TW202409598A - 用於在被測裝置托座中對成角度被測裝置進行無線測試的測試裝置 - Google Patents

用於在被測裝置托座中對成角度被測裝置進行無線測試的測試裝置 Download PDF

Info

Publication number
TW202409598A
TW202409598A TW112127361A TW112127361A TW202409598A TW 202409598 A TW202409598 A TW 202409598A TW 112127361 A TW112127361 A TW 112127361A TW 112127361 A TW112127361 A TW 112127361A TW 202409598 A TW202409598 A TW 202409598A
Authority
TW
Taiwan
Prior art keywords
under test
device under
antenna
angled
test
Prior art date
Application number
TW112127361A
Other languages
English (en)
Inventor
何塞 摩雷拉
高須弘光
汐田夏基
菊池有朋
加藤康之
峯尾浩之
Original Assignee
日商愛德萬測試股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商愛德萬測試股份有限公司 filed Critical 日商愛德萬測試股份有限公司
Publication of TW202409598A publication Critical patent/TW202409598A/zh

Links

Images

Abstract

本發明關於一種用於對成角度被測裝置進行無線測試的測試裝置,其中,所述測試裝置包括載體結構,其中,所述測試裝置包括耦合至所述載體結構的被測裝置托座,其中,所述被測裝置托座被配置為與所述成角度被測裝置的內表面或與佈置在所述成角度被測裝置的所述內表面上的連接器建立電接觸。

