樹脂の硬化を確認した後に、成形品を脱型し、電波吸収層12のみからなる電波吸収体1(厚み1.2mm)を得た。   Since the resin completed the impregnation of the entire laminate 2, the injection side valve 40a was closed. Next, the resin in the laminate 2 was cured. After confirming the curing of the resin, the molded product was demolded to obtain a radio wave absorber 1 (thickness 1.2 mm) consisting only of the radio wave absorption layer 12.

一方、目付460g/m の芳香族ポリアミド繊維織物5plyの積層体2を、前記と同じ方法でビニルエステル樹脂を注入・硬化させて、インピーダンス整合層11(厚み2.8mm)を得た。 On the other hand, the laminate 2 of the aromatic polyamide fiber woven fabric 5ply having a basis weight of 460 g / m 2 was injected and cured by the same method as described above to obtain the impedance matching layer 11 (thickness 2.8 mm).

次に、電波反射層13となる厚み1mmのアルミニウム板の上に、この電波吸収体1について、2〜18GHzにおける反射損失を測定した結果を図4に示す。   Next, FIG. 4 shows a result of measuring the reflection loss at 2 to 18 GHz for the radio wave absorber 1 on an aluminum plate having a thickness of 1 mm to be the radio wave reflection layer 13.

なお、反射損失は、縦30cm、横30cm、厚み1mmのアルミニウム板に垂直に電波を当てたときの反射レベル(単位:dB)と平板型電波吸収体に同様に電波を当てた時の反射レベル(単位:dB)との差から求めた。測定には、アジレントテクノロジー(株)製のネットワークアナライザーを使用した。   The reflection loss refers to the reflection level (unit: dB) when a radio wave is vertically applied to an aluminum plate having a length of 30 cm, a width of 30 cm, and a thickness of 1 mm, and the reflection level when a radio wave is similarly applied to a flat plate wave absorber. It calculated | required from the difference with (unit: dB). For the measurement, a network analyzer manufactured by Agilent Technologies was used.

本実施例においては、電波反射層13としてアルミニウム板を使用しているが、前記積層体2において、前記芳香族ポリアミド繊維織物5ply、前記混抄紙6ply、炭素繊維織物を順次積層した積層体2を配置し、前記と同じ方法で樹脂を注入・硬化することにより、同等の性能を有する電波吸収体1を得ることができる。   In this embodiment, an aluminum plate is used as the radio wave reflection layer 13, but in the laminate 2, the laminate 2 in which the aromatic polyamide fiber fabric 5ply, the mixed paper 6ply, and the carbon fiber fabric are sequentially laminated is used. By arranging and injecting and curing the resin by the same method as described above, the radio wave absorber 1 having equivalent performance can be obtained.

本発明は、船舶や航空機などの輸送用機器、橋梁、鉄塔などの構造物、ビルなどの建築物などの電波吸収効果かつ力学特性が要求される構造物に適用することが、より特徴を発揮できる点から好ましいが、その他、電波暗室、無線通信のための装置や設備、オフィス用品などの用途にも適用することができる。   The present invention is more applicable when applied to structures requiring electromagnetic wave absorption effects and mechanical properties, such as transportation equipment such as ships and airplanes, structures such as bridges and steel towers, and buildings such as buildings. Although it is preferable from the point which can be performed, it can apply also to uses, such as an anechoic chamber, the apparatus and equipment for radio | wireless communication, and office supplies.

本発明の一実施形態に係る電波吸収体の概略側面図である。1 is a schematic side view of a radio wave absorber according to an embodiment of the present invention. 本発明に係る電波吸収体の製造方法の一実施態様の断面図である。It is a cross-sectional view of one embodiment of a method for producing a radio wave absorber according to the present invention. 本発明の一実施形態に係る積層体の概略側面図である。It is a schematic side view of the laminated body which concerns on one Embodiment of this invention. 実施例1に係る電波吸収体の反射損失を示すグラフである。3 is a graph showing the reflection loss of the radio wave absorber according to Example 1.

