TW202415079A - 用於自動產生加亮影片的電腦實行系統以及電腦實行方法 - Google Patents
用於自動產生加亮影片的電腦實行系統以及電腦實行方法 Download PDFInfo
- Publication number
- TW202415079A TW202415079A TW112127706A TW112127706A TW202415079A TW 202415079 A TW202415079 A TW 202415079A TW 112127706 A TW112127706 A TW 112127706A TW 112127706 A TW112127706 A TW 112127706A TW 202415079 A TW202415079 A TW 202415079A
- Authority
- TW
- Taiwan
- Prior art keywords
- segment
- video
- segments
- computer
- highlight
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000009471 action Effects 0.000 claims abstract description 66
- 238000012545 processing Methods 0.000 claims description 78
- 239000012634 fragment Substances 0.000 claims description 19
- 230000003993 interaction Effects 0.000 claims description 11
- 238000012544 monitoring process Methods 0.000 claims description 7
- 238000012384 transportation and delivery Methods 0.000 description 21
- 238000001514 detection method Methods 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 13
- 238000010586 diagram Methods 0.000 description 10
- 230000011218 segmentation Effects 0.000 description 9
- 238000004891 communication Methods 0.000 description 8
- 238000007726 management method Methods 0.000 description 8
- 230000015654 memory Effects 0.000 description 8
- 238000013068 supply chain management Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 7
- 238000003708 edge detection Methods 0.000 description 5
- 230000002452 interceptive effect Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229920001690 polydopamine Polymers 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 3
- 238000013475 authorization Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000005457 optimization Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 238000003058 natural language processing Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000012015 optical character recognition Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 201000007197 atypical autism Diseases 0.000 description 1
- 208000029560 autism spectrum disease Diseases 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 238000013136 deep learning model Methods 0.000 description 1
- 238000002716 delivery method Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000001407 pulse-discharge detection Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/85—Assembly of content; Generation of multimedia applications
- H04N21/854—Content authoring
- H04N21/8549—Creating video summaries, e.g. movie trailer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/70—Information retrieval; Database structures therefor; File system structures therefor of video data
- G06F16/73—Querying
- G06F16/738—Presentation of query results
- G06F16/739—Presentation of query results in form of a video summary, e.g. the video summary being a video sequence, a composite still image or having synthesized frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
- G06Q30/02—Marketing; Price estimation or determination; Fundraising
- G06Q30/0201—Market modelling; Market analysis; Collecting market data
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/46—Extracting features or characteristics from the video content, e.g. video fingerprints, representative shots or key frames
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/49—Segmenting video sequences, i.e. computational techniques such as parsing or cutting the sequence, low-level clustering or determining units such as shots or scenes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/535—Tracking the activity of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/20—Servers specifically adapted for the distribution of content, e.g. VOD servers; Operations thereof
- H04N21/21—Server components or server architectures
- H04N21/218—Source of audio or video content, e.g. local disk arrays
- H04N21/2187—Live feed
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/83—Generation or processing of protective or descriptive data associated with content; Content structuring
- H04N21/845—Structuring of content, e.g. decomposing content into time segments
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/80—Generation or processing of content or additional data by content creator independently of the distribution process; Content per se
- H04N21/85—Assembly of content; Generation of multimedia applications
- H04N21/854—Content authoring
- H04N21/8545—Content authoring for generating interactive applications
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Business, Economics & Management (AREA)
- Signal Processing (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Finance (AREA)
- Strategic Management (AREA)
- Databases & Information Systems (AREA)