Description

用於在被測裝置托座中對成角度被測裝置進行無線測試的測試裝置
根據本發明的實施例關於一種用於無線測試的測試裝置,特別是使用被測裝置托座。
根據本發明的實施例關於一種用於使用自動化測試設備對L形封裝天線模組進行無線測試的托座。
測試裝置可用於測試能夠接收和/或發射電磁輻射的被測裝置(例如,封裝天線裝置)。通常,被測裝置具有帶有兩個相對表面的平面形狀,使得例如被測裝置可安裝在被測裝置托座(例如,用於對封裝天線裝置進行輻射近場測試的空中(over the air, OTA)托座)中,使得其中的一個表面面向被測裝置托座,而另一個表面背向被測裝置托座。例如,一個可對被測裝置進行定向,使得具有天線的被測裝置的表面背向被測裝置托座。
然而,被測裝置的形狀可能不是平面的。例如,被測裝置可具有成角度形狀,諸如L形。此外,成角度裝置可被配置為在至少一個外表面處發射和/或接收電磁輻射。例如,角形被測裝置可在一個或兩個外表面上具有一個或多個天線陣列(或其他天線)。如此,成角度被測裝置可在內表面上具有連接器和/或芯片,這通常是不易接近的表面。
成角度被測裝置在與托座的耦合、與托座的電接觸以及被測裝置的定向方面提出了挑戰,這些方面都會影響測試效率、準確性和再現性。
因此,需要一種改進測試效率、準確性與再現性之間的折衷的測試裝置。
本發明的一個實施例針對一種用於對成角度(例如,L形)被測裝置(例如,L形封裝天線被測裝置)進行無線測試的測試裝置,其中,所述測試裝置包括載體結構(例如,PCB測試夾具或負載板),其中,所述測試裝置包括被測裝置托座,所述被測裝置托座耦合至所述載體結構(例如,所述PCB測試夾具或所述負載板)(例如,直接或通過延伸器組件和/或位於所述載體結構與所述被測裝置托座之間的PCB中介層),其中,所述被測裝置托座被配置為與所述成角度(例如,L形)被測裝置的內表面(例如,與所述成角度被測裝置的與所述成角度被測裝置的第二外表面相對的內表面)或與佈置在所述成角度(例如,L形)被測裝置的所述內表面上的連接器建立電接觸。
所述被測裝置托座允許將所述成角度被測裝置耦合至所述測試裝置。此外,所述電接觸允許在所述測試裝置與耦合至所述被測裝置托座的所述被測裝置之間(單向或雙向地)傳輸電能、一個或多個控制信號、測量信號或信號中的至少一者。由於所述電接觸是與所述成角度被測裝置的所述內表面建立的,因此外表面可被佈置為背向所述被測裝置托座。這種定向允許測試所述成角度被測裝置本身(例如,測試所述成角度被測裝置的天線陣列之間在發射或相互作用期間的能量消耗)並還允許使用一個或多個外部天線結構(例如,使用測量天線以無線方式接收由所述成角度被測裝置傳輸的信號,和/或使用傳輸由被成角度被測裝置以無線方式接收到的信號的測試天線)來測試所述成角度裝置。所述被測裝置托座的設計允許有利地對一個或多個天線陣列(或一個或多個其他天線,諸如一個或多個單個天線)進行佈置,所述一個或多個天線陣列相對於此類一個或多個外部天線結構(例如,一個或多個測試天線結構)包括在所述成角度被測裝置的所述外表面中的一個或多個上。如此,所述一個或多個外部天線結構(例如,用於測試所述被測裝置的一個或多個天線或天線陣列、所述被測裝置的一個或多個傳輸路徑或所述被測裝置的一個或多個接收路徑)可被佈置成使得所述成角度天線裝置位於所述被測裝置托座與所述一個或多個外部天線結構之間。此外,因此可以機械方式接觸所述成角度被測裝置的所述外表面,以便保持所述成角度被測裝置耦合至所述被測裝置托座(例如,通過將所述成角度被測裝置壓入所述被測裝置托座)。
根據實施例,所述被測裝置托座被配置為定位所述成角度被測裝置,使得所述成角度(例如,L形)被測裝置的第一外表面(例如,包括輻射結構的表面)與所述載體結構(例如,所述負載板)的表面(例如,主表面)間隔開,並且使得所述成角度(例如,L形)被測裝置的所述第一外表面的表面法線在+/–15度的公差內平行於所述載體結構(例如,所述負載板)的所述表面(例如,主表面)。
已經認識到,所述被測裝置托座的設計允許承載所述被測裝置,使得所述被測裝置的所述第一外表面的表面法線可基本上平行於所述載體結構的所述表面。因此,可佈置在所述被測裝置的所述第一外表面上的一個或多個天線或天線陣列可具有至少基本上平行於所述載體結構的所述表面的(例如,主波束的)傳輸方向。如此,可沿著所述載體結構的所述表面選擇天線結構的位置(例如,用於測試所述被測裝置的測試天線的位置)。所述天線結構(例如,所述測試天線)的這種放置在機械上可能是有利的,因為所述載體結構可用作所述天線結構的載體。例如,所述載體結構的所述表面可用作用於確定所述天線結構的位置和/或定向的引導件。
由於所述第一外表面被佈置成與所述載體的所述表面間隔開,因此可減少或消除與載體表面(例如,所述載體結構的表面)的相互作用,諸如短路、反射和干擾。
根據實施例,所述被測裝置托座被配置為定位所述成角度被測裝置,使得所述成角度(例如,L形)被測裝置的第二外表面(例如,包括輻射結構的表面)背向所述載體結構,並且使得所述成角度(例如,L形)被測裝置的所述第二外表面的表面法線在+/–15度的公差內垂直於所述載體結構(例如,所述負載板)的所述表面。
所述被測裝置托座的這種設計允許對在兩個外表面上包括天線結構的被測裝置進行高效測試。已經認識到,所述被測裝置托座的設計允許承載所述被測裝置,使得所述被測裝置的所述第二外表面的表面法線可基本上垂直於所述載體結構的所述表面。因此,可佈置在所述被測裝置的所述第二外表面上的一個或多個天線或天線陣列可具有至少基本上垂直於所述載體結構的所述表面的(例如,主波束的)傳輸方向。然而,已經認識到,有可能通過合理的努力來放置外部天線(例如,測試天線),其方式使得所述外部天線在所述被測裝置的所述第二外表面上與所述天線結構良好對準。
此外,已經認識到,所述被測裝置托座的上述設計允許將力施加至所述第二外表面上(例如,用於維持所述成角度被測裝置),所述第二外表面至少基本上垂直於所述載體結構的所述表面定向。
根據實施例,所述載體結構(例如,負載板)的與所述成角度被測裝置的所述第一外表面相鄰(例如,其間有間隔)的區域(例如,所述載體結構(例如,負載板)的與所述成角度被測裝置的所述第一外表面的朝外(向外)表面法線至所述負載板上的投影相鄰的區域)不含電源平面和/或不含接地平面。所述相鄰區域可佈置在穿過所述被測裝置托座或所述被測裝置的包括第一外表面的半空間中。所述相鄰區域可與所述成角度被測裝置的所述第一外表面相鄰(例如,其間有間隔)(例如,在與所述成角度被測裝置的所述第一外表面的朝外(向外)表面法線至所述載體結構(例如,負載板)上的投影相鄰的區域中)。
已經認識到,電源平面和/或接地平面會對所述被測裝置接收和/或傳輸電磁輻射(例如,波束賦形)產生負面影響。由於所述相鄰區域不含電源平面和/或不含接地平面,因此可減少對所述電磁輻射的影響,並且可提高所述成角度被測裝置的測試的準確性(例如,在所述天線結構佈置在所述第一外表面上的情況下)。
根據實施例,所述載體結構(例如,負載板)的與所述成角度被測裝置的所述第一外表面相鄰(例如,其間有間隔)的區域(例如,所述載體結構(例如,負載板)的與所述成角度被測裝置的所述第一外表面的朝外(向外)表面法線至所述載體結構(例如,負載板)上的投影相鄰的區域)不被金屬化。
已經認識到,所述相鄰區域的金屬化會對電磁輻射的傳輸和/或接收(例如,波束賦形)產生負面影響,例如在所述天線結構佈置在所述第一外表面的情況下。由於所述相鄰區域不被金屬化,因此可降低對所述電磁輻射的影響,並且可提高所述成角度被測裝置的測試的準確性。
根據實施例,吸收材料被佈置在所述載體結構(例如,負載板)上的區域中,所述區域與所述成角度被測裝置的所述第一外表面相鄰(例如,其間有間隔)(例如,在與所述成角度被測裝置的所述第一外表面的朝外(向外)表面法線至所述載體結構(例如,負載板)上的投影相鄰的區域中)。所述吸收材料可包括射頻吸收材料(例如,浸漬有碳和/或鐵的橡膠泡沫材料)。
所述吸收材料減少反射和/或干擾。如此,可提高所述成角度被測裝置的測試的準確性,例如在所述天線結構佈置在所述第一外表面上的情況下。
根據實施例,所述被測裝置托座被配置為定位所述成角度被測裝置,使得所述成角度被測裝置的所述第一外表面與所述載體結構(例如,負載板)之間的間隔是所述成角度被測裝置的最低操作頻率下(例如,構成所述被測裝置或包括在所述被測裝置中的封裝天線(AiP)模組的最低操作頻率下)的至少2個波長(例如,自由空間波長,或所述成角度被測裝置的所述第一外表面與所述載體結構之間的介質中的波長)。
已經認識到,可佈置所述在第一外表面上並可能由所述載體結構引起的對一個或多個天線陣列的發射和/或接收(例如,波束賦形、反射、駐波的形成以及干擾)的影響在這種距離下顯著減少。
根據實施例,所述被測裝置托座附接至子板(例如,佈置在所述子板上),所述子板安裝至所述載體結構(例如,測試夾具PCB或負載板),所述子板與所述負載板之間具有間隔(例如,其中,所述子板與所述負載板之間的間隔例如使用加強件提供,並且其中,例如所述子板與所述負載板之間的電連接使用電連接器提供(例如,將陣列連接器用於數位/電源信號,並可選地還用於IF RF信號))。
子板可更輕鬆地升級舊測試裝置,並通過使用不同子板來在不同被測裝置托座之間變換。此外,所述子板與所述負載板之間的所述間隔建立所述成角度被測裝置與所述載體結構之間的間隔(例如,所述成角度被測裝置的最低操作頻率下的至少兩個波長的間隔)。例如,可通過使用加強件來特別可靠地建立所述間隔。所述子板還可支撐電線、輔助電路和連接器。例如,所述子板可支撐同軸連接器,所述同軸連接器可電連接至所述被測裝置托座以在耦合至所述被測裝置托座時實現與所述被測裝置的電連接。
根據實施例,所述測試裝置包括第一天線或天線結構(例如,單孔徑天線(例如,雙線性極化或圓極化)),所述第一天線或天線結構被配置為接收從所述成角度被測裝置的所述第一外表面輻射的信號和/或被配置為發射將在所述成角度裝置的所述第一外表面處接收到的信號。
所述第一天線或天線裝置允許在所述被測裝置托座中建立與被測裝置的無線連接。因此,所述第一天線或天線結構允許測試所述被測裝置。所述被測裝置托座允許在限定方向上對所述被測裝置進行定向,使得所述第一天線或天線結構可相對於所述被測裝置準確定向(或使得可實現所述第一天線或天線結構與所述成角度被測裝置之間的準確對準)。
根據實施例,所述測試裝置包括第一天線或天線結構(例如,單孔徑天線(例如,雙線性極化或圓極化)),其中,所述第一天線或天線結構的孔徑被佈置成距所述成角度被測裝置的所述第一外表面一定距離,使得所述成角度被測裝置的所述第一外表面的表面法線延伸穿過所述第一天線或天線結構的所述孔徑(例如,至少當所述第二天線或天線結構被放置在操作位置時)。
所述第一外表面可具有或被配置為在垂直於所述第一外表面的方向上發射和/或接納主波束(例如,通過波束賦形)。通過將所述第一外表面的所述表面法線佈置成穿過所述第一天線或天線結構的所述孔徑(或換句話說,通過放置所述第一天線使得所述表面法線延伸穿過所述第一天線的所述孔徑),可改進所述第一天線或天線結構的接收和/或發射,並且可實現所述第一天線或天線結構與所述被測裝置的天線之間的良好電磁耦合。
根據實施例,所述第一天線或天線結構被安裝成相對於所述被測裝置托座具有固定位置。
這種固定位置允許多個成角度被測裝置的重複耦合和測試,其中,可提高測試的準確性和再現性。此外,應當注意,使用所提到的佈置,所述第一天線或天線結構在一些情況下可能不在處理器路徑中並因此不需要在處理器更換所述被測裝置時被移除。
根據實施例,所述第一天線或天線結構(或第二天線或天線結構)以機械方式附接至處理器(例如,被配置為將所述成角度被測裝置插入至所述被測裝置托座中)的臂,使得所述第一天線或天線結構(或所述第二天線或天線結構)是可移動的。
所述臂允許所述第一天線或天線結構(或所述第二天線或天線結構)是可移動的,這使得能夠移除所述第一天線或天線結構(或所述第二天線或天線結構)(例如,為了更易於將所述成角度被測裝置耦合至所述被測裝置托座)或重新調整所述第一天線或天線結構(或所述第二天線或天線結構)。在所述處理器被配置為將所述成角度被測裝置插入至所述被測裝置托座中的情況下,所述處理器可促進在將所述成角度被測裝置耦合至所述被測裝置托座期間或之後耦合和定位所述第一天線或天線結構(或所述第二天線或天線結構)。
根據實施例,所述第一天線或天線結構(或所述第二天線或天線結構)被配置為在所述處理器已將所述第一天線或天線結構(或所述第二天線或天線結構)放置在操作位置時(或等同地,在所述處理器已將所述成角度被測裝置插入至所述測試托座中時,或在所述處理器將所述被測裝置推入所述測試托座時)經由盲插微波連接(例如,經由盲插波導)與信號源和/或與信號接收器連接。
所述信號源和/或信號接收器使得所述第一天線或天線結構(或所述第二天線或天線結構)能夠發射信號(例如,將由所述成角度被測裝置的天線或天線陣列接收到)和/或接收信號(例如,由所述成角度被測裝置的天線或天線陣列發射),因此促進所述成角度被測裝置的測試。所述盲插微波連接促進所述信號源和/或信號接收器與所述第一天線或天線結構之間(或所述信號源和/或信號接收器與所述第二天線或天線結構之間)的(例如,手動和/或自動)耦合。
根據實施例,所述測試裝置包括第二天線或天線結構(例如,單孔徑天線(例如,雙線性極化或圓極化)),所述第二天線或天線結構被配置為接收從所述成角度被測裝置的所述第二外表面輻射的信號和/或發射將在所述成角度被測裝置的所述第二外表面處接收到的信號(例如,至少當所述第二天線或天線結構被放置在操作位置時)(例如,或等同地,當所述處理器已將所述成角度被測裝置插入至所述測試托座中時,或當所述處理器已將所述被測裝置推入所述測試托座時)。
所述第二天線或天線結構允許測試所述第二外表面和/或所述被測裝置上的天線結構。所述第二天線或天線結構受益於由所述被測裝置托座限定的所述第二外表面的定向。所述第一天線或天線結構和所述第二天線或天線結構允許使用由所述第一外表面和所述第二外表面發射和/或接收(例如,以同時或相繼方式)的信號來測試所述被測裝置,而不必在不同定向處(例如,或在不同被測裝置托座處)重新耦合所述成角度被測裝置。
根據實施例,所述測試裝置包括第二天線或天線結構(例如,單孔徑天線(例如,雙線性極化或圓極化)),其中,所述第二天線或天線結構的孔徑被佈置成距所述成角度被測裝置的所述第二外表面一定距離,使得所述成角度被測裝置的所述第二外表面的表面法線延伸穿過所述第二天線或天線結構的所述孔徑(例如,至少當所述第二天線或天線結構被放置在操作位置時)(例如,或等同地,當所述處理器已將所述成角度被測裝置插入至所述測試托座中時,或當所述處理器已將所述被測裝置推入所述測試托座時)。
所述第二外表面可具有或被配置為在垂直於所述第二外表面的方向上發射和/或接納主波束(例如,通過波束賦形)。通過將所述第二外表面的所述表面法線佈置成穿過所述第二天線或天線結構的所述孔徑(或換句話說,通過放置所述第二天線使得所述表面法線延伸穿過所述第二天線的所述孔徑),可改進所述第二天線或天線結構的接收和/或發射,並且可實現所述第二天線或天線結構與所述被測裝置的天線之間的良好電磁耦合。
根據實施例,所述第二天線或天線結構以機械方式附接至處理器(例如,被配置為將所述成角度被測裝置插入至所述被測裝置托座中)的臂,使得所述第二天線或天線結構是可移動的。所述第一天線或天線結構和所述第二天線或天線結構可例如附接至相同/共同臂或可各自附接至單個臂。
所述臂允許所述第二天線或天線結構是可移動的,這使得能夠移除所述第二天線或天線結構(例如,為了更易於將所述成角度被測裝置耦合至所述被測裝置托座)或重新調整所述第二天線或天線結構。在所述處理器被配置為將所述成角度被測裝置插入至所述被測裝置托座中的情況下,所述處理器促進在將所述成角度被測裝置耦合至所述被測裝置托座期間耦合和定位所述第一天線或天線結構。在共同臂的情況下,所述第一天線結構和所述第二天線結構可在預定定向上佈置,以便促進相對於所述第一外表面和所述第二外表面對所述第一天線結構和所述第二天線結構進行定向。在單獨臂的情況下,實現了所述第一天線結構和所述第二天線結構的定制定向。
根據實施例,所述第二天線或天線結構是用於將所述成角度被測裝置推入所述被測裝置托座的推動器的一部分,或所述第二天線或天線結構被配置為能夠與用於將所述成角度被測裝置推入所述被測裝置托座的推動器一起移動(其中,例如,所述推動器被佈置成使得所述推動器或所述推動器的一部分在所述被測裝置被插入至所述被測裝置托座中時位於所述第二天線或天線結構與所述成角度被測裝置的所述第二外表面之間)(並且/或者其中,例如,所述推動器被佈置成使得所述推動器或所述推動器的一部分在所述成角度被測裝置被插入至所述被測裝置托座中時位於所述第一天線與所述成角度被測裝置的所述第一外表面之間)。
所述第二天線或天線結構可與所述推動器一起移動,並因此可移動(例如,為了更易於將所述成角度被測裝置耦合至所述被測裝置托座)或重新調整(例如,通過調整其定向)。由於所述推動器被配置為將所述成角度被測裝置推入所述被測裝置托座,因此所述推動器促進在將所述成角度被測裝置耦合至所述被測裝置托座期間耦合和定位所述第二天線或天線結構。
根據實施例,所述第二天線或天線結構被配置為在所述處理器已將所述第二天線或天線結構放置在操作位置時(例如,或等同地,在所述處理器已將所述成角度被測裝置插入至所述測試托座中時,或在所述處理器將所述被測裝置推入所述測試托座時)經由盲插微波連接(例如,經由盲插波導)與信號源和/或與信號接收器連接。
與所述信號源和/或與所述信號接收器的連接使得所述第二天線或天線結構能夠發射信號(例如,將由所述成角度被測裝置的天線或天線陣列接收到)和/或接收信號(例如,由所述成角度被測裝置的天線或天線陣列發射),因此促進所述成角度被測裝置的測試。所述盲插微波連接可促進所述信號源和/或信號接收器與所述第二天線或天線結構之間的(例如,手動和/或自動)耦合。
根據實施例,所述被測裝置托座包括被配置為支撐和/或對準所述成角度被測裝置的成角度凹槽或成角度凸起。所述成角度凹槽或所述成角度凸起可在其一端或兩端具有側壁。
所述成角度凹槽或所述成角度凸起具有可分別鄰接所述第一內表面和所述第二內表面的兩個(或更多個)抵接表面(例如,成一定角度)。此類抵接表面可(至少部分地)實現所述成角度被測裝置的預定定向和/或位置。所述成角度被測裝置的預定定向和/或位置可促進建立電連接並提高測試的再現性和準確性。可選的一個或多個側壁可進一步限制所述成角度被測裝置的橫向移動。
根據實施例,所述被測裝置托座被佈置成使得所述成角度被測裝置的與所述成角度被測裝置的所述第二外表面相對的第二內表面與所述載體結構(例如,負載板)間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開所述成角度被測裝置的最低操作頻率下(例如,構成所述被測裝置或包括在所述被測裝置中的封裝天線(AiP)模組的最低操作頻率下)的至少2個波長、至少3個波長或至少4個波長(例如,自由空間波長,或所述成角度被測裝置的所述第一外表面與所述載體結構之間的介質中的波長)(例如,並且使得優選地,所述第一外表面的邊緣與所述負載板間隔開至少10 mm或至少20 mm,或間隔開所述成角度被測裝置的最低操作頻率下(例如,構成所述被測裝置或包括在所述被測裝置中的封裝天線(AiP)模組的最低操作頻率下)的至少2個波長、至少3個波長或至少4個波長(例如,自由空間波長,或所述成角度被測裝置的所述第一外表面與所述載體結構之間的介質中的波長)。
已經認識到,這種間隔顯著降低所述載體結構對所述被測裝置的一個或多個天線結構的特性的影響(例如,反射、波束賦形和干擾),或一般來說,對所述第二內表面和/或所述第二外表面上的電路(例如,天線結構、用於信號傳輸的電路或用於信號轉換(諸如將中頻信號轉換成mmWave信號和將mmWave信號轉換成中頻信號)的矽芯片)。
根據實施例,所述被測裝置托座包括至少10 mm、至少30 mm或至少45 mm的托座高度,使得所述成角度被測裝置的與所述成角度被測裝置的所述第二外表面相對的第二內表面與所述載體結構(例如,負載板)間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開所述成角度被測裝置的最低操作頻率下(例如,構成所述被測裝置或包括在所述被測裝置中的封裝天線(AiP)模組的最低操作頻率下)的至少2個波長、至少3個波長或至少4個波長(例如,自由空間波長,或所述成角度被測裝置的所述第一外表面與所述載體結構之間的介質中的波長)(例如,並且使得優選地,所述第一外表面的邊緣與所述負載板間隔開至少10 mm或至少20 mm,或間隔開所述成角度被測裝置的最低操作頻率下(例如,構成所述被測裝置或包括在所述被測裝置中的封裝天線(AiP)模組的最低操作頻率下)的至少2個波長、至少3個波長或至少4個波長(例如,自由空間波長,或所述成角度被測裝置的所述第一外表面與所述載體結構之間的介質中的波長)。
已經認識到,這種間隔顯著降低所述載體結構對所述被測裝置的一個或多個天線結構的特性的影響(例如,反射、波束賦形和干擾),或一般來說,對所述第二內表面和/或所述第二外表面上的電路(例如,天線結構、用於信號傳輸的電路或用於信號轉換(諸如將中頻信號轉換成mmWave信號和將mmWave信號轉換成中頻信號)的矽芯片)。
根據實施例,所述被測裝置托座包括一個或多個同軸彈簧針(例如,可從所述被測裝置托座的與所述負載板接觸的下表面延伸至所述被測裝置托座的與所述成角度被測裝置的所述第二內表面接觸的上表面),以便在所述載體結構(例如,負載板)與所述成角度被測裝置之間建立電連接(其中,例如,所述同軸彈簧針的第一端可與所述負載板上的焊盤接觸,並且其中,例如,所述同軸彈簧針的第二端可與所述成角度被測裝置的焊盤接觸)。
彈簧針通常是可壓下的,並允許所述被測裝置托座在所述被測裝置耦合至所述被測裝置托座時(例如,在由所述操縱器/推動器推入所述被測裝置托座時)與所述被測裝置建立可靠的電接觸。例如,所述同軸彈簧可實現與所述被測裝置托座的高頻互連。
根據實施例,延伸器結構(例如,包括延伸器和PCB中介層)佈置在所述載體結構(例如,所述負載板或所述PCB測試夾具)與所述被測裝置托座之間。
所述延伸器允許分離與所述被測裝置建立電連接的功能與實現所述載體結構與所述被測裝置之間的空間的功能。因此,例如,可將同一被測裝置托座與具有不同高度的多個延伸器組合使用。用於與所述被測裝置建立電接觸的結構(或電路)可大部分或全部在所述被測裝置托座中實現,從而允許所述延伸器的更簡單設計。可選的PCB中介層可例如允許在所述被測裝置托座與所述延伸器的不同幾何形狀的電觸點之間重新佈線。
根據實施例,所述延伸器結構包括延伸器組件,其中,所述延伸器組件包括一個或多個同軸彈簧針(例如,可從所述延伸器組件的與所述載體結構(例如,負載板)接觸的下表面延伸至所述延伸器組件的與PCB中介層或與所述被測裝置托座接觸的上表面),以便在所述載體結構(例如,負載板)與所述成角度被測裝置之間建立電連接(其中,例如,所述同軸彈簧針的第一端可與所述負載板上的焊盤接觸,並且其中,例如,所述同軸彈簧針的第二端可與所述PCB中介層上的焊盤接觸,所述PCB中介層位於所述延伸器組件與所述被測裝置托座之間)。
所述延伸器組件提供所述被測裝置托座與所述載體結構之間的間隔,其中,所述同軸彈簧針提供可覆蓋跨過由所述延伸器提供的空間的距離的電觸點。所述同軸彈簧針還提供與所述被測裝置托座兼容的電氣介面,所述電氣介面被配置為接納被推入內部的所述被測裝置,從而提高與其他/較舊載體結構的兼容性。
根據實施例,所述測試裝置包括被配置為承載相應成角度被測裝置(例如,兩個同等被測裝置)的至少兩個被測裝置托座,其中,所述至少兩個被測裝置托座被佈置(例如,背對背)為定位相應成角度被測裝置,使得所述相應成角度被測裝置的相應第一外表面在相反(避免)方向上對準。
具有至少兩個被測裝置托座的測試裝置允許一次測試多於一個被測裝置(例如,以同時或相繼方式;例如在處理器將所述被測裝置放置在所述被測裝置托座中的一個週期內)。此外,隨著所述相應成角度被測裝置的所述相應第一外表面在相反(避開)方向上對準,由所述相應第一外表面發射和/或在所述相應第一外表面處接收到的信號之間的干擾被減少。
根據實施例,所述測試裝置包括兩行(例如,平行的行)被測裝置托座,其中,所述被測裝置托座被配置為承載相應成角度被測裝置,其中,所述至少兩行被測裝置托座被佈置(例如,背對背;例如與所述被測裝置托座的所述被測裝置的所述第一外表面中的一個所處的側面相對於彼此避開)為定位相應成角度被測裝置,使得所述相應成角度被測裝置的相應第一外表面在相反(避開)方向上對準。
這種裝置改進了以增加的密度對多個被測裝置進行佈置與減少由所述相應第一外表面發射和/或在所述相應第一外表面處接收到的信號之間的干擾之間的折衷。
根據實施例,一種用於對成角度(例如,L形)被測裝置(例如,L形封裝天線被測裝置)進行無線測試的測試裝置包括載體結構(例如,PCB測試夾具或負載板)。所述測試裝置還包括被測裝置托座,所述被測裝置托座耦合至所述載體結構(例如,所述PCB測試夾具或所述負載板)(例如,直接或通過延伸器組件和/或位於所述載體結構與所述被測裝置托座之間的PCB中介層),其中,所述被測裝置托座被配置為與所述成角度(例如,L形)被測裝置的內表面(例如,與所述成角度被測裝置的與所述成角度被測裝置的第二外表面相對的內表面)或與佈置在所述成角度(例如,L形)被測裝置的所述內表面上的連接器建立電接觸,並且其中,所述被測裝置托座被配置為定位所述成角度被測裝置,使得所述成角度(例如,L形)被測裝置的第一外表面(例如,包括輻射結構的表面)與所述負載板的表面(例如,主表面)間隔開,並且使得所述成角度(例如,L形)被測裝置的所述第一外表面的表面法線在+/–15度的公差內平行於所述負載板的表面(例如,主表面),並且使得所述成角度(例如,L形)被測裝置的所述第二外表面(例如,包括輻射結構的表面)背向所述負載板,並且使得所述成角度(例如,L形)被測裝置的所述第二外表面的表面法線在+/–15度的公差內垂直於所述負載板的所述表面。
已經認識到,所述第一外表面和所述第二外表面的這種佈置改進了用於測試的天線結構的可接近性和減少所述載體結構的所述表面的影響之間的折衷。
即使出現在不同的附圖中,相同或等效元件或具有相同或等效功能性的元件也在以下描述中由相同或等效的附圖標記表示。
在以下描述中,闡述多個細節以提供對本發明的實施例的更徹底的解釋。然而,對於所屬技術領域中具有通常知識者顯而易見的是,可以在沒有這些具體細節情況下實踐本發明的實施例。在其他情況下,以框圖形式而不是詳細地示出眾所周知的結構和裝置,以避免模糊本發明的實施例。此外,除非另有特別說明,否則下文描述的不同實施例的特徵可選地可相互組合。
圖1示出對成角度被測裝置140進行無線測試的測試裝置100的示意性橫截面。測試裝置100包括載體結構110和耦合至載體結構110的被測裝置托座130。被測裝置托座130被配置為與成角度被測裝置140的內表面142或與佈置在成角度被測裝置140的內表面142上的連接器(圖1未示出)建立電接觸。
載體結構110可以是印刷電路板(PCB)測試夾具或負載板。載體結構110例如可以是或包括具有平坦表面的至少一個區域。被測裝置托座130可佈置在載體結構110的頂部上(例如,在平坦表面上)或可經由一個或多個中間裝置或結構耦合至載體結構110。與成角度被測裝置140的第一外表面144a相鄰(例如,其間有間隔)的載體結構110(例如,負載板)的區域不含電源平面和/或不含接地平面。該區域可在由穿過被測裝置托座130或被測裝置140的平面分離的半空間中(例如,當被測裝置耦合至被測裝置托座130時,由第一外表面144a或第一內表面142a限定),例如,在圖1中,第一外表面144a或第一內表面142a左側的空間111。該區域可以是載體結構110(例如,負載板)的與成角度被測裝置的第一外表面144a的朝外(向外)表面法線143至負載板上的投影相鄰的區域。相鄰區域可與成角度被測裝置140的第一外表面相鄰(例如,其間有間隔114)(例如,在與成角度被測裝置140的第一外表面144a的朝外(向外)表面法線143至載體結構110(例如,負載板)上的投影相鄰的區域中)。
圖1所示的測試裝置100可例如用於測試成角度被測裝置140本身(例如,天線結構不檢測由成角度被測裝置發射的電磁輻射)或測試與一個或多個附加天線的組合的角度被測裝置140。例如,測試裝置100可用於測試被測裝置140的功耗或被測裝置140的天線之間的干擾。替代地,測試裝置100可被配置為以無線方式測試被測裝置的一個或多個天線結構。
由於被測裝置托座130被配置為與被測裝置的內表面142接觸,因此被測裝置140的外表面完全(或至少大部分)背向被測裝置托座130和載體110。因此,降低了被測裝置托座130和/或載體結構110對被測裝置140的外表面發射(和/或接收)的輻射(及其測試)的影響。
成角度被測裝置140可以是(或包括)封裝天線(AiP)裝置。成角度被測裝置140可以是L形(如圖1中抽象地表示),例如,被測裝置可以是第一板141a連接至第二板141b的裝置,其中,板141a、141b相對于彼此成至少基本上90度的角度(例如,在+/–15度的公差內)。成角度被測裝置140可包括(例如,第一板141a的)第一外表面142a和(例如,第二板141b的)第二外表面144b,其中,第一外表面142a與第二外表面144b相對于彼此成至少基本上270度的角度(例如,在+/–15度的公差內)。成角度被測裝置140的內表面142可包括(例如,第一板141a的)第一內表面142a和(例如,第二板141b的)第二內表面142b,其中,第一內表面142a與第二內表面142b相對于彼此成至少基本上90度的角度(例如,在+/–15度的公差內)。第一內表面142a與第一外表面144a可被佈置成彼此平行。第二內表面142b與第二外表面144b可被佈置成彼此平行。
被測裝置托座130可被配置為定位成角度被測裝置140,使得成角度被測裝置140的第二外表面144b背向載體結構110。被測裝置托座130可被配置為定位成角度被測裝置140,使得成角度被測裝置的第二外表面144b的表面法線在+/–15度的公差內垂直於載體結構110的表面112。第二外表面144b可被佈置成平行於載體結構110的表面112。
圖2A示出穿過可代替成角度被測裝置140的成角度被測裝置240的第一示例的示意性橫截面。
被測裝置240包括第一板241a和第二板241b,它們相對于彼此成至少90度的角度(例如,在+/–15度的公差內)。第一板241a包括第一外表面244a和第一內表面242a,並且第二板241b包括第二外表面244b和第二內表面242b。
在圖2A所示的示例中,第一外表面244a包括具有四個天線元件的第一天線陣列246a。然而,第一外表面244a可(附加地或替代地)包括任何其他形式的天線(例如,單個天線和/或圓極化天線)和任何其他數量的天線元件或天線陣列。替代地,第二外表面244b可包括第一天線陣列246a。第一天線陣列246a可被配置為接收和/或傳輸電磁輻射。
被測裝置240可還包括連接器248,例如陣列連接器。在圖2A所示的示例中,(陣列)連接器248佈置在第二內表面242b上。替代地,(陣列)連接器248可佈置在第一內表面242a上或(例如,在多個(陣列)連接器248的情況下)佈置在第一內表面242a和第二內表面242b上。(陣列)連接器248與第一天線陣列246a的至少一個天線元件(例如,所有天線元件)電連接。因此,在(陣列)連接器248處施加的電信號可使第一天線陣列246a發射電磁輻射。替代地或附加地,由第一天線陣列246a接收的電磁輻射可在(陣列)連接器248處生成電信號。(陣列)連接器248可以是或包括一個或多個焊球。(陣列)連接器248可被配置為將被測裝置140(例如,封裝天線模組)連接至系統(例如,連接至手機或連接至被測裝置托座130)並可使得能夠傳輸信號,例如功率信號、數位信號、射頻(RF)信號或中頻(IF)信號。