符号の説明Explanation of symbols

1:電波吸収体
2:積層体
11:インピーダンス整合層
12:電波吸収層
13:電波反射層
21:非導電性繊維布帛
22:不織布
23:導電性繊維布帛
30:成形下型
31:ピールプライ
32:樹脂拡散媒体
33:ブリーザ
34:バッグフィルム
35:両面テープ
40a,b:バルブ
41:樹脂送給管
42:樹脂槽
43:真空ポンプ
44:真空トラップ
45:吸引管
46:樹脂注入口
47:吸引口
1: Radio wave absorber 2: Laminate body 11: Impedance matching layer 12: Radio wave absorption layer 13: Radio wave reflection layer 21: Non-conductive fiber fabric 22: Non-woven fabric 23: Conductive fiber fabric 30: Lower mold 31: Peel ply 32: Resin diffusion medium 33: Breather 34: Bag film 35: Double-sided tape 40a, b: Valve 41: Resin feed pipe 42: Resin tank 43: Vacuum pump 44: Vacuum trap 45: Suction pipe 46: Resin injection port 47: Suction port

Claims (3)

少なくとも導電性短繊維と非導電性短繊維とを含む不織布と樹脂で構成される複合材料からなる電波吸収体を一体化した炭素繊維強化プラスチックの製造方法において、成形型内に、少なくとも前記不織布と、該不織布のいずれかの片面側に設けられるように炭素繊維布帛を配置し、樹脂容器と連通させ、前記成形型内と前記容器内の間に圧力差を生じせしめ、その差圧により、前記成形型内に樹脂を注入すると同時に前記不織布と前記炭素繊維布帛に樹脂を含浸し、硬化させることで、前記不織布と前記炭素繊維布帛を同一組成の樹脂で一体化することを特徴とする電波吸収体を一体化した炭素繊維強化プラスチックの製造方法。 In a method for producing a carbon fiber reinforced plastic in which a radio wave absorber made of a composite material composed of a resin and a nonwoven fabric containing at least conductive short fibers and non-conductive short fibers is integrated, in the mold, at least the nonwoven fabric and The carbon fiber fabric is disposed so as to be provided on one side of the nonwoven fabric, communicated with the resin container, and a pressure difference is generated between the mold and the container. Radio wave absorption characterized in that the nonwoven fabric and the carbon fiber fabric are integrated with a resin having the same composition by injecting the resin into the mold and simultaneously impregnating and curing the nonwoven fabric and the carbon fiber fabric. Manufacturing method of carbon fiber reinforced plastic with integrated body. 前記型内で前記不織布の第1の面側に非導電性繊維布帛を、第2の面側に前記炭素繊維布帛を、配置し、樹脂を注入・硬化することで、前記不織布と前記非導電性繊維布帛および前記炭素繊維布帛を一体化する、請求項1に記載の電波吸収体を一体化した炭素繊維強化プラスチックの製造方法。 Within the mold, the non-conductive fiber fabric is disposed on the first surface side of the non-woven fabric, the carbon fiber fabric is disposed on the second surface side, and a resin is injected and cured, whereby the non-woven fabric and the non-conductive fiber are disposed. The manufacturing method of the carbon fiber reinforced plastic which integrated the electromagnetic wave absorber of Claim 1 which integrates a property fiber fabric and the said carbon fiber fabric. 成型下型とバッグ材で構成される成形型を用い、前記成形型の内部を減圧することで大気圧の樹脂容器との間に差圧を生じさせる、請求項1または2に記載の電波吸収体を一体化した炭素繊維強化プラスチックの製造方法。 The radio wave absorption according to claim 1 or 2, wherein a differential pressure is generated between the lower mold and a bag material, and a pressure difference between the lower mold and the resin container is generated by reducing the pressure inside the mold. Manufacturing method of carbon fiber reinforced plastic with integrated body.
JP2005283738A 2005-09-29 2005-09-29 Method for producing carbon fiber reinforced plastic with integrated radio wave absorber Expired - Fee Related JP5044916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005283738A JP5044916B2 (en) 2005-09-29 2005-09-29 Method for producing carbon fiber reinforced plastic with integrated radio wave absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005283738A JP5044916B2 (en) 2005-09-29 2005-09-29 Method for producing carbon fiber reinforced plastic with integrated radio wave absorber

Publications (3)

Publication Number Publication Date
JP2007096014A JP2007096014A (en) 2007-04-12
JP2007096014A5 JP2007096014A5 (en) 2008-10-23
JP5044916B2 true JP5044916B2 (en) 2012-10-10