- General Engineering & Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Entrepreneurship & Innovation (AREA)
- Computer Security & Cryptography (AREA)
- Economics (AREA)
- Marketing (AREA)
- General Business, Economics & Management (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Computational Linguistics (AREA)
- Game Theory and Decision Science (AREA)
- Computing Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
- Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
- Television Signal Processing For Recording (AREA)
Abstract
本發明揭露用於自動產生加亮影片的電腦實行系統及方法。系統及方法可經組態以:自預定時間段檢索多個源影片的使用者動作資料;基於所檢索使用者動作資料而選擇多個源影片中的預定數目個源影片;檢索所選擇源影片;對於所選擇源影片中的各者:分析源影片以識別剪輯點;將經分析源影片分割成多個片段;對於多個片段中的各片段:判定片段資料;以及基於所判定片段資料而計算片段加亮分數;基於各片段的所計算片段加亮分數而自多個片段選擇多個片段;基於所選擇片段而產生新影片;以及儲存新影片。
Description
本揭露大體上是關於用於自動產生加亮影片的電腦化系統及方法。特定而言,本揭露的實施例是關於用於藉由使用音訊及影片處理技術以及使用者動作統計來識別直播影片內的重要片段而自隨選影片(video-on-demand;VOD)平台上的源直播影片自動產生加亮影片的發明性及非習知系統。
直播電子商務平台為賣方及客戶提供經由即時廣播進行互動的機會。此外,可同時記錄直播,以允許買方經由隨選影片(VOD)隨時查看。然而,直播通常很長(例如,大約1小時),此對於客戶來說可能難以查看整個影片以找到對其可能重要的部分。另外,直播影片可包含與直播中銷售的一或多個產品不一定相關的片段,諸如賣方(亦即,主播)介紹自己的介紹片段、主播可能說出其標準結束語的結束片段以及主播在某一時間段內不說話(例如,主播離開直播)的靜音片段。
為了減輕此類問題,習知直播系統實行加亮(亦即,概述)影片。舉例而言,加亮影片可由某人手動地瀏覽直播影片來創建,以識別直播影片中的重要時刻,所述時刻在放在一起時將總體上概述影片。然而,手動方法並不合適,因為考慮到影響片段是否應包含於加亮影片中的因素的數目以及收集與所述因素相關聯的資料的過程過於複雜而不能有效地手動地創建加亮影片。在另一實例中,可藉由修剪開始及結束處的預定時段的片段及/或將預定時段的片段拼接在一起(例如,每5分鐘截取1分鐘片段)來自動創建加亮影片。然而,為所有直播影片創建加亮影片可能浪費處理資源,從而導致處理效率低下及不必要的成本。舉例而言,一些直播影片可能比其他影片具有更好的客戶吸引力,此使得與不太受歡迎的影片相比,其更有可能吸引更多查看,且因此為用於產生加亮影片的更佳選擇。然而,識別哪些直播影片比其他影片更受歡迎需要有效地監視及追蹤相關資訊,使得處理資源不浪費。類似地,識別直播影片內待包含於加亮影片中的最佳片段需要考慮因素的特定組合,以有效地監視和追蹤僅必要的資訊。此外,可能沒有考慮因素的重要性,從而導致不太重要的因素在創建加亮影片的過程中產生雜訊。
因此,需要用於基於音訊處理技術、影片處理技術以及使用者動作統計而自動產生加亮影片的改良方法及系統,其考慮在判定加亮片段時各因素的重要性。
本揭露的一個態樣是針對一種電腦實行系統,所述電腦實行系統包括:一或多個記憶體裝置,儲存指令;以及一或多個處理器,經組態以執行指令以進行用於自動產生加亮影片的方法。方法包含:自預定時間段檢索多個源影片的使用者動作資料;基於所檢索使用者動作資料而選擇多個源影片的源影片集合;檢索所選擇源影片集合;以及對於所選擇源影片集合中的各者,分析源影片以識別剪輯點且將經分析源影片分割成多個片段。方法更包含:對於多個片段中的各片段,判定片段資料,基於所判定片段資料而計算片段加亮分數;基於各片段的所計算片段加亮分數而自多個片段選擇多個片段;基於所選擇片段而產生新影片;以及儲存新影片。
本揭露的另一態樣是針對一種用於自動產生加亮影片的方法。方法包含:自預定時間段檢索多個源影片的使用者動作資料;基於所檢索使用者動作資料而選擇多個源影片的源影片集合;檢索所選擇源影片集合;以及對於所選擇源影片集合中的各者,分析源影片以識別剪輯點且將經分析源影片分割成多個片段。方法更包含:對於多個片段中的各片段,判定片段資料,基於所判定片段資料而計算片段加亮分數;基於各片段的所計算片段加亮分數而自多個片段選擇多個片段;基於所選擇片段而產生新影片;以及儲存新影片。
本揭露的又一態樣是針對一種電腦實行系統,所述電腦實行系統包括:至少一個處理器,以及至少一個非暫時性儲存媒體,包括指令,所述指令在由至少一個處理器執行時使得至少一個處理器進行用於自動產生加亮影片的方法。方法包含:自預定時間段檢索多個源影片的使用者動作資料,其中使用者動作資料包含與多個源影片中的各源影片相關聯的至少多個經監視使用者互動;基於所檢索使用者動作資料而選擇多個源影片中的預定數目個源影片;檢索所選擇源影片;以及對於所選擇源影片中的各者,藉由音訊處理分析源影片以識別剪輯點且將經分析源影片分割成多個片段。方法更包含:對於多個片段中的各片段,至少部分地基於音訊處理而判定片段資料,基於所判定片段資料而計算片段加亮分數;基於各片段的所計算片段加亮分數而自多個片段選擇多個片段;基於所選擇片段而產生新影片;以及儲存新影片。
本文中亦論述其他系統、方法以及電腦可讀媒體。
以下詳細描述參考隨附圖式。只要可能,即在圖式及以下描述中使用相同附圖標號來指代相同或類似部分。儘管本文中描述若干示出性實施例,但修改、調適以及其他實施方式是可能的。舉例而言,可對圖式中所示出的組件及步驟進行替代、添加或修改,且可藉由取代、重新排序、移除步驟或將步驟添加至所揭露方法來修改本文中所描述的示出性方法。因此,以下詳細描述不限於所揭露實施例及實例。實情為,本發明的正確範圍由隨附申請專利範圍界定。
本揭露的實施例是針對經組態用於藉由以下操作來自動產生加亮影片的系統及方法:基於使用者動作資料而選擇及檢索預定數目個源影片;以及對於所選擇源影片中的各者,分析源影片且將經分析源影片分割成多個片段。方法更包含:對於多個片段中的各片段,判定片段資料且基於所判定片段資料而計算片段加亮分數,基於各片段的所計算片段加亮分數而選擇多個片段,以及基於所選擇片段而產生新影片以供隨選影片平台上的一或多個使用者查看。所揭露實施例提供允許以有效方式自動產生加亮影片的新穎技術特徵。舉例而言,所揭露實施例使得能夠基於使用者動作資料而選擇某一數目個源影片,使得能夠藉由音訊及/或影片處理來對所選擇源影片進行分析以識別用於將經分析源影片分割成多個片段的最佳剪輯點,使得能夠藉由音訊處理、影片處理以及使用者動作統計來判定片段資料,使得能夠計算各片段的分數,且使得能夠基於所計算分數而選擇片段以用於產生加亮影片。
參考圖1A,繪示示出包括用於實現運送、運輸以及物流操作的通信的電腦化系統的系統的例示性實施例的系統100的示意性方塊圖。如圖1A中所示出,系統100可包含各種系統,所述系統中的各者可經由一或多個網路彼此連接。所述系統亦可經由直接連接(例如,使用電纜)彼此連接。所描繪系統包含運送授權技術(shipment authority technology;SAT)系統101、外部前端系統103、內部前端系統105、運輸系統107、行動裝置107A、行動裝置107B以及行動裝置107C、賣方入口網站109、運送及訂單追蹤(shipment and order tracking;SOT)系統111、履行最佳化(fulfillment optimization;FO)系統113、履行通信報閘道(fulfillment messaging gateway;FMG)115、供應鏈管理(supply chain management;SCM)系統117、倉庫管理系統119、行動裝置119A、行動裝置119B以及行動裝置119C(描繪為在履行中心(FC)120內部)、第3方履行系統121A、第3方履行系統121B以及第3方履行系統121C、履行中心授權系統(fulfillment center authorization;FC Auth)123以及勞動管理系統(labor management system;LMS)125。
在一些實施例中,SAT系統101可實行為監視訂單狀態及遞送狀態的電腦系統。舉例而言,SAT系統101可判定訂單是否超過其承諾遞送日期(PDD)且可採取適當的動作,包含發起新訂單、對未遞送訂單中的物件進行重新運送、取消未遞送訂單、發起與訂購客戶的連絡,或類似者。SAT系統101亦可監視其他資料,包含輸出(諸如在特定時間段期間運送的包裹的數目)及輸入(諸如接收到的用於運送的空紙板盒的數目)。SAT系統101亦可充當系統100中的不同裝置之間的閘道,從而(例如,使用儲存及轉發或其他技術)實現諸如外部前端系統103及FO系統113的裝置之間的通信。
在一些實施例中,外部前端系統103可實行為使得外部使用者能夠與系統100中的一或多個系統互動的電腦系統。舉例而言,在系統100使得系統的呈現能夠允許使用者針對物件下訂單的實施例中,外部前端系統103可實行為接收搜尋請求、呈現物件頁以及索求支付資訊的網頁伺服器。舉例而言,外部前端系統103可實行為電腦或電腦運行軟體,諸如阿帕奇(Apache)HTTP伺服器、微軟網際網路資訊服務(Internet Information Service;IIS)、NGINX,或類似者。在其他實施例中,外部前端系統103可運行經設計以接收及處理來自外部裝置(例如,行動裝置102A或電腦102B)的請求、基於這些請求自資料庫及其他資料儲存庫獲取資訊,以及基於所獲取的資訊將反應提供至接收到的請求的定製網頁伺服器軟體。
在一些實施例中,外部前端系統103可包含網頁快取系統、資料庫、搜尋系統或支付系統中的一或多者。在一個態樣中,外部前端系統103可包括這些系統中的一或多者,而在另一態樣中,外部前端系統103可包括連接至這些系統中的一或多者的介面(例如,伺服器至伺服器、資料庫至資料庫,或其他網路連接)。
藉由圖1B、圖1C、圖1D以及圖1E所示出的例示性步驟集合將有助於描述外部前端系統103的一些操作。外部前端系統103可自系統100中的系統或裝置接收資訊以供呈現及/或顯示。舉例而言,外部前端系統103可代管或提供一或多個網頁,包含搜尋結果頁(SRP)(例如,圖1B)、單一詳情頁(Single Detail Page;SDP)(例如,圖1C)、購物車頁(例如,圖1D),或訂單頁(例如,圖1E)。(例如,使用行動裝置102A或電腦102B的)使用者裝置可導航至外部前端系統103且藉由將資訊輸入至搜尋方塊中來請求搜尋。外部前端系統103可向系統100中的一或多個系統請求資訊。舉例而言,外部前端系統103可向FO系統113請求滿足搜尋請求的資訊。外部前端系統103亦可(自FO系統113)請求及接收包含於搜尋結果中的各產品的承諾遞送日期或「PDD」。在一些實施例中,PDD可表示在特定時間段內(例如,在一天結束(下午11:59)前)訂購的情況下對含有產品的包裹將何時抵達使用者的所要位置或承諾將產品遞送至使用者的所要位置處的日期的估計。(PDD在下文相對於FO系統113進一步論述。)
外部前端系統103可基於資訊來準備SRP(例如,圖1B)。SRP可包含滿足搜尋請求的資訊。舉例而言,此可包含滿足搜尋請求的產品的圖像。SRP亦可包含各產品的各別價格,或與各產品的增強遞送選項、PDD、重量、大小、報價、折扣或類似者相關的資訊。外部前端系統103可(例如,經由網路)將SRP發送至請求使用者裝置。
使用者裝置可接著例如藉由點選或輕觸使用者介面或使用另一輸入裝置自SRP選擇產品,以選擇表示於SRP上的產品。使用者裝置可制訂對關於所選產品的資訊的請求且將其發送至外部前端系統103。作為反應,外部前端系統103可請求與所選產品相關的資訊。舉例而言,資訊可包含除針對各別SRP上的產品呈現的資訊以外的額外資訊。此可包含例如保存期限、原產國、重量、大小、包裹中的物件的數目、處置說明,或關於產品的其他資訊。資訊亦可包含類似產品的推薦(基於例如巨量資料及/或對購買此產品及至少一個其他產品的客戶的機器學習分析)、頻繁詢問的問題的答案、來自客戶的評論、製造商資訊、圖像,或類似者。
外部前端系統103可基於接收到的產品資訊來準備SDP(單一詳情頁)(例如,圖1C)。SDP亦可包含其他互動式元素,諸如「現在購買」按鈕、「添加至購物車」按鈕、數量欄、物件的圖像,或類似者。SDP可更包含提供產品的賣方的列表。可基於各賣方提供的價格來對列表進行排序,使得可在頂部處列出提供以最低價格銷售產品的賣方。亦可基於賣方排名來對列表進行排序,使得可在頂部處列出排名最高的賣方。可基於多個因素來製訂賣方排名,所述因素包含例如賣方的符合承諾PDD的過去的追蹤記錄。外部前端系統103可(例如,經由網路)將SDP遞送至請求使用者裝置。
請求使用者裝置可接收列出產品資訊的SDP。在接收到SDP後,使用者裝置可接著與SDP互動。舉例而言,請求使用者裝置的使用者可點選或以其他方式與SDP上的「放在購物車中」按鈕互動。此將產品添加至與使用者相關聯的購物車。使用者裝置可將把產品添加至購物車的此請求傳輸至外部前端系統103。
外部前端系統103可產生購物車頁(例如,圖1D)。在一些實施例中,購物車頁列出使用者已添加至虛擬「購物車」的產品。使用者裝置可藉由在SRP、SDP或其他頁上的圖標上點選或以其他方式與所述圖標互動來請求購物車頁。在一些實施例中,購物車頁可列出使用者已添加至購物車的所有產品,以及關於購物車中的產品的資訊(諸如各產品的數量、各產品每物件的價格、各產品基於相關聯數量的價格)、關於PDD的資訊、遞送方法、運送成本、用於修改購物車中的產品(例如,刪除或修改數量)的使用者介面元素、用於訂購其他產品或設置產品的定期遞送的選項、用於設置利息支付的選項、用於前進至購買的使用者介面元素,或類似者。使用者裝置處的使用者可在使用者介面元素(例如,寫著「現在購買」的按鈕)上點選或以其他方式與所述使用者介面元素互動,以發起對購物車中的產品的購買。在如此做後,使用者裝置可將發起購買的此請求傳輸至外部前端系統103。
外部前端系統103可反應於接收到發起購買的請求而產生訂單頁(例如,圖1E)。在一些實施例中,訂單頁重新列出來自購物車的物件且請求支付及運送資訊的輸入。舉例而言,訂單頁可包含請求關於購物車中的物件的購買者的資訊(例如,姓名、地址、電子郵件地址、電話號碼)、關於接收者的資訊(例如,姓名、地址、電話號碼、遞送資訊)、運送資訊(例如,遞送及/或揀貨的速度/方法)、支付資訊(例如,信用卡、銀行轉賬、支票、儲存的積分)、請求現金收據(例如,出於稅務目的)的使用者介面元素,或類似者的區段。外部前端系統103可將訂單頁發送至使用者裝置。
使用者裝置可輸入關於訂單頁的資訊,且點選或以其他方式與將資訊發送至外部前端系統103的使用者介面元素互動。自此處,外部前端系統103可將資訊發送至系統100中的不同系統,以使得能夠創建及處理具有購物車中的產品的新訂單。
在一些實施例中,外部前端系統103可進一步經組態以使得賣方能夠傳輸及接收與訂單相關的資訊。
在一些實施例中,內部前端系統105可實行為使得內部使用者(例如,擁有、操作或租用系統100的組織的雇員)能夠與系統100中的一或多個系統互動的電腦系統。舉例而言,在系統100使得系統的呈現能夠允許使用者針對物件下訂單的實施例中,內部前端系統105可實行為使得內部使用者能夠查看關於訂單的診斷及統計資訊、修改物件資訊或審查與訂單相關的統計的網頁伺服器。舉例而言,內部前端系統105可實行為電腦或電腦運行軟體,諸如阿帕奇HTTP伺服器、微軟網際網路資訊服務(IIS)、NGINX,或類似者。在其他實施例中,內部前端系統105可運行經設計以接收及處理來自系統100中所描繪的系統或裝置(以及未描繪的其他裝置)的請求、基於這些請求自資料庫及其他資料儲存庫獲取資訊,以及基於所獲取的資訊來將反應提供至接收到的請求的定製網頁伺服器軟體。
在一些實施例中,內部前端系統105可包含網頁快取系統、資料庫、搜尋系統、支付系統、分析系統、訂單監視系統或類似者中的一或多者。在一個態樣中,內部前端系統105可包括這些系統中的一或多者,而在另一態樣中,內部前端系統105可包括連接至這些系統中的一或多者的介面(例如,伺服器至伺服器、資料庫至資料庫,或其他網路連接)。
在一些實施例中,運輸系統107可實行為實現系統100中的系統或裝置與行動裝置107A至行動裝置107C之間的通信的電腦系統。在一些實施例中,運輸系統107可自一或多個行動裝置107A至行動裝置107C(例如,行動電話、智慧型手機、PDA,或類似者)接收資訊。舉例而言,在一些實施例中,行動裝置107A至行動裝置107C可包括由遞送工作者操作的裝置。遞送工作者(其可為永久雇員、暫時雇員或輪班雇員)可利用行動裝置107A至行動裝置107C來實現對含有由使用者訂購的產品的包裹的遞送。舉例而言,為遞送包裹,遞送工作者可在行動裝置上接收指示遞送哪一包裹及將所述包裹遞送到何處的通知。在抵達遞送位置後,遞送工作者可(例如,在卡車的後部中或在包裹的條板箱中)定位包裹、使用行動裝置掃描或以其他方式擷取與包裹上的識別符(例如,條碼、影像、文字串、RFID標籤,或類似者)相關聯的資料,且遞送包裹(例如,藉由將其留在前門處、將其留給警衛、將其交給接收者,或類似者)。在一些實施例中,遞送工作者可使用行動裝置擷取包裹的相片及/或可獲得簽名。行動裝置可將資訊發送至運輸系統107,所述資訊包含關於遞送的資訊,包含例如時間、日期、GPS位置、相片、與遞送工作者相關聯的識別符、與行動裝置相關聯的識別符,或類似者。運輸系統107可在資料庫(未描繪)中儲存此資訊以用於由系統100中的其他系統訪問。在一些實施例中,運輸系統107可使用此資訊來準備追蹤資料且將所述追蹤資料發送至其他系統,從而指示特定包裹的位置。
在一些實施例中,某些使用者可使用一個種類的行動裝置(例如,永久工作者可使用具有定製硬體(諸如條碼掃描器、尖筆以及其他裝置)的專用PDA),而其他使用者可使用其他類型的行動裝置(例如,暫時工作者或輪班工作者可利用現成的行動電話及/或智慧型手機)。
在一些實施例中,運輸系統107可使使用者與各裝置相關聯。舉例而言,運輸系統107可儲存使用者(由例如使用者識別符、雇員識別符或電話號碼表示)與行動裝置(由例如國際行動設備身分(International Mobile Equipment Identity;IMEI)、國際行動訂用識別符(International Mobile Subscription Identifier;IMSI)、電話號碼、通用唯一識別符(Universal Unique Identifier;UUID)或全球唯一識別符(Globally Unique Identifier;GUID)表示)之間的關聯。運輸系統107可結合在遞送時接收到的資料使用此關聯來分析儲存於資料庫中的資料,以便尤其判定工作者的位置、工作者的效率,或工作者的速度。
在一些實施例中,賣方入口網站109可實行為使得賣方或其他外部實體能夠與系統100中的一或多個系統電子地通信的電腦系統。舉例而言,賣方可利用電腦系統(未描繪)來上載或提供賣方希望經由使用賣方入口網站109的系統100來銷售的產品的產品資訊、訂單資訊、連絡資訊或類似者。
在一些實施例中,運送及訂單追蹤系統111可實行為接收、儲存以及轉送關於含有由客戶(例如,由使用裝置102A至裝置102B的使用者)訂購的產品的包裹的位置的資訊的電腦系統。在一些實施例中,運送及訂單追蹤系統111可請求或儲存來自由遞送含有由客戶訂購的產品的包裹的運送公司操作的網頁伺服器(未描繪)的資訊。
在一些實施例中,運送及訂單追蹤系統111可請求及儲存來自在系統100中描繪的系統的資訊。舉例而言,運送及訂單追蹤系統111可請求來自運輸系統107的資訊。如上文所論述,運輸系統107可自與使用者(例如,遞送工作者)或車輛(例如,遞送卡車)中的一或多者相關聯的一或多個行動裝置107A至行動裝置107C(例如,行動電話、智慧型手機、PDA或類似者)接收資訊。在一些實施例中,運送及訂單追蹤系統111亦可向倉庫管理系統(warehouse management system;WMS)119請求資訊以判定個別產品在履行中心(例如,履行中心120)內部的位置。運送及訂單追蹤系統111可向運輸系統107或WMS 119中的一或多者請求資料,在請求後處理所述資料,且將所述資料呈現給裝置(例如,使用者裝置102A及使用者裝置102B)。
在一些實施例中,履行最佳化(FO)系統113可實行為儲存來自其他系統(例如,外部前端系統103及/或運送及訂單追蹤系統111)的客戶訂單的資訊的電腦系統。FO系統113亦可儲存描述特定物件保存或儲存於何處的資訊。舉例而言,某些物件可能僅儲存於一個履行中心中,而某些其他物件可能儲存於多個履行中心中。在再其他實施例中,某些履行中心可經設計以僅儲存特定物件集合(例如,新鮮農產品或冷凍產品)。FO系統113儲存此資訊以及相關聯資訊(例如,數量、大小、接收日期、過期日期等)。
FO系統113亦可計算各產品的對應PDD(承諾遞送日期)。在一些實施例中,PDD可基於一或多個因素。舉例而言,FO系統113可基於下述者來計算產品的PDD:對產品的過去需求(例如,在一段時間期間訂購了多少次所述產品)、對產品的預期需求(例如,預測在即將到來的一段時間期間多少客戶將訂購所述產品)、指示在一段時間期間訂購了多少產品的全網路過去需求、指示預期在即將到來的一段時間期間將訂購多少產品的全網路預期需求、儲存於各履行中心120中的產品的一或多個計數、哪一履行中心儲存各產品、產品的預期或當前訂單,或類似者。
在一些實施例中,FO系統113可定期(例如,每小時)判定各產品的PDD且將其儲存於資料庫中以供檢索或發送至其他系統(例如,外部前端系統103、SAT系統101、運送及訂單追蹤系統111)。在其他實施例中,FO系統113可自一或多個系統(例如,外部前端系統103、SAT系統101、運送及訂單追蹤系統111)接收電子請求且按需求計算PDD。
在一些實施例中,履行通信報閘道(FMG)115可實行為自系統100中的一或多個系統(諸如FO系統113)接收呈一種格式或協定的請求或反應、將其轉換為另一格式或協定且將其以轉換後的格式或協定轉發至其他系統(諸如WMS 119或第3方履行系統121A、第3方履行系統121B或第3方履行系統121C)且反之亦然的電腦系統。
在一些實施例中,供應鏈管理(SCM)系統117可實行為進行預測功能的電腦系統。舉例而言,SCM系統117可基於例如基於下述者來預測對特定產品的需求水平:對產品的過去需求、對產品的預期需求、全網路過去需求、全網路預期需求、儲存於各履行中心120中的產品的計數、各產品的預期或當前訂單,或類似者。反應於此預測水平及所有履行中心中的各產品的量,SCM系統117可產生一或多個購買訂單以購買及儲備足夠數量,以滿足對特定產品的預測需求。
在一些實施例中,倉庫管理系統(WMS)119可實行為監視工作流程的電腦系統。舉例而言,WMS 119可自個別裝置(例如,裝置107A至裝置107C或裝置119A至裝置119C)接收指示離散事件的事件資料。舉例而言,WMS 119可接收指示這些裝置中的一者的使用掃描包裹的事件資料。在履行過程期間,可藉由特定階段處的機器(例如,自動式或手持式條碼掃描器、RFID讀取器、高速攝影機、諸如平板電腦119A、行動裝置/PDA 119B、電腦119C的裝置或類似者)掃描或讀取包裹識別符(例如,條碼或RFID標籤資料)。WMS 119可將指示掃描或包裹識別符的讀取的各事件以及包裹識別符、時間、日期、位置、使用者識別符或其他資訊儲存於對應資料庫(未描繪)中,且可將此資訊提供至其他系統(例如,運送及訂單追蹤系統111)。
在一些實施例中,WMS 119可儲存使一或多個裝置(例如,裝置107A至裝置107C或裝置119A至裝置119C)與一或多個使用者(所述一或多個使用者與系統100相關聯)相關聯的資訊。舉例而言,在一些情形下,使用者(諸如兼職雇員或全職雇員)可與行動裝置相關聯,此是由於使用者擁有行動裝置(例如,行動裝置為智慧型手機)。在其他情形下,使用者可與行動裝置相關聯,此是由於使用者暫時保管行動裝置(例如,使用者在一天開始時拿到行動裝置,將在一天期間使用所述行動裝置,且將在一天結束時退還所述行動裝置)。
在一些實施例中,WMS 119可維護與系統100相關聯的各使用者的工作日志。舉例而言,WMS 119可儲存與各雇員相關聯的資訊,包含任何指定的過程(例如,自卡車卸載、自揀貨區揀取物件、合流牆(rebin wall)工作、包裝物件)、使用者識別符、位置(例如,履行中心120中的樓層或區)、藉由雇員經由系統移動的單位數目(例如,所揀取物件的數目、所包裝物件的數目)、與裝置(例如,裝置119A至裝置119C)相關聯的識別符,或類似者。在一些實施例中,WMS 119可自計時系統接收登記及登出資訊,所述計時系統諸如在裝置119A至裝置119C上操作的計時系統。
在一些實施例中,第3方履行(3rd party fulfillment;3PL)系統121A至第3方履行系統121C表示與物流及產品的第三方提供商相關聯的電腦系統。舉例而言,儘管一些產品儲存於履行中心120中,但其他產品可儲存於場外、可按需求生產,或可以其他方式不可供用於儲存於履行中心120中。3PL系統121A至3PL系統121C可經組態以(例如,經由FMG 115)自FO系統113接收訂單,且可直接為客戶提供產品及/或服務(例如,遞送或安裝)。在一些實施例中,3PL系統121A至3PL系統121C中的一或多者可為系統100的部分,而在其他實施例中,3PL系統121A至3PL系統121C中的一或多者可在系統100外部(例如,由第三方提供商擁有或操作)。
在一些實施例中,履行中心Auth系統(FC Auth)123可實行為具有各種功能的電腦系統。舉例而言,在一些實施例中,FC Auth 123可充當系統100中的一或多個其他系統的單一簽入(single-sign on;SSO)服務。舉例而言,FC Auth 123可使得使用者能夠經由內部前端系統105登入、判定使用者具有訪問運送及訂單追蹤系統111處的資源的類似特權,且使得使用者能夠在不需要第二登入過程的情況下取得這些特權。在其他實施例中,FC Auth 123可使得使用者(例如,雇員)能夠使自身與特定任務相關聯。舉例而言,一些雇員可能不具有電子裝置(諸如裝置119A至裝置119C),且實際上可能在一天的過程期間在履行中心120內自任務至任務以及自區至區移動。FC Auth 123可經組態以使得這些雇員能夠在一天的不同時間指示其正進行何任務以及其位於何區。
在一些實施例中,勞動管理系統(LMS)125可實行為儲存雇員(包含全職雇員及兼職雇員)的出勤及超時資訊的電腦系統。舉例而言,LMS 125可自FC Auth 123、WMS 119、裝置119A至裝置119C、運輸系統107及/或裝置107A至裝置107C接收資訊。
圖1A中所描繪的特定組態僅為實例。舉例而言,儘管圖1A描繪連接至FO系統113的FC Auth系統123,但並非所有實施例均要求此特定組態。實際上,在一些實施例中,系統100中的系統可經由一或多個公用或私用網路彼此連接,所述網路包含網際網路、企業內部網路、廣域網路(Wide-Area Network;WAN)、都會區域網路(Metropolitan-Area Network;MAN)、順應IEEE 802.11a/b/g/n標準的無線網路、租用線,或類似者。在一些實施例中,系統100中的系統中的一或多者可實行為在資料中心、伺服器群或類似者處實行的一或多個虛擬伺服器。
圖2為示出與所揭露實施例一致的包括用於直播電子商務的電腦化系統的網路的例示性實施例的示意性方塊圖。在圖2中,串流系統200可包含直播伺服器210,所述直播伺服器經組態以即時地處理資料串流,以例如允許使用者(例如,主播及觀看者)經由直播進行通信以做廣告、銷售以及購買產品。另外,直播伺服器210可經組態以向使用者提供隨選影片(VOD)服務,使得其可查看已經結束直播的直播影片。系統200可包含直播伺服器210、使用者裝置220、外部前端系統103以及網路230。
直播伺服器210可呈伺服器、通用電腦、大型電腦、專用計算裝置(諸如圖形處理單元(graphical processing unit;GPU))、膝上型電腦或這些計算裝置的任何組合的形式。在這些實施例中,直播伺服器210的組件(亦即,資料庫212、輪播產生模組214、聊天模組216、剪輯產生模組218)可實行為由一或多個處理器基於儲存於一或多個記憶體中的指令而進行的一或多個功能單元。直播伺服器210可為獨立系統,或其可為子系統的部分,所述子系統可為較大系統的部分。
資料庫212可實行為經由網路230以通信方式耦接至直播伺服器210的內部資料庫或外部資料庫。資料庫212可經組態以收集及/或維持與直播伺服器210的使用者相關聯的資料。舉例而言,資料庫212可儲存關於與直播伺服器210的使用者相關聯的偏好及動作的資訊。此外,資料庫212可包含多個直播影片及與多個直播影片相關的資訊。舉例而言,資料庫212可包含與各直播影片相關的資訊,諸如但不限於查看次數、隨時間推移的播放頻率、隨時間推移的尋找頻率、隨時間推移的點贊頻率、隨時間推移的聊天頻率、隨時間推移的說出產品關鍵字的頻率、偵測到的產品板的頻率及時間、隨時間推移將產品添加至使用者購物車的次數、隨時間推移的點選連結率(click-through rate;CTR)以及隨時間推移的轉換率(conversion rate;CVR)。CVR可衡量有多大比例的客戶被影片說服將影片中介紹的一或多個產品添加到其各別購物車中。CTR可為基於在VOD平台的使用者介面上顯示直播影片的次數及一或多個使用者點選所顯示直播影片的次數而判定的百分比。舉例而言,將點選次數除以印象次數(亦即,直播影片顯示的次數),且接著將結果乘以100即可得出CTR量測值。此外,資料庫212可包含自多個直播影片產生的多個加亮影片,在下文中更詳細地論述。
在一些實施例中,輪播產生模組214可包含經組態以基於儲存於資料庫212中的資料而產生直播輪播介面工具集的一或多個計算裝置。舉例而言,輪播產生模組214可基於與一或多個使用者相關的資料及與多個直播相關的資料而檢索多個候選直播,將所檢索的多個候選直播、與第一使用者相關的輸入資料以及與所檢索的多個候選直播相關的資料組織至排名模型(諸如排名神經網路)中,且自排名模型輸出所組織的多個候選直播中的各直播的值。另外,基於各直播的輸出值,輪播產生模組214可判定所組織的多個候選直播中的各直播的排名,基於所判定的排名而產生包含多個候選直播的直播輪播介面工具集,且傳輸所產生的直播輪播介面工具集以在與第一使用者相關聯的使用者介面上顯示。
在一些實施例中,聊天模組216可包含經組態以增強直播參與的一或多個計算裝置。舉例而言,聊天模組216可自資料庫212檢索第一文字集合,且針對在直播中介紹的一或多個產品中的各產品檢索第二文字集合,其中第二文字集合藉由以下操作產生:編譯與產品相關聯的評論資料中的多個關鍵字,判定與各關鍵字相關聯的流行度值,基於與各關鍵字相關聯的所判定流行度值而選擇一或多個關鍵字,組織所選擇的一或多個關鍵字,以及將所組織關鍵字儲存於資料庫212中作為第二文字集合。另外,聊天模組216可傳輸至少包含第一文字集合及第二文字集合的多個文字以供在與一或多個使用者裝置相關聯的一或多個使用者介面上顯示,且自一或多個使用者裝置中的至少一者接收使用者互動資料,其中使用者互動資料包含由一或多個使用者經由一或多個使用者介面中的至少一者與多個文字中的至少一或多個文字進行使用者互動的指示。此外,聊天模組216可將一或多個文字中的各文字傳輸至第二使用者裝置,其中傳輸是基於判定文字是否包含問題,基於不包含問題的文字傳輸文字以供顯示於與第二使用者裝置相關聯的第二使用者介面的第一頁上,以及基於包含問題的文字傳輸文字以供顯示於第二使用者介面的第二頁上。
在一些實施例中,剪輯產生模組218可包含一或多個計算裝置,所述一或多個計算裝置經組態以基於儲存於資料庫212中的源直播影片自動產生加亮影片。舉例而言,剪輯產生模組218可自資料庫212檢索多個源影片的使用者動作資料,且自資料庫212選擇待檢索的多個源影片的源影片集合。對於所選擇的源影片中的各者,剪輯產生模組218可將源影片分割成多個片段,且對於各片段,判定片段資料以基於所判定片段資料而計算片段加亮分數。可基於所計算片段加亮分數而選擇多個片段,且剪輯產生模組218可基於所選擇的片段而產生新影片。
替代地,直播伺服器210的組件可實行為經由網路彼此通信的一或多個電腦系統。在此實施例中,一或多個電腦系統中的各者可包括一或多個處理器、一或多個記憶體(亦即,非暫時性電腦可讀媒體)以及一或多個輸入/輸出(input/output;I/O)裝置。在一些實施例中,一或多個電腦系統中的各者可呈伺服器、通用電腦、大型電腦、專用計算裝置(諸如GPU)、膝上型電腦或這些計算裝置的任何組合的形式。
使用者裝置220可在設計、功能或操作上類似於上文關於圖1A所描述的行動裝置102A或電腦102B。使用者裝置220可包含經組態以進行與所揭露實施例一致的一或多個操作的一或多個計算裝置。舉例而言,使用者裝置可包含桌上型電腦、膝上型電腦、伺服器、行動裝置(例如,平板電腦、智慧型手機等),或能夠運行與直播伺服器210相關聯的電腦程式或軟體應用程式的其他類型的計算裝置。舉例而言,使用者裝置220的使用者可下載行動商務應用程式以存取直播伺服器210上可用的服務。在一些實施例中,使用者裝置220可為系統100(圖1A)的部分。使用者裝置220可導航至外部前端系統103且藉由將資訊輸入至搜尋框中來請求搜尋。然而,在其他實施例中,使用者裝置220可獨立於系統100。使用者裝置220可包含一或多個處理器,所述一或多個處理器經組態以執行儲存於記憶體(諸如包含於使用者裝置220中的記憶體)中的軟體指令以進行操作從而實行下文所描述的功能。使用者裝置220可經組態用於有線及/或無線通信,且可包含軟體,所述軟體在由處理器執行時進行網際網路相關通信(例如,TCP/IP)及內容顯示過程。舉例而言,使用者裝置220可執行瀏覽器軟體,所述瀏覽器軟體在包含於使用者裝置220中或連接至使用者裝置220的顯示裝置上產生及顯示包含內容的介面。使用者裝置220可執行允許使用者裝置220經由網路230與組件通信且經由包含於使用者裝置220中的顯示裝置在介面中顯示內容的應用程式。
網路230可為經組態以提供系統200的組件之間的通信的任何類型的網路。舉例而言,網路230可為提供通信、交換資訊及/或促進資訊交換的任何類型的網路(包含基礎架構),諸如網際網路,或能夠在系統200的組件之間發送及接收資訊的其他合適的連接。在其他實施例中,網路230可包含多個網路,從而例如組織網路的網路。
圖3為示出與所揭露實施例一致的剪輯產生模組的例示性實施例的示意性方塊圖300。在圖3中,剪輯產生模組218可包含音訊處理模組301、影片處理模組302、分段模組303、使用者資料處理模組304、選擇模組305、評分模組306以及合併模組307。
在一些實施例中,音訊處理模組301可包含一或多個計算裝置,所述一或多個計算裝置經組態以進行語音活動偵測(voice activity detection;VAD)及/或自動語音辨識(automatic speech recognition;ASR),以偵測影片的開頭和結尾、斷句、靜音以及源直播影片中的關鍵字。舉例而言,音訊處理模組301可經組態以進行語音活動偵測(VAD)以將直播的音訊資料圖框化成若干音訊圖框,且將能量濾出至不同子頻帶中。音訊處理模組301可進一步經組態以使用數學模型(例如,高斯混合模型)來判定若干音訊圖框中的音訊圖框是否為語音信號。另外,模型參數可經適應性地更新以改良模型的準確度。在一些實施例中,音訊處理模組301可包含經組態以執行自動語音辨識(ASR)的一或多個計算裝置。舉例而言,音訊處理模組可包含經訓練以將輸入聲學特徵序列映射至字詞序列中的深度學習模型。在一些實施例中,音訊處理模組301可偵測及移除影片的開始區段(亦即,開頭),其可包含在直播開始之前呈現的主播介紹(亦即,與產品無關的標準註解)及/或幻燈片或品牌影片。舉例而言,音訊處理模組301可藉由使用自然語言處理來偵測影片的開始區段(例如,包含任何主播介紹、幻燈片、品牌影片等的區段)以自影片移除偵測到的開始區段。在一些實施例中,音訊處理模組301可藉由偵測主播正式開始談論一或多個產品的時間來識別開始區段。舉例而言,在影片的時間t1,音訊處理模組301可偵測到主播開始說「今天,我們將查看這些產品」,且理解評論已經正式開始。音訊處理模組301可將直至時間t1的影片的片段標記為影片的開始或「開頭」,且可自影片移除開頭。類似地,音訊處理模組301可藉由使用自然語言處理來偵測影片的結束區段(亦即,結尾)以自影片移除偵測到的結束區段。在一些實施例中,音訊處理模組301可藉由偵測主播結束評論且開始關閉註解(亦即,與產品無關的標準註解)的時間來識別結束區段,且可自影片移除結尾。另外,音訊處理模組301可偵測斷句,其可包含對句子的開始及結束的識別,且亦可偵測無言片段(亦即,靜音)。此外,音訊處理模組301可監視直播影片中的主播何時說出關鍵字(例如,產品的名稱、與產品相關聯的價格)且可追蹤及儲存每次提及關鍵字的時間。
在一些實施例中,影片處理模組302可包含一或多個計算裝置,其經組態以在源直播影片中進行文字偵測、邊緣偵測、文字辨識、彩色直方圖分析、運動向量分析、絕對差總和(sum of absolute differences;SAD)及/或平方差總和(sum of squared differences;SSD)計算。在一些實施例中,影片處理模組302可使用邊緣偵測技術來偵測源直播影片中一或多個板出現的不同時間。舉例而言,影片處理模組可藉由偵測亮度的不連續性且將具有某一形狀(例如,正方形)的物件識別為板來找到影片圖框內物件的邊界。另外或替代地,影片處理模組302可進行文字偵測以識別板內的文字。舉例而言,影片處理模組302可藉由機器學習技術(例如,支援向量機)及卷積神經網路進行文字偵測以將影片圖框內的分量分類為文字或非文字。另外,影片處理模組302可使用諸如光學字元辨識的文字辨識以將鍵打、手寫或印刷文字的影像轉換成機器編碼文字以偵測源直播影片中的加亮片段。此外,影片處理模組302可使用彩色直方圖分析、運動向量分析、SAD及/或SSD來偵測場景改變。舉例而言,影片處理模組302可判定多個片段中的各片段的差分數(下文關於圖4更詳細地論述)。在一些實施例中,影片處理模組302可包含經訓練以分析及理解直播影片內的視覺資料的電腦視覺神經網路。
在一些實施例中,分段模組303可包含經組態以基於由音訊處理模組301及/或影片處理模組302進行的分析而產生片段的一或多個計算裝置。舉例而言,分段模組303可經組態以至少部分地基於藉由音訊處理模組301偵測到的具有VAD及/或ASR的語句而產生片段。在一些實施例中,分段模組303可經組態以至少部分地基於由影片處理模組302藉由使用文字偵測及/或邊緣偵測偵測到的促銷標誌(例如,手工製作的海報)而產生片段。在一些實施例中,分段模組303可考慮由音訊處理模組301及影片處理模組302產生的音訊及影片資料兩者,以識別源直播影片中的最佳剪輯位置。在一些實施例中,分段模組303可經組態以產生片段,使得各片段為類似持續時間(例如,1分鐘)。
在一些實施例中,使用者資料處理模組304可包含經組態以收集與多個源直播影片相關聯的使用者資料的一或多個計算裝置。舉例而言,使用者資料處理模組304可經組態以藉由經由一或多個使用者用戶端監視與直播影片相關聯的使用者動作來監視及追蹤活資料及隨選影片(VOD)資料,且可將資料傳輸至伺服器以用於登入。在一些實施例中,使用者處理模組304可量測掃視查看(亦即,查看影片的次數)、記憶體分配及/或與直播相關聯的網站流量的峰值。在一些實施例中,使用者處理模組304可追蹤在直播期間進行的各點贊、聊天以及添加購物車動作以及與各點贊、聊天以及增加購物車動作相關聯的時戳,以識別直播中存在顯著的即時使用者互動的片段(亦即,加亮即時片段)。在一些實施例中,使用者處理模組304可判定VOD資料,其可包含與源直播影片中的各影片相關的多個影片查看、尋找以及添加購物車動作,以識別在觀看者中最受歡迎的影片。在一些實施例中,使用者處理模組304可針對直播VOD影片的各片段判定多個查看、尋找以及添加購物車動作以識別直播VOD影片中存在顯著VOD使用者互動的片段(亦即,加亮影片片段)。另外,使用者資料處理模組304可判定直播VOD影片的各片段的轉換率(CVR)及/或點選連結率(CTR)。在一些實施例中,使用者資料處理模組304週期性地(例如,每1秒至10秒)傳輸包括所播放影片的時戳位置的當前播放狀態(例如,播放、暫停、停止、倒帶/快進)。
在一些實施例中,選擇模組305可包含一或多個計算裝置,所述一或多個計算裝置經組態以根據多個因素中的不同因素來識別特定片段,所述多個因素包含產品關鍵字的頻率、尋找、播放、添加購物車、點贊、聊天以及板偵測。舉例而言,在一些實施例中,選擇模組305可經組態以基於由音訊處理模組301執行的ASR識別及選擇具有最高產品關鍵字頻率的多個片段。另外或替代地,選擇模組305可經組態以選擇由使用者資料處理模組304判定的具有最高播放頻率的多個片段、具有最高使用者點贊頻率的多個片段、具有最高使用者聊天頻率的多個片段以及具有最高添加購物車動作頻率的多個片段。另外或替代地,選擇模組305可經組態以選擇由影片處理模組302偵測到的具有板或標誌的所有片段。
在一些實施例中,評分模組306可包含一或多個計算裝置,其經組態以接收由音訊處理模組301、影片處理模組302、分段模組303、使用者資料處理模組304以及選擇模組305處理的資料,且輸出直播影片的多個片段中的各片段的分數。在一些實施例中,評分模組306可經組態以藉由針對多個片段中的各片段設定中性分數(例如,0)來開始評分過程。另外或替代地,評分模組306可經組態以根據多個因素選擇性地將預定權重應用於由選擇模組305選擇的片段的片段分數。舉例而言,評分模組306可將最大權重(亦即,將片段分數乘以最大權重值1)應用於經選擇為具有最高產品關鍵字頻率的片段。另外或替代地,評分模組306可基於由影片處理模組302執行的分析而判定多個片段中的各片段的差分數。舉例而言,評分模組306可將針對各片段的所判定差分數添加至多個片段分數中的各片段分數,其中所判定差分數可基於應用於基於絕對差總和(SAD)而計算的差分數的預定權重。在本揭露的上下文中,「應用權重」是指將值(例如,分數)乘以預定權重值(例如,0.1與1之間的值)。
在一些實施例中,合併模組307可包含一或多個計算裝置,所述一或多個計算裝置經組態以基於由評分模組306判定的分數而選擇多個片段且合併所選擇的片段以產生新加亮影片。舉例而言,合併模組307可經組態以選擇且合併具有最高分數的預定數目個片段以產生新加亮影片。在一些實施例中,合併模組307可經組態以在一對或多對所選擇片段之間插入過渡效應(例如,交叉衰落)。
圖4繪示用於藉由使用音訊及影片處理自動產生加亮影片的例示性方法400。方法或其部分可藉由直播伺服器210進行。舉例而言,系統可包含一或多個處理器及儲存指令的記憶體,所述指令在由一或多個處理器執行時使得所述系統進行圖4中所展示的步驟。
在步驟402中,至少一個處理器可經組態以自預定時間段檢索多個源影片的使用者動作資料。舉例而言,直播伺服器210可自動檢索與在給定時段(例如,過去幾天,諸如3天、4天、1週等)中進行的各直播相關聯的資料。在一些實施例中,一旦即時直播結束(亦即,廣播結束),則直播伺服器210可將直播連同與直播相關聯的使用者動作資料一起儲存於資料庫(諸如資料庫212)中。舉例而言,直播伺服器210可以在直播經即時地廣播時追蹤使用者動作(例如,點贊、聊天、添加到購物車動作)以及各使用者動作的時戳,且可將使用者動作資料儲存於資料庫212中以供稍後檢索。另外或替代地,在直播儲存於資料庫212中且可由使用者經由VOD查看之後,直播伺服器210可追蹤與各直播相關聯的使用者動作(例如,尋找、查看、添加至購物車動作)。舉例而言,直播伺服器210可追蹤由一或多個使用者進行的各尋找、查看以及添加至購物車動作以及與各動作相關聯的時戳資訊,以識別各直播VOD影片中被找出、查看且導致將產品添加至使用者購物車的特定時刻。另外或替代地,直播伺服器210可監視與直播及直播VOD影片相關聯的使用者動作,諸如掃視查看、記憶體分配及/或網站流量的峰值,且可將使用者動作儲存於資料庫212中以供稍後檢索。
在步驟404中,至少一個處理器可經組態以基於所檢索的使用者動作資料而選擇多個源影片的源影片集合。在一些實施例中,直播伺服器210可基於所檢索的使用者動作資料而判定待選擇的多個源影片。舉例而言,直播伺服器210可基於點贊、聊天、尋找、查看及/或添加至購物車動作的數目而判定在預定時間段期間哪一直播VOD影片最受歡迎。在一些實施例中,直播伺服器210可基於所檢索的使用者動作資料為各直播VOD影片指定排名。舉例而言,直播伺服器210可針對所有直播VOD影片向具有最高使用者動作頻率(例如,在一段時間內的查看次數最多,例如,在直播VOD影片的長度上的查看次數)的直播VOD影片指定最高排名1、向具有次高使用者動作頻率的直播VOD影片指定排名2,以此類推,直到其向具有最低使用者動作頻率的直播VOD影片指定最低排名。在一些實施例中,直播伺服器210可選擇預定數目個VOD影片。舉例而言,待選擇以用於進一步處理的源影片的數目可由直播伺服器210自動預設。基於排名,直播伺服器210可選擇排名最高的直播VOD影片的預定數目個源影片(例如,10、50、100等)。在一些實施例中,直播伺服器210可選擇具有高於預定臨限值的多個使用者動作的所有源影片。舉例而言,直播伺服器210可以選擇查看次數高於100,000次查看的預定臨限值的所有源影片。在一些實施例中,待選擇以用於進一步處理的源影片的數目可由管理員手動預設。
在步驟406中,至少一個處理器可經組態以自資料庫檢索所選擇的源影片集合。舉例而言,在給定時段內且儲存於資料庫212中的所有直播VOD影片(例如,1000、2000、10000等)中,直播伺服器210可僅自資料庫212檢索經判定為在使用者當中最受歡迎的直播VOD影片的百分之十以供進一步處理。藉此,直播伺服器210可提供減少處理低效率和成本的特徵。(在各種實施例中,除了百分之十之外的值亦為可能的。)
在步驟408中,至少一個處理器可經組態以針對所選擇的源影片中的各源影片分析源影片以識別剪輯點。舉例而言,直播伺服器210可經組態以進行音訊處理,諸如語音活動偵測(VAD)及自動語音辨識(ASR),以識別直播VOD影片的開頭(亦即,介紹區段)及結尾(亦即,結束區段)的時戳、句子的開始及結束、靜音的開始及結束,以及由直播VOD影片的主播所說的關鍵字。另外或替代地,直播伺服器210可經組態以進行影片處理,諸如偵測圖框之間的差異(例如,彩色直方圖分析、運動向量分析以及絕對差總和(SAD)及/或平方差總和(SSD)的計算)、價格板偵測(例如,文字偵測、邊緣偵測),以及直播VOD影片中的文本辨識(例如,光學字元辨識)。基於音訊及/或影片處理,直播伺服器210可識別用於將直播VOD影片剪輯成若干片段的時戳。
在步驟410中,至少一個處理器可經組態以基於分析而將經分析源影片分割成多個片段。舉例而言,各直播VOD影片可為大約1小時,且對於各經分析VOD,直播伺服器210可在所識別的時戳處剪輯直播VOD影片以創建多個片段。分割可產生包含直播VOD影片的開頭及結尾以及靜音的片段,直播伺服器210可自多個片段移除所述片段以供進一步處理。另外或替代地,直播伺服器210可識別斷句(亦即,句子的開始及結束)的時戳,且可在所識別的時戳處進行剪輯以創建句子片段。在一些實施例中,直播伺服器210可剪輯直播VOD影片,使得多個片段中的各片段均在預定時間範圍內。舉例而言,直播伺服器210可剪輯直播VOD影片,使得各片段為30秒至90秒。在另一實例中,直播伺服器210可剪輯直播VOD影片,使得各片段為50秒至70秒。在此情況下,大約1小時長的直播VOD影片將產生約50到70個片段,包含開頭、結尾以及靜音。在一些實施例中,直播伺服器210可剪輯直播VOD影片,使得各片段具有相等的持續時間(例如,30秒、1分鐘)另外或替代地,直播流伺服器210亦可以對已經剪輯的片段進行進一步剪輯。舉例而言,直播伺服器210可首先基於斷句的偵測而將直播VOD影片剪輯成多個片段,以產生多個句子片段。在句子片段持續時間長於預定時間範圍的情況下,直播伺服器210可進一步基於自動語音辨識(ASR)對句子片段進行剪輯以找到最佳第二剪輯點,且可重複此過程,直至句子片段持續時間落在預定時間範圍內。
在步驟412中,至少一個處理器可經組態以針對多個片段中的各片段判定片段資料且基於所判定片段資料而計算片段加亮分數。在一些實施例中,直播伺服器210可使用所檢索的使用者動作資料來判定與各片段的使用者動作資料相關聯的多個因素(例如,產品關鍵字(ASR)、尋找(VOD)、播放(VOD)、添加購物車(VOD)、添加購物車(即時)、價格關鍵字(ASR)、點贊(即時)、聊天(即時))中的各因素的值。舉例而言,產品關鍵字(ASR)的值可為使用ASR在片段中偵測到產品關鍵字的次數。在另一實例中,添加購物車(VOD)的值可為將直播VOD影片中介紹的產品添加至使用者購物車的次數,而添加購物車(即時)的值可為在直播即時地廣播時將直播中介紹的產品添加至使用者購物車的次數。另外或替代地,直播伺服器210可針對各片段判定片段中是否出現板或標誌。
基於所判定的片段資料,直播伺服器210可經組態以計算各片段的片段加亮分數,其中各片段分數自中性分數(例如,0)開始。在一些實施例中,在計算各片段的片段加亮分數之前,直播伺服器210可針對多個因素中的各因素選擇多個片段。舉例而言,直播伺服器210可選擇具有最高產品關鍵字頻率的預定數目個片段(例如,2、5、10等)。另外或替代地,直播伺服器210可選擇具有最高播放頻率的預定數目個片段。另外或替代地,直播伺服器210可選擇經判定為具有板或標誌的出現的所有片段。
在一些實施例中,直播伺服器210可將預定分數權重應用於針對多個因素中的各因素選擇的各片段。舉例而言,各因素可具有與因素的重要性相關的相關聯預定分數權重。舉例而言,產品關鍵字在片段中提及的次數可具有所有因素中最大的相關聯分數權重,因為頻繁提及的關鍵字可指示多個片段當中更產品相關的片段。因此,直播伺服器210可將與產品關鍵字相關聯的分數權重應用於針對具有最高產品關鍵字頻率而選擇的片段。另外或替代地,價格板的偵測可使得直播伺服器210應用價格板分數權重來增加片段的分數,因為價格板的偵測可指示多個片段當中更產品相關的片段。另一方面,在所有因素中,多個點贊(即時)及多個聊天(即時)可各自具有相對較低的分數權重,因為與其他因素相比,作為直播即時地廣播而監視的點贊及聊天的數目可能與產品不太相關,且因此可能不是判定產品相關片段的關鍵因素,但仍可具有比沒有以上因素中的任一者的片段更大的權重。下面關於圖5論述例示性分數權重。
另外或替代地,直播伺服器210可經組態以計算多個片段中的各片段的差分數。舉例而言,直播伺服器210可進行彩色直方圖及運動向量分析,以針對片段中的各對鄰近影片圖框,藉由計算兩個鄰近影片圖框的各像素值(亦即,描述像素的亮度及顏色的值)的絕對差值來比較鄰近影片圖框(例如,將圖框1的(x,y)與圖框2的(x,y)進行比較)。一旦判定各像素值的絕對差值,便對所述值進行求和,從而產生鄰近影片圖框的絕對差值總和(SAD)。若所得圖框SAD值大於0,則直播伺服器210可將所述值聚合為所述片段的現有總SAD值。一旦針對片段中的各對鄰近影片圖框判定圖框SAD且更新總片段SAD,直播伺服器210便可將總片段SAD與最大片段SAD進行比較。舉例而言,最大片段SAD最初可設定為值0。當直播伺服器210計算出第一總片段SAD大於0時,第一總片段SA可設定為最大片段SAD。另外,當直播伺服器210計算出第二總片段SAD大於第一總片段SAD時,最大片段SAD可經更新為第二總片段SAD值。最後,可將片段的最高總片段SAD值設定為最大片段SAD。
一旦針對多個片段中的各片段判定總片段SAD,直播伺服器210便可藉由判定各總片段SAD與最大片段SAD的比率來計算各片段的差分數。舉例而言,直播伺服器210可判定第三片段(例如,100)的總片段SAD值具有最大值,且可將其設定為最大片段SAD值。在此情況下,假定第一片段的總片段SAD值具有值10,則第一片段的片段加亮分數將為10/100(亦即,0.1)。另外,第三片段的片段加亮分數將為100/100(亦即,1)。一旦針對各片段判定差分數,則直播伺服器210可將預定差分數權重(類似於上文所論述的預定分數權重)應用於各差分數,且將加權差分數添加至多個片段中的各片段的現有片段加亮分數。
在步驟414中,至少一個處理器可經組態以基於各片段的所計算片段加亮分數而自多個片段選擇多個片段。在一些實施例中,直播伺服器210可經組態以基於所計算的片段加亮分數而對多個片段中的各者進行排名。舉例而言,直播伺服器210可向具有最高加亮分數的片段指定排名1,且可向具有最低加亮分數的片段指定與片段數目相等的排名。在一些實施例中,直播伺服器210可經組態以選擇具有最高分數(亦即,最高排名)的多個片段。舉例而言,直播伺服器210可經組態以選擇具有最高分數的預定數目個片段(例如,4、5、10等)。在一些實施例中,直播伺服器210可經組態以選擇多個片段,使得所有片段的總持續時間在預定時間範圍內。舉例而言,直播伺服器210可經組態以選擇多個片段,使得所有片段的總持續時間在4分鐘至5分鐘之間。在此情況下,若各片段為大約1分鐘,則直播伺服器210可經組態以選擇4至5個片段。
在步驟416中,至少一個處理器可經組態以基於所選擇的片段而產生新影片。在一些實施例中,直播伺服器210可經組態以合併所選擇的片段以產生新影片。在一些實施例中,直播伺服器210可經組態以在一或多對片段之間插入過渡。舉例而言,直播伺服器210可在各片段之間插入3秒過渡。在一些實施例中,過渡可為具有資訊的圖框。舉例而言,過渡可包含具有關於藉由先前由直播伺服器210進行的音訊及/或影片處理來判定的下一片段的資訊的圖框。在一些實施例中,過渡可包含自資料庫(諸如資料庫212)檢索的產品資訊。另外或替代地,直播伺服器210可經組態以按所選擇的片段在源影片中出現的順序來合併所選擇的片段。在一些實施例中,直播伺服器210可經組態以按基於所計算的片段加亮分數判定的排名順序合併所選擇的片段。
在步驟418中,至少一個處理器可經組態以儲存新影片。在一些實施例中,新影片可儲存於儲存多個源直播影片的相同資料庫中。在其他實施例中,新影片可儲存於與儲存多個源直播影片的資料庫分離的資料庫中。另外或替代地,將新影片儲存於諸如資料庫212的資料庫中可使得新影片可供使用者在與直播伺服器210相關聯的VOD平台上查看。在一些實施例中,直播伺服器210可向使用者裝置220傳輸指示新加亮影片可用於在VOD平台上查看的通知。
圖5繪示因素及例示性相關聯分數權重的例示性表500。如上文所描述,在判定各片段的分數以判定哪些片段與產品最相關時,可考慮諸如產品關鍵字(ASR)、價格板、尋找(VOD)、播放(VOD)、添加購物車(VOD)、添加購物車(即時)、價格關鍵字(ASR)、點贊(即時)、聊天(即時)以及場景改變的因素。「產品關鍵字(ASR)」可為使用自動語音辨識(ASR)在片段中偵測到的多個產品關鍵字(例如,產品名稱)。「價格板」可為使用諸邊緣偵測及/或文字偵測的影片處理來判定(例如,是或否)是否在片段中偵測到價格板(例如,標誌、帶文字的板)。「尋找(VOD)」及「播放(VOD)」可為與直播VOD影片中最頻繁重看的片段相關聯的因素。舉例而言,「尋找(VOD)」可為一或多個使用者找出直播VOD影片的某一片段的次數,此可藉由監視及追蹤使用者播放日誌中的使用者互動以儲存於資料庫(諸如資料庫212)中來判定。類似地,「播放(VOD)」可為一或多個使用者播放直播VOD影片的某一片段的次數,此可藉由監視和追蹤使用者播放日誌中的使用者互動以儲存於資料庫(諸如資料庫212)中來判定。「添加購物車(VOD)」可為直播伺服器210在直播VOD影片的某一片段期間偵測到將產品添加至使用者購物車的次數。「添加購物車(即時)」可為直播伺服器210在即時廣播的直播的某一片段期間偵測到將產品添加至使用者購物車的次數。「價格關鍵字(ASR)」可為使用ASR在片段中偵測到的多個價格關鍵字(例如,產品價格)。「點贊(即時)」及「聊天(即時)」可分別為在即時廣播的直播的某一片段期間偵測到的點贊次數及聊天次數。「場景改變」可為與基於分析彩色直方圖及運動向量以及計算絕對差總和(SAD)及/或平方差總和(SSD)而偵測圖框之間的差異(例如,主播的顯著移動、主播與攝影機的接近度的改變、標誌的偵測等)相關的因素。
圖6繪示示出上述方法400中所描述的步驟的例示性流程的圖600。圖600開始於源直播影片610,其包含介紹(開頭)、結束(結尾)、靜音m1、靜音m2、…靜音m7、片段s1、片段s2、…片段s9、以及時戳t0、時戳t1、…時戳t18。這些可藉由上文所描述的音訊及影片處理技術中的任一者來識別。時戳t1、時戳t2、…以及時戳t17可指示斷句。直播伺服器210可在時戳t1、時戳t2、…時戳t17處繼續剪輯源直播影片610,且可去除介紹(開頭)、結束(結尾)以及靜音m1、靜音m2、…靜音m7,從而僅產生片段s1、片段s2、…片段s9,其中各片段大約為1分鐘長。可根據上文所描述的評分技術對片段中的各者進行評分,從而產生評分片段620。在評分片段中,僅可選擇前4個片段,從而產生所選擇片段630。所選擇片段630中的各者可與各片段之間的過渡合併,且按其出現在源直播影片610中的相同順序合併,從而產生加亮影片640。
儘管已參考本揭露內容的特定實施例繪示及描述本揭露內容,但應理解,可在不修改的情況下在其他環境中實踐本揭露內容。已出於示出的目的呈現前述描述。前述描述並不詳盡且不限於所揭露的精確形式或實施例。修改及調適對所屬技術領域中具有通常知識者將自本說明書的考量及所揭露實施例的實踐顯而易見。另外,儘管將所揭露實施例的態樣描述為儲存於記憶體中,但所屬技術領域中具有通常知識者應瞭解,這些態樣亦可儲存於其他類型的電腦可讀媒體上,諸如次級儲存裝置,例如硬碟或CD ROM,或其他形式的RAM或ROM、USB媒體、DVD、藍光,或其他光碟機媒體。
基於書面描述及所揭露方法的電腦程式在有經驗開發者的技能內。各種程式或程式模組可使用所屬技術領域中具有通常知識者已知的技術中的任一者來創建或可結合現有軟體來設計。舉例而言,程式區段或程式模組可以或藉助於.Net框架(.Net Framework)、.Net緊密框架(.Net Compact Framework)(及相關語言,諸如視覺培基(Visual Basic)、C等)、爪哇(Java)、C++、目標-C(Objective-C)、HTML、HTML/AJAX組合、XML或包含爪哇小程式的HTML來設計。
此外,儘管本文中已描述示出性實施例,但所屬技術領域中具有通常知識者將基於本揭露內容瞭解具有等效元件、修改、省略、(例如,各種實施例中的態樣的)組合、調適及/或更改的任何及所有實施例的範圍。申請專利範圍中的限制應基於申請專利範圍中所採用的語言來廣泛地解釋,且不限於本說明書中所描述或在本申請案的審查期間的實例。實例應視為非排他性的。另外,所揭露方法的步驟可以包含藉由對步驟重新排序及/或插入或刪除步驟的任何方式修改。因此,希望僅將本說明書及實例視為示出性的,其中藉由以下申請專利範圍及其等效物的完整範圍指示真實範圍及精神。
100:系統
101:運送授權技術系統
102A、107A、107B、107C、119A、119B、119C:行動裝置
102B:電腦
103:外部前端系統
105:內部前端系統
107:運輸系統
109:賣方入口網站
111:運送及訂單追蹤系統
113:履行最佳化系統
115:履行通信報閘道
117:供應鏈管理系統
119:倉庫管理系統
120:履行中心
121A、121B、121C:第3方履行系統
123:履行中心授權系統
125:勞動管理系統
200:串流系統
210:直播伺服器
212:資料庫
214:輪播產生模組
216:聊天模組
218:剪輯產生模組
220:使用者裝置
230:網路
300:示意性方塊圖
301:音訊處理模組
302:影片處理模組
303:分段模組
304:使用者資料處理模組
305:選擇模組
306:評分模組
307:合併模組
400:方法
402、404、406、408、410、412、414、416、418:步驟
500:表
600:圖
610:源直播影片
620:評分片段
630:所選擇片段
640:加亮影片
m1、m2、m3、m4、m5、m6、m7:靜音
s1、s2、s3、s4、s5、s6、s7、s8、s9:片段
t1、t2、t3、t4、t5、t6、t7、t8、t9、t10、t11、t12、t13、t14、t15、t16、t17、t18:時戳
圖1A為與所揭露實施例一致的示出包括用於實現運送、運輸以及物流操作的通信的電腦化系統的網路的例示性實施例的示意性方塊圖。
圖1B描繪與所揭露實施例一致的包含滿足搜尋請求的一或多個搜尋結果以及互動式使用者介面元素的樣本搜尋結果頁(Search Result Page;SRP)。
圖1C描繪與所揭露實施例一致的包含產品及關於所述產品的資訊以及互動式使用者介面元素的樣本單一詳情頁(Single Detail Page;SDP)。
圖1D描繪與所揭露實施例一致的包含虛擬購物車中的物件以及互動式使用者介面元素的樣本購物車頁。
圖1E描繪與所揭露實施例一致的包含來自虛擬購物車的物件以及關於購買及運送的資訊以及互動式使用者介面元素的樣本訂單頁。
圖2為示出與所揭露實施例一致的包括用於直播電子商務的電腦化系統的網路的例示性實施例的示意性方塊圖。
圖3為示出與所揭露實施例一致的剪輯產生模組的例示性實施例的示意性方塊圖。
圖4繪示與所揭露實施例一致的用於藉由使用音訊及影片處理來自動產生加亮影片的例示性方法。
圖5繪示與所揭露實施例一致的因素及其相關聯分數權重的例示性表。
圖6繪示示出與所揭露實施例一致的自動產生加亮影片的例示性流程的圖。
600:圖
610:源直播影片
620:評分片段
630:所選擇片段
640:加亮影片
m1、m2、m3、m4、m5、m6、m7:靜音
s1、s2、s3、s4、s5、s6、s7、s8、s9:片段
t1、t2、t3、t4、t5、t6、t7、t8、t9、t10、t11、t12、t13、t14、t15、t16、t17、t18:時戳
Claims (20)
- 一種用於自動產生加亮影片的電腦實行系統,所述系統包括: 一或多個記憶體裝置,儲存指令;以及 一或多個處理器,經組態以執行所述指令以進行操作,所述操作包括: 自預定時間段檢索多個源影片的使用者動作資料; 基於所檢索的所述使用者動作資料而選擇所述多個源影片的源影片集合; 檢索所選擇的所述源影片集合; 對於所選擇的所述源影片集合中的各者: 分析所述源影片以識別剪輯點; 將經分析的所述源影片分割成多個片段; 對於所述多個片段中的各片段: 判定片段資料;以及 基於所判定的所述片段資料而計算片段加亮分數; 基於各片段的所計算的所述片段加亮分數而自所述多個片段選擇多個片段; 基於所選擇的所述片段而產生新影片;以及 儲存所述新影片。
- 如請求項1所述的電腦實行系統,所述一或多個處理器經組態以執行所述指令以進行操作,所述操作更包括: 在直播影片期間監視多個即時使用者動作; 將所述多個即時使用者動作編譯在一或多個使用者動作日誌中;以及 將所述一或多個使用者動作日誌儲存於資料庫中, 其中所述多個源影片為多個完成的直播影片。
- 如請求項2所述的電腦實行系統,其中所述使用者互動包含所述一或多個使用者的與各源影片相關聯的尋找動作及播放動作中的至少一者。
- 如請求項1所述的電腦實行系統,其中判定片段資料是基於所檢索的所述使用者動作資料。
- 如請求項1所述的電腦實行系統,其中所述多個片段中的各片段的持續時間在預定時間範圍內。
- 如請求項1所述的電腦實行系統,其中判定片段資料包含判定多個因素中的各因素的值。
- 如請求項6所述的電腦實行系統,其中所述多個因素至少包含說出的產品關鍵字的頻率、播放的頻率、尋找的頻率、點贊的頻率、聊天的頻率以及將產品添加至觀看者的購物車的次數。
- 如請求項7所述的電腦實行系統,其中基於所判定的所述片段資料而計算片段加亮分數包含計算所述多個因素中的各因素的因素分數。
- 如請求項8所述的電腦實行系統,其中所述多個因素中的各因素具有相關聯預定權重,且計算所述片段加亮分數至少部分地基於所述預定權重及所述多個因素中的各因素的所計算的所述因素分數。
- 如請求項1所述的電腦實行系統,其中基於各片段的所計算的所述片段加亮分數而自所述多個片段選擇多個片段包含選擇具有所計算的所述片段加亮分數中的所述最高片段加亮分數的預定數目個片段。
- 一種用於自動產生加亮影片的電腦實行方法,所述方法包括: 自預定時間段檢索多個源影片的使用者動作資料; 基於所檢索的所述使用者動作資料而選擇所述多個源影片的源影片集合; 自資料庫檢索所選擇的所述源影片集合; 對於所選擇的所述源影片集合中的各者: 分析所述源影片以識別剪輯點; 將經分析的所述源影片分割成多個片段; 對於所述多個片段中的各片段: 判定片段資料;以及 基於所判定的所述片段資料而計算片段加亮分數; 基於各片段的所計算的所述片段加亮分數而自所述多個片段選擇多個片段; 基於所選擇的所述片段而產生新影片;以及 將所述新影片儲存於所述資料庫中。
- 如請求項11所述的電腦實行方法,所述方法更包括: 在直播影片期間監視多個即時使用者動作; 將所述多個即時使用者動作編譯在一或多個使用者動作日誌中;以及 將所述一或多個使用者動作日誌儲存於資料庫中, 其中所述多個源影片為多個完成的直播影片。
- 如請求項12所述的電腦實行方法,其中所述使用者互動包含所述一或多個使用者的與各源影片相關聯的尋找動作及播放動作中的至少一者。
- 如請求項11所述的電腦實行方法,其中判定片段資料是基於使用者動作資料。
- 如請求項11所述的電腦實行方法,其中所述多個片段中的各片段的持續時間在預定時間範圍內。
- 如請求項1所述的電腦實行方法,其中判定片段資料包含判定多個因素中的各因素的值。
- 如請求項16所述的電腦實行方法,其中所述多個因素至少包含說出的產品關鍵字的頻率、播放的頻率、尋找的頻率、點贊的頻率、聊天的頻率以及將產品添加至觀看者的購物車的次數。
- 如請求項17所述的電腦實行方法,其中計算片段加亮分數包含計算所述多個因素中的各因素的因素分數且至少部分基於與所述多個因素中的各因素相關聯的預定權重。
- 如請求項11所述的電腦實行方法,其中基於各片段的所計算的所述片段加亮分數而自所述多個片段選擇多個片段包含選擇具有所計算的所述片段加亮分數中的所述最高片段加亮分數的預定數目個片段。
- 一種用於自動產生加亮影片的電腦實行系統,所述系統包括: 至少一個處理器,以及 至少一個非暫時性儲存媒體,包括指令,所述指令在由所述至少一個處理器執行時使得所述至少一個處理器進行包括以下的步驟: 自預定時間段檢索多個源影片的使用者動作資料,其中所述使用者動作資料包含與所述多個源影片中的各源影片相關聯的至少多個經監視使用者互動; 基於所檢索的所述使用者動作資料而選擇所述多個源影片中的預定數目個源影片; 檢索所選擇的所述源影片; 對於所選擇的所述源影片中的各者: 藉由音訊處理分析所述源影片以識別剪輯點; 將經分析的所述源影片分割成多個片段; 對於所述多個片段中的各片段: 至少部分地基於所述音訊處理而判定片段資料;以及 基於所判定的所述片段資料而計算片段加亮分數; 基於各片段的所計算的所述片段加亮分數而自所述多個片段選擇多個片段; 基於所選擇的所述片段而產生新影片;以及 儲存所述新影片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/885,234 | 2022-08-10 | ||
US17/885,234 US20240054160A1 (en) | 2022-08-10 | 2022-08-10 | Computerized systems and methods for automatic generation of highlight videos |
Publications (1)
Publication Number | Publication Date |
---|---|
TW202415079A true TW202415079A (zh) | 2024-04-01 |
Family
ID=89846226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW112127706A TW202415079A (zh) | 2022-08-10 | 2023-07-25 | 用於自動產生加亮影片的電腦實行系統以及電腦實行方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20240054160A1 (zh) |
KR (1) | KR20240021662A (zh) |
TW (1) | TW202415079A (zh) |
WO (1) | WO2024033714A1 (zh) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8543454B2 (en) * | 2011-02-18 | 2013-09-24 | Bluefin Labs, Inc. | Generating audience response metrics and ratings from social interest in time-based media |
US10616626B2 (en) * | 2015-03-31 | 2020-04-07 | The Hong Kong University Of Science And Technology | Method and system for analyzing user activities related to a video |
KR101777242B1 (ko) * | 2015-09-08 | 2017-09-11 | 네이버 주식회사 | 동영상 컨텐츠의 하이라이트 영상을 추출하여 제공하는 방법과 시스템 및 기록 매체 |
US10972524B1 (en) * | 2016-06-28 | 2021-04-06 | Amazon Technologies, Inc. | Chat based highlight algorithm |
US10410060B2 (en) * | 2017-12-14 | 2019-09-10 | Google Llc | Generating synthesis videos |
WO2020148659A2 (en) * | 2019-01-18 | 2020-07-23 | Rathod Yogesh | Augmented reality based reactions, actions, call-to-actions, survey, accessing query specific cameras |
US11620334B2 (en) * | 2019-11-18 | 2023-04-04 | International Business Machines Corporation | Commercial video summaries using crowd annotation |
KR102487794B1 (ko) * | 2020-02-21 | 2023-01-13 | 베이징 바이두 넷컴 사이언스 앤 테크놀로지 코., 엘티디. | 비디오 중의 핫스팟 세그먼트를 추출하는 방법, 장치, 전자 기기, 저장 매체, 및 컴퓨터 프로그램 제품 |
KR20220102522A (ko) * | 2021-01-13 | 2022-07-20 | 삼성전자주식회사 | 요약 영상 생성 방법 및 그 전자 장치 |
-
2022
- 2022-08-10 US US17/885,234 patent/US20240054160A1/en active Pending
- 2022-09-28 KR KR1020220123449A patent/KR20240021662A/ko unknown
-
2023
- 2023-05-26 WO PCT/IB2023/055437 patent/WO2024033714A1/en unknown
- 2023-07-25 TW TW112127706A patent/TW202415079A/zh unknown
Also Published As
Publication number | Publication date |
---|---|
US20240054160A1 (en) | 2024-02-15 |
KR20240021662A (ko) | 2024-02-19 |
WO2024033714A1 (en) | 2024-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9965780B2 (en) | System and methods for providing user generated video reviews | |
US10057628B2 (en) | Interactive video distribution system and video player utilizing a client server architecture | |
US20180158489A1 (en) | System and methods for providing user generated video reviews | |
US10540660B1 (en) | Keyword analysis using social media data | |
US10043191B2 (en) | System and method for online product promotion | |
TWI760020B (zh) | 產生動態網站的電腦化系統及電腦實行方法以及非暫時性電腦可讀媒體 | |
US20080306999A1 (en) | Systems and processes for presenting informational content | |
CN112818674A (zh) | 带货直播的信息处理方法、装置、设备及介质 | |
US20080208975A1 (en) | Methods, systems, and computer program products for accessing a discussion forum and for associating network content for use in performing a search of a network database | |
WO2008106497A1 (en) | Entertainment platform with layered advanced search and profiling technology | |
CA2685870A1 (en) | Monetization of original digital content contributions | |
WO2009073552A2 (en) | Video object tag creation and processing | |
CN101395627A (zh) | 具有视频广告创意的改进的广告 | |
US20200250369A1 (en) | System and method for transposing web content | |
CN102437972B (zh) | 消息通知活动 | |
CN101562538A (zh) | 一种网站访问分析的系统 | |
CN111027838A (zh) | 一种众包任务推送方法、装置、设备及其存储介质 | |
US20150142584A1 (en) | Ranking content based on member propensities | |
CN110689318A (zh) | 一种基于互联网的视频面试方法、装置、介质及终端设备 | |
JP2021518621A (ja) | 匿名のオンラインユーザ行動を使用した発呼者介入のない自動コールルーティングのための方法およびシステム | |
US9330093B1 (en) | Methods and systems for identifying user input data for matching content to user interests | |
TWI792302B (zh) | 用於產生搜尋的關鍵詞的方法以及系統 | |
TW202006635A (zh) | 線下商品資訊查詢方法、裝置、設備及系統 | |
TW202415079A (zh) | 用於自動產生加亮影片的電腦實行系統以及電腦實行方法 | |
US11763350B2 (en) | Systems and methods for generating a personalized advertisement |