第一天線陣列246a可直接與(陣列)連接器248電連接,或可與(陣列)連接器248間接耦合,例如,其間有另外的電氣部件。例如,另外的電氣部件可包括放大器、濾波器、開關、電阻器、電容器和集成電路中的至少一者。在圖2A所示的示例中,另外的電氣部件包括天線電路249(例如,矽芯片)。天線電路249可例如被配置為將中頻(IF)信號轉換成mmWave信號(例如,5G帶寬的信號,諸如介於24 Ghz至53 GHz的範圍內)和/或將mmWave信號轉換成IF信號。替代地或附加地,天線電路249可被配置為(至少部分地)控制第一天線陣列246a的波束賦形。
圖2B示出穿過可代替成角度被測裝置140的成角度被測裝置240a的第二示例的示意性橫截面。
成角度被測裝置240a的第二示例基本上對應於如圖2A所示的成角度被測裝置240的第一示例,使得相同的元件將用相同的附圖標記指定,但還包括第二外表面244b上的第二天線陣列246b。第二天線陣列246b可具有與第一天線陣列246a類似的特徵。第二天線陣列246b也可電連接至(陣列)連接器248和天線電路249中的至少一者。替代地,第二天線陣列246b可電連接至單獨(陣列)連接器和/或單獨天線電路。
被測裝置托座130可被配置為定位成角度被測裝置140(例如,成角度被測裝置240或成角度被測裝置240a),使得成角度被測裝置140的第一外表面144a(例如,第一外表面244a)與載體結構110的表面112間隔開。圖1示例性地示出第一距離114(以虛線的形式),該第一距離114指示第一外表面144a與載體結構110的表面112之間的空間(或間隔)。被測裝置托座130可被配置為定位成角度被測裝置140,使得成角度被測裝置140的第一外表面144a的表面法線例如在+/–15度的公差內平行於載體結構110的表面112(如圖1中示例性地描繪)。第一外表面144a可被佈置為垂直於載體結構110的表面112。
被測裝置托座130可被配置為定位成角度被測裝置140,使得成角度被測裝置140的第一外表面144a與載體結構110(例如,其表面112)之間的間隔(例如,第一距離114)是成角度被測裝置的最低操作頻率下的至少兩個波長。成角度被測裝置140可在5G標準的頻帶(例如,24 Ghz至53 GHz的範圍(例如,頻率範圍2)內)中操作。在這種情況下,最低操作頻率可以是24 GHz,波長為12.5 mm。第一表面144a與載體結構110的表面112之間的空間例如可以是25 mm或更大(即12.5 mm的兩倍)。
間隔可由被測裝置140的不同表面限定。被測裝置托座130可被佈置成使得成角度被測裝置140的與成角度被測裝置140的第二外表面144b相對的第二內表面142b(例如,成角度被測裝置240的第二內表面242b)與載體結構110(例如,與表面112)間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開成角度被測裝置的最低操作頻率下的至少2個波長、至少3個波長或至少4個波長。
被測裝置托座130可包括至少10 mm、至少30 mm或至少45 mm的托座高度115(表示為虛線),使得成角度被測裝置140的與成角度被測裝置140的第二外表面144b相對的第二內表面142b與載體結構間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開成角度被測裝置的最低操作頻率下的至少2個波長、至少3個波長或至少4個波長。
圖3示出可代替成角度被測裝置140的成角度被測裝置340的透視圖。
被測裝置340包括具有帶四個天線元件的第一天線陣列的第一外表面344a和具有帶四個天線元件的第二天線陣列的第二外表面344b。至少一個天線元件可包括至少一個寄生貼片。在圖3所示的示例中,每個天線元件具有包圍中央天線結構的四個寄生貼片。第一外表面344a包括兩個中央天線元件345a、345b。被測裝置340附近不存在金屬化表面。
圖4示出由圖3中所描繪的被測裝置340的第一外表面344a的第一天線陣列的天線元件(例如,天線元件345a或345b)發射的遠場的模擬結果。應當注意,為了簡單起見,圖3中所描繪的遠場的模擬源自第一外表面344a的第一天線陣列的中心(例如,在中央天線元件345a、345b之間)。然而,當源自中央天線元件345a、345b中的一個的中心時,遠場的模擬可具有至少基本相同的形狀。遠場示出垂直於第一外表面344a的天線元件345a和345b定向的明顯波束(其中,然而,當被測裝置340應用于系統中時,例如應用於提供金屬化背板的系統中時,可減少或抑制向後方向上的輻射)。
圖5示出可代替成角度被測裝置140的成角度被測裝置540的透視圖。被測裝置540包括包含具有四個天線元件的第一天線陣列的第一外表面544a和包含具有四個天線元件的第二天線陣列的第二外表面544b。第一外表面544a的第一天線陣列包括兩個中央天線元件545a、545b。距離第一外表面544a 2 mm處存在金屬(例如,銅)表面551。
圖6示出由圖5中所描繪的被測裝置530的第一外表面天線陣列544a的第一天線陣列的天線元件(例如,天線元件545a或545b)發射的遠場的模擬結果(優選地考慮金屬表面551)。與圖4中所描繪的結果相比,遠場示出垂直於第一外表面天線陣列544a的兩個天線元件定向的不太明顯的輻射。相反,遠場的強度更均勻地分佈在被測裝置540周圍,在不同於表面法線至第一外表面544a上的方向的兩個方向上具有單獨主波束。結果表明,附近的金屬化表面會影響被測裝置540發射的遠場,因此會降低測試的準確性和/或再現性。例如,金屬化表面會降低波束賦形天線陣列的空間選擇性和/或改變主波束的方向。
因此,如上所述的間隔(例如,至少兩個波長、或至少10 mm、至少30 mm或至少45 mm)可提高測試的準確性和/或再現性。
圖13A示出可代替成角度被測裝置140的被測裝置1340的示例的透視圖。
被測裝置1340包括第一內表面1342a和第二內表面1342b。在圖13A所示的示例中,被測裝置包括具有第一內表面1342a的第一板1341a和具有第二內表面1342b的第二板1341b。第一板1341a和第二板1341b通過諸如三個柔性印刷電路1347a、1347b、1347c等柔性導電結構以機械方式(並且可選地以電氣方式)連接。第一板1341a與第二板1341b可相對於彼此移動(例如,彎曲),例如以便促進在系統中進行製造或組裝。然而,在一些情況下,板的可移動性可促進耦合至被測裝置托座,但在一些情況下也可能使測試複雜化。替代地,第一板1341a與第二板1341b可相對於彼此以固定方式佈置。
被測裝置1340包括第二內表面1342b上的連接器1348(例如,陣列連接器)和矽芯片1349(或任何其他天線電路)。矽芯片1349可經由陣列連接器1348間接地電接觸或經由矽芯片1349本身的電觸點(圖13A未示出)直接電接觸。本文所描述的被測裝置托座被配置為與被測裝置1340的內表面(諸如第二內表面1342b上的(陣列)連接器1348)建立電接觸。
圖13B示出圖13A中所描繪的被測裝置1340的另一透視圖。被測裝置1340包括第一外表面1344a(在第一板1341a上)和第二外表面1344b(在第二板1341b上)。第一外表面1344a和第二外表面1344b被配置(例如,通過形成相應天線結構)為發射和/或接收電磁輻射。為此目的,天線元件(例如,天線陣列)可至少部分地佈置在第一表面1344a和/或第二表面1344b上或可至少部分地佈置在第一板1341a和/或第二板1341b內。在圖13B所示的示例中,第一外表面1344a和第二外表面1344b被配置為發射和/或接收電磁輻射。替代地,僅第一外表面1344a或僅第二外表面744b可被配置為發射和/或接收電磁輻射。
圖7示出具有被測裝置740的測試裝置700的另一示例的示意性橫截面圖。被測裝置740包括第一內表面742a、第二內表面742b、第一外表面744a和第二外表面744b。測試裝置包括載體結構710(例如,負載板)。被測裝置740可以是本文所描述的任何被測裝置。測試裝置700包括被測裝置托座730,該被測裝置托座730可以是本文所描述的任何被測裝置托座。
測試裝置700可包括佈置在載體結構710(例如,負載板或PCB測試夾具)與被測裝置托座730之間的延伸器結構732。延伸器結構732可包括延伸器733和PCB中介層734。延伸器形成允許被測裝置托座730相對於載體結構710升高佈置(例如,與載體結構710間隔開)的結構。延伸器733可被配置為直接或間接地接納被測裝置托座730,例如,經由PCB中介層734和/或其他部件。PCB中介層可被配置為在延伸器733與被測裝置托座730之間形成適配器(例如,結構上和/或關於電連接的位置)。例如,PCB中介層734可允許在被測裝置托座730與延伸器733的電接觸的不同幾何形狀之間重新佈線,從而增加它們之間的兼容性。PCB中介層734可例如(可選地)包括一個或多個去耦電容器。
在圖7所示的示例中,延伸器結構732包括延伸器組件735,其中,延伸器組件包括一個或多個同軸彈簧針735,以便在載體結構(例如,負載板)與成角度被測裝置之間建立電連接(其中,例如,同軸彈簧針的第一端可與負載板上的焊盤接觸,並且其中,例如,同軸彈簧針的第二端可與PCB中介層上的焊盤接觸,該焊盤位於延伸器組件與被測裝置托座之間)。同軸彈簧針可(如圖7中示例性地描繪)從延伸器組件735的與載體結構710(例如,負載板)接觸的下表面延伸至延伸器組件735的上表面,該上表面與PCB中介層734或與被測裝置托座730接觸。在圖7所示的示例中,延伸器結構732具有四個同軸彈簧針,然而可提供任何其他數量的同軸彈簧針。同軸彈簧針中的至少一個可被PCB中介層734和/或被測裝置托座730壓下。延伸器組件735可比被測裝置托座730具有更大的高度(例如,在垂直於載體結構710的表面的方向上)。
下面將討論如何可通過設計不同的空間區域來改進測試裝置的特性。例如,所謂的“相鄰區域”可被設計為不含電源平面或接地平面。替代地或附加地,所謂的“第一指定區域”可被設計為完全不被金屬化。
載體結構710(例如,負載板)的與成角度被測裝置740的第一外表面744a相鄰(例如,其間有間隔)的相鄰區域716(例如,載體結構710(例如,負載板)的與成角度被測裝置740的第一外表面744a的朝外(向外)表面法線至載體結構710或負載板上的投影相鄰的區域)不含電源平面和/或不含接地平面。相鄰區域可佈置在穿過包括第一外表面734a的被測裝置托座730的半空間中。相鄰區域可與成角度被測裝置740的第一外表面744a相鄰(例如,其間有間隔)(例如,在與成角度被測裝置740的第一外表面744a的朝外(向外)表面法線至載體結構710(例如,負載板)上的投影相鄰的區域中)。在圖7所示的示例中,相鄰區域716是與延伸器733的面向第一內表面742a的表面接壤的矩形區域。然而,相鄰區域可具有任何其他形狀(例如,三角形、梯形、多邊形或橢圓形)。此外,相鄰區域可與延伸器733間隔開(例如,在圖7中向左移位)或可至少部分地包圍延伸器733(例如,在圖7中向右移位)。
載體結構710(例如,負載板)的與成角度被測裝置740的第一外表面742a相鄰(例如,其間有間隔)的第一指定區域718不被金屬化。載體結構710(例如,負載板)的第一指定區域718可與成角度被測裝置740的第一外表面744a的朝外(向外)表面法線至載體結構710(例如,負載板)上的投影相鄰。第一指定區域718可與相鄰區域716相同、相交或折衷。
測試裝置700可包括吸收材料717,該吸收材料717佈置在載體結構710(例如,負載板)上的第二指定區域中,該第二指定區域與成角度被測裝置740的第一外表面744a相鄰(例如,其間有間隔)(例如,在與成角度被測裝置的第一外表面的朝外(向外)表面法線至載體結構(例如,負載板)上的投影相鄰的第二指定區域中)。吸收材料可包括射頻吸收材料(例如,浸漬有碳和/或鐵的橡膠泡沫材料)。第二指定區域可與相鄰區域716(和/或第一指定區域718)相同、相交或折衷。然而,第二指定區域可優選地與載體結構710的所謂的“相鄰區域716”相鄰。在圖7所示的示例中,吸收材料717被佈置成與載體結構710的周圍區域相比升高(例如,附接在載體結構710的頂部)。替代地,吸收材料717可被佈置為與載體結構710的周圍區域至少基本上齊平或凹入在其中(例如,嵌入在載體結構的開口中)。
被測裝置托座730被配置為與被測裝置740的連接器(例如,陣列連接器)748建立電接觸。替代地,被測裝置托座730可被配置為與第一內表面742a和第二內表面742b中的至少一個建立電接觸。
圖7所示的測試裝置700具有第一天線或天線結構750和第二天線或天線結構752。替代地,測試裝置700可僅包括第一天線或天線結構750或僅包括第二天線或天線結構752(即,不包括第一天線或天線結構750和第二天線或天線結構752的組合)。
第一天線或天線結構750(例如,單孔徑天線(例如,雙線性極化或圓極化))被配置為接收從成角度被測裝置740的第一外表面744a輻射的信號和/或被配置為發射將在成角度裝置740的第一外表面744a處接收到的信號。為此目的,第一天線或天線結構750被佈置成距成角度被測裝置740的第一外表面744a一定距離,例如使得成角度被測裝置740的第一外表面744a的表面法線延伸穿過第一天線或天線結構750的孔徑。第一天線或天線結構750可放置在操作位置處。成角度被測裝置740的第一外表面744a的表面法線(例如,可與第一外表面上的天線結構的主波束同軸(例如,通過波束賦形)和/或可延伸穿過第一外表面744a的一個或多個天線陣列的幾何中心)可延伸穿過第一天線或天線結構750的孔徑(例如,穿過孔徑的中心)。第一天線或天線結構750可以機械方式附接至處理器(或推動器)754的臂,使得第一天線或天線結構750是可移動的。處理器754可被配置為將成角度被測裝置740插入至被測裝置托座730中。
第一天線或天線結構750可被配置為在處理器754已將第一天線或天線結構750放置在操作位置中時(或等同地,在處理器754已將成角度被測裝置740插入至被測裝置測試托座730時,或在處理器754將被測裝置740推入被測裝置測試托座730時)經由盲插微波連接(例如,經由盲插波導連接)與信號源和/或與信號接收器(圖7未示出)連接。操作位置可由第一外表面744a的輻射方向(例如,垂直於第一外表面744a)與第一天線或天線結構750的接收方向的對準限定。信號源和/或信號接收器可以是處理裝置的一部分,該處理裝置被配置為測試被測裝置,例如,使用包括指令的計算機程序產品,該等指令在例如由自動化測試設備執行時使處理裝置執行生成要由第一天線或天線結構750傳輸的信號並處理(例如,檢測)由第一天線或天線結構750接收到的信號中的至少一個。
第二天線或天線結構752(例如,單孔徑天線(例如,雙線性極化或圓極化))可被配置為接收從成角度被測裝置740的第二外表面744b輻射的信號和/或發射將在成角度被測裝置740的第二外表面744b處接收到的信號(至少當第二天線或天線結構752被放置在操作位置時)(或等同地,當處理器754已經將成角度被測裝置740插入至被測裝置托座730中或當處理器754將被測裝置740推入被測裝置托座730時)。
第二天線或天線結構752的孔徑可被佈置成距成角度被測裝置740的第二外表面744b一定距離,使得成角度被測裝置740的第二外表面744b的表面法線延伸穿過第二天線或天線結構752的孔徑(至少當第二天線或天線結構752被放置在操作位置時)(或等同地,當處理器已經將成角度被測裝置插入至測試托座中時或當處理器將被測裝置推入所述測試托座時)。成角度被測裝置740的第二外表面744b的表面法線與第二外表面上的天線結構的主波束同軸,並且/或者延伸穿過第一外表面744a的一個或多個天線陣列的幾何中心的表面法線可延伸穿過第一天線或天線結構750的孔徑(例如,穿過第一天線或天線結構的孔徑的中心)。
第二天線或天線結構752可以機械方式附接至處理器(例如,推動器)754的臂,使得第二天線或天線結構752是可移動的。
第二天線或天線結構752可以是用於將成角度被測裝置740推入被測裝置托座730的推動器754的一部分,或第二天線或天線結構752可被配置為可與推動器一起移動754來將成角度被測裝置740推入被測裝置托座730。推動器754可被佈置成使得當被測裝置740被插入至被測裝置托座730中時,推動器754或推動器754的一部分位於第二天線或天線結構752與成角度被測裝置740的第二外表面744b之間。推動器754可被佈置成使得當成角度被測裝置740被插入至被測裝置托座730中時,推動器754或推動器754的一部分位於第一天線或天線結構750與成角度被測裝置740的第一外表面744a之間。應當注意,在一些情況下,推動被測裝置的力可作用於兩個方向,例如,以便將被測裝置的第一內表面和第二內表面都推向被測裝置托座。據此,推動器可成角度,以與被測裝置的第一外表面和被測裝置的第二外表面兩者(推動)接觸。因此,推動器可在沿著被測裝置的第一外表面的表面法線的方向和沿著被測裝置的第二外表面的表面法線的方向上移動。
第二天線或天線結構752可被配置為在處理器754已將第二天線或天線結構752放置在操作位置中(或等同地,在處理器754已將成角度被測裝置740插入至被測裝置托座730時,或在處理器754將被測裝置740推入被測裝置托座730時)經由盲插微波連接(例如,經由盲插波導連接)與信號源和/或與信號接收器(圖7未描繪)連接。操作位置可由第二外表面744b的輻射方向(例如,垂直於第二外表面744b)與第二天線或天線結構752的接收方向的對準限定。信號源和/或信號接收器可以是處理裝置的一部分,該處理裝置被配置為測試被測裝置740,例如,使用包括指令的計算機程序產品,該等指令在例如由自動化測試設備執行時使處理裝置執行生成要由第二天線或天線結構752發射的信號並處理(例如,檢測)由第二天線或天線結構752接收到的信號中的至少一個。第一天線或天線結構750和第二天線或天線結構752可被配置為連接至同一信號源和/或信號接收器或者連接至單獨的信號源和/或信號接收器。信號源和/或信號接收器可例如包括在測試裝置700中。
圖8示出可例如在本文公開的任何實施例中使用的被測裝置托座830的示例的透視圖。
被測裝置托座830可被配置為接收本文所描述的任何被測裝置並成為本文所描述的任何測試裝置的一部分。被測裝置托座830包括被配置為支撐和/或對準成角度被測裝置的成角度凹槽或成角度凸起860。成角度凹槽或成角度凸起860包括被配置為抵接被測裝置的第一內表面(例如,第一內表面142a、242a或742a)的第一抵接表面862a和被配置為抵接被測裝置的第二內表面(例如,第二內表面142b、242b或742b)的第二抵接表面862b。第一抵接表面862a和第二抵接表面862b可以抵接表面角度佈置,其中,抵接表面角度(例如,270度)與被測裝置的第一內表面與第二內表面之間的角度(例如,90度)的總和至少基本上為360度。例如,如果被測裝置的第一內表面和第二內表面可以90度角佈置,則抵接表面角度可以是270度(90度與270度之和為360度)。
被測裝置托座830的任何表面都可被配置為與被測裝置的內表面建立電接觸。例如,第一抵接表面862a和/或第二抵接表面862b可被配置為與被測裝置的內表面建立電接觸和/或為被測裝置的天線結構提供接地平面。為此目的,第一抵接表面862a和/或第二抵接表面862b可包括或可由導電材料(例如,金、銅、鐵和鎳中的至少一種)形成。替代地,第一抵接表面和/或第二抵接表面可包括或可由介電(非導電)材料(例如,耐磨材料)形成。可選地,第一抵接表面862a和/或第二抵接表面862b可包括一個或多個(局部)托座連接器865(或用於與被測裝置接觸的其他接觸結構,如導電焊盤、彈簧針、彈簧式觸點等)。托座連接器865被佈置成使得當被測裝置被佈置在被測裝置托座830中時,連接器865與被測裝置的內表面或其連接器(例如,陣列連接器248、748)建立電連接。
被測裝置托座830包括支撐體864,該支撐體964包括主托座結構864a和腿托座結構864b。主托座結構864a和腿托座結構864b都具有長方體外形(可選地具有圓邊),其中,腿托座結構864b的至少兩個邊緣小於(短於)主托座結構864b的兩個邊緣(例如,對應邊緣)。主托座結構864a與腿托座結構864b例如可具有相同的高度。腿托座結構864b的側表面861被佈置成與主托座結構864a的側表面齊平,腿托座結構864b的另外三個側表面相對於主托座結構864a的另外三個(對應)側表面凹陷。因此,腿托座結構864b可例如由載體結構或延伸器結構中的開口接納,使得例如被測裝置托座830的橫向移動受到腿托座結構864b的側表面限制。然而,被測裝置托座也可附接在延伸器結構的頂部(例如,延伸器結構732的頂部),其中,主托座結構864a可佈置在延伸器結構的頂表面上,並且其中,腿托座結構864b可與延伸器結構的側壁相鄰。
被測裝置托座830可還包括或替代地包括在朝向載體結構的方向上從支撐體864(例如,從主托座結構864a)延伸的一個或多個突出部866。突出部866可以是或包括軸(例如,具有圓柱形狀)。突出部866可由載體結構或延伸器結構732的凹槽接納。替代地或附加地,被測裝置托座830可包括被配置為接納諸如銷或螺釘等附接元件的一個或多個貫穿孔。
在圖8所示的示例中,成角度凹槽或成角度凸起860延伸至主托座結構864a和腿托座結構864b中。替代地,成角度凹槽或成角度凸起860可僅延伸至主托座結構864a中。
成角度凹槽或成角度凸起860可在其末端(在圖8中僅一個末端是直接可見的)具有相應側壁868a、868b。側壁868a、868b彼此面對並被佈置成至少基本上彼此平行(忽略可選的錐形)。在圖8所示的示例中,側壁868a、868b被定向成垂直於或至少近似垂直於第一抵接表面862a和第二抵接表面862b。側壁868a、868b可限制被測裝置在成角度凹槽或成角度凸起860內的橫向移動,同時仍然允許被測試裝置平穩且良好引導地插入至成角度凹槽或成角度凸起860中,並還允許平穩地取出被測裝置。替代地,成角度凹槽或成角度凸起860僅包括一個側壁,例如以便增加關於定位的靈活性。
成角度凹槽或成角度凸起860可包括至少一個錐形,例如,使得橫截面(例如,平行於第一抵接表面862a或第二抵接表面862b)在從外側朝向第一抵接表面或第二抵接表面862b的方向上減小。在圖8所示的示例中,成角度凹槽或成角度凸起860包括第一錐形和第二錐形。根據第一錐形,側壁868a、868b之間的距離朝向第一抵接表面862a減小。根據第二錐形,主托座結構864a的包圍第二抵接表面862b的三個側壁具有朝向第二抵接表面862b減小的橫截面。錐形可具有自定中心功能並促進將被測裝置插入至成角度凹槽或成角度凸起860中。
被測裝置托座830可具有與成角度凹槽或成角度凸起860相交的相鄰開口869。在圖8所示的示例中,被測裝置托座830包括佈置在第二抵接表面862b的拐角附近的四個相鄰開口869。替代地,被測裝置托座830可包括定位成與第二抵接表面862b(和/或第一抵接表面862a)相鄰的任何其他位置處的任何其他數量的相鄰開口869。例如,相鄰開口可適於防止被測裝置傾斜,例如當被測裝置被插入至托座830中時。然而,相鄰開口也可促進從托座830取出被測裝置。
成角度凹槽或成角度凸起860可包括附加凹槽或凸起,例如,以便貼合被測裝置的形狀。例如,圖8所示的成角度凹槽或成角度凸起860包括第一抵接表面862a中的臺階867。臺階867可例如適應第一內表面的結構特徵或為被測裝置提供支撐表面以便在下方形成空間(例如,用於抓取被測裝置)。
被測裝置托座830可包括盲插介面。在圖8所示的示例中,主托座結構864a包括兩個配合(例如,盲插)凹槽863a、863b。替代地,主托座結構864a可包括任何其他數量的配合凹槽。配合凹槽863a、863b被配置為接納推動器或處理器(例如,處理器754)的配合(例如,盲插)突出部。替代地或附加地,主托座結構864a可包括例如被配置為被推動器或處理器(例如,處理器754)的配合(例如,盲插)凹槽接納的一個或多個配合(例如,盲插)突出部。
總之,托座830可接納成角度被測裝置並可與成角度被測裝置建立電接觸。被測裝置可定位(對準)在成角度凹槽或成角度凸起860內,使得可使用天線結構或成角度被測裝置的兩個外表面上的天線對被測裝置進行無線測試。被測裝置在托座中良好對準,同時托座對被測裝置的天線或天線結構的輻射特性的失真可保持在相當小的水平。托座可易於附接至載體結構並可在本文公開的任何實施例中使用。
圖9示出具有被測裝置940的測試裝置900的另一示例的示意性橫截面圖,該被測裝置940可以是本文所描述的任何被測裝置。測試裝置900包括可以是本文所描述的任何被測裝置托座的被測裝置托座930。
圖9所示的示例可對應於圖7所示的示例,不同之處在於被測裝置托座930附接至子板970而不是延伸器結構732。然而,子板970與延伸器結構732不是彼此排他的並可組合(例如,延伸器結構可佈置在子板970與載體結構之間和/或子板970與被測裝置托座930之間)。
被測裝置托座930附接至子板970(例如,佈置在子板970上),該子板970安裝至載體結構910(例如,測試夾具PCB或負載板),子板970與載體結構910之間有間隔。子板970與載體結構910之間的間隔可例如使用一個或多個加強件972來提供。加強件972可包括聚合物、樹脂、玻璃和金屬中的至少一種。加強件972可包括一個或多個加強件結構。加強件結構中的至少一個可包括臺階(例如,以便促進將子板970佈置在加強件結構上和/或限制平行於載體結構910的表面的方向上的移動)。加強件972可包括一個或多個結構,該一個或多個結構具有至少基本相等的高度或具有以至少基本相等的高度佈置的表面(例如,在具有臺階的加強件結構的情況下)。加強件972可形成或是托座引導件的一部分。托座引導件可被配置為促進將子板970佈置在加強件972上(例如,用於用戶或自動化裝置)。
替代地或附加地,可在載體結構910與加強件972之間、加強件972與子板970之間、載體結構910與子板970之間或子板970與被測裝置托座930之間提供延伸器結構(例如,類似於延伸器結構732)。
使用電連接器974(例如,使用連接器(例如,陣列連接器)用於數位/功率信號並可選地還用於高頻信號或微波信號,例如IF RF信號),測試裝置900可包括子板970與載體結構910之間的電連接。電連接器974可被配置為在負載板和與被測裝置940之間建立電連接(例如,通過將載體結構910與被測裝置940電連接)。電連接器974可被配置為傳輸IF RF信號或微波信號。可提供諸如高性能陣列連接器等高性能電連接器974。
子板970可包括一個或多個已安裝電連接器976,該一個或多個已安裝電連接器976電連接(或可連接)至被測裝置托座930(例如,被測裝置托座930的被配置為與被測裝置940建立電連接的觸點)。替代地,一個或多個電連接器976可被配置為與自動化測試設備或可例如由自動化測試設備控制的外部信號生成和/或測量設備建立電連接。在圖9所示的示例中,電連接器976是同軸連接器。已安裝電連接器976可作為電連接器974的補充或替代提供。
被測裝置托座930和/或子板970可包括一個或多個同軸彈簧針(例如,彈簧針)。在圖9所示的示例中,被測裝置托座930包括托座彈簧針978。同軸彈簧針允許與被測裝置940建立電接觸(例如,當被測裝置被推入被測裝置托座930時,這可能導致托座彈簧針978至少部分地縮回)。
總之,測試裝置900允許測試可放置在被測裝置托座930中的一個或多個被測裝置。被測裝置可被放置成距載體結構910一定間隔,其中,子板970位於載體結構(例如,負載板)910與被測裝置托座之間。子板可例如是印刷電路板並可例如包括在連接器之間建立電連接的電路由,該等連接器將載體結構、子板與被測裝置托座連接。因此,被測裝置托座例如可使用常規技術直接(或緊密)附接(或連接)至子板,並且子板可使用適用於覆蓋例如介於5 mm與50 mm之間的範圍內的間隔的“遠程”連接耦合至載體結構(例如,負載板)。據此,在支撐結構與被測裝置之間的連接具有良好機械穩定性和良好電氣特性的情況下,可實現被測裝置的正確放置。
圖10示出具有被測裝置1040的測試裝置1000的另一示例的示意性橫截面圖。
測試裝置包括第一天線或天線結構1050,該第一天線或天線結構1050被配置為接收從成角度被測裝置1040的第一外表面1044a輻射的信號和/或被配置為發射將在成角度被測裝置1040的第一外表面1044a處接收到的信號。在圖10所示的示例中,第一天線或天線結構1050的孔徑被佈置成距成角度被測裝置1040的第一外表面1044a一定距離,使得成角度被測裝置的1050的第一外表面1044a的表面法線1043延伸穿過第一天線或天線結構1050的孔徑。替代地,第一天線或天線結構1050可佈置在不同定向和/或不同距離處(例如,靠近或鄰接第一外表面1044a)。可選地,在第一外表面1044a與第一天線或天線結構1050之間可存在推動器(用於將被測裝置推入被測裝置托座)。
第一天線或天線結構1050例如安裝成相對於被測裝置托座1030具有固定位置。第一天線或天線結構1050可安裝至載體結構1010。第一天線或天線結構1050之間的信號傳輸可在平行於載體結構1010的表面的方向上執行(例如,由於成角度被測裝置1040在被測裝置托座1030中的定位),使得成角度被測裝置1040可從上方(例如,在垂直於或至少近似垂直於載體結構1010的表面的方向上)插入至被測裝置托座1030中,而不需要移除第一天線或天線結構1050。
第一天線或天線結構1050可包括具有波導的外殼(或是其一部分),其中,波導的孔徑形成第一天線或天線結構1050的孔徑(或是其一部分或過渡至其中)。第一天線或天線結構1050的波導可例如耦合至同軸連接器或同軸電纜。
第一天線或天線結構1050可與信號源和/或與信號接收器1056a連接(或可連接)。在圖10所示的示例中,第一天線或天線結構1050包括與信號源和/或與信號接收器1056a連接(或可連接)的第一同軸電纜1053a。然而,可替代地使用任何其他形式的電信號傳輸(如波導連接或盲插波導連接)。
當第一天線或天線結構1050被放置在操作位置時(例如,由處理器),第一天線或天線結構1050可被配置為經由盲插微波連接(例如,經由盲插波導連接)與第一信號源和/或與信號接收器1056a連接)(例如,經由第一同軸電纜1053a)。在這種情況下,第一天線或天線結構例如可由處理器移動。
測試裝置1000可包括第二天線或天線結構1052(如圖10中示例性地描繪)(例如,單孔徑天線(例如,雙線性極化或圓極化)),該第二天線或天線結構1052被配置為接收從成角度被測裝置1040的第二外表面1044b輻射的信號和/或發射將在成角度被測裝置1040的第二外表面1044b處接收到的信號(例如,至少當第二天線或天線結構1052被放置在操作位置時)。
第二天線或天線結構1052和/或天線載體結構1054(可例如以機械方式承載天線結構1052並包括耦合至天線或天線結構1052的一個或多個饋線)例如以機械方式附接(或可附接)至處理器的臂,使得第二天線或天線結構1052和/或天線載體結構1054是可移動的。處理器可以是可移動的(例如,可拆卸的),例如,以便接近被測裝置托座1030,例如以允許被測裝置1140的插入和/或移除。在圖10所示的示例中,天線結構1052或天線載體結構1054連接(或可連接)至(例如,盲插)微波連接1055。例如,處理器可移動天線結構1052和載體結構,並可推動天線載體結構1054(可包括連接結構,例如中空波導和/或同軸電纜和/或微帶線)朝向微波連接,從而在天線與微波連接1055之間建立電連接。微波連接1055電連接至第二信號源和/或信號接收器1056b。
注意,圖10所示的測試裝置1000具有兩個單獨信號源和/或信號接收器1056a、1056b,它們耦合至不同的天線結構1050、1052。然而,測試裝置1000可具有共同(例如,單個)信號源和/或信號接收器,該信號源和/或信號接收器可通過單獨的或共同的電連接(諸如同軸電纜和/或空心波導)連接至第一天線或天線結構1050和第二天線或天線結構1052。
第二天線或天線結構1052的孔徑可被佈置成距成角度被測裝置1040的第二外表面1044b一定距離,使得成角度被測裝置1040的第二外表面1044b的表面法線1092延伸穿過第二天線或天線結構1052的孔徑(例如,至少當第二天線或天線結構1052被放置在操作位置時)。
在圖10所示的示例中,第一天線或天線結構1050和第二天線或天線結構1052被佈置成距第一外表面1044a和第二外表面1044b一定距離。然而,在一些情況下,第一天線或天線結構1050和第二天線或天線結構1052中的至少一個可被佈置為幾乎或完全接觸第一外表面1044a和第二外表面1044b中的相應一個。為此目的,第一天線或天線結構1050和第二天線或天線結構1052中的至少一個可包括相應孔徑上的蓋或間隔件,該蓋或間隔件包括對於被測裝置1040的操作頻率至少部分透明的材料。
第二天線或天線結構1052可包括具有波導的外殼(或是其一部分),其中,波導的孔徑形成第二天線或天線結構1052的孔徑(或是其一部分)。第二天線或天線結構1052的波導或微波連接1055的波導可耦合至同軸連接器。
測試裝置1000包括第一同軸電纜1053a,該第一同軸電纜1053a耦合或可耦合至第一天線或天線結構1050的(或與其相關聯的)同軸連接器。測試裝置1000還包括第二同軸電纜1053b,該第二同軸電纜1053b耦合或可耦合至第二天線或天線結構1052的(或與其相關聯的)微波連接1055。替代地,測試裝置1000可包括用於信號傳輸的不同裝置或任何其他數量的同軸電纜。
在圖10所示的示例中,載體結構1010包括被配置為接納第一同軸電纜1053a的第一載體開口1013a和被配置為接納第二同軸電纜1053b的第二載體開口1013b。測試裝置1000包括子板1070,該子板1070具有被配置為接納第二同軸電纜1053b的板開口1073。因此,第一同軸電纜1053a和第二同軸電纜1053b可部分地佈置在載體結構1010的與被測裝置托座1030相對的一側上(例如,如圖10中所描繪,佈置在載體結構1010之下)。因此,可能由第一同軸電纜1053a和第二同軸電纜1053b和與其連接的其他裝置(諸如第一信號源和/或信號接收器1056a和/或第二信號源和/或信號接收器1056b)引起的對被測裝置1030與第一天線或天線結構1050和/或第二天線或天線結構1052之間的信號傳輸的影響得以減少。此外,將第一信號源和/或信號接收器1056a和/或第二信號源和/或信號接收器1056b佈置在載體結構1010的相對側上允許第一同軸電纜1053a和第二同軸電纜1053b的更短的長度,這會提高信號質量。
第一同軸電纜1053a和第二同軸電纜1053b中的至少一個可被佈置為可在相應板開口1013a、1013b、1073內部移動(例如,完全可從其移除),例如,借助於相應開口的直徑足夠大以允許移動相應第一同軸電纜1053a或第二同軸電纜1053b。替代地,第一同軸電纜1053a和第二同軸電纜1053b中的至少一個可由相應板開口1013a、1013b、1073固定地保持(例如,通過摩擦接合)。
替代地,載體結構1010可能不具有用於第一同軸電纜1053a和/或第二同軸電纜1053b的板開口,其中,第一同軸電纜1053a和/或第二同軸電纜1053b完全與被測裝置托座1040佈置在載體結構1010的相同側上。(例如,佈置在圖10所示的載體結構1010之上)。可選地或附加地,子板1070可能不具有用於第二同軸電纜1053b的板開口。
子板1070可以是本文所描述的任何子板(例如,子板970)。在圖10所示的示例中,子板1070包括間隔件或堆疊連接器1075a、1075b,其中,例如,一個或多個電連接器可集成至間隔件或堆疊連接器1075a、1075b中的一個中,或其中,一個或多個電連接器可代替一個或多個間隔間隔件或堆疊連接器1075a、1075b。堆疊連接器中的至少一個可被配置為傳輸信號(例如,數位信號)和/或電力。為此目的,間隔件或堆疊連接器1075a、1075b中的至少一個可包括電連接器(例如,電連接器974)。
被測裝置托座1030包括托座彈簧針1078。托座彈簧針1078可被配置為在被測裝置托座1030與被測裝置1040的內表面之間建立電連接。托座彈簧針1078可縮回至被測裝置托座1030和/或子板1070中。
圖11示出具有多個被測裝置1140a、1140b、1140c、1140d的測試裝置1100的另一示例的示意性俯視圖。測試裝置1100包括載體結構1110(它可包括本文所描述的任何載體結構)(例如,印刷電路板測試夾具或負載板)和四個(例如,四個同等的)被測裝置托座1130a、1130b、1130c、1130d(它們可以是本文所描述的任何被測裝置托座)。然而,測試裝置1100可包括任何其他數量的被測裝置托座(例如,兩個、三個、五個、六個或更多)。多個被測裝置1140a至1140d可成行1115a佈置,如圖11中所描繪。測試裝置1100允許測試多個被測裝置1140a至1140d並因此可提高測試效率。可同時執行測試,例如,以便提高時間效率。替代地,可連續執行測試以便減少被測裝置1140a至1140d之間的串擾。
被測裝置托座1130a至1130d被佈置成定位相應成角度被測裝置1140a至1140d,使得相應成角度被測裝置的相應第一外表面(在圖11中,被測裝置1140a的第一外表面1144aa被示出為示例)的同一方向(在圖11中為正x方向)上對準。同一方向上的對準允許被測裝置托座1130a至1130d的更密集佈置。
測試裝置1100包括四個第一天線或天線結構1150a、1150b、1150c、1150d(它們可以是本文所描述的任何第一天線或天線結構)(例如,側面測量天線)。然而,測試裝置1100可包括任何其他數量(例如,與被測裝置托座1130a至1130d相同的數量)的第一天線或天線結構1150a至1150d。在圖11所示的示例中,被測裝置托座1130a至1130d中的每一個被分配第一天線或天線結構1150a至1150d中的相應一個。第一天線或天線結構1150a至1150d中的每一個被配置為接收從指定(相應)成角度被測裝置1140a至1140d的第一外表面輻射的信號和/或被配置為發射將在分配的(相應)成角度測試裝置1140a至1140d的第一外表面處接收到的信號。
第一天線或天線結構1150a至1150d中的至少一個的孔徑可被佈置成距成角度被測裝置1140a至1140d的第一外表面中的相應外表面一定距離,使得相應成角度被測裝置1140a至1140d的第一外表面的表面法線延伸穿過第一天線或天線結構1150a至1150d中的相應一個的孔徑。
在圖11所示的示例中,為了不遮擋被測裝置1140a至1140d,測試裝置1100不包括第二天線或天線結構。然而,測試裝置1100可僅包括第一天線或天線結構(即,不具有第二天線或天線結構)、僅包括第二天線或天線結構(即,不具有第一天線或天線結構)或包括第一天線或天線結構和第二天線或天線結構。
載體結構1110可限定板極限1113(例如,處理器對接板極限),該板極限1113限定圍繞支撐安裝被測裝置托座1130a至1130d的區域的區域(例如,矩形框架)。
圖12示出具有多個被測裝置1240的測試裝置1200的另一示例的示意性俯視圖。測試裝置1200包括載體結構1210(它可包括本文所描述的任何載體結構)(例如,印刷電路板測試夾具或負載板)和八個(例如,八個同等的)被測裝置托座1230(它們可以是本文所描述的任何被測裝置托座)。然而,測試裝置1200可包括任何其他數量的被測裝置托座(例如,兩個、三個、五個、六個或更多)。
至少兩個被測裝置托座1230被佈置(例如,背靠背)為定位相應成角度被測裝置1240,使得相應成角度被測裝置的相應第一外表面1244a在相反(避開)方向上對準。為了可見性起見,最左側被測裝置托座1230僅在圖12中加以討論,並因此被提供有附圖標記1230a、1230b。但同樣的原理也適用於剩餘的被測裝置托座1230。第一被測裝置托座1230a被配置為對相應被測裝置1240a進行佈置,使得其相應第一外表面1244a面向第一方向(例如,在圖12中為負x方向)。第二被測裝置托座1230b被配置為對相應被測裝置1240b進行佈置,使得其相應第一外表面1244b面向與佈置成與第一方向相反(例如,反平行)的第二方向(例如,在圖12中為正x方向)。結果,佈置在第一被測裝置托座1230a和第二被測裝置托座1230b中的被測裝置1240a、1240b的第一外表面1244a、1244b面向相反的方向。因此,被分配給相應第一被測裝置托座1230a和第二被測裝置托座1230b的第一天線或天線結構1250a、1250b可在相反定向處佈置。此外,被分配給相應第一被測裝置托座1230a和第二被測裝置托座1230b的第一天線或天線結構1250a、1250b可被佈置成使得第一被測裝置托座1230a和第二被測裝置托座1230b佈置(例如,夾置)在分配的第一天線或天線結構1250a、1250b之間。這種佈置降低了耦合至第一被測裝置托座1230a和第二被測裝置托座1230b的被測裝置1240a、1240b之間串擾的風險。
測試裝置1200包括兩行(例如,平行的行)1215a、1215b被測裝置托座1230a、1230b和相關聯第一天線1250a、1250b,其中,被測裝置托座1230被配置為承載相應成角度被測裝置1240a、1240b,其中,至少兩行1215a、1215b被測裝置托座1240被佈置(例如,背對背;例如與被測裝置托座1230的被測裝置1240的第一外表面1244a中的一個所處的側面相對於彼此避開)為定位相應成角度被測裝置1240a、1240b,使得相應成角度被測裝置1240a、1240b的相應第一外表面1244a、1244b在相反(避開)方向上對準。這種佈置改進了串擾減少與存儲密度增加之間的折衷。
100:測試裝置 110:載體結構 111:空間 112:表面 114:間隔 115:托座高度 130:被測裝置托座 140:成角度被測裝置 141a:第一板 141b:第二板 142:內表面 142a:第一內表面 142b:第一外表面 143:表面法線 144a:第一外表面 144b:第二外表面 240:成角度被測裝置 240a:成角度被測裝置 241a:第一板 241b:第二板 242a:第一內表面 242b:第二內表面 244a:第一外表面 244b:第二外表面 246a:第一天線陣列 246b:第二天線陣列 248:連接器 249:天線電路 340:成角度被測裝置 344a:第一外表面 344b:第二外表面 345a:中央天線元件 345b:中央天線元件 540:成角度被測裝置 544a:第一外表面 544b:第二外表面 545a:中央天線元件 545b:中央天線元件 551:表面 700:測試裝置 710:載體結構 716:相鄰區域 717:吸收材料 718:第一指定區域 730:被測裝置托座 732:延伸器結構 733:延伸器 734:PCB中介層 735:延伸器組件 740:成角度被測裝置 742a:第一內表面 742b:第二內表面 744a:第一外表面 744b:第二外表面 748:連接器 750:第一天線或天線結構 752:第二天線或天線結構 754:處理器 830:被測裝置托座 860:成角度凹槽或成角度凸起 861:側表面 862a:第一抵接表面 862b:第二抵接表面 863a:配合凹槽 863b:配合凹槽 864:支撐體 864a:主托座結構 864b:腿托座結構 865:托座連接器 866:突出部 867:臺階 868a:側壁 868b:側壁 869:相鄰開口 900:測試裝置 910:載體結構 930:被測裝置托座 940:成角度被測裝置 970:子板 972:加強件 974:電連接器 976:已安裝電連接器 978:托座彈簧針 1000:測試裝置 1010:載體結構 1013a:第一載體開口 1013b:第二載體開口 1030:被測裝置托座 1040:成角度被測裝置 1043:表面法線 1044a:第一外表面 1044b:第二外表面 1050:第一天線或天線結構 1052:第二天線或天線結構 1053a:第一同軸電纜 1053b:第二同軸電纜 1054:天線載體結構 1056a:第一信號源和/或信號接收器 1056b:第二信號源和/或信號接收器 1055:微波連接 1070:子板 1073:板開口 1075a:間隔件或堆疊連接器 1075b:間隔件或堆疊連接器 1078:托座彈簧針 1092:表面法線 1100:測試裝置 1110:載體結構 1113:板極限 1115a:行 1130:被測裝置托座 1130a:被測裝置托座 1130b:被測裝置托座 1130c:被測裝置托座 1130d:被測裝置托座 1140a:被測裝置 1140b:被測裝置 1140c:被測裝置 1140d:被測裝置 1144aa:第一外表面 1144ab:第一外表面 1150a:第一天線或天線結構 1150b:第一天線或天線結構 1150c:第一天線或天線結構 1150d:第一天線或天線結構 1200:測試裝置 1210:載體結構 1215a:行 1215b:行 1230:被測裝置托座 1230a:第一被測裝置托座 1230b:第二被測裝置托座 1240:成角度被測裝置 1240a:被測裝置 1240b:被測裝置 1244a:第一外表面 1244b:第一外表面 1250:第一天線或天線結構 1250a:第一天線或天線結構 1250b:第一天線或天線結構 1340:成角度被測裝置 1341a:第一板 1341b:第二板 1342a:第一內表面 1342b:第二內表面 1344a:第一外表面 1344b:第二外表面 1347a:柔性印刷電路 1347b:柔性印刷電路 1347c:柔性印刷電路 1348:連接器 1349:矽芯片
附圖不一定按比例繪製,而是重點通常放在示出本發明的原理上。在以下描述中,參考以下附圖描述本發明的各個實施例,其中: 圖1     示出用於對成角度被測裝置進行無線測試的測試裝置的示意性橫截面; 圖2A   示出穿過成角度被測裝置的第一示例的示意性橫截面; 圖2B   示出穿過成角度被測裝置的第二示例的示意性橫截面; 圖3     示出成角度被測裝置的透視圖; 圖4     示出圖3中所描繪的被測裝置的第一外表面的第一天線陣列的天線元件發射的遠場的模擬結果; 圖5     示出成角度被測裝置的透視圖; 圖6     示出圖5中所描繪的被測裝置的第一外表面天線陣列的第一天線陣列的天線元件所發射的遠場的模擬結果; 圖7     示出具有被測裝置的測試裝置的另一示例的示意性橫截面圖; 圖8     示出被測裝置托座的示例的透視圖; 圖9     示出具有被測裝置的測試裝置的另一示例的示意性橫截面圖; 圖10   示出具有被測裝置的測試裝置的另一示例的示意性橫截面圖; 圖11   示出具有多個被測裝置的測試裝置的另一實例的示意性俯視圖; 圖12   示出具有多個被測裝置的測試裝置的另一實例的示意性俯視圖; 圖13A 示出被測裝置的示例的透視圖;以及 圖13B 示出圖13A中所描繪的被測裝置的透視圖。
100:測試裝置
110:載體結構
111:空間
112:表面
114:間隔
115:托座高度
130:被測裝置托座
140:成角度被測裝置
141a:第一板
141b:第二板
142:內表面
142a:第一內表面
142b:第一外表面
143:表面法線
144a:第一外表面
144b:第二外表面

Claims (27)

  1. 一種用於對成角度被測裝置進行無線測試的測試裝置, 其中,所述測試裝置包括載體結構; 其中,所述測試裝置包括耦合至所述載體結構的被測裝置托座, 其中,所述被測裝置托座被配置為與所述成角度被測裝置或與佈置在所述成角度被測裝置的內表面上的連接器建立電接觸。
  2. 如請求項1所述的測試裝置, 其中,所述被測裝置托座被配置為定位所述成角度被測裝置, 使得所述成角度被測裝置的第一外表面與所述載體結構的表面間隔開,並且 使得所述成角度被測裝置的所述第一外表面的表面法線在+/–15度的公差內平行於所述載體結構的所述表面。
  3. 如請求項1或2所述的測試裝置, 其中,所述被測裝置托座被配置為定位所述成角度被測裝置, 使得所述成角度被測裝置的第二外表面背向所述載體結構,並且 使得所述成角度被測裝置的所述第二外表面的表面法線在+/–15度的公差內垂直於所述載體結構的所述表面。
  4. 如請求項1所述的測試裝置, 其中,所述載體結構的與所述成角度被測裝置的所述第一外表面相鄰的區域不含電源平面和/或不含接地平面。
  5. 如請求項1所述的測試裝置, 其中,所述載體結構的與所述成角度被測裝置的所述第一外表面相鄰的區域不被金屬化。
  6. 如請求項1所述的測試裝置, 其中,吸收材料在與所述成角度被測裝置的所述第一外表面相鄰的區域中佈置在所述載體結構上。
  7. 如請求項1所述的測試裝置, 其中,所述被測裝置托座被配置為定位所述成角度被測裝置,使得所述成角度被測裝置的所述第一外表面與所述載體結構之間的間隔是所述成角度被測裝置的最低操作頻率下的至少2個波長。
  8. 如請求項1所述的測試裝置, 其中,所述被測裝置托座附接至安裝至所述載體結構的子板,所述子板與所述負載板之間有間隔。
  9. 如請求項1所述的測試裝置, 其中,所述測試裝置包括第一天線或天線結構,所述第一天線或天線結構被配置為接收從所述成角度被測裝置的所述第一外表面輻射的信號和/或被配置為發射將在所述成角度裝置的所述第一外表面處接收到的信號。
  10. 如請求項1所述的測試裝置, 其中,所述測試裝置包括第一天線或天線結構,其中,所述第一天線或天線結構的孔徑被佈置成距所述成角度被測裝置的所述第一外表面一定距離,使得所述成角度被測裝置的所述第一外表面的表面法線延伸穿過所述第一天線或天線結構的所述孔徑。
  11. 如請求項9至10中的一項所述的測試裝置, 其中,所述第一天線或天線結構被安裝成相對於所述被測裝置托座具有固定位置。
  12. 如請求項9至10中的一項所述的測試裝置, 其中,所述第一天線或天線結構以機械方式附接至處理器的臂,使得所述第一天線或天線結構是可移動的。
  13. 如請求項9至10中的一項所述的測試裝置, 其中,所述第一天線或天線結構被配置為在所述處理器已將所述第一天線或天線結構放置在操作位置中時經由盲插微波連接與信號源和/或與信號接收器連接。
  14. 如請求項1所述的測試裝置, 其中,所述測試裝置包括第二天線或天線結構,所述第二天線或天線結構被配置為接收從所述成角度被測裝置的所述第二外表面輻射的信號;和/或發射將在所述成角度被測裝置的所述第二外表面處接收到的信號。
  15. 如請求項1所述的測試裝置, 其中,所述測試裝置包括第二天線或天線結構,其中,所述第二天線或天線結構的孔徑被佈置成距所述成角度被測裝置的所述第二外表面一定距離,使得所述成角度被測裝置的所述第二外表面的表面法線延伸穿過所述第二天線或天線結構的所述孔徑。
  16. 如請求項14至15中的一項所述的測試裝置, 其中,所述第二天線或天線結構以機械方式附接至處理器的臂,使得所述第二天線或天線結構是可移動的。
  17. 如請求項14至15中的一項所述的測試裝置, 其中,所述第二天線或天線結構是用於將所述成角度被測裝置推入所述被測裝置托座的推動器的一部分,或者 其中,所述第二天線或天線結構被配置為能夠與用於將所述成角度被測裝置推入所述被測裝置托座的推動器一起移動。
  18. 如請求項14至15中的一項所述的測試裝置, 其中,所述第二天線或天線結構被配置為在所述處理器已將所述第二天線或天線結構放置在操作位置中時經由盲插微波連接與信號源和/或與信號接收器連接。
  19. 如請求項1所述的測試裝置, 其中,所述被測裝置托座包括被配置為支撐和/或對準所述成角度被測裝置的成角度凹槽或成角度凸起。
  20. 如請求項1所述的測試裝置, 其中,所述被測裝置托座被佈置成使得所述成角度被測裝置的與所述成角度被測裝置的第二外表面相對的第二內表面與所述載體結構間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開所述成角度被測裝置的最低操作頻率下的至少2個波長、至少3個波長或至少4個波長。
  21. 如請求項1所述的測試裝置, 其中,所述被測裝置托座包括至少10 mm、至少30 mm或至少45 mm的托座高度,使得所述成角度被測裝置的與所述成角度被測裝置的第二外表面相對的第二內表面與所述載體結構間隔開至少10 mm、至少30 mm或至少45 mm,或間隔開所述成角度被測裝置的最低操作頻率下的至少2個波長、至少3個波長或至少4個波長。
  22. 如請求項1所述的測試裝置, 其中,所述被測裝置托座包括一個或多個同軸彈簧針,以便在所述載體結構與所述成角度被測裝置之間建立電連接。
  23. 如請求項1所述的測試裝置, 其中,延伸器結構佈置在所述載體結構與所述被測裝置托座之間。
  24. 如請求項23所述的測試裝置, 其中,所述延伸器結構包括延伸器組件, 其中,所述延伸器組件包括一個或多個同軸彈簧針,以便在所述載體結構與所述成角度被測裝置之間建立電連接。
  25. 如請求項1所述的測試裝置, 其中,所述測試裝置包括被配置為承載相應成角度被測裝置的至少兩個被測裝置托座, 其中,所述至少兩個被測裝置托座被佈置成定位相應成角度被測裝置,使得所述相應成角度被測裝置的相應第一外表面在相對方向上對準。
  26. 如請求項1所述的測試裝置, 其中,所述測試裝置包括至少兩行被測裝置托座, 其中,所述被測裝置托座被配置為承載相應成角度被測裝置, 其中,所述至少兩行被測裝置托座被佈置成定位相應成角度被測裝置,使得所述相應成角度被測裝置的相應第一外表面在相對方向上對準。
  27. 一種用於對成角度被測裝置進行無線測試的測試裝置, 其中,所述測試裝置包括載體結構; 其中,所述測試裝置包括耦合至所述載體結構的被測裝置托座, 其中,所述被測裝置托座被配置為與所述成角度被測裝置的內表面或與佈置在所述成角度被測裝置的所述內表面上的連接器建立電接觸,並且 其中,所述被測裝置托座被配置為定位所述成角度被測裝置, 使得所述成角度被測裝置的第一外表面與負載板的表面間隔開,並且 使得所述成角度被測裝置的所述第一外表面的表面法線在+/–15度的公差內平行於所述負載板的所述表面,並且 使得所述成角度被測裝置的第二外表面背向所述負載板,並且 使得所述成角度被測裝置的所述第二外表面的表面法線在+/–15度的公差內垂直於所述負載板的所述表面。
TW112127361A 2022-07-29 2023-07-21 用於在被測裝置托座中對成角度被測裝置進行無線測試的測試裝置 TW202409598A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22187978.6 2022-07-29
WOPCT/EP2023/059652 2023-04-13

Publications (1)

Publication Number Publication Date
TW202409598A true TW202409598A (zh) 2024-03-01

Family

ID=

Similar Documents

Publication Publication Date Title
CN109842452B (zh) 测试装置、测试系统和测试方法
CN109444702B (zh) 空中无线测试系统及测试方法
KR101497529B1 (ko) Rf 집적회로 테스트 방법 및 시스템
US7458837B2 (en) Connector housing block, interface member and electronic device testing apparatus
US20160025788A1 (en) Module socket, device for testing wireless module, and method for testing wireless module
TWI388835B (zh) 測試系統以及被測試元件單元
US20080106294A1 (en) Apparatus and method for universal connectivity in test applications
US20240027519A1 (en) Electronic component testing apparatus, sockets, and replacement parts for electronic component testing apparatus
US20230333150A1 (en) Antenna testing device for high frequency antennas
KR20030024668A (ko) 테스트 하에 있는 장치와 테스트 헤드 사이의 범용 테스트인터페이스
KR20010030367A (ko) 콘택트 핀을 장착하기 위한 핀 블럭 구조물
US6489791B1 (en) Build off self-test (Bost) testing method
KR20170002895A (ko) 프로브 카드와 테스터를 연결하기 위한 접속 장치
JP7097452B2 (ja) 検査装置
US7057410B1 (en) Interface structure for semiconductor integrated circuit test equipment
US10705134B2 (en) High speed chip substrate test fixture
TW202409598A (zh) 用於在被測裝置托座中對成角度被測裝置進行無線測試的測試裝置
US4975639A (en) Test head with improved shielding
WO2024022625A1 (en) Test arrangement for over-the-air testing an angled device under test in a device-under-test socket
KR20100027097A (ko) 자동 테스트 장비 인터페이스용 직각 연결 시스템
CN112540282A (zh) 测试装置
CN217484381U (zh) 探针卡
KR20170020185A (ko) 프로브 카드
CN115128365A (zh) 测试套件和测试系统
KR20220130807A (ko) 쌍축 케이블 스플리터