Family

ID=37981346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005283738A Expired - Fee Related JP5044916B2 (en) 2005-09-29 2005-09-29 Method for producing carbon fiber reinforced plastic with integrated radio wave absorber

Country Status (1)

Country Link
JP (1) JP5044916B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6000234B2 (en) * 2013-12-13 2016-09-28 中国塗料株式会社 Conductor, radio wave absorber, coating-coated radio wave absorber, and method for preventing radio interference
CN104480717A (en) * 2014-10-31 2015-04-01 山东腾工轴承有限公司 Self-lubricating joint bearing polytetrafluoroethylene/kevlar fabric liner modified material and modification method
CN108819384B (en) * 2018-05-28 2020-09-08 中南大学 Electromagnetic fiber wave-absorbing material with multilayer structure and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183599A (en) * 1986-02-07 1987-08-11 防衛庁技術研究本部長 Electromagnetic wave absorber
JPH06232581A (en) * 1993-02-01 1994-08-19 Yokohama Rubber Co Ltd:The Absorber for millimeter radiowave
JPH1065383A (en) * 1996-08-19 1998-03-06 Showa Highpolymer Co Ltd Connecting material for radio wave-absorbing composite ferrite plate and radio wave-absorbing composite ferrite plate using the same
JP4126978B2 (en) * 2001-07-06 2008-07-30 東レ株式会社 Preform, FRP comprising the same, and method for producing FRP
JP2004095782A (en) * 2002-08-30 2004-03-25 Emf:Kk Radio wave absorber and its manufacturing method
JP2004119450A (en) * 2002-09-24 2004-04-15 Toray Ind Inc Radio wave absorber and its manufacturing method
JP2004244804A (en) * 2003-02-10 2004-09-02 Penta Ocean Constr Co Ltd Radio wave absorbing panel, mounting method therefor, and manufacturing method therefor
JP2006097304A (en) * 2004-09-29 2006-04-13 Toray Kensetsu Kk Radio wave absorbing frp panel

Also Published As

Publication number Publication date
JP2007096014A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
US10090715B2 (en) System and method for transmitting data or power across a structural component
CN101181827B (en) Method for production of fiber-reinforced composite material
CN108274829A (en) A kind of light-weighted shielding wallboard of shelter and preparation method thereof with radar invisible function
CN108274830B (en) Lightweight shelter wallboard with broadband shielding function and preparation method thereof
CN111186186B (en) Double-layer skin wave-absorbing composite material sandwich structure and preparation method thereof
WO2008011765A1 (en) A toughened composite material laminate and a process of preparation thereof
CN109964550B (en) Electromagnetic wave shield using perforated metal sheet and method for manufacturing the same
WO2010122350A1 (en) Incorporation of functional cloth into prepreg composites
CN111186201A (en) Double-skin wave-absorbing honeycomb sandwich structure and preparation method thereof
CN110920158A (en) Resin column reinforced broadband wave-absorbing/bearing composite material and preparation method thereof
JP5044916B2 (en) Method for producing carbon fiber reinforced plastic with integrated radio wave absorber
CN111186190A (en) Double-layer skin wave-absorbing foam sandwich structure and preparation method thereof
WO2020012964A1 (en) Fiber-reinforced resin composite body, production method therefor, and non-woven fabric for use in fiber-reinforced resin composite body
KR20120051318A (en) Wind turbine blade of microwave absorbing function and method for the production thereof
KR102510604B1 (en) Radar absorbing structure
JP2008290441A (en) Manufacturing method of sandwich material made of reinforced plastic
CN109468852A (en) A kind of preparation method of fiber prepreg material, fiber prepreg plate and fiber prepreg material
JP5571499B2 (en) Conductive fiber reinforced plastic, method for producing the same, and electromagnetic shielding material using the same
EP4065833B1 (en) A wind turbine component and corresponding resin infusion method
JPS614304A (en) Production of electromagnetic wave reflector
JP5693290B2 (en) Method for manufacturing antenna reflector
CN106340715A (en) Antenna device and manufacturing method thereof
JP2007096014A5 (en)
CN102476488A (en) Nonuniform high-strength substrate and manufacturing method thereof
JP5579531B2 (en) Conductive fiber reinforced plastic, method for producing the same, and electromagnetic shielding material using the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080904

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120619

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120702

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150727

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5044916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees