TW202409214A - 積層膜 - Google Patents

積層膜 Download PDF

Info

Publication number
TW202409214A
TW202409214A TW112124803A TW112124803A TW202409214A TW 202409214 A TW202409214 A TW 202409214A TW 112124803 A TW112124803 A TW 112124803A TW 112124803 A TW112124803 A TW 112124803A TW 202409214 A TW202409214 A TW 202409214A
Authority
TW
Taiwan
Prior art keywords
resin layer
film
meth
acrylate
compound
Prior art date
Application number
TW112124803A
Other languages
English (en)
Inventor
佐佐木伸明
谷山弘行
加藤剛司
Original Assignee
日商三菱化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱化學股份有限公司 filed Critical 日商三菱化學股份有限公司
Publication of TW202409214A publication Critical patent/TW202409214A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/26Layered products comprising a layer of synthetic resin characterised by the use of special additives using curing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

本發明係一種積層膜,其具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,上述硬化樹脂層(A)為包含(A-a)黏合劑之硬化性樹脂組合物(A')之硬化物,上述硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')之硬化物。 根據本發明,可提出一種積層膜,其係實用上之反覆彎折特性及耐摩擦性優異,且不易見到干涉條紋者,且抗靜電性良好,進而能兼顧抗靜電性與防污性,耐摩耗性亦優異。

Description

積層膜
本發明係關於一種具有基材膜及硬化樹脂層之積層膜、耐摩擦性、反覆彎折特性、及抗靜電性優異之積層膜、以及抗靜電性及防污性、耐摩耗性優異之積層膜。
近年來,隨著電子機器等之小型化、輕量化,有使用可撓性基板或可撓性印刷電路基板之趨勢。又,伴隨於此,於顯示器用途中亦有對可撓性之要求提昇之趨勢。而且,用於此種用途之顯示畫面用表面保護膜不僅需要高硬度、耐損傷、耐污染性、耐摩耗性等表面保護特性,在彎折性方面亦需要高度之耐久性,迫切希望性能進一步提昇。
因此,近年來,關於表面保護膜有許多提案,以在保持高硬度且耐摩擦性之同時,改善可撓性或彎折性。 例如,於專利文獻1中,揭示有一種硬塗膜,其特徵在於:其係於透明基材之至少一面上形成有硬塗層者,且形成有2層以上之硬塗層,最接近於透明基材所形成之硬塗層之彈性模數高於表層之硬塗層之彈性模數,且最接近於透明基材所形成之硬塗層之無機微粒子之含量高於表層之硬塗層的含量。
又,於專利文獻2中,揭示有一種硬塗膜之製作方法,其特徵在於:於膜基材上塗佈硬化塗膜之伸長率會達到80%以上之紫外線硬化型塗料(a),於該紫外線硬化型塗料上塗佈硬化塗膜之鉛筆刮痕值會達到4H以上之紫外線硬化型塗料(b)後,進行紫外線照射,而形成硬化塗膜。
進而,於專利文獻3中揭示有一種硬塗膜,其具有基材膜及硬塗層,可用作滿足特定條件之觸控面板之表面材。
如上所述,進行了能夠彎折或摺疊圖像顯示畫面(顯示器)之可撓性移動終端之開發,關於此類圖像顯示畫面所使用之表面保護膜,亦需要實用上能反覆彎折之性能(例如能夠反覆彎折20萬次以上之耐久性)、以及實用上之耐摩擦性(例如用鋼絲絨#0000以1 kg負載往返2000次時不會產生損傷)。
又,近年來,智慧型手機或平板終端等具有液晶顯示器之圖像顯示裝置之需要進一步擴大。為了保護該等顯示器之畫面顯示部或圖像顯示體,使用了於基材膜上實施塗佈後所得之保護膜。
就透明性等光學特性之方面而言,顯示器等之畫面顯示部或圖像顯示體之保護膜使用有三乙醯纖維素膜、環烯烴系膜、聚酯膜、丙烯酸膜、聚碳酸酯膜、透明聚醯亞胺膜等塑膠膜。然而,該等塑膠膜由於表現出高電絕緣性而容易帶電,表面容易附著污物。
因此,為了形成具備抗靜電性能之塗佈層,提出出一些包含含四級銨鹽基之聚合物之塗佈劑組合物(專利文獻4~6)。 於專利文獻4中記載有硬塗層形成用樹脂組合物。該硬塗層形成用樹脂組合物係含有(甲基)丙烯酸系共聚物;具有3官能以上之乙烯基之聚胺基甲酸酯低聚物;及具有2~6官能之乙烯基之丙烯酸系單體而成,上述(甲基)丙烯酸系共聚物係使具有四級銨基之含乙烯基之單體及能與其共聚之(甲基)丙烯酸系單體共聚而獲得。 專利文獻5中記載有抗靜電硬塗層樹脂組合物。該抗靜電硬塗層樹脂組合物含有具有(甲基)丙烯醯基之化合物;含有四級銨鹽基之聚合物;丙酮;與選自甲醇、乙醇、異丙醇之群中之1種以上之醇的混合溶劑。 專利文獻6中記載有包含基材及形成於其表面之硬化塗膜之表面硬化物品。該硬化塗膜含有含四級銨鹽基之聚合物及平均粒徑為5~500 nm之金屬氧化物微粒子。 [先前技術文獻] [專利文獻]
專利文獻1:日本專利第4574766號公報 專利文獻2:日本專利第4569807號公報 專利文獻3:日本專利特開2021-7016號公報 專利文獻4:日本專利特開2008-56872號公報 專利文獻5:日本專利特開2013-91698號公報 專利文獻6:日本專利特開2013-132784號公報
[發明所欲解決之問題]
上述專利文獻1~3所記載之發明均具備優異之表面硬度,但並未充分考慮到實用上之耐摩擦性。其中,於專利文獻3中,雖假定了實用上之耐摩擦性之試驗,但並未假定硬塗層之柔軟性,從而假定組入至裝置時之反覆彎折特性不足。 進而根據要求特性,有時需要干涉條紋難以看見。
又,可撓性顯示器等用途所使用之表面保護膜有時會因各種因素而產生干涉條紋,若表面保護膜產生干涉條紋,則產生外觀降低,並且作為顯示器之視認性降低之問題。因此,對於表面保護膜而言,作為要求特性,有時需要干涉條紋難以看見。
又,上述專利文獻4~6所記載之發明均處於難以兼顧抗靜電性與防污性之狀況。進而根據要求特性,有時需要干涉條紋難以看見。
又,關於顯示器等顯示畫面用之表面保護膜,隨著電子機器之小型化、輕量化,有使用可撓性基板或可撓性印刷電路基板之趨勢,除高硬度、耐損傷、耐污染性等表面保護特性以外,在彎折性方面亦需要高度之耐久性,但近年來,進而還要求耐摩擦性等有關硬度之特性、以及對於橡膠之類之彈性體之耐摩耗性,從而需要進一步改善。
因此,本發明之課題在於提供一種新穎之積層膜,其實用上之反覆彎折特性及耐摩擦性優異,並且耐摩耗性亦優異,且干涉條紋難以看見(第1課題)。 又,本發明提出一種新穎之積層膜,其具有適度之硬塗層之柔軟性,並且實用上之反覆彎折特性及耐摩擦性優異,抗靜電性良好,然而干涉條紋難以看見(第2課題)。 進而,本發明提出一種新穎之積層膜,其能兼具抗靜電性及防污性,進而耐摩耗性優異,然而干涉條紋難以看見,亦滿足實用上之反覆彎折特性或耐摩擦性(第3課題)。 [解決問題之技術手段]
本發明人等鑒於上述實際情況,反覆進行銳意研究,結果發現,藉由具備特定構成之硬化樹脂層(A)及硬化樹脂層(B)積層而成之構成,而可解決上述第1課題,從而完成本發明。即,本發明提供以下之[1-1]~[1-18]。 又,發現藉由具備特定構成之硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)積層而成之構成,可容易地解決上述第2課題,從而完成本發明。即,本發明提供以下之[2-1]~[2-16]。 進而,發現藉由具備特定構成之硬化樹脂層(A)及硬化樹脂層(D)積層而成之構成,可容易地解決上述課題,從而完成本發明。即,本發明提供以下之[3-1]~[3-16]。
本發明之主旨如下所示。 [1-1]一種積層膜,其具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,硬化樹脂層(A)為包含(a)黏合劑、(b)交聯劑及(c)粒子之硬化性樹脂組合物(A')之硬化物,硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')之硬化物,(a)黏合劑包含具有縮合多環式芳香族結構之化合物。 [1-2]如[1-1]記載之積層膜,其中(Y)具有環狀矽氧烷骨架之化合物為具有全氟醚結構之氟化合物。 [1-3]如[1-1]或[2-1]記載之積層膜,其中於硬化樹脂層(B)之表面實施了下述耐鋼絲絨性試驗之情形時,往返2000次後之膜霧度之變化率未達1%; (耐鋼絲絨性試驗) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(B)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦2000次,測定摩擦前後之積層膜之霧度值,算出相較於初始膜霧度(摩擦前之膜霧度)之變化率。 變化率(%)=(摩擦後膜霧度-初始膜霧度)/初始膜霧度×100 [1-4]如[1-1]至[1-3]中任一項記載之積層膜,其於以下之反覆彎折試驗中之反覆彎折次數為20萬次以上; (反覆彎折試驗) 使用彎折試驗機,以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行彎折試驗,目視確認內側表面有無硬化樹脂層之龜裂產生,測定直至龜裂產生為止之反覆彎折次數。 [1-5]如[1-1]至[1-4]中任一項記載之積層膜,其膜霧度為1.0%以下。 [1-6]如[1-1]至[1-5]中任一項記載之積層膜,其中硬化樹脂層(A)及硬化樹脂層(B)之斷裂伸長率為0.5%以上。 [1-7]如[1-1]至[1-6]中任一項記載之積層膜,其中硬化樹脂層(B)表面之波長380 nm之透光率為3%以下。 [1-8]如[1-1]至[1-7]中任一項記載之積層膜,其中基材膜包含紫外線吸收劑。 [1-9]如[1-1]至[1-8]中任一項記載之積層膜,其中(c)粒子包含粒徑不同之2種粒子。 [1-10]如[1-1]至[1-9]中任一項記載之積層膜,其中具有縮合多環式芳香族結構之化合物為具有縮合多環式芳香族結構之聚酯樹脂。 [1-11]如[1-1]至[1-10]中任一項記載之積層膜,其中基材膜為聚酯膜。 [1-12]如[1-1]至[1-11]中任一項記載之積層膜,其中基材膜為聚對苯二甲酸乙二酯(PET)膜。 [1-13]如[1-11]或[1-12]記載之積層膜,其中波長590 nm之光以0°之角度入射至聚酯膜面時之延遲(Re)為1400 nm以下。 [1-14]如[1-11]至[1-13]中任一項記載之積層膜,其中波長590 nm之光以0°之角度入射至聚酯膜面時之快軸方向之延遲(Re)的變化量為10 nm以上600 nm/m以下。 [1-15]如[1-11]至[1-14]中任一項記載之積層膜,其中硬化樹脂層(B)之厚度為10.0 μm以下。 [1-16]如[1-11]至[1-15]中任一項記載之積層膜,其係用於表面保護。 [1-17]如[1-11]至[1-16]中任一項記載之積層膜,其係用於顯示器。 [1-18]如[1-11]至[1-17]中任一項記載之積層膜,其係用於前面板。
[2-1]一種積層膜,其具備於基材膜之至少單面側表面依序積層有硬化樹脂層(A)、硬化樹脂層(B)及硬化樹脂層(C)之構成,硬化樹脂層(A)為包含抗靜電劑之硬化性樹脂組合物A之硬化物,硬化樹脂層(B)為包含(B-a)黏合劑之硬化性樹脂組合物(B')之硬化物,上述硬化樹脂層(C)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架及全氟醚結構之氟化合物之硬化性樹脂組合物(C')的硬化物。 [2-2]如上述[2-1]記載之積層膜,其中於硬化樹脂層(C)之表面實施了耐鋼絲絨性試驗之情形時,往返2000次後之膜霧度之變化率未達1%; (耐鋼絲絨性試驗) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(C)之表面施加1 kg負載,一面以速度50 mm/sec往返摩擦2000次,測定摩擦前後之積層膜之霧度值,算出相較於初始膜霧度(摩擦前之膜霧度)之變化率。 變化率(%)=(摩擦後膜霧度-初始膜霧度)/初始膜霧度度×100 [2-3]如上述[2-1]或[2-2]記載之積層膜,其在反覆彎折性評價(內折,R=1.5之條件下)中,能彎折20萬次以上。 (反覆彎折試驗) 使用彎折試驗機,以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行彎折試驗,目視確認內側表面有無硬化樹脂層之龜裂產生,測定直至龜裂產生為止之反覆彎折次數。 [2-4]如上述[2-1]至[2-3]中任一項記載之積層膜,其膜霧度為1.0%以下。 [2-5]如上述[2-1]至[2-4]中任一項記載之積層膜,其中上述硬化樹脂層(C)表面之波長380 nm之透光率為3%以下。 [2-6]如上述[2-1]至[2-5]中任一項記載之積層膜,其中上述硬化樹脂層(C)表面之波長500~600 nm之最大反射率差為1.5%以下。 [2-7]如上述[2-1]至[2-6]中任一項記載之積層膜,其中上述基材膜包含紫外線吸收劑。 [2-8]如上述[2-1]至[2-7]中任一項記載之積層膜,其中上述硬化樹脂層(B)包含(B-c)粒子,該(B-c)粒子為粒徑不同之2種粒子。 [2-9]如上述[2-1]至[2-8]中任一項記載之積層膜,其中上述基材膜為聚酯膜。 [2-10]如上述[2-1]至[2-9]中任一項記載之積層膜,其中上述基材膜為聚對苯二甲酸乙二酯(PET)膜。 [2-11]如上述[2-9]或[2-10]記載之積層膜,其中上述聚酯膜之延遲(Re)為1400 nm以下。 [2-12]如上述[2-9]至[2-11]中任一項記載之積層膜,其中上述聚酯膜之寬度方向之延遲(Re)之變化量為10 nm/m以上600 nm/m以下。 [2-13]如上述[2-1]至[2-12]中任一項記載之積層膜,其中上述硬化樹脂層(C)之厚度為10.0 μm以下。 [2-14]如上述[2-1]至[2-13]中任一項記載之積層膜,其係用於表面保護。 [2-15]如上述[2-14]記載之積層膜,其係用於顯示器。 [2-16]如上述[2-15]記載之積層膜,其係用於前面板。
[3-1]一種積層膜,其具備於基材膜之至少單面側表面依序積層有硬化樹脂層(A)及硬化樹脂層(D)之構成,硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,上述硬化樹脂層(D)為包含(D-a)3官能以上(甲基)丙烯酸酯、(D-b)含四級銨鹽基之聚合物、及(D-c)具有含氟原子之結構及環狀矽氧烷結構之化合物之硬化性樹脂組合物(D')的硬化物。 [3-2]如上述[3-1]記載之積層膜,其中於上述硬化樹脂層(D)之表面實施了下述耐鋼絲絨性試驗之情形時,往返1000次後之膜霧度之變化率未達1%。 (耐鋼絲絨性試驗) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(D)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦1000次,測定摩擦前後之積層膜之霧度值,算出相較於初始膜霧度(摩擦前之膜霧度)之變化率。 變化率(%)=(摩擦後膜霧度-初始膜霧度)/初始膜霧度度×100 [3-3]如上述[3-1]或[3-2]記載之積層膜,其中膜霧度為1.0%以下。 [3-4]如上述[3-1]至[3-3]中任一項記載之積層膜,其中上述硬化樹脂層(D)面側之波長380 nm之透光率為3%以下。 [3-5]如上述[3-1]至[3-4]中任一項記載之積層膜,其中上述硬化樹脂層(D)表面之波長500~600 nm之最大反射率差為1.5%以下。 [3-6]如上述[3-1]至[3-5]中任一項記載之積層膜,其中上述基材膜包含紫外線吸收劑。 [3-7]如上述[3-1]至[3-6]中任一項記載之積層膜,其中上述(A-c)粒子為粒徑不同之2種粒子。 [3-8]如上述[3-1]至[3-7]中任一項記載之積層膜,其中上述(A-a)黏合劑包含具有縮合多環式芳香族結構之化合物。 [3-9]如上述[3-1]至[3-8]中任一項記載之積層膜,其中上述基材膜為聚酯膜。 [3-10]如上述[3-1]至[3-9]中任一項記載之積層膜,其中上述基材膜為聚對苯二甲酸乙二酯(PET)膜。 [3-11]如上述[3-9]記載之積層膜,其中上述聚酯膜之延遲(Re)為1400 nm以下。 [3-12]如上述[3-9]記載之積層膜,其中上述聚酯膜之寬度方向之延遲(Re)之變化量為10 nm/m以上600 nm/m以下。 [3-13]如上述[3-1]至[3-12]中任一項記載之積層膜,其中上述硬化樹脂層(D)之厚度為10.0 μm以下。 [3-14]如上述[3-1]至[3-13]中任一項記載之積層膜,其係用於表面保護。 [3-15]如上述[3-1]至[3-14]中任一項記載之積層膜,其係用於顯示器。 [3-16]如上述[3-1]至[3-15]中任一項記載之積層膜,其係用於前面板。 [發明之效果]
根據本發明,可提供一種實用上之反覆彎折特性及耐摩擦性優異,且干涉條紋難以看見之積層膜。 又,可提出一種具有適度之硬塗層之柔軟性,並且實用上之反覆彎折特性及耐摩擦性優異,抗靜電性良好,且干涉條紋難以看見之積層膜。 進而,可提出一種能兼顧抗靜電性及防污性,干涉條紋難以看見,進而耐摩耗性亦優異,亦滿足實用上之反覆彎折特性或耐摩擦性之積層膜。
繼而,基於實施形態例對本發明進行說明。其中,本發明並不限定於以下所說明之實施方式。 本發明之積層膜之特徵在於:具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,上述硬化樹脂層(A)為包含(A-a)黏合劑之硬化性樹脂組合物(A')之硬化物,上述硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')的硬化物。 以下,對3個實施方式詳細地進行說明。
[第1實施方式] 本發明之第1實施方式之積層膜具備於基材膜(以下,有時稱為「本基材膜」)之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成。硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')之硬化物。又,硬化樹脂層(A)所包含之(A-a)黏合劑包含具有縮合多環式芳香族結構之化合物。 再者,本積層膜只要具備上述構成,則亦可具備其他層。
圖1係對本積層膜之構成進行說明之剖視圖。如圖1所示,積層膜10具有基材膜2,於基材膜2上依序具有硬化樹脂層(A)4及硬化樹脂層(B)6。於圖1中,圖示了於基材膜2之一面側依序具有硬化樹脂層(A)4及硬化樹脂層(B)6之構成,但硬化樹脂層(A)4及硬化樹脂層(B)6亦可設置於基材膜2之兩面。再者,於基材膜2與硬化樹脂層(A)4之間、硬化樹脂層(A)4與硬化樹脂層(B)6之間亦可分別設置有其他層,但基材膜2與硬化樹脂層(A)4及硬化樹脂層(A)4與硬化樹脂層(B)6較佳為以直接相接之方式積層。
本發明之積層膜由於具有上述構成,故而實用上之反覆彎折特性(耐彎曲性)及耐摩擦性優異。本發明之積層膜成為在基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,硬化樹脂層(B)為包含(X)胺基甲酸酯丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物硬化而成之硬化物,因此硬化樹脂層雖具有柔軟性,但仍能以高水準兼顧耐摩擦性(耐SW性,例如2000次以上)、及反覆彎折性(R=1.5之條件下,可彎曲20萬次)。硬化樹脂層(B)所具有之(Y)具有環狀矽氧烷骨架之化合物與通常之粒子添加系不同,可提昇硬化樹脂層表面之滑動性,結果導致對於來自外部之壓力之阻礙(阻力)較小,從而可順利地避開,因此推測積層膜之耐摩擦性提昇。
又,本發明之積層膜由於具有上述構成,故而干涉條紋之產生得到抑制。本發明之積層膜成為於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,由於依序積層有具有規定組成之硬化樹脂層(A)及硬化樹脂層(B),故而使得光干涉變小,干涉條紋之產生得到抑制。干涉條紋之產生有在基材膜與硬化樹脂層之折射率差較大之情形時容易產生之趨勢。於本發明中,藉由於硬化樹脂層(A)中含有粒子,可減小基材膜與硬化樹脂層(A)之折射率差,並且藉由使用具有特定結構之化合物作為硬化性樹脂組合物(A')所包含之(A-a)黏合劑,可抑制干涉條紋之產生。
以下,對本發明之第1實施方式之積層膜,進一步詳細地進行說明。
<基材膜> 本發明之積層膜具有基材膜。基材膜只要為能夠獲得所需之足夠之剛性及反覆彎折性之膜,則其材質及構成並無限定,就具有適度之柔軟性,且實用上之反覆彎折特性及耐摩擦性仍優異之方面而言,較佳為聚酯膜或聚醯亞胺膜,更佳為聚酯膜,尤佳為聚對苯二甲酸乙二酯(PET)膜。
基材膜可為單層構成,亦可為多層構成。 於基材膜為多層構成之情形時,除2層、3層構成以外,只要不超過本發明之主旨,則亦可為4層或4層以上之多層。於一較佳實施方式中,基材膜為多層構成,尤佳為3層構成。
於基材膜為單層構成或多層構成之情形時,各層之主成分樹脂均較佳為聚酯或聚醯亞胺(PI)。將主成分樹脂為聚酯或聚醯亞胺之膜稱為「聚酯膜」或「聚醯亞胺膜」。 此時,「主成分樹脂」意指構成基材膜之樹脂中含有比例最多之樹脂。主成分樹脂之含量相對於構成基材膜之樹脂之總質量,較佳為50質量%以上,更佳為70質量%以上,進而較佳為80質量%以上。又,主成分樹脂之含量亦可為構成基材膜之樹脂之100質量%。 再者,構成基材膜之各層只要其主成分樹脂為聚酯或聚醯亞胺,則亦可含有除聚酯或聚醯亞胺以外之其他樹脂或除樹脂以外之成分。
(聚酯) 作為構成基材膜之主成分樹脂之聚酯(以下,稱為「本聚酯」)可為同元聚酯,亦可為共聚聚酯。
於本聚酯包含同元聚酯之情形時,本聚酯較佳為使芳香族二羧酸與脂肪族二醇進行縮聚而獲得者。作為芳香族二羧酸,可例舉:對苯二甲酸、2,6-萘二甲酸等。作為脂肪族二醇,可例舉乙二醇、二乙二醇、1,4-環己烷二甲醇等。
又,於本聚酯為共聚聚酯之情形時,較佳為含有30莫耳%以下之第三成分之共聚物。作為共聚聚酯之二羧酸成分,例如可例舉:間苯二甲酸、鄰苯二甲酸、對苯二甲酸、2,6-萘二甲酸、癸二酸等。另一方面,作為其二醇成分,例如可例舉:乙二醇、二乙二醇、丙二醇、丁二醇、1,4-環己烷二甲醇、新戊二醇等。該等第三成分可使用一種或兩種以上。
作為使聚酯縮聚時之聚合觸媒,可使用銻化合物、鍺化合物、鈦化合物、鋁化合物等公知之觸媒。其等之中,本發明較佳為使用選自銻化合物及鈦化合物中之至少1種作為觸媒。
作為具代表性之聚酯之具體例,例如可例示聚對苯二甲酸乙二酯(PET)、聚萘二甲酸乙二酯(PEN)、聚對苯二甲酸丁二酯(PBT)、聚萘二甲酸丁二酯(PBN)、聚乙烯呋喃酸酯(PEF)等。其中,就操作容易性之觀點而言,較佳為PET、PEN,最佳為PET。 再者,於構成基材膜之主成分樹脂為例如聚對苯二甲酸乙二酯之情形時,將其膜稱為「聚對苯二甲酸乙二酯膜」。其他樹脂為主成分樹脂之情形時亦同樣如此。
(聚醯亞胺) 作為基材膜,除聚酯膜以外,亦適宜為聚醯亞胺膜。關於聚醯亞胺之醯亞胺化,例示了如下方法:使例如二胺與二酐、尤其是芳香族二酐與芳香族二胺以1:1之當量比進行聚醯胺酸聚合後,進行醯亞胺化。
作為芳香族二酐,例示出2,2-雙(3,4-二羧基苯基)六氟丙烷二酐(6FDA)、4-(2,5-二側氧四氫呋喃-3-基)-1,2,3,4-四氫化萘-1,2-二羧酸二酐(TDA)、均苯四甲酸二酐(1,2,4,5-苯四羧酸二酐、PMDA)、二苯甲酮四羧酸二酐(BTDA)、聯苯四羧酸二酐(BPDA)、雙羧基苯基二甲基矽烷二酐(SiDA)等。其等可單獨使用,亦可併用2種以上。
又,作為芳香族二胺,例示出氧二苯胺(ODA)、對苯二胺(pPDA)、間苯二胺(mPDA)、對亞甲基二苯胺(pMDA)、間亞甲基二苯胺(mMDA)、雙三氟甲基聯苯胺(TFDB)、環己烷二胺(13CHD、14CHD)、雙胺基羥基苯基六氟丙烷(DBOH)等。其等可單獨使用,亦可併用2種以上。
(其他樹脂成分) 構成基材膜之各層之主成分樹脂較佳為聚酯或聚醯亞胺(PI),但基材膜亦可具有以除聚酯及聚醯亞胺以外之其他樹脂作為主成分樹脂之層。作為該情形時之主成分樹脂,例如可例示:環氧系樹脂、聚芳酯、聚醚碸、聚碳酸酯、聚醚酮、聚碸、聚苯硫醚、聚酯系液晶聚合物、三乙醯纖維素、纖維素衍生物、聚丙烯、聚醯胺類、聚環烯烴類等。
(粒子) 基材膜亦可含有粒子,主要目的在於對膜表面賦予易滑性及防止於各步驟中產生損傷。 關於該粒子之種類,只要為能夠賦予易滑性之粒子,則無特別限定。例如可例舉:氧化矽、碳酸鈣、碳酸鎂、碳酸鋇、硫酸鈣、磷酸鈣、磷酸鎂、高嶺土、氧化鋁、氧化鈦等無機粒子;丙烯酸樹脂、苯乙烯樹脂、脲樹脂、酚樹脂、環氧樹脂、苯并胍胺樹脂等有機粒子等。其等可單獨使用1種,亦可組合其中之2種以上來使用。 進而,作為粒子,亦可使用於聚酯製造步驟中使觸媒等金屬化合物之一部分沈澱、微分散後所得之析出粒子。
上述粒子之形狀並無特別限定。例如球狀、塊狀、棒狀、扁平狀等均可。 又,上述粒子之硬度、比重、顏色等均無特別限制。該等一連串粒子可視需要併用2種以上。
上述粒子之平均粒徑較佳為5 μm以下,更佳為3 μm以下,進而較佳為2.5 μm以下。藉由將粒子之平均粒徑設為上述上限值以下,可使基材膜之表面粗糙度為適度範圍,可防止當於後續步驟中形成包含各種硬化組合物之硬化樹脂層時等產生異常。另一方面,上述粒子之平均粒徑較佳為0.01 μm以上,進而較佳為0.5 μm以上。
粒子之含量相對於基材膜之總質量,較佳為5質量%以下,更佳為3質量%以下,進而較佳為2質量%以下。又,粒子之含量相對於基材膜之總質量,較佳為0.0003質量%以上,更佳為0.001質量%以上,進而較佳為0.01質量%以上。若粒子之平均粒徑為上述範圍內,則可使基材膜之表面粗糙度為適度範圍,可防止當於後續步驟中形成包含各種硬化組合物之硬化樹脂層時等產生異常。
作為向基材膜添加粒子之方法,並無特別限定,可採用先前公知之方法。例如可於製造聚酯等原料樹脂之任意階段進行添加。於基材膜為聚酯之情形時,較佳為在酯化或酯交換反應結束後再進行添加為宜。
(其他成分) 於基材膜中,亦可視需要,含有例如先前公知之抗氧化劑、抗靜電劑、熱穩定劑、潤滑劑、染料、顏料、紫外線吸收劑等作為其他成分。尤其是為了確保本積層膜之耐候性,基材膜較佳為含有紫外線吸收劑。
(厚度) 關於基材膜之厚度,就能夠獲得所需之足夠之剛性及反覆彎折性之方面而言,例如較佳為9 μm以上,更佳為12 μm以上,進而較佳為15 μm以上,尤佳為20 μm以上。又,基材膜之厚度較佳為125 μm以下,更佳為100 μm以下,進而較佳為75 μm以下。再者,於基材膜為多層構成之情形時,較佳為所有層之合計厚度處於上述範圍內。
(基材膜之製造方法) 基材膜例如可將樹脂組合物藉由熔融製膜方法或溶液製膜方法而形成。於多層結構之情形時,亦可共擠出。 又,基材膜亦可為經單軸延伸或雙軸延伸者,就剛性之方面而言,較佳為雙軸延伸膜。
以下,對作為基材膜之一例之聚酯膜之製造方法進行說明。一般而言,首先,藉由公知之手法將未乾燥或乾燥聚酯小片供給至熔融擠出裝置中,加熱至各聚合物之熔點以上之溫度以使之熔融。繼而,將熔融之聚合物自模頭擠出,於冷卻轉筒上急冷固化至玻璃轉移溫度以下之溫度,而獲得實質上非晶狀態之未配向片。於該情形時,為了提高片之平面性,較佳為提高片與冷卻轉筒之密接性,本發明中,較佳為採用靜電施加密接法及/或液體塗佈密接法。
就膜強度之觀點而言,較佳為將以上述方式獲得之片於雙軸方向上進行延伸以膜化。對延伸條件具體地進行說明,將未延伸片於較佳為縱方向(機械方向)上並在70~145℃、較佳為80~120℃下以2.0~4.5倍、較佳為3.0~4.0倍之延伸倍率進行延伸,而製成單軸延伸膜。 繼而,在與縱方向(機械方向)正交之方向即橫方向(寬度方向)上在90~160℃下以3.0~6.5倍、3.5~6.0倍之延伸倍率進行延伸,而製成雙軸延伸膜。
繼而,較佳為於210~260℃下,在拉伸下或30%以內之鬆弛下進行10~600秒鐘熱處理(熱固定)。然後,較佳為於熱處理之最高溫度區及/或熱處理出口之冷卻區,在縱方向及/或橫方向上進行1~10%鬆弛。
再者,於欲將基材膜之延遲(以下,有時僅記載為「Re」)抑制得較小之情形時,關於上述之延伸倍率,較佳為縱方向與橫方向之延伸倍率之差較小,其差較佳為0.5倍以下,更佳為0.3倍以下。又,熱處理溫度亦可較低,可較佳為200℃以下,更佳為180℃以下,進而較佳160℃以下。藉由滿足上述範圍,可獲得具有一定水準以下之Re之基材膜,與膜寬度方向之採取位置無關。
再者,膜之縱方向(機械方向)係指膜之製造步驟中膜前進之方向,即膜卷之捲繞方向。橫方向(寬度方向)係指與膜面平行且與長度方向正交之方向,即製成膜卷狀時與捲筒之中心軸平行之方向。
(基材膜之特性) 就能夠獲得所需之足夠之剛性及反覆彎折性之方面而言,基材膜之拉伸彈性模數(JIS K 7161:2014)較佳為2.0 GPa以上,更佳為2.5 GPa以上,進而較佳為3.0 GPa以上。又,基材膜之拉伸彈性模數較佳為9.0 GPa以下,更佳為8.0 GPa以下,進而較佳為7.0 GPa以下。
(延遲(Re)) 波長590 nm之光以0°之角度入射至基材膜、尤其是聚酯膜面時之延遲(Re)較佳為1400 nm以下,更佳為1200 nm以下,尤佳為1000 nm以下。波長590 nm之光以0°之角度入射至聚酯膜面時之延遲(Re)越接近0越佳,可為50 nm以上,進而為100 nm以上。
波長590 nm之光以0°之角度入射至聚酯膜面時之快軸方向(寬度方向)之延遲(Re)之變化量較佳為5 nm/m以上,更佳為10 nm/m以上,進而較佳為20 nm/m以上,尤佳為50 nm/m以上。 又,波長590 nm之光以0°之角度入射至聚酯膜面時之快軸方向(寬度方向)之延遲(Re)之變化量較佳為600 nm/m以下,更佳為550 nm/m以下。 此處,波長590 nm之光以0°之角度入射至聚酯膜面時之快軸方向(寬度方向)之延遲(Re)之變化量係以如下方式算出,即算出自3.5 cm×3.5 cm之膜樣品獲得之延遲之最大值與最小值的差,用該差除以膜樣品中獲得了最大值及最小值之位置在快軸方向(寬度方向)的距離(m)而算出。具體而言,藉由以下之式算出。 快軸方向(寬度方向)之延遲(Re)之變化量(nm/m)=(延遲之最大值-延遲之最小值)/最大值位置與最小值位置於快軸方向(寬度方向)之距離(m)
進而,滿足上述Re之條件之範圍之寬度相對於膜總寬度,較佳為50%以上,更佳為55%以上,尤佳為60%以上。再者,滿足上述Re之條件之範圍之寬度相對於膜總寬度,亦可為100%。 尤其是每1 m寬度之快軸方向(寬度方向)之延遲(Re)之變化量為10~600 nm/m之範圍的寬度相對於膜總寬度,較佳為50%以上,更佳為60%以上,進而較佳為70%以上。藉由將快軸方向(寬度方向)之延遲(Re)之變化量為10~600 nm/m之範圍所占之比例設為上述範圍,例如於對應於40英吋以上、較佳為50英吋以上之大畫面顯示器之寬幅膜中,可抑制膜面內之延遲之變動範圍,在與各種光源組合使用時能減少虹不均之產生。
<硬化樹脂層(A)及硬化樹脂層(B)> 本發明之積層膜具有硬化樹脂層(A)及硬化樹脂層(B)。本積層膜具備於基材膜之至少一面設置硬化樹脂層(A),於其表面側進而設置硬化樹脂層(B)而成之積層構成。硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')之硬化物。
硬化樹脂層(A)之厚度較佳為1.0 μm以下,更佳為0.6 μm以下,進而較佳為0.4 μm以下,尤佳為0.2 μm以下。硬化樹脂層(A)之厚度之下限值並無特別限定,例如為0.01 μm以上、較佳為0.03 μm以上為宜。
硬化樹脂層(B)之厚度較佳為10.0 μm以下,更佳為8.0 μm以下,進而較佳為6.0 μm以下,尤佳為5.0 μm以下。硬化樹脂層(B)之厚度之下限值並無特別限定,例如較佳為1.0 μm以上。藉由將硬化樹脂層(B)之厚度設為上述下限值以上,可利用硬化樹脂層(B)適當保護基材膜。又,若將硬化樹脂層(B)之厚度設為上述上限值以下,則具有硬化樹脂層(B)之積層膜可防止捲縮或熱皺,可確保良好之平面性。
再者,關於硬化樹脂層(A)及硬化樹脂層(B)之合計厚度,就彎折性之觀點而言,較佳為10.0 μm以下,更佳為8.0 μm以下,進而較佳為6.0 μm以下,尤佳為5.0 μm以下。硬化樹脂層(A)及硬化樹脂層(B)之合計厚度之下限值並無特別限定,例如較佳為1.0 μm以上。
硬化樹脂層(A)及硬化樹脂層(B)各自之厚度例如可使用SAICAS(Daipla Wintes公司製造之DN-01型)進行測定。具體而言,首先,使用東亞合成公司製造之「Aron Alpha系列」將具有硬化樹脂層(A)及硬化樹脂層(B)之積層膜接著於玻璃製載玻片上,而製成SAICS(SAICAS)用樣品。將所獲得之SAICS用樣品設置於SAICAS(Daipla Wintes公司製造之DN-01型)中,首先利用金剛石刀尖切出寬度300 μm、深度1 μm之切口(切出切口時,使用V型角80°、切削角5°、退刀角5°之單晶金剛石刀)。測定係將寬度300 μm之氮化硼切刀設置於事先切出了寬度300 μm之切口之樣品,以任意深度、水平速度1 μm/s、垂直速度0.5 μm/s測定各硬化樹脂層之膜厚(測定時,使用刀片寬度0.3 mm、切削角20°、退刀角10°之氮化硼製刀)。根據垂直位移位置及切削力測定材料強度,而算出各層之厚度。
硬化樹脂層(B)表面之波長380 nm之透光率較佳為3.0%以下,更佳為2.8%以下。硬化樹脂層(B)表面之波長380 nm之透光率之下限值並無特別限定,亦可為0%。藉由將硬化樹脂層(B)表面之波長380 nm之透光率設為上述範圍內,可防止供貼合之對手構件因紫外線而劣化。測定波長380 nm之透光率時,例如可使用分光光度計(日立高新技術公司製造,U-3900H)。
硬化樹脂層(B)表面於波長550 nm時之絕對反射率較佳為1%以上,更佳為2%以上,進而較佳為3%以上。又,硬化樹脂層(B)表面於波長550 nm時之絕對反射率較佳為10%以下,更佳為8%以下,進而較佳為6%以下。藉由將硬化樹脂層(B)表面於波長550 nm時之絕對反射率設為上述範圍內,亦能夠在用作顯示畫面之覆蓋膜時賦予防眩光性。
硬化樹脂層(B)表面於波長550 nm時之絕對反射率係藉由以下方法所測得之值。首先,於積層膜之未積層硬化樹脂層之面側貼附黑色膠帶,使用分光光度計測定硬化樹脂層面側於550 nm波長時之絕對反射率。絕對反射率係不使用基準板,以積層膜之硬化樹脂層面所反射之光量相對於直接測定來自光源之光所得之光量的比率算出。 絕對反射率(%)=積層膜之硬化樹脂層面所反射之光量/使用之光量×100
又,硬化樹脂層(B)亦可事先調整折射率,以使其不易影響光干涉。例如,若製成折射率約為1.53之低折射層,則可藉由採用如能夠達成該低折射率之硬化樹脂層(B)之構成而實現兼顧所需之耐摩擦性與反覆彎折性。
就減輕干渉不均之方面而言,硬化樹脂層(B)之折射率較佳為1.46~1.60,進而較佳為1.49~1.57。
硬化樹脂層(A)及硬化樹脂層(B)(以下,將硬化樹脂層(A)及硬化樹脂層(B)統稱為硬化樹脂層)之斷裂伸長率較佳為0.5%以上,更佳為1.0%以上,進而較佳為1.5%以上。又,硬化樹脂層之斷裂伸長率較佳為3.0%以下,更佳為2.5%以下,進而較佳為2.0%以下。藉由將硬化樹脂層之斷裂伸長率設為上述範圍內,容易獲得實用上之反覆彎折特性(耐彎曲性)優異之積層膜。 再者,此處,斷裂伸長率係積層有硬化樹脂層(A)及硬化樹脂層(B)之硬化樹脂層之值。
硬化樹脂層之斷裂伸長率係藉由以下之方法所測得之值。首先,將於基材膜之表面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之積層膜切成寬度10 mm、長度150 mm之帶狀而製成試驗片,以初始夾頭間距離達到50 mm之方式用拉伸試驗機之夾頭夾住試驗片。然後,以拉伸速度5 m/分鐘拉伸樣品,利用目視確認硬化樹脂層產生龜裂之位移,並藉由以下式算出伸長率。 伸長率(%)=(斷裂時長度-初始長度)/初始長度×100
(各層之表面狀態) 硬化樹脂層(A)之表面可凹凸,亦可平坦,就外觀(表面光澤)之觀點而言,較佳為平坦。 又,硬化樹脂層(B)之表面可凹凸,亦可平坦,就外觀(表面光澤)之觀點而言,較佳為平坦。另一方面,就賦予防眩性之觀點而言,可凹凸。可視要求特性來任意地選擇。
<硬化性樹脂組合物> 以下,對於用以形成硬化樹脂層(A)及硬化樹脂層(B)之硬化性樹脂組合物(A')及硬化性樹脂組合物(B')進行說明。
(硬化性樹脂組合物(A')) 硬化性樹脂組合物(A')含有(A-a)黏合劑,較佳為進而包含(A-b)交聯劑及(A-c)粒子。以下,對各成分詳細地進行說明。
(A-a)黏合劑 作為硬化性樹脂組合物(A')中所使用之(A-a)黏合劑,可使用樹脂。作為構成該黏合劑之樹脂,可例舉:聚酯樹脂、丙烯酸系樹脂、胺基甲酸酯樹脂等。又,亦可併用聚乙烯(聚乙烯醇、聚氯乙烯、氯乙烯-乙酸乙烯酯共聚物等)、聚伸烷基二醇、聚伸烷基亞胺、甲基纖維素、羥基纖維素、澱粉類等作為黏合劑。該等黏合劑之中,較佳為使用選自由聚酯樹脂、丙烯酸樹脂及聚胺基甲酸酯樹脂所組成之群中之至少1種,更佳為使用聚酯樹脂。
(A-a)黏合劑之含量相對於硬化性樹脂組合物(A')中之總不揮發成分量(總固形物成分量),較佳為1~90質量%,更佳為3~85質量%,進而較佳為5~80質量%。藉由將黏合劑之含量設為上述範圍內,可確保良好之造膜性。
(聚酯樹脂) 聚酯樹脂係使作為主要構成成分之例如下述之多元羧酸及多元羥基化合物縮聚而成。即,作為多元羧酸,可使用對苯二甲酸、間苯二甲酸、鄰苯二甲酸、苯二甲酸、4,4'-二苯基二羧酸、1,4-環己烷二羧酸、對苯二甲酸2-磺酸鉀、間苯二甲酸5-磺酸鈉、2,6-萘二甲酸、1,5-萘二羧酸、1,4-萘二羧酸、2,7-萘二羧酸、己二酸、壬二酸、癸二酸、十二烷二羧酸、戊二酸、琥珀酸、偏苯三甲酸、均苯三甲酸、均苯四甲酸、偏苯三甲酸酐、鄰苯二甲酸酐、對羥基苯甲酸、偏苯三甲酸單鉀鹽及其等之酯形成性衍生物等。作為多元羥基化合物,可使用乙二醇、1,2-丙二醇、1,3-丙二醇(1,3-propylene glycol)、1,3-丙二醇(1,3-propanediol)、1,4-丁二醇、1,6-己二醇、2-甲基-1,5-戊二醇、新戊二醇、1,4-環己烷二甲醇、對苯二甲醇、雙酚A-乙二醇加成物、二乙二醇、三乙二醇、聚乙二醇、聚丙二醇、聚四亞甲基二醇、聚四氫呋喃二醇、二羥甲基丙酸、甘油、三羥甲基丙烷、二羥甲基乙基磺酸鈉、二羥甲基丙酸鉀等。只要自該等化合物之中分別適當選擇1種以上,並藉由常規方法之縮聚反應來合成聚酯樹脂即可。
(丙烯酸系樹脂) 作為丙烯酸系樹脂,並無特別限制,只要於發揮本發明之效果之範圍內適當選定即可,例如較佳為(甲基)丙烯酸酯。 作為單官能之(甲基)丙烯酸酯,可例舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸月桂酯等(甲基)丙烯酸烷基酯;(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸4-羥基丁酯、羥基富馬酸單丁酯、羥基伊康酸單丁酯等含羥基之(甲基)丙烯酸酯等。 又,作為二官能(甲基)丙烯酸酯,例如可例舉:1,4-丁二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、1,6-己二醇二(甲基)丙烯酸酯、1,9-壬二醇二(甲基)丙烯酸酯、三環癸烷二甲醇二(甲基)丙烯酸酯等烷二醇二(甲基)丙烯酸酯;雙酚A環氧乙烷改性二(甲基)丙烯酸酯、雙酚F環氧乙烷改性二(甲基)丙烯酸酯等雙酚改性二(甲基)丙烯酸酯;聚乙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、胺基甲酸酯二(甲基)丙烯酸酯、環氧二(甲基)丙烯酸酯等。
又,作為三官能以上之多官能(甲基)丙烯酸酯,可例舉:二季戊四醇六(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯;環氧乙烷改性二季戊四醇六(甲基)丙烯酸酯、環氧乙烷改性季戊四醇四(甲基)丙烯酸酯等環氧乙烷改性(甲基)丙烯酸酯;異三聚氰酸環氧乙烷改性三(甲基)丙烯酸酯、ε-己內酯改性異氰脲酸三(丙烯醯氧基乙基)酯等異三聚氰酸改性三(甲基)丙烯酸酯。 進而,作為(甲基)丙烯酸酯,可例舉具有環氧基之(甲基)丙烯酸酯,例如可例舉:(甲基)丙烯酸縮水甘油酯、(甲基)丙烯酸3,4-環氧環己基酯、(甲基)丙烯酸3,4-環氧環己基甲酯等。其等之中,尤其是若考慮反應性之良好性、材料之使用容易性,則較佳為(甲基)丙烯酸縮水甘油酯,尤佳為甲基丙烯酸縮水甘油酯。 又,作為(甲基)丙烯酸酯,可適宜地例舉:丙烯酸、甲基丙烯酸、(甲基)丙烯酸羧基乙酯、(甲基)丙烯酸羧基戊酯、伊康酸、檸康酸、馬來酸、富馬酸、丁烯酸、異丁烯酸等之含羧基之(甲基)丙烯酸酯。
(胺基甲酸酯樹脂) 胺基甲酸酯樹脂係於分子內具有胺基甲酸酯結構之高分子化合物。通常胺基甲酸酯樹脂係藉由多元醇與聚異氰酸酯之反應來製作。作為多元醇,可例舉:聚碳酸酯多元醇類、聚酯多元醇類、聚醚多元醇類、聚烯烴多元醇類、丙烯酸多元醇類,該等化合物可單獨使用,亦可使用複數種。
聚碳酸酯多元醇類可藉由脫醇反應自多元醇類與碳酸酯化合物獲得。作為多元醇類,可例舉:乙二醇、1,2-丙二醇、1,3-丙二醇、1,2-丁二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、1,4-環己烷二醇、1,4-環己烷二甲醇、1,7-庚二醇、1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、新戊二醇、3-甲基-1,5-戊二醇、3,3-二羥甲基庚烷等。作為碳酸酯化合物,可例舉:碳酸二甲酯、碳酸二乙酯、碳酸二苯酯、碳酸乙二酯等,作為自該等反應獲得之聚碳酸酯系多元醇類,例如可例舉:聚碳酸(1,6-伸己基)酯、聚碳酸(3-甲基-1,5-伸戊基)酯等。
作為聚酯多元醇類,可例舉:多元羧酸(丙二酸、琥珀酸、戊二酸、己二酸、庚二酸、辛二酸、癸二酸、富馬酸、馬來酸、對苯二甲酸、間苯二甲酸等)或其等之酸酐與多元醇(乙二醇、二乙二醇、三乙二醇、丙二醇、二丙二醇、三丙二醇、丁二醇、1,3-丁二醇、1,4-丁二醇、2,3-丁二醇、2-甲基-1,3-丙二醇、1,5-戊二醇、新戊二醇、1,6-己二醇、3-甲基-1,5-戊二醇、2-甲基-2,4-戊二醇、2-甲基-2-丙基-1,3-丙二醇、1,8-辛二醇、2,2,4-三甲基-1,3-戊二醇、2-乙基-1,3-己二醇、2,5-二甲基-2,5-己二醇、1,9-壬二醇、2-甲基-1,8-辛二醇、2-丁基-2-乙基-1,3-丙二醇、2-丁基-2-己基-1,3-丙二醇、環己烷二醇、雙羥甲基環己烷、二甲醇苯、雙羥基乙氧基苯、烷基二烷醇胺、內酯二醇等)發生反應所獲得者。
作為聚醚多元醇類,可例舉:聚乙二醇、聚丙二醇、乙二醇-丙二醇共聚物、聚四亞甲基醚二醇、聚六亞甲基醚二醇等。
作為用以獲得胺基甲酸酯樹脂之異氰酸酯化合物,例示出:甲苯二異氰酸酯、苯二甲基二異氰酸酯、亞甲基二苯基二異氰酸酯、苯二異氰酸酯、萘二異氰酸酯、聯甲苯胺二異氰酸酯等芳香族二異氰酸酯;α,α,α',α'-四甲基苯二甲基二異氰酸酯等具有芳香環之脂肪族二異氰酸酯;亞甲基二異氰酸酯、伸丙基二異氰酸酯、離胺酸二異氰酸酯、三甲基六亞甲基二異氰酸酯、六亞甲基二異氰酸酯等脂肪族二異氰酸酯;環己烷二異氰酸酯、甲基環己烷二異氰酸酯、異佛爾酮二異氰酸酯、二環己基甲烷二異氰酸酯、亞異丙基二環己基二異氰酸酯等脂環族二異氰酸酯等。其等可單獨使用,亦可併用複數種。
合成胺基甲酸酯樹脂時亦可使用擴鏈劑,作為擴鏈劑,只要具有2個以上會與異氰酸基反應之活性基,則無特別限制,一般而言,可主要使用具有2個羥基或胺基之擴鏈劑。
作為具有2個羥基之擴鏈劑,例如可例舉:乙二醇、丙二醇、丁二醇等脂肪族二醇、苯二甲醇、雙羥基乙氧基苯等芳香族二醇、新戊二醇羥基特戊酸酯等酯二醇等二醇類。又,作為具有2個胺基之擴鏈劑,例如可例舉:甲苯二胺、苯二甲胺、二苯基甲烷二胺等芳香族二胺;乙二胺、丙二胺、己二胺、2,2-二甲基-1,3-丙二胺、2-甲基-1,5-戊二胺、三甲基己二胺、2-丁基-2-乙基-1,5-戊二胺、1,8-辛二胺、1,9-壬二胺、1,10-癸二胺等脂肪族二胺;1-胺基-3-胺基甲基-3,5,5-三甲基環己烷、二環己基甲烷二胺、異丙基環己基-4,4'-二胺、1,4-二胺基環己烷、1,3-雙胺基甲基環己烷等脂環族二胺等。
(具有縮合多環式芳香族結構之化合物) 於本發明之積層膜中,較佳為形成硬化樹脂層(A)之硬化性樹脂組合物(A')所包含之(A-a)黏合劑包含具有縮合多環式芳香族結構之化合物。藉由包含該化合物,變得容易調整硬化樹脂層(A)之折射率。
作為縮合多環式芳香族,可例舉如下述式所例示之萘、蒽、菲、稠四苯、苯并[a]蒽、苯并[a]菲、芘、苯并[c]菲、苝等。 具有縮合多環式芳香族結構之化合物係指包含如下述式所例示之縮合多環式芳香族之化合物、或包含源自如下述式所例示之縮合多環式芳香族之結構的化合物。
[化1]
若考慮於聚酯膜等基材膜上之塗佈性,則作為具有縮合多環式芳香族結構之化合物,例如較佳為多環式聚酯樹脂等高分子化合物。尤其是具有縮合多環式芳香族結構之化合物較佳為多環式聚酯樹脂,由於多環式聚酯樹脂中可導入更多之縮合多環式芳香族,故而較佳。再者,於本說明書中,多環式聚酯樹脂係具有縮合多環式芳香族結構之聚酯樹脂。
作為將縮合多環式芳香族結構組入至聚酯樹脂之方法,例如有如下方法:向縮合多環式芳香族導入2個或2個以上之作為取代基之羥基而形成二醇成分或多元羥基成分;或者導入2個或2個以上之羧酸基而以二羧酸成分或多元羧酸成分用於聚酯樹脂之聚合。
於積層膜之製造步驟中,就不易著色之方面而言,硬化樹脂層(A)所包含之具有縮合多環式芳香族結構之化合物較佳為具有萘骨架之化合物。又,就與形成在硬化樹脂層(A)上之硬化樹脂層(B)之密接性、或透明性良好之方面而言,可適宜地使用組入有萘骨架之樹脂作為聚酯構成成分。作為該萘骨架,具代表性者可例舉1,5-萘二羧酸及2,6-萘二甲酸、2,7-萘二羧酸。
再者,藉由向縮合多環式芳香族除導入羥基或羧酸基以外,還導入含有硫元素之取代基、苯基等芳香族取代基、鹵素元素基等,可有望提昇折射率,就塗佈性或密接性之觀點而言,亦可導入烷基、酯基、醯胺基、磺酸基、羧酸基、羥基等取代基。
具有縮合多環式芳香族之化合物中縮合多環式芳香環所占之比例較佳為5~80質量%,更佳為10~60質量%。關於縮合多環式芳香環所占之比例,例如若為具有萘環作為縮合多環式芳香族之聚酯樹脂,則意指該聚酯樹脂中之萘環含量。 又,硬化性樹脂組合物(A')中之具有縮合多環式芳香族之化合物之含量相對於硬化性樹脂組合物A中之總不揮發成分量(總固形物成分量),較佳為80質量%以下,更佳為5~70質量%,進而較佳為10~50質量%。 藉由將硬化性樹脂組合物(A')中之具有縮合多環式芳香族之化合物之含量設為上述範圍內,變得容易調整硬化樹脂層(A)本身之折射率,而容易減少硬化樹脂層(B)形成後之干涉條紋產生。再者,具有縮合多環式芳香族之化合物之含量例如可藉由如下方式求出:利用適當之溶劑或溫水對硬化樹脂層(A)進行溶解萃取,利用層析法進行分取,或利用NMR或IR對結構進行解析,進而利用熱分解GC-MS(氣相層析質譜分析)或光學分析等進行解析。
(A-b)交聯劑 作為交聯劑,可例舉:㗁唑啉化合物、三聚氰胺化合物、環氧化合物、碳二醯亞胺系化合物、異氰酸酯系化合物等。該等交聯劑之中,就提昇與基材膜之接著性之觀點而言,較佳為使用選自由㗁唑啉化合物、環氧化合物、異氰酸酯化合物、三聚氰胺化合物及碳二醯亞胺化合物所組成之群中之至少1種,更佳為使用選自㗁唑啉化合物、環氧化合物及異氰酸酯化合物中之至少1種,進而較佳為使用選自㗁唑啉化合物及環氧化合物中之至少1種,尤佳為併用㗁唑啉化合物及環氧化合物。
交聯劑之含量相對於硬化性樹脂組合物(A')中之總不揮發成分量(總固形物成分量),較佳為2~80質量%,更佳為4~60質量%,進而較佳為10~40質量%。藉由將交聯劑之含量設為上述範圍內,可更有效地提昇作為硬化物之硬化樹脂層(A)與硬化樹脂層(B)之密接性。
(㗁唑啉化合物) 㗁唑啉化合物係於分子內具有㗁唑啉基之化合物,尤佳為含有㗁唑啉基之聚合物。含有㗁唑啉基之聚合物可藉由使加成聚合性含㗁唑啉基之單體單獨聚合或與其他單體聚合而製作。作為加成聚合性含㗁唑啉基之單體,可例舉:2-乙烯基-2-㗁唑啉、2-乙烯基-4-甲基-2-㗁唑啉、2-乙烯基-5-甲基-2-㗁唑啉、2-異丙烯基-2-㗁唑啉、2-異丙烯基-4-甲基-2-㗁唑啉、2-異丙烯基-5-乙基-2-㗁唑啉等,可使用其等之1種或2種以上之混合物。其中,2-異丙烯基-2-㗁唑啉由於工業上亦容易獲取,故而較佳。作為其他單體,只要為能與加成聚合性含㗁唑啉基之單體共聚之單體,則無限制,例如可例舉:(甲基)丙烯酸烷基酯(作為烷基,有甲基、乙基、正丙基、異丙基、正丁基、異丁基、第三丁基、2-乙基己基、環己基)等(甲基)丙烯酸酯類;丙烯酸、甲基丙烯酸、伊康酸、馬來酸、富馬酸、丁烯酸、苯乙烯磺酸及其鹽(鈉鹽、鉀鹽、銨鹽、三級胺鹽等)等不飽和羧酸類;丙烯腈、甲基丙烯腈等不飽和腈類;(甲基)丙烯醯胺、N-烷基(甲基)丙烯醯胺、N,N-二烷基(甲基)丙烯醯胺、(作為烷基,有甲基、乙基、正丙基、異丙基、正丁基、異丁基、第三丁基、2-乙基己基、環己基等)等不飽和醯胺類;乙酸乙烯酯、丙酸乙烯酯等乙烯酯類;甲基乙烯基醚、乙基乙烯基醚等乙烯醚類;乙烯、丙烯等α-烯烴類;氯乙烯、偏二氯乙烯、氟乙烯等含鹵素之α,β-不飽和單體類;苯乙烯、α-甲基苯乙烯等α,β-不飽和芳香族單體等,可使用其等之1種或2種以上之單體。
(三聚氰胺化合物) 三聚氰胺化合物係於化合物中具有三聚氰胺骨架之化合物。例如可使用羥烷化三聚氰胺衍生物、使羥烷化三聚氰胺衍生物與醇反應而部分或完全醚化後所得之化合物、及其等之混合物。作為用於醚化之醇,可適宜地使用甲醇、乙醇、異丙醇、正丁醇、異丁醇等。又,作為三聚氰胺化合物,單體、或二聚物以上之多聚體均可,或者可使用其等之混合物。進而,亦可使用使三聚氰胺之一部分與脲等共縮合所得者,為了提昇三聚氰胺化合物之反應性,亦可使用觸媒。
(環氧化合物) 環氧化合物係於分子內具有環氧基之化合物,例如可例舉:表氯醇與乙二醇、聚乙二醇、甘油、聚甘油、雙酚A等之羥基或胺基之縮合物,有聚環氧化合物、二環氧化合物、單環氧化合物、縮水甘油胺化合物等。作為聚環氧化合物,例如可例舉:山梨糖醇聚縮水甘油醚、聚甘油聚縮水甘油醚、季戊四醇聚縮水甘油醚、二甘油聚縮水甘油醚、三縮水甘油基三(2-羥基乙基)異氰酸酯、甘油聚縮水甘油醚、三羥甲基丙烷聚縮水甘油醚等。作為二環氧化合物,例如可例舉:新戊二醇二縮水甘油醚、1,6-己二醇二縮水甘油醚、間苯二酚二縮水甘油醚、乙二醇二縮水甘油醚、聚乙二醇二縮水甘油醚、丙二醇二縮水甘油醚、聚丙二醇二縮水甘油醚、聚四亞甲基二醇二縮水甘油醚等。作為單環氧化合物,例如可例舉烯丙基縮水甘油醚、2-乙基己基縮水甘油醚、苯基縮水甘油醚,作為縮水甘油胺化合物,可例舉N,N,N',N',-四縮水甘油基-間苯二甲胺、1,3-雙(N,N-二縮水甘油基胺基)環己烷等。
(碳二醯亞胺系化合物) 碳二醯亞胺系化合物係具有碳二醯亞胺結構之化合物,雖為於分子內具有1個以上碳二醯亞胺結構之化合物,但為了使密接性等更為良好,更佳為於分子內具有2個以上碳二醯亞胺結構之聚碳二醯亞胺系化合物。
碳二醯亞胺系化合物可藉由先前公知之技術來合成,一般而言,可使用二異氰酸酯化合物之縮合反應。作為二異氰酸酯化合物,並無特別限定,芳香族系、脂肪族系均可使用,具體而言,可例舉:甲苯二異氰酸酯、二甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、苯二異氰酸酯、萘二異氰酸酯、六亞甲基二異氰酸酯、三甲基六亞甲基二異氰酸酯、環己烷二異氰酸酯、甲基環己烷二異氰酸酯、異佛爾酮二異氰酸酯、二環己基二異氰酸酯、二環己基甲烷二異氰酸酯等。
進而,於不會使本發明之效果消失之範圍內,為了提昇聚碳二醯亞胺系化合物之水溶性或水分散性,亦可添加界面活性劑,或添加聚環氧烷、二烷基胺基醇之四級銨鹽、羥基烷磺酸鹽等親水性單體來使用。
(異氰酸基系化合物) 異氰酸酯系化合物係異氰酸酯、或具有以封端異氰酸酯為代表之異氰酸酯衍生物結構之化合物。作為異氰酸酯,例如例示出:甲苯二異氰酸酯、苯二甲基二異氰酸酯、亞甲基二苯基二異氰酸酯、苯二異氰酸酯、萘二異氰酸酯等芳香族異氰酸酯;α,α,α',α'-四甲基苯二甲基二異氰酸酯等具有芳香環之脂肪族異氰酸酯;亞甲基二異氰酸酯、丙烯二異氰酸酯、離胺酸二異氰酸酯、三甲基六亞甲基二異氰酸酯、六亞甲基二異氰酸酯等脂肪族異氰酸酯;環己烷二異氰酸酯、甲基環己烷二異氰酸酯、異佛爾酮二異氰酸酯、亞甲基雙(4-環己基異氰酸酯)、亞異丙基二環己基二異氰酸酯等脂環族異氰酸酯等。又,亦可例舉該等異氰酸酯之縮二脲化物、異氰尿酸酯化物、脲二酮化物、碳二醯亞胺改性體等聚合物或衍生物。其等可單獨使用,亦可併用複數種。上述異氰酸酯之中,為了避免因紫外線產生黃變,相較於芳香族異氰酸酯,更佳為脂肪族異氰酸酯或脂環族異氰酸酯。
於以封端異氰酸酯之狀態使用之情形時,作為其封端劑,例如可例舉:重亞硫酸鹽類、苯酚、甲酚、乙基苯酚等酚系化合物;丙二醇單甲醚、乙二醇、苄基醇、甲醇、乙醇等醇系化合物;丙二酸二甲酯、丙二酸二乙酯、乙醯乙酸甲酯、乙醯乙酸乙酯、乙醯丙酮等活性亞甲基系化合物;丁基硫醇、十二硫醇等硫醇系化合物;ε-己內醯胺、δ-戊內醯胺等內醯胺系化合物;二苯基苯胺、苯胺、伸乙基亞胺等胺系化合物;乙醯苯胺、乙酸醯胺之醯胺化合物、甲醛、乙醛肟、丙酮肟、甲基乙基酮肟、環己酮肟等肟系化合物,其等可單獨使用亦可併用2種以上。
(A-c)粒子 就對硬化樹脂層(A)賦予高折射率之觀點而言,硬化性樹脂組合物(A')亦可含有粒子。作為粒子,可例舉:氧化矽、碳酸鈣、碳酸鎂、碳酸鋇、硫酸鈣、磷酸鈣、磷酸鎂、高嶺土、氧化鋁、氧化鈦等無機粒子;丙烯酸樹脂、苯乙烯樹脂、脲樹脂、酚樹脂、環氧樹脂、苯并胍胺樹脂等有機粒子等。 其中,硬化樹脂層(A)較佳為含有金屬氧化物作為(A-c)粒子。藉由使硬化樹脂層(A)含有金屬氧化物,可提昇其折射率,可更有效地抑制干涉條紋產生。
(金屬氧化物) 作為金屬氧化物,較佳為使用具有高折射率之金屬氧化物,較佳為使用折射率為1.7以上之金屬氧化物。作為金屬氧化物之具體例,例如可例舉:二氧化矽、氧化鋯、氧化鋁(alumina)、氧化鈦、氧化錫、氧化釔、氧化銻、氧化銦、氧化鋅、氧化錫銻、氧化銦錫等,其等可單獨使用,亦可使用2種以上。其中,更適宜使用選自氧化鋯及氧化鈦中之至少1種,尤其是就耐候性之觀點而言,更適宜使用氧化鋯。
金屬氧化物有密接性根據使用形態不同而降低之顧慮,因此較佳為以粒子之狀態使用。又,粒子平均粒徑就透明性之觀點而言,較佳為100 nm以下,更佳為50 nm以下,進而較佳為25 nm以下。又,關於平均粒徑之下限值,並無特別限定,就分散性之方面而言,較佳為5 nm以上,進而較佳為10 nm以上。
又,於硬化樹脂層(A)中亦可含有上述金屬氧化物以外之粒子,以改良固定性、滑動性。作為金屬氧化物以外之粒子之具體例,可例舉氧化矽、高嶺土、碳酸鈣、有機粒子等,其中,就滑動性之觀點而言,適宜使用氧化矽。就膜之透明性之觀點而言,金屬氧化物以外之粒子之平均粒徑較佳為1.0 μm以下,更佳為0.5 μm以下,進而較佳為0.2 μm以下。又,關於金屬氧化物以外之粒子之平均粒徑之下限值,並無特別限定,就分散性之方面而言,較佳為20 nm以上,進而較佳為40 nm以上。 再者,作為粒子,就賦予易滑性之方面而言,較佳為使用粒徑不同之2種粒子,進而較佳為併用粒徑不同之金屬氧化物與金屬氧化物以外之粒子。 上述平均粒徑例如為藉由雷射繞射・散射法、動態光散射法(DLS)、離心沈澱法、粒子軌跡解析法(PTA)、掃描式電子顯微鏡(SEM)等所測定之值,若為市售品,則可採用目錄值。
粒子之平均粒徑可基於斯托克斯阻力值並藉由沈澱法算出。作為測定裝置,例如可使用島津製作所公司(股)製造之離心沈澱式粒度分佈測定裝置SA-CP3型。
形成硬化樹脂層(A)之硬化性樹脂組合物(A')中(A-c)粒子相對於總不揮發成分量(總固形物成分量)之含量較佳為3質量%以上,更佳為5質量%以上,進而較佳為7質量%以上。又,硬化性樹脂組合物(A')中(A-c)粒子相對於總不揮發成分量(總固形物成分量)之含量較佳為70質量%以下,更佳為50質量%以下,進而較佳為40質量%以下,尤佳為30質量%以下。藉由將(A-c)粒子之含量設為上述範圍內,能兼顧積層膜之透明性與低干涉效果。
於本實施方式中,尤其是藉由於硬化樹脂層(A)中組合使用金屬化合物等粒子(A-c)及上述多環式聚酯樹脂(具有縮合多環式芳香族結構之聚酯樹脂),可獲得更優異之低干涉效果。
(硬化性樹脂組合物(B')) 硬化性樹脂組合物B包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物。 硬化性樹脂組合物(B')所包含之(X)胺基甲酸酯(甲基)丙烯酸酯之質量平均分子量較佳為100以上,進而較佳為200以上,進而更佳為400以上。另一方面,關於上限值,較佳為500,000以下,進而較佳為400,000以下,進而更佳為250,000以下。
再者,於本發明中,當使用「(甲基)丙烯酸」這一表述時,意指「丙烯酸」與「甲基丙烯酸」之一者或兩者。「(甲基)丙烯酸酯」「(甲基)丙烯醯基」亦同樣如此。
((X)胺基甲酸酯(甲基)丙烯酸酯) 胺基甲酸酯(甲基)丙烯酸酯係使異氰酸酯系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者;或使異氰酸酯系化合物、多元醇系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者。胺基甲酸酯(甲基)丙烯酸酯可單獨使用,或併用2種以上。
作為異氰酸酯系化合物,例如可例舉:芳香族系聚異氰酸酯、脂肪族系聚異氰酸酯、脂環式系聚異氰酸酯等聚異氰酸酯系化合物。其中,異氰酸酯系化合物較佳為二異氰酸酯化合物。又,作為異氰酸酯系化合物,亦可使用將二異氰酸酯化合物進行異氰尿酸酯化而成之具有異氰尿酸酯骨架的異氰酸酯系化合物。
作為上述芳香族系聚異氰酸酯,例如可例舉:甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、聚苯基甲烷聚異氰酸酯、改性二苯基甲烷二異氰酸酯、苯二甲基二異氰酸酯、四甲基苯二甲基二異氰酸酯、苯二異氰酸酯、萘二異氰酸酯等。
作為上述脂肪族系聚異氰酸酯,例如可例舉:六亞甲基二異氰酸酯、五亞甲基二異氰酸酯、三甲基六亞甲基二異氰酸酯、離胺酸二異氰酸酯、離胺酸三異氰酸酯等。
作為上述脂環式系聚異氰酸酯,例如可例舉:氫化二苯基甲烷二異氰酸酯、氫化苯二甲基二異氰酸酯、異佛爾酮二異氰酸酯、降𦯉烯二異氰酸酯、1,3-雙(異氰酸基甲基)環己烷、1,4-雙(異氰酸基甲基)環己烷等。
其等之中,就耐黃變性優異之方面而言,較佳為使用脂肪族系二異氰酸酯、脂環式二異氰酸酯。又,亦較佳為使用具有異氰尿酸酯骨架之異氰酸酯系化合物,就同樣之觀點而言,亦較佳為使用脂肪族系二異氰酸酯、或將脂環式二異氰酸酯進行異氰尿酸酯化而成之具有異氰尿酸酯骨架之異氰酸酯系化合物,其中,更佳為使用具有異氰尿酸酯骨架之異氰酸酯系化合物。 異氰酸酯系化合物可單獨使用1種,亦可併用2種以上。
作為上述含羥基之(甲基)丙烯酸酯,為具有羥基及(甲基)丙烯醯基之化合物,例如可例舉:(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸4-羥基丁酯、(甲基)丙烯酸6-羥基己酯等(甲基)丙烯酸羥基烷基酯;2-羥乙基丙烯醯基磷酸酯、鄰苯二甲酸2-(甲基)丙烯醯氧基乙基-2-羥基丙基酯、己內酯改性(甲基)丙烯酸2-羥基乙酯、二丙二醇(甲基)丙烯酸酯、脂肪酸改性-(甲基)丙烯酸縮水甘油酯、聚乙二醇單(甲基)丙烯酸酯、聚丙二醇單(甲基)丙烯酸酯、(甲基)丙烯酸2-羥基-3-(甲基)丙烯醯氧丙基酯等含有1個乙烯性不飽和基之單官能之含羥基之(甲基)丙烯酸酯;甘油二(甲基)丙烯酸酯、甲基丙烯酸2-羥基-3-丙烯醯基-氧基丙酯等含有2個乙烯性不飽和基之2官能之含羥基之(甲基)丙烯酸酯;季戊四醇三(甲基)丙烯酸酯、己內酯改性季戊四醇三(甲基)丙烯酸酯、環氧乙烷改性季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、己內酯改性二季戊四醇五(甲基)丙烯酸酯、環氧乙烷改性二季戊四醇五(甲基)丙烯酸酯等含有3個以上乙烯性不飽和基之3官能以上之含羥基之(甲基)丙烯酸酯等。其等可使用1種或組合2種以上使用。 其等之中,就反應性及通用性優異,硬化樹脂層之耐摩擦性與彎曲性之平衡性優異之方面而言,較佳為使用含有3個以上乙烯性不飽和基之(甲基)丙烯酸酯系化合物,尤佳為進而使用季戊四醇三(甲基)丙烯酸酯或二季戊四醇五(甲基)丙烯酸酯。
上述多元醇系化合物只要為具有2個以上之羥基之化合物(其中,上述含羥基之(甲基)丙烯酸酯除外)即可。
作為上述多元醇系化合物,例如可例舉:脂肪族多元醇、脂環族多元醇、聚醚系多元醇、聚酯系多元醇、聚碳酸酯系多元醇、聚烯烴系多元醇、聚丁二烯系多元醇、聚異戊二烯系多元醇、(甲基)丙烯酸系多元醇、聚矽氧烷系多元醇等。
作為上述脂肪族多元醇,例如可例舉:乙二醇、二乙二醇、丙二醇、二丙二醇、三亞甲基二醇、二羥甲基丙烷、新戊二醇、2,2-二乙基-1,3-丙二醇、2-丁基-2-乙基-1,3-丙二醇、1,4-四亞甲基二醇、1,3-四亞甲基二醇、2-甲基-1,3-三亞甲基二醇、1,5-五亞甲基二醇、1,6-六亞甲基二醇、3-甲基-1,5-五亞甲基二醇、2,4-二乙基-1,5-五亞甲基二醇、季戊四醇二丙烯酸酯、1,9-壬二醇、2-甲基-1,8-辛二醇等含有2個羥基之脂肪族醇類;木糖醇或山梨糖醇等糖醇類;甘油、三羥甲基丙烷、三羥甲基乙烷等含有3個以上羥基之脂肪族醇類等。
作為上述脂環族多元醇,例如可例舉:1,4-環己烷二醇、環己基二甲醇等環己烷二醇類;氫化雙酚A等氫化雙酚類;三環癸烷二甲醇等。
作為聚醚系多元醇,例如可例舉:聚乙二醇、聚丙二醇、聚四亞甲基二醇、聚丁二醇、聚五亞甲基二醇、聚六亞甲基二醇等含伸烷基結構之聚醚系多元醇;或者該等聚伸烷基二醇之無規或嵌段共聚物。
作為聚酯系多元醇,例如可例舉:多元醇與多元羧酸之縮聚物;環狀酯(內酯)之開環聚合物;多元醇、多元羧酸及環狀酯這3種成分之反應物等。
作為上述多元醇,例如可例舉:乙二醇、二乙二醇、丙二醇、二丙二醇、三亞甲基二醇、1,4-四亞甲基二醇、1,3-四亞甲基二醇、2-甲基-1,3-三亞甲基二醇、1,5-五亞甲基二醇、新戊二醇、1,6-六亞甲基二醇、3-甲基-1,5-五亞甲基二醇、2,4-二乙基-1,5-五亞甲基二醇、甘油、三羥甲基丙烷、三羥甲基乙烷、環己烷二醇類(1,4-環己烷二醇等)、雙酚類(雙酚A等)、糖醇類(木糖醇或山梨糖醇等)等。
作為上述多元羧酸,例如可例舉:丙二酸、馬來酸、富馬酸、琥珀酸、戊二酸、己二酸、辛二酸、壬二酸、癸二酸、十二烷二酸等脂肪族二羧酸;1,4-環己烷二羧酸等脂環式二羧酸;對苯二甲酸、間苯二甲酸、鄰苯二甲酸、2,6-萘二甲酸、對苯二甲酸、偏苯三甲酸等芳香族二羧酸等。
作為上述環狀酯,例如可例舉:丙內酯、β-甲基-δ-戊內酯、ε-己內酯等。
作為上述聚碳酸酯系多元醇,例如可例舉:多元醇與光氣之反應物、環狀碳酸酯(碳酸伸烷酯等)之開環聚合物等。
作為聚碳酸酯系多元醇所使用之上述多元醇,可例舉:上述聚酯系多元醇之說明中所例示之多元醇等,作為上述碳酸伸烷酯,例如可例舉:碳酸乙二酯、三亞甲基碳酸酯、四亞甲基碳酸酯、六亞甲基碳酸酯等。
再者,聚碳酸酯系多元醇只要為於分子內具有碳酸酯鍵且末端為羥基之化合物即可,亦可具有碳酸酯鍵及酯鍵。
作為上述聚烯烴系多元醇,可例舉具有乙烯、丙烯、丁烯等均聚物或共聚物作為飽和烴骨架,且於其分子末端具有羥基者。
作為上述聚丁二烯系多元醇,可例舉:具有丁二烯之共聚物作為烴骨架且於其分子末端具有羥基者。 聚丁二烯系多元醇亦可為其結構中所包含之乙烯性不飽和基之全部或一部分經氫化而成之氫化聚丁二烯多元醇。
作為上述聚異戊二烯系多元醇,可例舉:具有異戊二烯之共聚物作為烴骨架且於其分子末端具有羥基者。 聚異戊二烯系多元醇亦可為其結構中所包含之乙烯性不飽和基之全部或一部分經氫化而成之氫化聚異戊二烯多元醇。
作為上述(甲基)丙烯酸系多元醇,可例舉:於(甲基)丙烯酸酯之聚合物或共聚物之分子內具有至少2個羥基者,作為該(甲基)丙烯酸酯,例如可例舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸十八烷基酯等(甲基)丙烯酸烷基酯等。又,亦可為(甲基)丙烯酸酯、與(甲基)丙烯酸羥基乙酯、(甲基)丙烯酸羥基丙酯、(甲基)丙烯酸羥基丁酯等(甲基)丙烯酸羥基烷基酯之共聚物。
作為上述聚矽氧烷系多元醇,例如可例舉:二甲基聚矽氧烷多元醇或甲基苯基聚矽氧烷多元醇等。
上述多元醇系化合物可使用1種或組合2種以上使用。
於上述異氰酸酯系化合物與含羥基之(甲基)丙烯酸酯系化合物之加成反應;或者異氰酸酯系化合物、含羥基之(甲基)丙烯酸酯系化合物、及多元醇之加成反應中,在反應系之殘存異氰酸基含有率成為0.5質量%以下之時點終止反應,藉此獲得胺基甲酸酯(甲基)丙烯酸酯。
於胺基甲酸酯(甲基)丙烯酸酯包含使異氰酸酯系化合物、多元醇系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者之情形時,較佳為使異氰酸酯系化合物與多元醇系化合物反應而獲得具有異氰酸基之反應產物,使該反應產物或該反應產物與異氰酸酯系化合物之混合物與含羥基之(甲基)丙烯酸酯系化合物反應,從而獲得胺基甲酸酯(甲基)丙烯酸酯。藉由此種反應所獲得之胺基甲酸酯(甲基)丙烯酸酯亦可為使異氰酸酯系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者、與使異氰酸酯系化合物、多元醇系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者的混合物。
於異氰酸酯系化合物與含羥基之(甲基)丙烯酸酯系化合物之反應中,亦較佳為使用觸媒以促進反應,作為該觸媒,例如可例舉:二月桂酸二丁基錫、二乙酸二丁基錫、三甲基氫氧化錫、四正丁基錫、雙乙醯丙酮鋅、三(乙醯丙酮)乙基乙醯乙酸鋯、四乙醯丙酮酸鋯等有機金屬化合物;辛烯酸錫、己酸鋅、辛烯酸鋅、硬脂酸鋅、2-乙基己酸鋯、環烷酸鈷、氯化亞錫、氯化錫、乙酸鉀等金屬鹽;三乙胺、三乙二胺、苄基二乙胺、1,4-二氮雜雙環[2,2,2]辛烷、1,8-二氮雜雙環[5,4,0]十一烯、N,N,N',N'-四甲基-1,3-丁二胺、N-甲基𠰌啉、N-乙基𠰌啉等胺系觸媒;及硝酸鉍、溴化鉍、碘化鉍、硫化鉍等;二月桂酸二丁基鉍、二月桂酸二辛基鉍等有機鉍化合物;2-乙基己酸鉍鹽、環烷酸鉍鹽、異癸酸鉍鹽、新癸酸鉍鹽、月桂酸鉍鹽、馬來酸鉍鹽、硬脂酸鉍鹽、油酸鉍鹽、亞麻油酸鉍鹽、乙酸鉍鹽、新癸酸鉍、二水楊酸鉍鹽、二沒食子酸鉍鹽等有機酸鉍鹽這類鉍系觸媒。其中,作為觸媒,適宜為二月桂酸二丁基錫、1,8-二氮雜雙環[5,4,0]十一烯。其等可單獨使用,或併用2種以上。
又,於異氰酸酯系化合物與含羥基之(甲基)丙烯酸酯系化合物之反應中,可使用不具有會與異氰酸基反應之官能基之有機溶劑,例如乙酸乙酯、乙酸丁酯等酯類;甲基乙基酮、甲基異丁基酮等酮類;甲苯、二甲苯等芳香族類等有機溶劑。又,亦可適當使用聚合抑制劑等。
又,胺基甲酸酯(甲基)丙烯酸酯為含羥基之(甲基)丙烯酸酯系化合物及異氰酸酯系化合物、或者含羥基之(甲基)丙烯酸酯系化合物、異氰酸酯系化合物及多元醇系化合物之反應產物,但亦可藉由使具有羥基之(甲基)丙烯酸酯及不具有羥基之(甲基)丙烯酸酯之混合物與異氰酸酯系化合物反應而生成。或者,亦可藉由使具有羥基之(甲基)丙烯酸酯及不具有羥基之(甲基)丙烯酸酯之混合物、異氰酸酯系化合物、及多元醇系化合物反應而生成。此時,不具有羥基之(甲基)丙烯酸酯係以未反應物之形式殘存,但亦可直接含於硬化性樹脂組合物中。 又,於以上說明之異氰酸酯系化合物與含羥基之(甲基)丙烯酸酯系化合物之反應中,如上所述,亦可異氰酸酯系化合物之一部分或全部為異氰酸酯系化合物與多元醇系化合物之反應產物。
(X)胺基甲酸酯(甲基)丙烯酸酯之(甲基)丙烯醯基當量例如較佳為120 g/eq以上250 g/eq以下,更佳為135 g/eq以上220 g/eq以下,進而較佳為150 g/eq以上200 g/eq以下。若(X)胺基甲酸酯(甲基)丙烯酸酯之(甲基)丙烯醯基當量為上述範圍內,則變得容易調整交聯點,而能夠形成具有適度交聯密度之硬化樹脂層。藉此,可對硬化樹脂層賦予高硬度性。
硬化性樹脂組合物(B')中之(X)胺基甲酸酯(甲基)丙烯酸酯之含量相對於硬化性樹脂組合物(B')中之總不揮發成分量(總固形物成分量),較佳為50質量%以上,更佳為60質量%以上。
形成硬化性樹脂(B)時,較佳為使上述(X)胺基甲酸酯(甲基)丙烯酸酯單獨或混合2種以上進行聚合而製備基礎聚合物。較佳為使基礎聚合物溶解或分散至下述溶劑等中後,塗佈於硬化樹脂層(A)上並進行硬化,藉此形成硬化樹脂層(B)。
(溶劑) 硬化性樹脂組合物(B')亦可藉由溶劑進行稀釋而製成塗佈液。硬化性樹脂組合物(B')較佳為以液狀塗佈液之形式塗佈於硬化樹脂層(A)上並進行乾燥,且使之硬化,藉此形成硬化樹脂層(B)。構成硬化性樹脂組合物(B')之各成分可溶解於溶劑中,但亦可分散於溶劑中。
作為溶劑,較佳為有機溶劑。作為有機溶劑,例如可例舉:甲苯、二甲苯等芳香族系溶劑;甲基乙基酮(MEK)、丙酮、甲基異丁基酮(MIBK)、環己酮、二異丁基酮等酮系溶劑;二乙醚、異丙醚、四氫呋喃、二㗁烷、乙二醇二甲醚、乙二醇二乙醚、二乙二醇二甲醚、二乙二醇二乙醚、丙二醇單甲醚(PGM)、苯甲醚、苯乙醚等醚系溶劑;乙酸乙酯、乙酸丁酯、乙酸異丙酯、乙二醇二乙酸酯等酯系溶劑;二甲基甲醯胺、二乙基甲醯胺、二甲基乙醯胺、N-甲基吡咯啶酮等醯胺系溶劑;甲基溶纖劑、乙基溶纖劑、丁基溶纖劑等溶纖劑系溶劑;甲醇、乙醇、丙醇、異丙醇、丁醇等醇系溶劑;二氯甲烷、氯仿等鹵素系溶劑等。該等有機溶劑可單獨使用1種,又,亦可併用2種以上。該等有機溶劑中,較佳地使用選自由酯系溶劑、醚系溶劑、醇系溶劑及酮系溶劑所組成之群中之至少1種。
有機溶劑之使用量並無特別限制,係考慮要製備之硬化性樹脂組合物之塗佈性、液體黏度及表面張力、固形物成分之相溶性等來適當決定。硬化性樹脂組合物係使用上述溶劑而製備成固形物成分濃度較佳為15~80質量%、更佳為20~70質量%之塗佈液。再者,硬化性樹脂組合物中之「固形物成分」意指除作為揮發性成分之溶劑以外之成分,不僅為固體成分,還包括半固形物或黏稠之液狀物。
((Y)具有環狀矽氧烷骨架之化合物) 硬化性樹脂組合物(B')含有(Y)具有環狀矽氧烷骨架之化合物。具有環狀矽氧烷骨架之化合物較佳為下述通式所表示之化合物。
[化2]
上述式中,R 1及R 2分別獨立地表示氫原子或取代基,n表示1~50之整數。作為取代基,例如可例舉:烴基、含氟原子之有機基、含有(甲基)丙烯酸基之有機基等。就耐摩擦性之方面而言,n較佳為1~30之整數,更佳為2~20之整數。
作為烴基,可例舉:脂肪族烴基(例如烷基、烯基、炔基、環烷基)、芳香族烴基(例如苯基、萘基、蒽基、菲基、聯苯基)等,烴基較佳為甲基、乙基、丙基、異丙基等碳原子數為1以上18以下之直鏈狀或支鏈狀之烷基或苯基。再者,烴基亦可進而具有取代基,亦可為具有鹵素原子(例如氟原子、氯原子、溴原子、碘原子)作為取代基者。
作為含有氟原子之有機基,例如較佳為C xF 2x 1(CH 2) p-(式中,x為1~8之整數,p為2~10之整數)所示之基、C xF 2x 1C(CF 3) 2(CH 2) p-(式中,x為1~8之整數,p為2~10之整數)所示之基或具有全氟醚結構之基(例如,經全氟聚醚取代之烷基)。作為含有氟原子之有機基之具體例,例如可例舉:CF 3C 2H 4-、C 4F 9C 2H 4-、C 4F 9C 3H 6-、C 8F 17C 2H 4-、C 8F 17C 3H 6-、C 3F 7C(CF 3) 2C 3H 6-、C 3F 7OC(CF 3)FCF 2OCF 2CF 2C 3H 6-、C 3F 7OC(CF 3)FCF 2OC(CF 3)FC 3H 6-、CF 3CF 2CF 2OC(CF 3)FCF 2OC(CF 3)FCONHC 3H 6-等。
作為含有(甲基)丙烯酸基之有機基,例如可例舉:CH 2=CHCOO-、CH 2=C(CH 3)COO-、CH 2=CHCOOC 3H 6-、CH 2=C(CH 3)COOC 3H 6-、CH 2=CHCOOC 2H 4O-、CH 2=C(CH 3)COOC 2H 4O-等。於具有含有(甲基)丙烯酸基之有機基作為取代基之情形時,就工業上合成容易性之方面而言,更佳為與Si原子之鍵為Si-O-C鍵。
其中,(Y)具有環狀矽氧烷骨架之化合物較佳為包含含有至少1個氟原子之有機基,更佳為包含具有全氟醚結構之基。即,(Y)具有環狀矽氧烷骨架之化合物較佳為具有環狀矽氧烷骨架及全氟醚結構之氟化合物。藉由為上述結構,可更為提昇硬化樹脂層面之滑動性,又,可提昇硬化樹脂層面之水滴接觸角,因此可發揮高耐摩擦性。
具體而言,(Y)具有環狀矽氧烷骨架之化合物較佳為下述式所表示之氟化合物。
[化3]
上述式中,R為氫原子、甲基、乙基、丙基或苯基,Rf為含有氟原子之有機基,Rx為含有(甲基)丙烯酸基之有機基,n為n≧2。
作為含有氟原子之有機基及(甲基)丙烯酸基之具體例,可同樣地例舉上述具體例。又,就耐摩擦性之方面而言,n較佳為2~20之整數,更佳為2~10之整數。
硬化性樹脂組合物(B')中(Y)具有環狀矽氧烷骨架之化合物之含量相對於(X)胺基甲酸酯(甲基)丙烯酸酯100質量份,較佳為0.01質量份以上,更佳為0.1質量份以上,進而較佳為0.15質量份以上、尤其是0.2質量份以上、特別是0.3質量份以上。又,硬化性樹脂組合物(B')中(Y)具有環狀矽氧烷骨架之化合物之含量較佳為20質量份以下,更佳為15質量份以下,進而較佳為10質量份以下,尤佳為5質量份以下。藉由將具有環狀矽氧烷骨架之化合物之含量設為上述範圍內,容易兼顧硬化樹脂層(B)之柔軟性、硬化性及耐摩擦性。
(其他成分) 於硬化性樹脂組合物(B')中,除上述(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物以外,還可含有(甲基)丙烯酸酯等光聚合性化合物。 又,於硬化性樹脂組合物(B')中,可視需要,於無損本發明之主旨之範圍內適當調配各種添加劑。作為添加劑,例如亦可併用光起始劑、光穩定劑、抗氧化劑、抗靜電劑、阻燃劑、調平劑、分散劑、搖變性賦予劑(增黏劑)、消泡劑等。 此處,作為調平劑,例如可例舉氟系調平劑、矽酮系調平劑及丙烯酸系調平劑等。其中,就對硬化樹脂層(B)之表面賦予良好之拒水或拒油之功能、防止指紋等污物附著之功能的方面而言,作為調平劑較佳為氟系調平劑。
(光起始劑(光聚合起始劑)) 於硬化性樹脂組合物(B')為光硬化性樹脂組合物之情形時,較佳為含有光起始劑(光聚合起始劑),以提昇硬化性。光起始劑為光聚合起始劑,可使用公知者。作為光聚合起始劑,例如可例舉光自由基產生劑、光酸產生劑等。
作為可用於硬化性樹脂組合物(B')之光聚合起始劑中之光自由基產生劑,例如可例舉:安息香、安息香甲醚、安息香乙醚、安息香異丙醚等安息香與其烷基醚類;苯乙酮、2,2-二甲氧基-2-苯基苯乙酮[例如,商品名「Omnirad(註冊商標)651」,IGM RESINS製造]、2,2-二乙氧基-2-苯基苯乙酮、1,1-二氯苯乙酮、1-羥基環己基苯基酮[例如,商品名「Omnirad(註冊商標)184」,IGM RESINS製造]、2-羥基-2-甲基-1-苯基丙烷-1-酮[例如,商品名「Omnirad(註冊商標)1173」,IGM RESINS製造]、2-羥基-1-(4-(4-(2-羥基-2-甲基丙醯基)苄基)苯基)-2-甲基丙烷-1-酮[例如,商品名「Omnirad(註冊商標)127,IGM RESINS製造」]、1-[4-(2-羥基乙氧基)苯基]-2-羥基-2-甲基-1-丙烷-1-酮[例如,商品名「Omnirad(註冊商標)2959」,IGM RESINS製造]、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙烷-1-酮[例如,商品名「Omnirad(註冊商標)907」,IGM RESINS製造]、2-苄基-2-二甲基胺基-1-(4-嗎啉基苯基)-1-丁酮等苯烷酮類;2,4,6-三甲基苯甲醯基二苯基氧化膦[例如,商品名「Omnirad(註冊商標)TPO」,IGM RESINS製造]、雙-(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基氧化膦[例如,商品名「Omnirad(註冊商標)819」,IGM RESINS製造]等氧化膦類;2-甲基蒽醌、2-乙基蒽醌、2-第三丁基蒽醌、1-氯蒽醌、2-戊基蒽醌等蒽醌類;二苯甲酮及其各種衍生物;苯甲醯甲酸甲酯、苯甲醯甲酸乙酯等甲酸衍生物等。其等可僅使用1種,亦可組合2種以上使用。
該等光自由基產生劑之中,就硬化物之耐光性之觀點而言,較佳為苯烷酮類、氧化膦類、甲酸衍生物,進而較佳為1-羥基環己基苯基酮、2-羥基-1-(4-(4-(2-羥基-2-甲基丙醯基)苄基)苯基)-2-甲基丙烷-1-酮、2-甲基-1-[4-(甲硫基)苯基]-2-嗎啉基丙烷-1-酮、2,4,6-三甲基苯甲醯基二苯基氧化膦、雙-(2,6-二甲氧基苯甲醯基)-2,4,4-三甲基戊基氧化膦、苯甲醯甲酸甲酯,尤佳為1-羥基環己基苯基酮、2-羥基-1-(4-(4-(2-羥基-2-甲基丙醯基)苄基)苯基)-2-甲基丙烷-1-酮。
作為光酸產生劑,可使用公知者,其中,就硬化性、酸產生效率等觀點而言,較佳為二芳基碘鹽、三芳基鋶鹽。例舉具體例,可例示二(烷基取代)苯基錪之陰離子鹽(具體而言,為PF 6鹽、SbF 5鹽、四(全氟苯基)硼酸鹽等)。 作為(烷基取代)苯基錪之陰離子鹽之具體例,尤佳為二烷基苯基錪之PF6鹽[商品名「Omniad(註冊商標)250」,IGM RESINS製造]。該等光酸產生劑可僅使用1種,亦可組合2種以上。
就提昇硬化性之觀點而言,光起始劑之含量相對於硬化性樹脂組合物(B')中之(X)胺基甲酸酯(甲基)丙烯酸酯100質量份,較佳為0.01質量份以上,更佳為0.1質量份以上,尤佳為1質量份以上。另一方面,就維持將硬化性樹脂組合物(B')製成溶液時之塗佈液之穩定性的觀點及硬化塗膜之平面性之觀點而言,光起始劑之含量較佳為20質量份以下,更佳為10質量份以下,進而較佳為7質量份以下,尤佳為5質量份以下。
(硬化性樹脂組合物之黏度) 關於用以形成硬化樹脂層(A)及硬化樹脂層(B)之硬化性樹脂組合物(A')及硬化性樹脂組合物(B'),為了使塗佈性變得良好,利用E型黏度計所測得之於25℃下之黏度較佳為60 mPa・s以下,更佳為30 mPa・s以下,進而較佳為20 mPa・s以下,進而更佳為15 mPa・s以下,尤佳為12 mPa・s以下。再者,硬化性樹脂組合物之黏度較佳為10 mPa・s以上。
<<積層膜之製造方法>> 硬化樹脂層(A)及硬化樹脂層(B)(以下,將兩者合併簡稱為「硬化樹脂層」)均可使硬化性樹脂組合物、即具有可硬化之性能之組合物硬化而形成。例如硬化樹脂層係將硬化性樹脂組合物塗佈於基材膜上並使之硬化而形成。 更具體而言,於基材膜之至少一面上塗佈硬化性樹脂組合物(A')並使之硬化而形成硬化樹脂層(A)後,於其上塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B),藉此可製造本積層膜。此時,亦可同時進行硬化樹脂層(A)及硬化樹脂層(B)之硬化。 又,亦可於形成硬化樹脂層(A)後,暫時將膜捲取成捲筒狀,再次退繞膜,於硬化樹脂層(A)上塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B)。又,亦可於基材膜表面形成硬化樹脂層(A)後,連續地塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B)。再者,積層膜之製造方法並不受上述方法任何限定。
作為塗佈硬化性樹脂組合物之方法,例如可使用氣刀塗佈、刮刀塗佈、桿式塗佈、棒式塗佈、刮塗、擠壓式塗佈、浸漬塗佈、逆輥塗佈、傳送輥塗佈、凹版塗佈、接觸輥式塗佈、鑄塗、噴塗、淋幕式塗佈、壓延塗佈、擠出塗佈等先前公知之塗佈方法。 乾燥條件並無特別限定,可於室溫附近進行,亦可藉由加熱來進行,例如為25~120℃左右,較佳為50~100℃,更佳為60~90℃。又,乾燥時間並無特別限定,只要溶劑可充分揮發即可,例如為10秒~30分鐘左右,較佳為15秒~10分鐘左右。
硬化性樹脂組合物之硬化方法只要根據硬化性樹脂組合物之硬化機制來適當選擇即可,若硬化性樹脂組合物為熱硬化性樹脂組合物,則可藉由加熱使之硬化。又,若硬化性樹脂組合物為光硬化性樹脂組合物,則可照射能量線使之硬化。 於本發明之積層膜中,使光硬化性樹脂組合物硬化時可使用之活性能量線包括紫外線、電子束、X射線、紅外線及可見光線。該等活性能量線中,就硬化性及防止樹脂劣化之觀點而言,較佳為紫外線及電子束。
關於硬化性樹脂組合物之硬化方法,就成形時間及生產性之觀點、及可防止由加熱導致之各構件之熱收縮及熱劣化之觀點等而言,較佳為藉由能量線照射進行硬化。能量線之照射可自任一面側進行,可自基材膜側進行,亦可自基材膜之相反側進行。 於在製造本發明之積層膜時,藉由紫外線照射使硬化性樹脂組合物硬化之情形時,可使用各種紫外線照射裝置,作為其光源,可使用氙氣燈、高壓水銀燈、金屬鹵素燈、LED-UV燈等。紫外線之照射量(單位為mJ/cm 2)較佳為50~3,000 mJ/cm 2,就硬化性樹脂組合物之硬化性、硬化物(硬化膜)之可撓性等觀點而言,更佳為100~1,000 mJ/cm 2,就積層膜之平面性之觀點而言,進而較佳為100~500 mJ/cm 2。再者,紫外線之照射量係根據各硬化步驟中所需之(甲基)丙烯醯基之反應率來適當決定。 尤其是於在嚴酷環境下使用積層膜之情形時,較佳為增大紫外線之照射量來調整該硬化性樹脂組合物之硬化物之表面硬度。
又,於在製造本發明之積層膜時,藉由電子束照射使硬化性樹脂組合物硬化之情形時,可使用各種電子束照射裝置。電子束之照射量(Mrad)較佳為0.5~20 Mrad,就硬化性樹脂組合物之硬化性、硬化物之可撓性、防止基材損傷等觀點而言,更佳為1~15 Mrad。再者,電子束之照射量係根據各硬化步驟中所需之(甲基)丙烯醯基之反應率來適當決定。
<<積層膜之物性>> (耐鋼絲絨性(耐SW性)) 本積層膜由於具有上述構成,故耐摩擦性優異。具體而言,耐摩擦性可藉由耐鋼絲絨性(耐SW性)試驗進行評價。對於本積層膜之表面硬度、具體而言硬化樹脂層(B)表面之耐SW性,當鋼絲絨往返2000次後之霧度之變化率較小時,可評價為耐摩擦性優異。再者,耐鋼絲絨性(耐SW性)試驗係藉由以下方法實施。首先,使用摩擦試驗機(大榮科學精器製作所公司製造,RT-300)並使用#0000號之鋼絲絨(商品名:BONSTAR,日本鋼絲絨公司製造),一面以2 cm見方(面積4 cm 2)對硬化樹脂層(B)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦2000次,利用目視確認硬化樹脂層(B)表面有無損傷。此時,測定摩擦前後之積層膜之霧度值。算出相較於初始膜霧度(摩擦前之膜霧度)之往返2000次後之膜霧度之變化率,當變化率未達1%時,評價為耐摩擦性優異。 變化率(%)=(摩擦後膜霧度-初始膜霧度)/初始膜霧度度×100
(水滴接觸角) 本積層膜之硬化樹脂層側之水滴接觸角較佳為100°以上,更佳為105°以上,進而較佳為110°以上。 又,利用摩擦試驗機(大榮科學精器製作所公司製造,RT-300)並使用#0000號之鋼絲絨(商品名:BONSTAR,日本鋼絲絨公司製造),一面以2 cm見方對硬化樹脂層(B)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦1000次後,水滴接觸角較佳為90°以上,更佳為95°以上,進而較佳為100°以上。進而,利用摩擦試驗機(大榮科學精器製作所公司製造,RT-300)並使用#0000號之鋼絲絨(商品名:BONSTAR,日本鋼絲絨公司製造),一面以2 cm見方對硬化樹脂層(B)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦2000次後,水滴接觸角較佳為70°以上,更佳為75°以上,進而較佳為80°以上。往返摩擦1000次或2000次後之水滴接觸角為上述範圍內係表示往返摩擦後亦維持規定以上之撥水性,表示硬化樹脂層之耐鋼絲絨性(耐SW性)良好。再者,積層膜之硬化樹脂層側之水滴接觸角係使用自動接觸角計,向積層膜之最表面(硬化樹脂層面)滴下水滴,測定經過60秒後之接觸角所得之值。
(反覆彎折性) 本積層膜由於具有上述構成,故而反覆彎折性(耐彎曲性)優異。藉由於本基材膜之表面設置硬化樹脂層(A)及硬化樹脂層(B),並將硬化樹脂層(B)之構成設計成特定範圍,而使得本基材膜可發揮實用上之反覆彎折特性。反覆彎折性(耐彎曲性)具體而言,可藉由以下之方法進行評價。反覆彎折試驗係使用彎折試驗機(YUASA SYSTEM機器公司製造,DLDMLH-FS),以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行試驗。然後,目視確認內側表面有無硬化樹脂層之龜裂產生,測定直至龜裂產生為止之反覆彎折次數。此時,於即便彎折20萬次以上亦不會產生龜裂之情形時,評價為反覆彎折性(耐彎曲性)良好。
(全光線透過率) 本積層膜於假定應用於光學用途之情形時,全光線透過率較佳為85%以上,更佳為86%以上,尤佳為88%以上。再者,本積層膜之全光線透過率之測定係利用霧度計來進行。測定方法之詳細內容係基於實施例記載之方法。
(膜霧度) 本積層膜於假定應用於光學用途之情形時,膜霧度較佳為1.0%以下,更佳為0.8%以下。再者,本積層膜之膜霧度係利用霧度計進行測定。測定方法之詳細內容係基於實施例記載之方法。
(干涉條紋) 本積層膜由於具有上述構成,故而抑制了干涉條紋產生。干涉條紋可藉由500~600 nm之光線反射率之變動幅度來評價。500~600 nm之光線反射率之變動幅度較佳為未達1.1%,更佳為1.0%以下,尤佳為未達0.6%。藉由將500~600 nm之光線反射率之變動幅度設為上述範圍內,可獲得干涉條紋難以看見之膜。再者,500~600 nm之光線反射率之變動幅度係波長500~600 nm之光線於反射模擬中的反射率之變動幅度。
<<積層膜之特徵及用途>> 如上所述,本積層膜係實用上之反覆彎折特性及耐摩擦性優異,且干涉條紋難以看見之積層膜。本積層膜以高水準兼顧了表面硬度(耐SW性且例如往返2000次以上)與反覆彎折性(彎曲耐久性,於內折、R=1.5之條件下可彎曲20萬次)。推測該等效果來源於如下情況,即藉由調整硬化樹脂層(B)之組成而能夠減少本積層膜彎曲時所施加之向硬化樹脂層(B)內之應力傳輸。
又,若使用如上述之硬化樹脂層(B),則無需使供使用之基材膜之拉伸彈性模數變得極大。 先前,對於具有表面硬度高之表面層之積層膜,將目標表面硬度設計為所需水準(耐SW性且例如往返2000次以上)時,必須視需要重新考慮構成所使用之基材膜之原料之結構設計,而進一步增大拉伸彈性模數。 相對於此,若使用如上述之硬化樹脂層(B)之構成,則亦能夠適當選擇於市場上流通之通用之基材膜,有在基材膜選擇面上自由度增加之優點。又,於本實施方式中,亦可於硬化樹脂層(A)與硬化樹脂層(B)之間設置其他層。
本積層膜具備優異之耐摩擦性、及實用上之反覆彎折性,且亦可獲得耐摩耗性、以及透明性,因此可較佳地用於如下用途,譬如表面保護用、顯示器用、尤其是前面板用等。例如可適宜地用作表面保護膜、尤其是顯示器用之表面保護膜、特別是可撓性顯示器用之表面保護膜。但是,本積層膜之用途並不限定於該等用途。
[第2實施方式] 第2實施方式之本發明之積層膜係具備於基材膜之至少單面側表面依序積層有硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)之構成者。 再者,本積層膜若具備上述構成,則亦可具備其他層。
<基材膜> 關於基材膜,與第1實施方式中所記載者相同。
<硬化樹脂層(C)、(A)及(B)> 本積層膜具備於基材膜之至少單面側表面設置硬化樹脂層(C),於其表面側進而設置硬化樹脂層(A)及硬化樹脂層(B)而成之積層構成。
<硬化性樹脂組合物> 關於用以形成硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)之硬化性樹脂組合物(C')、硬化性樹脂組合物(A')及硬化性樹脂組合物(B'),於以下進行說明。
[硬化性樹脂組合物(C')] 硬化樹脂層(C)係由硬化性樹脂組合物(C')形成。硬化性樹脂組合物(C')之特徵在於含有抗靜電劑。作為抗靜電劑,只要具有抗靜電性能,則無特別限定,較佳為含有下述化合物(C-a)。作為硬化性樹脂組合物(C'),進而較佳為由除含有下述化合物(C-a)以外,還含有(C-b)及(C-c)之樹脂組合物形成。 (C-a)包含噻吩及/或噻吩衍生物之化合物摻雜有陰離子化合物之聚合物 (C-b)具有苯乙烯結構之(甲基)丙烯酸系聚合物 (C-c)選自(C-c1)聚甘油、及(C-c2)對聚甘油之環氧烷加成物中之1種以上之化合物或其衍生物
化合物(C-a)係(C-a1)於包含噻吩或噻吩衍生物之化合物中摻雜有其他陰離子化合物之聚合物;或(C-a2)於包含噻吩或噻吩衍生物之化合物中自摻雜有陰離子基之聚合物。該等物質適宜表現出優異之導電性。化合物(C-a)可使用1種,或使用2種以上。 作為化合物(C-a),例如例示出使下述式(C-1)或(C-2)之化合物於聚陰離子之存在下進行聚合而獲得者。使下述式(C-1)於聚陰離子之存在下進行聚合而獲得之聚合物與使下述式(C-2)於聚陰離子之存在下進行聚合而獲得之聚合物亦可併用。
[化4]
上述式(C-1)中,R 1及R 2分別獨立地表示氫或碳數為1~20之脂肪族烴基、脂環族烴基、芳香族烴基等。
[化5]
上述式(C-2)中,n表示1~4之整數。
作為聚合時所使用之聚陰離子,例如例示出聚(甲基)丙烯酸、聚馬來酸、聚苯乙烯磺酸、聚乙烯基磺酸等。作為該聚合物之製造方法,例如可採用如日本專利特開平7-90060號公報所示之方法。
於本發明中,適宜使用於上述式(2)之化合物中n為2,且使用聚苯乙烯磺酸作為聚陰離子者。
又,於該等聚陰離子呈酸性之情形時,亦可一部分或全部被中和。作為中和所使用之鹼,較佳為氨、有機胺類、鹼金屬氫氧化物。
化合物(C-b)係具有苯乙烯結構之(甲基)丙烯酸系聚合物。 苯乙烯結構係苯乙烯及苯乙烯衍生物,例如亦可向苯乙烯中導入甲基或乙基等烷基或苯基等作為取代基。就防止因加熱處理而低聚物析出之效果之觀點而言,較佳為碳數4以下之烷基經取代之苯乙烯或無取代基之苯乙烯,更佳為苯乙烯。
(甲基)丙烯酸系聚合物係以(甲基)丙烯酸或(甲基)丙烯酸烷基酯作為構成單元之聚合物,該化合物(C-b)係苯乙烯或苯乙烯衍生物、與(甲基)丙烯酸或(甲基)丙烯酸烷基酯之共聚物。 再者,於在本發明中,使用「(甲基)丙烯酸」這一表述之情形時,意值「丙烯酸」及「甲基丙烯酸」之一者或兩者。又,同樣地,「(甲基)丙烯酸酯」意指「丙烯酸酯」及「甲基丙烯酸酯」之一者或兩者,「(甲基)丙烯醯基」意指「丙烯醯基」及「甲基丙烯醯基」之一者或兩者。
又,作為上述(甲基)丙烯酸烷基酯,例如可例舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸第三丁酯、(甲基)丙烯酸正戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸月桂酯等。又,亦可為(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸4-羥基丁酯等含羥基之(甲基)丙烯酸烷基酯。 其等可僅使用1種,亦可組合2種以上使用。其等之中,就防止因加熱處理而低聚物析出之效果之觀點而言,較佳為(甲基)丙烯酸,更佳為丙烯酸。即,(甲基)丙烯酸系聚合物之丙烯酸結構較佳為(甲基)丙烯酸結構。 再者,(甲基)丙烯酸系聚合物亦可為具有能夠自由基聚合之雙鍵者。
又,具有苯乙烯結構之(甲基)丙烯酸系聚合物中亦可組合能與其等共聚之其他聚合性單體。作為能共聚之單體,例如可例舉:羥基富馬酸單丁酯、羥基伊康酸單丁酯之類之含羥基之二元酸酯化合物;(甲基)丙烯醯胺、二丙酮丙烯醯胺、N-羥甲基丙烯醯胺或(甲基)丙烯腈等各種含氮化合物;丙酸乙烯酯、乙酸乙烯酯等各種乙烯酯類;γ-甲基丙烯醯氧基丙基三甲氧基矽烷、乙烯基三甲氧基矽烷等各種含矽聚合性單體類;含磷乙烯系單體類;氯乙烯、偏二氯乙烯等各種鹵素化乙烯類;丁二烯等各種共軛二烯類等。
具有苯乙烯結構之(甲基)丙烯酸系聚合物中之(甲基)丙烯酸或(甲基)丙烯酸烷基酯之比例以構成具有苯乙烯結構之(甲基)丙烯酸系聚合物之單體總量為基準,例如為3莫耳%以上,較佳為5~40莫耳%,更佳為10~30莫耳%,進而較佳為15~25莫耳%之範圍。若(甲基)丙烯酸或(甲基)丙烯酸烷基酯之比例為3莫耳%以上,則表現出防止因加熱處理而低聚物析出之效果。又,若為上述上限值以下,則苯乙烯結構之比率上升,可確保抗靜電性能之耐久性。
具有苯乙烯結構之(甲基)丙烯酸系聚合物中之苯乙烯及苯乙烯衍生物之比例以構成具有苯乙烯結構之(甲基)丙烯酸系聚合物之單體總量為基準,例如為50~97莫耳%,較佳為60~95莫耳%,更佳為70~90莫耳%,進而較佳為75~85莫耳%。若苯乙烯及苯乙烯衍生物之比例為上述下限值以上,則確保抗靜電性能之耐久性,若為上述上限值以下,則確保防止因加熱處理而自基材膜(聚酯膜)析出低聚物之效果。
聚酯膜所包含之低聚物成分之析出得到抑制之機制係推測如下。當聚酯膜加熱至玻璃轉移點以上時,低聚物成分會析出到聚酯膜表面,但推測藉由將包含使用具有苯乙烯結構之(甲基)丙烯酸系聚合物之樹脂組合物之硬化樹脂層形成於聚酯膜上,而成為苯乙烯所包含之芳香族環與膜平行堆疊之結構,從而防止低聚物成分析出。
化合物(C-c)係選自(C-c1)聚甘油、及(C-c2)對於聚甘油之環氧烷加成物中之1種以上之化合物或其衍生物。聚甘油係下述通式(C-3)所表示之化合物。
[化6]
上述式中之n為2以上,於本發明中,式中之n通常為2~20,較佳為3~15,更佳為3~12之範圍。
對於聚甘油之環氧烷加成物係具有在通式(C-3)所表示之聚甘油之羥基上加成聚合環氧烷而成之結構者。 此處,聚甘油骨架之每個羥基上所加成之環氧烷之結構亦可不同。又,只要加成在至少分子中一個羥基上即可,無需在所有羥基上加成環氧烷或其衍生物。
作為加成於聚甘油之環氧烷較佳者係環氧乙烷或環氧丙烷。若環氧烷之伸烷基鏈變得過長,則有疏水性變強,塗佈液中之分散性變差,硬化樹脂層之抗靜電性或透明性變差的趨勢。尤佳者為環氧乙烷。 又,其加成數以作為最終化合物之數量平均分子量計,較佳為處於200~2000之範圍,更佳為300~1000之範圍,進而較佳為400~900之範圍。 上述聚甘油、或對於聚甘油之環氧烷加成物可單獨使用1種,或併用2種以上之複數種。
本發明之樹脂組合物(C')亦可含有交聯劑,以提昇硬化樹脂層(C)之耐久性、尤其是抗靜電性能之耐久性。 作為交聯劑,可使用各種公知之交聯劑,例如可例舉:三聚氰胺化合物、環氧化合物、異氰酸酯化合物、碳二醯亞胺化合物、㗁唑啉化合物、矽烷偶合化合物等。其等之中,就抑制暴露在空氣中後抗靜電性降低之方面而言,較佳為三聚氰胺化合物、環氧化合物、異氰酸酯化合物、碳二醯亞胺化合物,就可更有效地抑制低聚物析出之方面而言,更佳為三聚氰胺化合物。關於三聚氰胺化合物等交聯劑,如上述第1實施方式中所說明,於樹脂組合物(C')中亦可同樣地使用。
本發明之樹脂組合物(C')中亦可含有先前公知之各種聚合物、例如聚酯樹脂、丙烯酸樹脂、胺基甲酸酯樹脂等作為黏合劑,以提昇硬化樹脂層(C)之塗佈外觀或透明性等。 又,於無損本發明之主旨之範圍內,本發明之樹脂組合物(C')中亦可併用粒子,以改良硬化樹脂層(C)之黏連性或滑動性等。
化合物(C-a)於本發明之樹脂組合物(C')中之總不揮發成分中所占的比例通常為2~30質量%,更佳為3~15質量%,進而較佳為5~12質量%。若化合物(C-a)之比率為上述上限值以下,則硬化樹脂層之強度或透明性良好。另一方面,若化合物(C-a)之比率為下限值以上,則可獲得足夠之抗靜電性能,且暴露在空氣中後之抗靜電性不會降低。
化合物(C-b)於本發明之樹脂組合物(C')中之總不揮發成分中所占的比例通常為5~80質量%,較佳為10~50質量%,更佳為15~40質量%之範圍。 若化合物(C-b)之比率為上述上限值以下,則其他成分之比率變高,因此可獲得足夠之抗靜電性,又,塗佈外觀變得良好。另一方面,若化合物(C-b)之比率為上述下限值以上,則可充分抑制低聚物析出,且可確保足夠之造膜性,可獲得均勻之塗膜。
化合物(C-c)於本發明之樹脂組合物A中之總不揮發成分中所占的比例割通常為10~85質量%,較佳為40~70質量%,更佳為45~65質量%之範圍。若化合物(C-c)之比率為上述上限值以下,則其他成分之比率變高,因此抗靜電性或造膜性變得足夠。另一方面,若化合物(C-c)之比率為上述下限值以上,則硬化樹脂層之透明性變得良好。
於在本發明之樹脂組合物(C')中併用交聯劑之情形時,該交聯劑於樹脂組合物(C')中之總不揮發成分中所占之比例通常為30質量%以下,較佳為1~25質量%,進而較佳為3~20質量%之範圍。藉由於該範圍內使用交聯劑,可獲得足夠之抗靜電性能,且可抑制暴露在空氣中後抗靜電性變差,此外使硬化樹脂層(C)之強度提昇。
(硬化樹脂層(C)之厚度) 硬化樹脂層(C)之厚度較佳為0.002 μm以上1.0 μm以下,更佳為0.005 μm以上0.25 μm以下,進而較佳為0.02 μm以上0.10 μm以下。若硬化樹脂層之厚度為上述範圍內,則可抑制低聚物成分析出,且賦予良好之抗靜電性。 再者,可推測於硬化樹脂層(C)中存在樹脂組合物(C')之各種化合物之未反應物、反應後之化合物、或者其等之混合物。
[硬化性樹脂組合物(A')] 硬化樹脂層(A)係由硬化性樹脂組合物(A')形成。硬化性樹脂組合物(A')係如上述第1態樣中所說明。
((A-c)粒子) 硬化性樹脂組合物(A')較佳為含有(A-c)粒子。作為粒子,就對硬化樹脂層(A)賦予高折射率之觀點而言,較佳為含有金屬氧化物。藉由提高折射率,可抑制干涉條紋。
(金屬氧化物) 作為金屬氧化物,較佳為使用具有高折射率之金屬氧化物,較佳為使用550 nm下之折射率為1.7以上者。作為金屬氧化物之具體例,例如可例舉:氧化鋯、氧化鋁、氧化鈦、氧化錫、氧化釔、氧化銻、氧化銦、氧化鋅、氧化錫銻、氧化銦錫等,其等可單獨使用,亦可使用2種以上。其等之中,更適宜使用氧化鋯或氧化鈦,尤其是就耐候性之觀點而言,更適宜使用氧化鋯。
金屬氧化物有根據使用形態而密接性降低之顧慮,較佳為以粒子狀態使用,又,粒子平均粒徑就透明性之觀點而言,較佳為100 nm以下,更佳為50 nm以下,進而較佳為25 nm以下。又,平均粒徑之下限值並無特別限定,就分散性之方面而言,較佳為5 nm以上,進而較佳為10 nm以上。
又,於硬化性樹脂組合物(A')中亦可含有上述金屬氧化物以外之粒子,以改良硬化樹脂層(A)之固定性、滑動性。金屬氧化物以外之粒子之平均粒徑就本積層膜之透明性之觀點而言,較佳為1.0 μm以下,進而較佳為0.5 μm以下,尤佳為0.2 μm以下。又,平均粒徑之下限值並無特別限定,就分散性之方面而言,較佳為20 nm以上,進而較佳為40 nm以上。 作為上述金屬氧化物以外之粒子之具體例,可例舉氧化矽、高嶺土、碳酸鈣、氧化鋯、有機粒子等,其等之中,就滑動性之觀點而言,適宜使用氧化矽。 再者,作為粒子,就賦予易滑性之方面而言,較佳為使用粒徑不同之2種粒子,進而較佳為併用粒徑不同之金屬氧化物與金屬氧化物以外之粒子。 上述平均粒徑係藉由例如雷射繞射・散射法、動態光散射法(DLS)、離心沈澱法、粒子軌跡解析法(PTA)、掃描式電子顯微鏡(SEM)等所測定之值,若為市售品,則可採用目錄值。
(A-c)粒子相對於形成硬化樹脂層(A)之硬化性樹脂組合物(A')中之總不揮發成分之比例通常為5~80質量%,較佳為10~80質量%,進而較佳為20~80質量%,其中,尤佳為40~80質量%之範圍。藉由滿足上述範圍,能兼顧膜透明性與低干涉效果。 尤其是藉由金屬化合物等粒子與上述多環式聚酯樹脂之組合,可獲得更優異之低干涉效果。
硬化性樹脂組合物(A')中之(A-a)黏合劑樹脂之含量通常為1~60質量%,較佳為3~40質量%,更佳為5~30質量%。藉由滿足上述範圍,可確保良好之造膜性。
硬化性樹脂組合物(A')中之(A-b)交聯劑之含量可通常為2~80質量%,較佳為2~60質量%,進而較佳為2~40質量%。藉由滿足上述範圍,與硬化樹脂層(B)之密接性變得良好。
硬化性樹脂組合物(A')中之丙烯酸樹脂之含量較佳為80質量%以下,更佳為5~70質量%,其中尤其是可為10~50質量%。藉由滿足上述範圍,變得容易調整硬化樹脂層(A)本身之折射率,而變得容易減少硬化樹脂層(B)形成後之干渉不均。再者,丙烯酸樹脂之比例例如可藉由如下方式求出:利用適當之溶劑或溫水對塗佈層進行溶解萃取,利用層析法進行分取,利用NMR或IR對結構進行解析,進而利用熱分解GC-MS(氣相層析質譜分析)或光學分析等進行解析。
[硬化性樹脂組合物(B')] 硬化樹脂層(B)係由硬化性樹脂組合物(B')形成。硬化性樹脂組合物(B')包含(X)胺基甲酸酯(甲基)丙烯酸酯及具有環狀矽氧烷骨架及全氟醚結構之氟化合物。 硬化性樹脂組合物(B')之質量平均分子量較佳為100以上,進而較佳為200以上,進而更佳為400以上。另一方面,關於上限值,較佳為500,000以下,進而較佳為400,000以下,進而更佳為250,000以下。
再者,於本發明中,當使用「(甲基)丙烯酸」這一表述時,意指「丙烯酸」與「甲基丙烯酸」之一者或兩者。「(甲基)丙烯酸酯」「(甲基)丙烯醯基」亦同樣如此。又,「(聚)丙二醇」意指「丙二醇」與「聚丙二醇」之一者或兩者。「(聚)乙二醇」亦具有相同之含義。
硬化性樹脂組合物(B')中之(X)胺基甲酸酯(甲基)丙烯酸酯係與第1實施方式中所記載者相同。
(具有環狀矽氧烷骨架及全氟醚結構之氟化合物) 形成硬化樹脂層(B)之硬化性樹脂組合物(B')含有具有環狀矽氧烷骨架及全氟醚結構之氟化合物。作為該氟化合物,例如可例舉:下述通式(4)所表示之氟化合物。
[化7] 式(4)
式(4)中,R 3及R 4分別獨立地為可具有取代基之碳數1~12之有機基;m為3~10之整數。
式(4)中,m就耐摩擦性之方面而言,較佳為3~6之整數,尤佳為3或4。
作為R 3、R 4中之有機基,可例舉:甲基、乙基、正丙基、異丙基、丁基、異丁基、第二丁基、第三丁基等鏈狀烷基;甲氧基、乙氧基等烷氧基;環己基、降𦯉烯基等環狀烷基;乙烯基、1-丙烯基、烯丙基、丁烯基、1,3-丁二烯基等烯基;乙炔基、丙炔基、丁炔基等炔基;三氟甲基等鹵化烷基;3-吡咯烷基丙基等具有飽和雜環基之烷基;可具有烷基取代基之苯基等芳基;苯基甲基、苯基乙基等芳烷基;等。
又,R 3、R 4中之有機基可於碳原子間具有氧原子,亦可於碳原子間具有醯胺鍵。又,R 3、R 4中之有機基亦可為與其碳原子鍵結之氫原子全部被取代為氟原子之全氟有機基。 於對塗佈層賦予撥水性之情形時,作為R 3、R 4之至少一部分,較佳為可於碳原子間具有氧原子之全氟有機基,更佳為可於碳原子間具有氧原子之全氟伸烷基。
作為R 3、R 4中之有機基可具有之取代基,可例舉:羥基、鹵素原子(例如氟原子、氯原子、溴原子、碘原子)、(甲基)丙烯醯基等。其中,較佳為羥基、鹵素原子、(甲基)丙烯醯基。
又,具有環狀矽氧烷骨架及全氟醚結構之氟化合物較佳為於末端具有全氟醚結構之化合物,即,較佳為全氟醚骨架為單末端結構且與環狀矽氧烷骨架鍵結之氟化合物。藉由為上述結構,可更為提昇硬化樹脂層面之滑動性,而成為耐摩擦性優異者。
具有環狀矽氧烷骨架及全氟醚結構之氟化合物可為反應性矽氧烷化合物,亦可為非反應性矽氧烷化合物。 反應性矽氧烷化合物係具有反應性官能基及矽氧烷鍵之化合物。作為反應性官能基,例如可例舉:胺基、環氧基、羧基、甲醇基、(甲基)丙烯酸基、巰基、苯酚基等。 非反應性矽氧烷化合物係不具有反應性官能基而具有矽氧烷鍵之化合物。例如可例舉:聚醚改性之矽氧烷化合物、甲基苯乙烯基改性之矽氧烷化合物、烷基改性之矽氧烷化合物、高級脂肪酸酯改性之矽氧烷化合物、親水性特殊改性之矽氧烷化合物、高級烷氧基改性之矽氧烷化合物、氟改性之矽氧烷化合物等。
作為具有環狀矽氧烷骨架及全氟醚結構之氟化合物之合成方法,例如可例舉:使具有含有3個以上氟原子之有機基及3個以上Si-H基之矽氧烷化合物與(甲基)丙烯酸烯丙酯等進行加成反應之方法;或使具有含有3個以上氟原子之有機基及3個以上Si-H基之矽氧烷化合物、與丙烯酸羥基乙酯等具有OH基之(甲基)丙烯酸化合物進行脫氫反應之方法等。 該等方法之中,較佳為基於加成反應之方法。其原因在於:(甲基)丙烯酸基亦有可能發生加成反應,但藉由在脫氫反應中使用胺等觸媒,可在保持(甲基)丙烯酸基之狀態下進行反應,而容易獲得目標化合物。
於硬化樹脂層(B)中,即於硬化性樹脂組合物(B')中,相對於(X)胺基甲酸酯(甲基)丙烯酸酯100質量份,較佳為將具有環狀矽氧烷骨架及全氟醚結構之氟化合物於0.1~30質量份之範圍內進行混合,更佳為0.15~20質量份之範圍,進而較佳為0.2~10質量份之範圍,尤佳為0.3~5質量份。藉由使該氟化合物之含量為上述範圍,可尤其良好地兼顧硬化性與耐摩擦性。
(溶劑) 硬化性樹脂組合物(B')可藉由利用溶劑進行稀釋而製成塗佈液。藉由將硬化性樹脂組合物(B')以液狀塗佈液之形式塗佈於硬化樹脂層(A)上並進行乾燥,且使之硬化,而可製成硬化樹脂層(B)。構成硬化性樹脂組合物(B')之各成分可溶解於溶劑中,但亦可分散於溶劑中。 作為溶劑,可使用與第1實施方式中之硬化性樹脂組合物(B')中所使用之溶劑相同者。又,有機溶劑之使用量亦與第1實施方式中之硬化性樹脂組合物(B')相同。
又,於硬化性樹脂組合物(B')中,亦可添加第1實施方式中所記載之其他成分。又,關於光起始劑、光聚合起始劑、光酸產生劑,其等之種類、含量均可設為與第1實施方式之硬化性樹脂組合物(B')相同。 進而,硬化性樹脂組合物(A')及(B')之黏度亦與第1實施方式中之硬化性樹脂組合物(A')及(B')相同。
(微粒子) 於硬化性樹脂組合物(B')中,就提高硬化樹脂層(B)之表面硬度(耐摩擦性)之方面而言,亦較佳為含有微粒子。 作為微粒子,可例舉:氧化矽、碳酸鈣、碳酸鎂、碳酸鋇、硫酸鈣、磷酸鈣、磷酸鎂、高嶺土、氧化鋁(alumina)、氧化鈦等無機粒子;丙烯酸樹脂、苯乙烯樹脂、脲樹脂、酚樹脂、環氧樹脂、苯并胍胺樹脂等有機粒子等。其中,較佳為使用無機粒子,尤其是就容易調整耐摩擦性之方面而言,較佳為氧化鋁。 又,上述微粒子之平均粒徑就透明性之觀點而言,較佳為25 nm以下,更佳為20 nm以下,進而較佳為15 nm以下。又,平均粒徑之下限值並無特別限定,就分散性之方面而言,較佳為5 nm以上,進而較佳為10 nm以上。 硬化性樹脂組合物(B')中微粒子相對於(X)胺基甲酸酯(甲基)丙烯酸酯與微粒子之合計量(固形物成分量)之含量較佳為5~40質量%以上,更佳為10~35質量%以上,進而較佳為15~30質量%以上。藉由使微粒子之含量為上述範圍內,可兼顧積層膜之優異耐摩擦性與抗靜電性,亦可滿足透明性。
(硬化樹脂層之厚度) 硬化樹脂層(B)之厚度亦與上述實施方式1中之硬化樹脂層(B)相同。又,硬化樹脂層(A)與硬化樹脂層(B)之合計厚度亦與實施方式1相同,但就容易調整積層膜之優異耐摩擦性與抗靜電性之平衡性之方面而言,硬化樹脂層(C)之厚度較佳為5.0 μm以下。
硬化樹脂層(B)表面之波長380 nm之透光率較佳為3.0%以下。若透光率為3.0%以下,則就可防止供貼合之對手構件因紫外線而劣化之方面而言有利。就以上之觀點而言,波長380 nm之透光率更佳為2.8%以下。
又,硬化樹脂層(B)表面之波長500~600 nm之最大反射率差較佳為1.5%以下。若最大反射率差(透光率之變動幅度)為1.5%以下,則就干涉條紋難以看見之方面而言有利。就以上之觀點而言,最大反射率差更佳為1.0%以下,進而較佳為0.5%以下,尤其是可為0.3%以下。 再者,本發明中之最大反射率差係指波長500~600 nm時之反射率之最大值與最小值之差。
<各層之表面狀態> 硬化樹脂層(C)之表面及硬化樹脂層(A)之表面可凹凸亦可平坦,但就外觀(表面光澤)之觀點而言,較佳為平坦。 又,硬化樹脂層(B)之表面可凹凸亦可平坦,但就外觀(表面光澤)之觀點而言,較佳為平坦。另一方面,就賦予防眩性之觀點而言,可為凹凸。根據要求特性,可任意地選擇。
<<積層膜之製造方法>> 硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)均可使硬化性樹脂組合物硬化而形成。即,硬化樹脂層例如將質量平均分子量為1,000~500,000之範圍之硬化性樹脂組合物塗佈於基材膜上並使之硬化而形成。 更具體而言,於基材膜之至少單面側表面塗佈硬化性樹脂組合物(C')並使之硬化而形成硬化樹脂層(C)後,塗佈硬化性樹脂組合物(A')並使之硬化而形成硬化樹脂層(A),於其上塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B),藉此可製造本積層膜。此時,硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)之硬化可在形成各層時分別地進行,亦可在塗佈複數層後同時進行硬化。 又,亦可在形成硬化樹脂層(C)後,或形成硬化樹脂層(C)及硬化樹脂層(A)後,暫時將膜捲取成捲筒狀,再次退繞膜,於硬化樹脂層(A)上塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B)。又,亦可在基材膜表面形成硬化樹脂層(C),於其上形成硬化樹脂層(A)後,連續地塗佈硬化性樹脂組合物(B')並使之硬化而形成硬化樹脂層(B)。再者,積層膜之製造方法並不受上述方法任何限定。
<硬化樹脂層之形成方法> 塗佈硬化性樹脂組合物之方法、乾燥條件、硬化方法可使用與第1實施方式中所記載相同之方法、相同之條件。
<<積層膜之物性>> (耐SW性) 於本積層膜中,可將膜之表面硬度,具體而言,將硬化樹脂層(B)表面之耐SW性(#0000號之鋼絲絨,負載1 kg)設為2000次以上。
(反覆彎折性) 具備上述構成之本積層膜可藉由於本基材膜之表面設置硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B),進而製成包含特定構成成分之硬化樹脂層(B),而可進一步提高實用上之反覆彎折特性。具體而言,本積層膜可獲得即便於反覆彎折性評價(內折,R=1.5之條件下)中彎折20萬次以上亦不會產生龜裂之耐久性。
(全光線透過率) 本積層膜於假定應用於光學用途之情形時,全光線透過率較佳為85%以上,進而較佳為86%以上,尤佳為88%以上。再者,全光線透過率之測定係利用霧度計所測得。測定方法之詳細內容係基於實施例記載之方法。
(膜霧度) 本積層膜於假定應用於光學用途之情形時,膜霧度較佳為1.0%以下,進而較佳為0.8%以下,尤佳為0.6%以下。再者,膜霧度係利用霧度計所測得。測定方法之詳細內容係基於實施例記載之方法。
(干涉條紋) 藉由將500~600 nm之透光率之變動幅度設為1.5%以下、較佳為1.0%以下、進而較佳為0.5%以下,可獲得干涉條紋難以看見之膜。
(抗靜電性) 硬化樹脂層(B)表面之表面電阻率並無特別限定,例如為1×10 12Ω/□以下,較佳為1×10 11Ω/□以下。表面電阻率之下限並無特別限定,若考慮抗靜電劑之成本,則較佳為設為1×10 4Ω/□以上。硬化樹脂層(B)層之表面電阻率越低,抗靜電性越良好,例如可抑制在將設置於硬化樹脂層(B)上之黏著劑層等功能層剝離之步驟中之剝離靜電,而防止異物等附著。硬化樹脂層(B)之表面電阻率例如可藉由於硬化樹脂層(C)中含有抗靜電劑而製成上述範圍內。
<<積層膜之特徵及用途>> 本積層膜能以高水準兼顧表面硬度(耐SW性,例如往返2000次以上)與反覆彎折性(彎曲耐久性,內折、R=1.5之條件下可彎曲20萬次)。推測藉由調整硬化樹脂層(B)之組成而能夠減少本積層膜彎曲時所施加之向硬化樹脂層(B)內之應力傳輸。
又,藉由使用如上述之硬化樹脂層(B),而無需使供使用之基材膜之拉伸彈性模數變得極大。 先前,對於具有表面硬度高之表面層之積層膜,將目標表面硬度設計為所需水準(耐SW性且例如往返2000次以上)時,必須視需要重新考慮構成所使用之基材膜之原料之結構設計,而進一步增大拉伸彈性模數。 相對於此,若使用如上述之硬化樹脂層(B)之構成,則亦能夠適當選擇於市場上流通之通用之基材膜,有在基材膜選擇面上自由度增加之優點。
本積層膜具備優異之耐摩擦性、及實用上之反覆彎折性,進而亦可獲得透明性、抗靜電性,因此可用於如下用途,譬如表面保護用、顯示器用、尤其是前面板用等。例如可適宜地用作表面保護膜、尤其是顯示器用之表面保護膜、特別是可撓性顯示器用之表面保護膜。但是,本積層膜之用途並不限定於該等用途。
<<語句之說明>> 於本發明中,於稱為「膜」之情形時亦包括「片」,於稱為「片」之情形時亦包括「膜」。 又,於本說明書中,於記載為「X~Y」(X、Y為任意數字)之情形時,除非另有說明,否則包括「X以上Y以下」之含義、以及「較佳為大於X」或「較佳為小於Y」之含義。 又,於記載為「X以上」(X為任意數字)之情形時,除非另有說明,否則包括「較佳為大於X」之含義,於記載為「Y以下」(Y為任意數字)之情形時,除非另有說明,否則包括「較佳為小於Y」之含義。
[第3實施方式] 第3實施方式之本發明之積層膜係如下積層膜,其具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(D)之構成,硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,上述硬化樹脂層(D)為包含3官能以上之(甲基)丙烯酸酯(D-a)、含四級銨鹽基之聚合物(D-b)、及具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c)之硬化性樹脂組合物(D')的硬化物。
本發明之積層膜藉由具有上述構成而能夠兼顧優異之抗靜電性與防污性,但干涉條紋難以看見,亦可滿足實用上之反覆彎折特性或耐摩擦性,尤其是藉由包含特定之化合物,即,使硬化性樹脂組合物(D')包含含四級銨鹽基之聚合物(D-b)及具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c),可兼顧抗靜電性與防污性,此外還可兼顧優異之耐摩耗性。
硬化樹脂層(A)係與第1實施方式中所記載者相同。即,硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子係與實施方式1中所記載者相同。以下,對硬化樹脂層(D)進行說明。
[硬化性樹脂組合物(D')] 硬化性樹脂組合物(D')含有3官能以上之(甲基)丙烯酸酯(D-a)、含四級銨鹽基之聚合物(D-b)、及具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c)。
(3官能以上之(甲基)丙烯酸酯(D-a)) 3官能以上之(甲基)丙烯酸酯(D-a)只要為於1分子中具有3個以上(甲基)丙烯醯基之化合物即可,並無特別限定。又,3官能以上之(甲基)丙烯酸酯(D-a)可為單體,亦可為低聚物。 於本發明中,就反覆彎折特性與耐摩擦性之平衡性或折射率調整之方面而言,較佳為使用胺基甲酸酯(甲基)丙烯酸酯(D-a-u)。
作為單體之3官能以上之(甲基)丙烯酸酯(D-a-m),例如可例舉:三羥甲基丙烷三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇三(甲基)丙烯酸酯、二季戊四醇四(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯、三(甲基)丙烯醯氧基乙氧基三羥甲基丙烷、甘油聚縮水甘油醚聚(甲基)丙烯酸酯、異三聚氰酸環氧乙烷改性聚(甲基)丙烯酸酯、環氧乙烷改性二季戊四醇五(甲基)丙烯酸酯、環氧乙烷改性二季戊四醇六(甲基)丙烯酸酯、環氧乙烷改性季戊四醇三(甲基)丙烯酸酯、環氧乙烷改性季戊四醇四(甲基)丙烯酸酯、琥珀酸改性季戊四醇聚(甲基)丙烯酸酯、己內酯改性季戊四醇聚(甲基)丙烯酸酯等。
作為低聚物之3官能以上之(甲基)丙烯酸酯(D-a-o),例如可例舉:3官能以上之胺基甲酸酯(甲基)丙烯酸酯(D-a-u)。3官能以上之胺基甲酸酯(甲基)丙烯酸酯係具有3個以上之(甲基)丙烯醯基、及1個以上之胺基甲酸酯鍵之化合物。 胺基甲酸酯(甲基)丙烯酸酯係使異氰酸酯系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者;或使異氰酸酯系化合物、多元醇系化合物、及含羥基之(甲基)丙烯酸酯系化合物反應而成者。胺基甲酸酯(甲基)丙烯酸酯可單獨使用,或併用2種以上。
作為3官能以上之胺基甲酸酯(甲基)丙烯酸酯,例如可例舉:(1)含有1個以上(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物(D-a1)及多元異氰酸酯系化合物(D-a2)之反應產物;(2)上述(D-a1)、上述(D-a2)及多元醇系化合物(D-a3)之反應產物;(3)含有羥基及3個以上之(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物(D-a4)及單異氰酸酯系化合物(D-a5)之反應產物等。 其中,就防污性、耐摩擦性等方面而言,作為3官能以上之胺基甲酸酯(甲基)丙烯酸酯(D-a-u),較佳為(1)含羥基之(甲基)丙烯酸酯系化合物(D-a1)及多元異氰酸酯系化合物(D-a2)之反應產物。
關於含有1個以上(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物(D-a1),作為含有1個(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物,例如可例舉:(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸4-羥基丁酯、(甲基)丙烯酸6-羥基己酯等(甲基)丙烯酸羥基烷酯、磷酸2-羥乙基丙烯醯基酯、苯二甲酸2-(甲基)丙烯醯氧基乙基-2-羥基丙酯、己內酯改性(甲基)丙烯酸2-羥基乙酯、二丙二醇(甲基)丙烯酸酯、脂肪酸改性-(甲基)丙烯酸縮水甘油酯、聚乙二醇單(甲基)丙烯酸酯、聚丙二醇單(甲基)丙烯酸酯等。 又,作為含有2個(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物,例如可例舉:甘油二(甲基)丙烯酸酯、甲基丙烯酸2-羥基-3-丙烯醯基-氧基丙酯、季戊四醇二(甲基)丙烯酸酯等。 含有1個以上(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物(D-a1)可單獨使用1種,亦可併用2種以上。
作為多元異氰酸酯系化合物(D-a2),例如可例舉:甲苯二異氰酸酯、二苯基甲烷二異氰酸酯、聚苯基甲烷聚異氰酸酯、改性二苯基甲烷二異氰酸酯、苯二甲基二異氰酸酯、四甲基苯二甲基二異氰酸酯、苯二異氰酸酯、萘二異氰酸酯等芳香族系聚異氰酸酯;五亞甲基二異氰酸酯、六亞甲基二異氰酸酯、三甲基六亞甲基二異氰酸酯、離胺酸二異氰酸酯、離胺酸三異氰酸酯等脂肪族系聚異氰酸酯;氫化二苯基甲烷二異氰酸酯、氫化苯二甲基二異氰酸酯、異佛爾酮二異氰酸酯、降𦯉烯二異氰酸酯等脂環式系聚異氰酸酯;該等聚異氰酸酯之三聚體化合物、多聚體化合物;脲基甲酸酯型聚異氰酸酯;縮二脲型聚異氰酸酯;水分散型聚異氰酸酯等。
其中,就胺基甲酸酯化反應時之穩定性之方面而言,較佳為二異氰酸酯系化合物,更佳為五亞甲基二異氰酸酯、六亞甲基二異氰酸酯、三甲基六亞甲基二異氰酸酯、離胺酸二異氰酸酯等脂肪族系二異氰酸酯;氫化二苯基甲烷二異氰酸酯、氫化苯二甲基二異氰酸酯、異佛爾酮二異氰酸酯、降𦯉烯二異氰酸酯、1,3-雙(異氰酸基甲基)環己烷等脂環式系二異氰酸酯。 就硬化收縮較小之方面而言,較佳為異佛爾酮二異氰酸酯、氫化二苯基甲烷二異氰酸酯、氫化苯二甲基二異氰酸酯、降𦯉烯二異氰酸酯,就反應性及通用性均優異之方面而言,尤佳為異佛爾酮二異氰酸酯。 多元異氰酸酯系化合物(D-a2)可單獨使用1種,亦可併用2種以上。
多元醇系化合物(D-a3)只要為含有2個以上羥基之化合物,則無特別限定。例如可例舉:脂肪族多元醇、脂環族多元醇、聚醚系多元醇、聚酯系多元醇、聚碳酸酯系多元醇、聚烯烴系多元醇、聚丁二烯系多元醇、聚異戊二烯系多元醇、(甲基)丙烯酸系多元醇等。
作為脂肪族多元醇,例如可例舉:乙二醇、二乙二醇、丙二醇、二丙二醇、三亞甲基二醇、二羥甲基丙烷、新戊二醇、2,2-二乙基-1,3-丙二醇、2-丁基-2-乙基-1,3-丙二醇、1,4-四亞甲基二醇、1,3-四亞甲基二醇、2-甲基-1,3-三亞甲基二醇、1,5-五亞甲基二醇、1,6-六亞甲基二醇、3-甲基-1,5-五亞甲基二醇、2,4-二乙基-1,5-五亞甲基二醇、季戊四醇二丙烯酸酯、1,9-壬二醇、2-甲基-1,8-辛二醇等含有2個羥基之脂肪族醇類;木糖醇、山梨糖醇等糖醇類;甘油、三羥甲基丙烷、三羥甲基乙烷等含有3個以上羥基之脂肪族醇類等。
作為脂環族多元醇,例如可例舉:1,4-環己烷二醇、環己基二甲醇等環己烷二醇類、氫化雙酚A等氫化雙酚類、三環癸烷二甲醇等。
作為聚醚系多元醇,例如可例舉:聚乙二醇、聚丙二醇、聚四亞甲基二醇、聚丁二醇、聚五亞甲基二醇、聚六亞甲基二醇等含伸烷基結構之聚醚系多元醇;該等聚伸烷基二醇之無規共聚物、嵌段共聚物。
作為聚酯系多元醇,例如可例舉:多元醇與多元羧酸之縮聚物;環狀酯(內酯)之開環聚合物;多元醇、多元羧酸及環狀酯這3種成分之反應物等。
作為多元醇,例如可例舉:乙二醇、二乙二醇、丙二醇、二丙二醇、三亞甲基二醇、1,4-四亞甲基二醇、1,3-四亞甲基二醇、2-甲基-1,3-三亞甲基二醇、1,5-五亞甲基二醇、新戊二醇、1,6-六亞甲基二醇、3-甲基-1,5-五亞甲基二醇、2,4-二乙基-1,5-五亞甲基二醇、甘油、三羥甲基丙烷、三羥甲基乙烷、環己烷二醇類(1,4-環己烷二醇等)、雙酚類(雙酚A等)、糖醇類(木糖醇、山梨糖醇等)等。其等可單獨使用1種,亦可併用2種以上。
作為多元羧酸,例如可例舉:丙二酸、馬來酸、富馬酸、琥珀酸、戊二酸、己二酸、辛二酸、壬二酸、癸二酸、十二烷二酸等脂肪族二羧酸;1,4-環己烷二羧酸等脂環式二羧酸;對苯二甲酸、間苯二甲酸、鄰苯二甲酸、2,6-萘二甲酸、對苯二甲酸、偏苯三甲酸等芳香族二羧酸等。其等可單獨使用1種,亦可併用2種以上。
作為環狀酯,例如可例舉:丙內酯、β-甲基-δ-戊內酯、ε-己內酯等。
作為聚碳酸酯系多元醇,例如可例舉:多元醇與光氣之反應物、環狀碳酸酯(碳酸伸烷酯等)之開環聚合物等。其等可單獨使用1種,亦可併用2種以上。
聚碳酸酯系多元醇中之多元醇可例舉:與聚酯系多元醇中之多元醇相同之化合物。作為碳酸伸烷酯,例如可例舉:碳酸乙二酯、三亞甲基碳酸酯、四亞甲基碳酸酯、六亞甲基碳酸酯等。其等可單獨使用1種,亦可併用2種以上。
聚碳酸酯系多元醇只要為於分子內具有碳酸酯鍵,且於分子末端具有羥基之化合物,則無特別限定。聚碳酸酯系多元醇除碳酸酯鍵以外,還可進而具有酯鍵。
作為聚烯烴系多元醇,可例舉:具有乙烯、丙烯、丁烯等均聚物或共聚物作為飽和烴骨架且於其分子末端具有羥基者。
作為聚丁二烯系多元醇,可例舉:具有丁二烯之共聚物作為烴骨架且於其分子末端具有羥基者。聚丁二烯系多元醇亦可為其結構中所包含之乙烯性不飽和基之全部或一部分經氫化之氫化聚丁二烯多元醇。
作為聚異戊二烯系多元醇,可例舉:具有異戊二烯之共聚物作為烴骨架且於其分子末端具有羥基者。聚異戊二烯系多元醇亦可為其結構中所包含之乙烯性不飽和基之全部或一部分經氫化之氫化聚異戊二烯多元醇。
作為(甲基)丙烯酸系多元醇,例如可例舉:於(甲基)丙烯酸酯之聚合物或共聚物之分子內具有至少2個羥基者。作為該(甲基)丙烯酸酯,可例舉:含有1個上述乙烯性不飽和基之含羥基之(甲基)丙烯酸酯系化合物。亦可視需要,使其他共聚單體進行共聚。 作為共聚單體,例如可例舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸十八烷基酯等(甲基)丙烯酸烷基酯等丙烯酸酯、苯乙烯、甲基苯乙烯等苯乙烯系化合物等。 又,可為使側鏈具有縮水甘油基之(甲基)丙烯酸系聚合物與(甲基)丙烯酸等羧酸進行反應而成的含羥基之(甲基)丙烯酸系多元醇,亦可為使側鏈具有羧酸之(甲基)丙烯酸系聚合物與含縮水甘油基之化合物進行反應而成的含羥基之(甲基)丙烯酸系多元醇。
其中,較佳為聚酯系多元醇、聚醚系多元醇,就硬化物(接著劑)之柔軟性及與光聚合性化合物之相溶性之方面而言,尤佳為聚醚系多元醇,最佳為聚四亞甲基二醇。多元醇系化合物(a3)可單獨使用1種,亦可併用2種以上。
多元醇系化合物(D-a3)之數量平均分子量較佳為200~3,000,更佳為250~2,000,進而較佳為300~1,000。若多元醇系化合物(D-a3)之數量平均分子量過小,則有交聯密度過度提昇而與基材之密接變得不良之趨勢。若多元醇系化合物(D-a3)之數量平均分子量過大,則有結晶性變高而成為高黏度之趨勢。
數量平均分子量係基於標準聚苯乙烯分子量換算之數量平均分子量。例如可使用於高效液相層析儀(日本沃特斯公司製造,「Waters 2695(本體)」與「Waters 2414(檢測器)」)上串聯連接3根管柱:Shodex GPC KF-806L(排除極限分子量:2×107、分離範圍:100~2×107、理論板數:10,000板/根、填充劑材質:苯乙烯-二乙烯苯共聚物、填充劑粒徑:10 μm)而成者進行測定。
作為含有3個以上(甲基)丙烯醯基之含羥基之(甲基)丙烯酸酯系化合物(D-a4),例如可例舉:季戊四醇三(甲基)丙烯酸酯、己內酯改性季戊四醇三(甲基)丙烯酸酯、環氧乙烷改性季戊四醇三(甲基)丙烯酸酯、二季戊四醇五(甲基)丙烯酸酯、己內酯改性二季戊四醇五(甲基)丙烯酸酯、環氧乙烷改性二季戊四醇五(甲基)丙烯酸酯等。 其中,較佳為二季戊四醇五(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯。
作為單異氰酸酯系化合物(D-a5),例如可例舉:丁烷異氰酸酯、3-氯苯異氰酸酯、環己烷異氰酸酯、3-異丙烯醯基-α,α-二甲基苄基異氰酸酯等單異氰酸酯等。
胺基甲酸酯(甲基)丙烯酸酯(D-a-u)可依據公知之方法進行合成。例如關於含羥基之(甲基)丙烯酸酯系化合物(D-a1)及多元異氰酸酯系化合物(D-a2)之反應產物,可依據日本專利特開2020-152786號公報之段落[0036]~[0042]所記載之方法來合成。
本發明中可使用之胺基甲酸酯(甲基)丙烯酸酯(D-a-u)之重量平均分子量較佳為1,000~60,000,更佳為1,500~50,000,進而較佳為1,800~30,000。若重量平均分子量為上述下限值以上,則硬化時之硬化物之硬化收縮不會變得過大,又,若為上述上限值以下,則維持黏度較低而操作容易。
重量平均分子量係基於標準聚苯乙烯分子量換算之重量平均分子量,可使用於高效液相層析儀(日本沃特斯公司製造,「Waters 2695(本體)」與「Waters 2414(監測器)」)上串聯連接3根管柱:Shodex GPC KF-806L(排除極限分子量:2×107、分離範圍:100~2×107、理論板數:10,000板/根、填充劑材質:苯乙烯-二乙烯苯共聚物、填充劑粒徑:10 μm)而成者進行測定。
胺基甲酸酯(甲基)丙烯酸酯(D-a-u)於60℃下之黏度較佳為500~100,000 mPa・s,更佳為800~50,000 mPa・s,進而較佳為1,00~35,000 mPa・s。若黏度為上述範圍,則作業性良好。再者,黏度係藉由E型黏度計所測得之值。
於本發明之硬化性樹脂組合物(D')中,除3官能以上之(甲基)丙烯酸酯(D-a)以外,還可含有(甲基)丙烯酸酯系化合物。作為該(甲基)丙烯酸酯系化合物,例如可例舉:單官能(甲基)丙烯酸酯及其衍生物、2官能(甲基)丙烯酸酯及其衍生物等。 該等3官能以上之(甲基)丙烯酸酯(D-a)以外之(甲基)丙烯酸酯系化合物之含量相對於3官能以上之(甲基)丙烯酸酯(D-a)100質量份,通常為20質量份以下,較佳為10質量份以下。
作為單官能(甲基)丙烯酸酯及其衍生物,例如可例舉:(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸正丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸正丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸第二丁酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸正辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸正癸酯、(甲基)丙烯酸月桂酯、(甲基)丙烯酸正十三烷基酯、(甲基)丙烯酸硬脂酯、(甲基)丙烯酸苄酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸異𦯉酯、(甲基)丙烯酸四氫呋喃甲酯、(甲基)丙烯酸乙氧基乙酯、乙基卡必醇(甲基)丙烯酸酯、(甲基)丙烯酸丁氧基乙酯、(甲基)丙烯酸二甲胺基乙酯及基於其陽離子化劑之改性體、(甲基)丙烯酸二乙胺基乙酯及基於其陽離子化劑之改性體、(甲基)丙烯酸氰基乙酯、甲氧基聚乙二醇(甲基)丙烯酸酯、甲氧基聚丙二醇(甲基)丙烯酸酯等烷氧基聚伸烷基二醇(甲基)丙烯酸酯、(甲基)丙烯酸2-羥基乙酯、(甲基)丙烯酸2-羥基丙酯、(甲基)丙烯酸2-羥基丁酯、(甲基)丙烯酸4-羥基丁酯、(甲基)丙烯酸2-羥基-3-丁氧基丙酯、鄰苯二甲酸2-(甲基)丙烯醯氧基乙基-2-羥基乙酯、(甲基)丙烯酸、鄰苯二甲酸2-(甲基)丙烯醯氧基乙酯、六氫鄰苯二甲酸2-(甲基)丙烯醯氧基乙酯、鄰苯二甲酸2-(甲基)丙烯醯基丙酯、丁二酸(甲基)丙烯醯氧基乙酯、(甲基)丙烯酸2-異氰酸基乙酯等。
作為2官能(甲基)丙烯酸酯及其衍生物,例如可例舉:乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、丁二醇二(甲基)丙烯酸酯、己二醇二(甲基)丙烯酸酯、壬二醇二(甲基)丙烯酸酯、乙氧基化二(甲基)丙烯酸酯、丙氧基化己二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、新戊二醇二(甲基)丙烯酸酯、乙氧基化新戊二醇二(甲基)丙烯酸酯等2官能(甲基)丙烯酸酯、2官能之胺基甲酸酯(甲基)丙烯酸酯、2官能之乙氧基丙烯酸酯、2官能之聚酯丙烯酸酯等。
(含四級銨鹽基之聚合物(D-b)) 含四級銨鹽基之聚合物(D-b)係具有1個以上四級銨鹽基之聚合物(其中,3官能以上之(甲基)丙烯酸酯(D-a)除外)。 作為構成含四級銨鹽基之聚合物(D-b)之主骨架之聚合物,例如可例舉:含四級銨鹽基之丙烯酸系聚合物、含四級銨鹽基之烯烴系聚合物、含四級銨鹽基之酯系聚合物、含四級銨鹽基之纖維素系聚合物、含四級銨鹽基之苯乙烯系聚合物、其等之共聚物等。 於本發明中,藉由含有含四級銨鹽基之聚合物(D-b),可有效率地提昇積層膜之抗靜電性,並且亦可兼顧優異之耐摩耗性。其中,含四級銨鹽基之丙烯酸系聚合物在與(甲基)丙烯酸酯之相溶性及用以表現出抗靜電性之對表面之偏析的平衡性優異,而可以高水準獲得抗靜電性能的方面上較佳。含有四級銨鹽基之聚合物(D-b)可單獨地使用1種,亦可併用2種以上。
含四級銨鹽基之聚合物(D-b)例如可藉由具有四級銨鹽基及不飽和基之單體、與具有其他不飽和基之化合物(例如單體、低聚物)之共聚而獲得。
作為具有四級銨鹽基及不飽和基之單體,例如可例舉:(甲基)丙烯醯氧基乙基三甲基氯化銨、2-羥基-3-(甲基)丙烯酸氧基丙基三甲基氯化銨、2-羥基-3-(甲基)丙烯醯氧基丙基三乙基溴化銨、2-羥基-3-(甲基)丙烯醯氧基丙基三丁基氯化銨、2-羥基-3-(甲基)丙烯醯氧基丙基甲基乙基丁基氯化銨、2-羥基-3-(甲基)丙烯醯氧基丙基二甲基苯基氯化銨、2-羥基-3-(甲基)丙烯醯氧基丙基二甲基環己基氯化銨等。
作為具有其他不飽和基之化合物,可例舉:(甲基)丙烯酸環己酯、(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸己酯、(甲基)丙烯酸辛酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十二烷基酯、(甲基)丙烯酸十八烷基酯等(甲基)丙烯酸烷基酯;2-(甲基)丙烯醯氧基乙基琥珀酸;2-(甲基)丙烯醯氧基乙基六氫鄰苯二甲酸等。
含四級銨鹽基之聚合物(D-b)之數量平均分子量例如可根據使用凝膠滲透層析儀(GPC)之聚苯乙烯標準而求出。含四級銨鹽基之聚合物(D-b)之數量平均分子量通常為5000~500000之範圍內,較佳為7000~300000。若含四級銨鹽基之聚合物(D-b)之數量平均分子量為上述數值範圍之下限值以上,則於塗佈層之表面不會產生滲出。另一方面,若含有四級銨鹽基之聚合物(D-b)之數量平均分子量為上述數值範圍之上限值以下,則於本塗佈劑組合物中之相溶性變得良好。
含四級銨鹽基之聚合物(D-b)例如可藉由使包含具有四級銨鹽基及不飽和基之單體之單體成分進行聚合而製造。該單體成分亦可視需要,進而包含具有其他不飽和基之化合物、聚合起始劑等。
(具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c)) 形成硬化樹脂層(D)之硬化性樹脂組合物(D')含有具有含氟原子之結構及環狀矽氧烷結構之化合物。該化合物例如可例舉:下述通式所表示之氟化合物。
[化8] 式(1)
式(1)中,R 1及R 2分別獨立地為可具有取代基之碳數1~12之有機基;m為3~10之整數。
式(1)中,m就耐摩擦性或耐摩耗性之方面而言,較佳為3~6之整數,尤佳為3或4。
作為R 1、R 2中之有機基,可例舉:甲基、乙基、正丙基、異丙基、丁基、異丁基、第二丁基、第三丁基等鏈狀烷基;甲氧基、乙氧基等烷氧基;環己基、降𦯉烯基等環狀烷基;乙烯基、1-丙烯基、烯丙基、丁烯基、1,3-丁二烯基等烯基;乙炔基、丙炔基、丁炔基等炔基;三氟甲基等鹵化烷基;3-吡咯烷基丙基等具有飽和雜環基之烷基;可具有烷基取代基之苯基等芳基;苯基甲基、苯基乙基等芳烷基等。
又,R 1、R 2中之有機基可於碳原子間具有氧原子,亦可於碳原子間具有醯胺鍵。又,R 1、R 2中之有機基亦可為與其碳原子鍵結之氫原子全部被取代為氟原子之全氟有機基。 於對塗佈層賦予撥水性之情形時,作為R 2、R 3之至少一部分,較佳為可於碳原子間具有氧原子之全氟有機基,更佳為可於碳原子間具有氧原子之全氟伸烷基。
作為R 1、R 2中之有機基可具有之取代基,可例舉:羥基、鹵素原子(例如氟原子、氯原子、溴原子、碘原子)、(甲基)丙烯醯基等。其中,較佳為羥基、鹵素原子、(甲基)丙烯醯基。
於本發明中,具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c)較佳為具有全氟醚結構及環狀矽氧烷結構之氟化合物。進而較佳為於末端具有全氟醚結構之化合物。即,較佳為全氟醚骨架為單末端結構且與環狀矽氧烷骨架鍵結之氟化合物。藉由為上述結構,可更為提昇硬化樹脂層面之滑動性,又,可增大硬化樹脂層面之水滴接觸角。即,由於撥水性優異,故除優異之防污性、實用上之耐摩擦性以外,還可發揮優異之耐摩耗性。
化合物(D-c)可為反應性矽氧烷化合物,亦可為非反應性矽氧烷化合物。 反應性矽氧烷化合物係具有反應性官能基及矽氧烷鍵之化合物。作為反應性官能基,例如可例舉胺基、環氧基、羧基、甲醇基、(甲基)丙烯酸基、巰基、苯酚基等。 非反應性矽氧烷化合物係不具有反應性官能基而具有矽氧烷鍵之化合物。例如可例舉:聚醚改性之矽氧烷化合物、甲基苯乙烯基改性之矽氧烷化合物、烷基改性之矽氧烷化合物、高級脂肪酸酯改性之矽氧烷化合物、親水性特殊改性之矽氧烷化合物、高級烷氧基改性之矽氧烷化合物、氟改性之矽氧烷化合物等。
作為化合物(D-c)之合成方法,例如可例舉:使具有含有3個以上氟原子之有機基及3個以上Si-H基之矽氧烷化合物與(甲基)丙烯酸烯丙酯等進行加成反應之方法;或使具有含有3個以上氟原子之有機基及3個以上Si-H基之矽氧烷化合物、與丙烯酸羥基乙酯等具有OH基之(甲基)丙烯酸化合物進行脫氫反應之方法等。 該等方法之中,較佳為加成反應。其原因在於:(甲基)丙烯酸基亦有可能發生加成反應,但藉由在脫氫反應中使用胺等觸媒,可在保持(甲基)丙烯酸基之狀態下進行反應,而容易獲得目標化合物。
(硬化性樹脂組合物(D')之組成) 3官能以上之(甲基)丙烯酸酯(D-a)之含量相對於硬化性樹脂組合物(D')之固形物成分100質量份,較佳為50~99質量份,更佳為60~97質量份。若3官能以上(甲基)丙烯酸酯(D-a)之含量為上述下限值以上,則硬化樹脂層(D)之耐摩擦性變得足夠。另一方面,若3官能以上(甲基)丙烯酸酯(D-a)之含量為上述上限值以下,則可獲得足夠濃度之含四級銨鹽基之聚合物(D-b),而獲得良好之抗靜電性。
含四級銨鹽基之聚合物(D-b)之含量相對於(甲基)丙烯酸酯(D-a)100質量份,較佳為0.5~30質量份,更佳為1~20質量份。若含四級銨鹽基之聚合物(D-b)之含量為上述下限值以上,則利用含四級銨鹽基之聚合物可獲得提昇抗靜電性之效果。另一方面,若含四級銨鹽基之聚合物(D-b)之含量為上述上限值以下,則塗佈層之透明性變得良好。又,若化合物(D-c)之含量為上述下限值以上且上限值以下之範圍,則亦可提昇耐摩耗性。
於硬化樹脂層(D)中,即於硬化性樹脂組合物(D')中,化合物(D-c)之含量相對於(甲基)丙烯酸酯(D-a)100質量份,較佳為0.01~5質量份,進而較佳為0.05~3質量份,尤佳為0.1~1質量份。若化合物(D-c)之含量為上述下限值以上,則利用化合物(D-c)可充分獲得提昇防污性之效果。另一方面,若化合物(D-c)之含量為上述上限值以下,則維持塗佈層之透明性而表現足夠之抗靜電性。又,若化合物(D-c)之含量為上述下限值以上且上限值以下之範圍,則亦可提昇耐摩耗性。
(溶劑) 硬化性樹脂組合物(D')可藉由利用溶劑進行稀釋而製成塗佈液。藉由將硬化性樹脂組合物(D')以液狀塗佈液之形式塗佈於硬化樹脂層(A)上並進行乾燥,且使之硬化而可製成硬化樹脂層(D)。構成硬化性樹脂組合物(D')之各成分可溶解於溶劑中,亦可分散於溶劑中。 作為溶劑,可以與上述硬化性樹脂組合物(B')中所記載者相同之種類、使用量來應用。又,於硬化性樹脂組合物(D')中亦可添加第1實施方式中所記載之其他成分。又,光起始劑、光聚合起始劑、光酸產生劑之種類、含量均可設為與第1實施方式之硬化性樹脂組合物(B')相同。 進而,硬化性樹脂組合物(A')及(D')之黏度亦與第1實施方式中之硬化性樹脂組合物(A')及(B')相同。
(硬化性樹脂組合物(A')及(D')之黏度) 關於用以形成硬化樹脂層(A)及硬化樹脂層(D)之硬化性樹脂組合物(A')及(D'),為了使塗佈性變得良好,利用E型黏度計所測得之於25℃下之黏度較佳為10~60 mPa・s,進而較佳為30 mPa・s以下,進而較佳為20 mPa・s以下,進而較佳為15 mPa・s以下,進而更佳為12 mPa・s以下。
(硬化樹脂層(D)之厚度) 硬化樹脂層(D)之厚度較佳為10.0 μm以下,更佳為8.0 μm以下,進而較佳為6.0 μm以下,尤佳為5.0 μm以下。 若硬化樹脂層(D)之厚度為上述上限值以下,則積層膜等具有硬化樹脂層(D)之積層體構成可防止捲縮或熱皺,而可確保良好之平面性。 另一方面,硬化樹脂層(D)之厚度之下限值並無特別限制,就可適當保護基材膜之方面而言,較佳為1.0 μm以上。
再者,硬化樹脂層(A)及硬化樹脂層(D)之合計厚度就彎折性之觀點而言,較佳為10.0 μm以下,進而較佳為8.0 μm以下,尤佳為6.0 μm以下,特別是可為5.0 μm以下。
硬化樹脂層(D)表面之波長380 nm之透光率較佳為3.0%以下。若透光率為3.0%以下,則於可防止供貼合之對手構件因紫外線而劣化之方面上有利。就以上觀點而言,波長380 nm之透光率更佳為2.8%以下。
又,硬化樹脂層(D)表面之波長500~600 nm之最大反射率差較佳為1.5%以下。若最大反射率差(透光率之變動幅度)為1.5%以下,則於不易看見干涉條紋之方面上有利。就以上之觀點而言,最大反射率差更佳為1.0%以下,進而較佳為0.5%以下,尤其是可為0.3%以下。
(各層之表面狀態) 硬化樹脂層(A)之表面可凹凸亦可平坦,但就外觀(表面光澤)之觀點而言,較佳為平坦。 又,硬化樹脂層(D)之表面可凹凸亦可平坦,但就外觀(表面光澤)之觀點而言,較佳為平坦。另一方面,就賦予防眩性之觀點而言,可為凹凸。可視要求特性而任意地選擇。
<<積層膜之製造方法>> 硬化樹脂層(A)及硬化樹脂層(D)(以下,有時將兩者合併僅記載為「硬化樹脂層」)均可使硬化性組合物、即具有可硬化之性能之組合物(硬化性樹脂組合物)硬化而形成。即,硬化樹脂層例如將質量平均分子量為1,000~500,000之範圍之硬化性樹脂組合物塗佈於基材膜上並使之硬化而形成。 更具體而言,於基材膜之至少單面側表面塗佈硬化性樹脂組合物(A')並使之硬化而形成硬化樹脂層(A)後,於其上塗佈硬化性樹脂組合物(D')並使之硬化而形成硬化樹脂層(D),藉此可製造本積層膜。此時,亦可同時進行硬化樹脂層(A)與硬化樹脂層(D)之硬化。 又,亦可於形成硬化樹脂層(A)後,暫時將膜捲取成捲筒狀,再次退繞膜,於硬化樹脂層(A)上塗佈硬化性樹脂組合物B並使之硬化而形成硬化樹脂層(D)。又,亦可於基材膜表面形成硬化樹脂層(A)後,連續地塗佈硬化性樹脂組合物(D')並使之硬化而形成硬化樹脂層(D)。再者,積層膜之製造方法並不受上述方法任何限定
<硬化樹脂層之形成方法> 關於硬化樹脂層之形成方法,可使用與第1實施方式相同之方法。關於乾燥條件、硬化方法,亦可使用與第1實施方式相同之方法。
<<積層膜之物性>> (耐SW性) 於本積層膜中,可將膜之表面硬度,具體而言將硬化樹脂層(D)表面之耐SW性設為1000次以上。詳細而言,當利用實施例所記載之方法測定時,可將無目視能確認之損傷且相較於初始膜霧度之變化未達1%之往返數設為1000次以上。
(反覆彎折性) 本積層膜之反覆彎折性(耐彎曲性)優異。具體而言,以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行試驗,測定直至內側表面中之硬化樹脂層產生龜裂為止之反覆彎折次數時,於即便彎折20萬次以上亦不會產生龜裂之情形時,可評價為反覆彎折性(耐彎曲性)良好。
(水滴接觸角) 本積層膜之硬化樹脂層側之水滴接觸角較佳為100°以上,更佳為105°以上,進而較佳為110°以上。 又,利用摩擦試驗機(大榮科學精器製作所公司製造,RT-300)並使用#0000號之鋼絲絨(商品名:BONSTAR,日本鋼絲絨公司製造),一面以2 cm見方對硬化樹脂層(D)之最表面施加1 kg負載,一面以速度50 mm/sec往返摩擦1000次後,水滴接觸角較佳為90°以上,更佳為95°以上。往返摩擦後之水滴接觸角為上述範圍內係表示於往返摩擦後亦維持規定以上之撥水性,表示硬化樹脂層之耐鋼絲絨性(耐SW性)良好。 進而,將橡皮擦(商品號:ER-KM,圓形部直徑6.7 mm、Tombow Pencil公司製造)以橡皮擦之前端自安裝部伸出1~3 mm並使圓形部分均勻地接觸於硬化樹脂層(D)之最表面的方式安裝於摩擦測試機(大平理化工業公司製造),對硬化樹脂層(D)之最表面施加0.5 kg負載,並且以1往返/sec之速度在5 cm之區域往返100次後,水滴接觸角較佳為90°以上,更佳為95°以上。
(全光線透過率) 本積層膜於假定應用於光學用途之情形時,全光線透過率較佳為85%以上,其中進而較佳為86%以上,尤佳為88%以上。再者,全光線透過率之測定係利用霧度計所測得。測定方法之詳細內容係基於實施例記載之方法。
(膜霧度) 本積層膜於假定應用於光學用途之情形時,膜霧度較佳為1.0%以下,其中進而較佳為0.8%以下,尤佳為0.6%以下。再者,膜霧度係利用霧度計所測得。測定方法之詳細內容係基於實施例記載之方法。
(干涉條紋) 藉由將500~600 nm之透光率之變動幅度設為1.5%以下、較佳為1.0%以下、進而較佳為0.5%以下,可獲得不易看見干涉條紋之膜。
(抗靜電性) 硬化樹脂層(B)表面之表面電阻率並無特別限定,例如為1×10 12Ω/□以下、較佳為1×10 11Ω/□以下。表面電阻率並無特別下限,若考慮抗靜電劑之成本,則較佳為設為1×10 4Ω/□以上。硬化樹脂層(B)層之表面電阻率越低,抗靜電性越良好,例如可抑制將設置在硬化樹脂層(B)上之黏著劑層等功能層進行剝離之步驟中之剝離靜電,而防止異物等附著。硬化樹脂層(B)之表面電阻率例如可藉由於硬化樹脂層(B)中含有抗靜電劑而成為上述範圍內。
(氟原子濃度) 藉由X射線光電子光譜法(XPS)所測定之以加速電壓200 eV進行了10秒鐘Ar蝕刻之處的氟原子濃度(F2;原子%)相對於積層膜最表面(硬化樹脂層(B)側之面)之氟原子濃度(F1:原子%)之比例(F2/F1)較佳為0.2以下,進而較佳為0.0001~0.10,尤佳為0.001~0.02。 若上述比例(F2/F1)較小,則意味著積層膜表面之(Y)具有環狀矽氧烷骨架之氟化合物之氟原子佔有率較高,藉由使氟原子偏析至積層膜表面,並將(F2/F1)設為特定範圍,可製成耐摩擦性或耐摩耗性優異之積層膜。 本積層膜之氟原子濃度之測定方法之詳細內容係基於實施例記載之方法。
<<積層膜之特徵及用途>> 本積層膜具有高水準之表面硬度(耐SW性,例如往返2000次以上)。 又,本積層膜由於具備優異之抗靜電性及防污性,不易看見干涉條紋,進而耐摩耗性優異,亦滿足實用上之反覆彎折性,故而可用於表面保護用、顯示器用、尤其是前面板用等用途。例如可適宜用作表面保護膜、尤其是顯示器用之表面保護膜。但是,本積層膜之用途並不限定於該等用途。 [實施例]
以下,使用實施例、比較例、及參考例,對本發明進一步詳細地進行說明,但本發明只要不脫離其意旨,則並不限定於以下之實施例、比較例、及參考例。 再者,例中,「份」、「%」意指質量基準。
<評價方法> 實施例中所使用之測定法及評價方法如下所示。
(1)硬化樹脂層之膜厚測定方法 使用東亞合成公司製造之「Aron Alpha系列」,將各積層膜接著於玻璃製載玻片上,而製成SAICS(SAICAS)用樣品。將所獲得之SAICS用樣品設置於SAICAS(Daipla Wintes公司製造之DN-01型)中,事先利用金剛石刀尖切出寬度300 μm、深度1 μm之切口。切出切口時,係使用V型角80°、切削角5°、退刀角5°之單結晶金剛石刀進行。測定時,將寬度300 μm之氮化硼切刀設置於事先切出了寬度300 μm之切口之樣品,以任意深度、水平速度1 μm/s、垂直速度0.5 μm/s測定各硬化樹脂層之膜厚。測定時使用刀片寬度0.3 mm、切削角20°、退刀角10°之氮化硼製刀。根據垂直位移位置及切削力測定材料強度,而算出各層之厚度。
(2)膜霧度 依據JIS K 7136:2000,使用村上色彩技術研究所製造之霧度計HM-150來測定各積層膜之膜霧度。判定基準係如以下所示。 (判定基準) ○:1.0%以下 △:超過1.0%且未達1.5% ×:1.5%以上
(3)基材膜之延遲(Re) 於測定基材膜之延遲(Re)時,使用王子計測機器(股)製造之「相位差測定裝置(KOBRA-21ADH)」。自膜寬度方向上之中央部沿膜寬度方向以10 cm之間隔切下3.5 cm×3.5 cm之樣品,以本測定裝置中定義了膜寬度方向之角度成為0°之方式設置於裝置上,測定入射角0°設定中之波長590 nm之快軸方向(寬度方向)之延遲(Re)。 算出自各基材膜樣品獲得之延遲之最大值與最小值之差,用該差除以膜樣品(3.5 cm×3.5 cm之樣品)中獲得了最大值及最小值之位置在快軸方向(寬度方向)之距離(m),將計算所得者作為「快軸方向(寬度方向)之延遲(Re)之變化量(ΔRe)」。 快軸方向(寬度方向)之延遲(Re)之變化量(nm/m)=(延遲之最大值-延遲之最小值)/最大值位置與最小值位置之快軸方向(寬度方向)之距離(m)
(4)鋼絲絨(耐SW性)試驗(耐摩擦性) 利用摩擦試驗機(大榮科學精器製作所公司製造,RT-300)並使用#0000號之鋼絲絨(商品名:BONSTAR,日本鋼絲絨公司製造),一面對積層膜之最表面(硬化樹脂層表面)之2 cm見方施加1 kg負載,一面以速度50 mm/sec往返摩擦,利用目視確認硬化樹脂層表面有無損傷。又,測定摩擦前後之積層膜之霧度值。確認於硬化樹脂層之表面無目視可確認之損傷,且相較於初始膜霧度(摩擦前之膜霧度)之往返2000次後之膜霧度之變化率,根據下述判定基準來判定。再者,霧度之變化率係藉由以下式算出。 變化率(%)=(摩耗後膜霧度-初始膜霧度)/初始膜霧度×100 (判定基準) A:變化率未達1%。 B:變化率為1%以上。
(5)彎曲耐久性 使用彎折試驗機(YUASA SYSTEM機器公司製造,DLDMLH-FS),以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行試驗,目視確認該內側表面中硬化樹脂層有無產生龜裂。然後,測定直至龜裂產生為止之反覆彎折次數,基於其結果並根據下述判定基準來判定。 (判定基準) A:反覆彎折次數為20萬次以上 B:反覆彎折次數超過10萬次且未達20萬次 C:反覆彎折次數超過1000次且為10萬次以下 D:反覆彎折次數為1000次以下
(6)硬化樹脂層之斷裂伸長率 將積層膜切成寬度10 mm、長度150 mm之帶狀而製作試驗片。使用附帶恆溫恆濕槽之拉伸試驗機(Intesco公司製造,201X型試驗機),用拉伸試驗機之夾頭將上述試驗片以初始夾頭間距離成為50 mm之方式夾住。然後,以拉伸速度5 m/分鐘將樣品進行拉伸,利用目視確認硬化樹脂層產生龜裂之位移,而算出伸長率。 伸長率(%)=(斷裂時長度-初始長度)/初始長度×100
(7)全光線透過率 依據JIS K 7136:2000,使用村上色彩技術研究所製造之霧度計HM-150,測定各積層膜之全光線透過率。
(8)透光率 使用分光光度計(日立高新技術公司製造,U-3900H),測定各積層膜於380 nm、400 nm及500~600 nm之各測定波長下之透光率。
(9)絕對反射率 於積層膜之未積層有硬化樹脂層之面側貼附黑色膠帶(3M製造,Scotch117),使用分光光度計(日立高新技術公司製造,U-3900H),測定硬化樹脂層面側之550 nm波長下之絕對反射率。 絕對反射率係不使用基準板,以積層膜之硬化樹脂層面所反射之光之量相對於直接測定源自光源之光所得之光之量的比率算出。 絕對反射率(%)=積層膜之硬化樹脂層面所反射之光之量/使用之光之量×100
(10)干涉條紋 對在積層膜之未積層有硬化樹脂層之面側貼附有黑色膠帶(3M製造,Scotch117)之膜積層體,於3波長螢光燈下自硬化樹脂層側藉由目視確認干涉條紋,並根據以下基準來評價。再者,500~600 nm之透光率之變動幅度係波長500~600 nm之光線於反射模擬中之反射率的變動幅度。 (判定基準) A:干涉條紋幾乎看不見(特別良好) (500~600 nm之透光率之變動幅度未達0.6%) B:不易看見干涉條紋(良好) (500~600 nm之透光率之變動幅度為0.6%以上且未達1.1%) C:干涉條紋可見(略微不良) (500~600 nm之透光率之變動幅度為1.1%以上且1.5%以下) D:干涉條紋清晰可見(不良) (500~600 nm之透光率之變動幅度超過1.5%)
(11)抗靜電性 使用Nittoseiko Analytech(股)製造之高阻電阻率計:Hiresta UX MCP-HT800及測定電極:UR-100,於23℃、50%RH之測定氛圍下對樣品進行30分鐘調濕後,於施加電壓500 V下進行測定,將1分鐘後之值作為表面電阻率。當電阻值超出了能測定之範圍之上限時,視為無法測定(over)。
(12)水滴接觸角(1) 使用自動接觸角計(Data Physics公司製造,型號OCA20),向積層膜之最表面(硬化樹脂層表面)滴下水滴,測定經過60秒鐘後之接觸角。測定5次,採用其平均值。 測定係在鋼絲絨試驗前,利用上述鋼絲絨試驗中記載之方法往返摩擦1000次後、及返摩擦2000次後進行。
(12)水滴接觸角(2) 使用自動接觸角計(Data Physics公司製造,型號OCA20),向積層膜之最表面(硬化樹脂層表面)滴下水滴,測定經過30秒後之接觸角。測定5次,採用其平均值。 測定係在鋼絲絨試驗前,利用上述鋼絲絨試驗中記載之方法往返摩擦500次後、及返摩擦1000次後進行。
(13)氟原子濃度 使用下述裝置,藉由X射線光電子光譜法(XPS)進行測定。 試驗裝置:XPS Thermo K-Alpha 試驗條件:X射線 單色化 Al Kα :分析區域 400 μmϕ :掠出角90° 以藉由寬掃描檢測到之元素作為目標來實施窄掃描,求出檢測到之元素之比率中之氟比率作為氟元素濃度。 (14)耐摩耗性 將橡皮擦(商品號:ER-KM,圓形部直徑6.7 mm,Tombow Pencil公司製造)以橡皮擦前端自安裝部伸出1~3 mm且使圓形部分均勻地接觸於硬化樹脂層表面之方式安裝於摩擦測試機(大平理化工業公司製造),對積層膜之最表面(硬化樹脂層表面)施加0.5 kg負載,並且以1往返/sec之速度於5 cm之區域往返100次,而測定硬化樹脂層表面之水滴接觸角。 水滴接觸角係使用接觸角計(協和界面科學公司製造,型號DMo-501),向積層膜之最表面(硬化樹脂層表面)滴下1.0 μL之水滴,藉由θ/2法測定經過60秒後之接觸角。 若所測得之水滴接觸角為90°以上,則判定為○(耐摩耗性良好)。
實施例及比較例中所使用之各種材料係以如下方式準備者。
實施例及比較例中所使用之各種材料係以如下方式準備者。 <聚酯原料> (PET-A) 固相聚合之均聚對苯二甲酸乙二酯(使用Ti聚合觸媒) (PET-B) 均聚對苯二甲酸乙二酯(使用Sb聚合觸媒) (PET-C) 於均聚對苯二甲酸乙二酯(使用Ti聚合觸媒)中調配5質量%之平均粒徑2.3 μm之氧化矽粒子而成之母料 (PET-D) 於均聚對苯二甲酸乙二酯(使用Sb聚合觸媒)中調配10質量%之紫外線吸收劑(Sunchemi公司製造,Cyasorb 3638F)而成之母料 (PET-E) 於均聚對苯二甲酸乙二酯(使用Sb聚合觸媒)中調配2質量%之平均粒徑2.3 μm之氧化矽粒子而成之母料
<基材膜> (基材膜PET1) 作為表層,使用以94質量%之PET-A、6質量%之PET-C之比例混合而成之原料。 作為中間層,使用以75質量%之PET-B、25質量%之PET-D之比例混合而成之原料。
(基材膜PET2) 作為表層,使用以90質量%之PET-B、10質量%之PET-E之比例混合而成之原料。 作為中間層,使用100質量%之PET-B之原料。
<硬化性樹脂組合物(A')> (硬化性樹脂組合物(A'1)) 將下述化合物以a1:a2:b1:b2:c1:c2=55:17.5:5:15:2.5:5(固形物成分之質量%)進行混合。 ((黏合劑樹脂)) (a1)以下述組成共聚而成之聚酯樹脂之水分散體 單體組成:(酸成分)對苯二甲酸/間苯二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/1,4-丁二醇/二乙二醇=56/40/4//70/20/10(mol%) (a2)以下述組成共聚而成之具有縮合多環式芳香族之聚酯樹脂之水分散體 單體組成:(酸成分)2,6-萘二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/二乙二醇=92/8//80/20(mol%) ((交聯劑)) (b1)作為環氧化合物之聚甘油聚縮水甘油醚 (b2)含㗁唑啉基之丙烯酸聚合物(日本觸媒股份有限公司製造之「Epocros」(註冊商標))㗁唑啉基量7.7 mmоl/g ((粒子)) (c1)平均粒徑70 nm之氧化矽粒子 (c2)平均粒徑20 nm之氧化鋯溶膠
(硬化性樹脂組合物(A'2)) 將下述化合物以a2:a3:b1:b2:b3=60:10:10:10:10(固形物成分之質量%)進行混合。 ((黏合劑樹脂)) (a2)以下述組成共聚而成之具有縮合多環結構之聚酯樹脂之水分散體 單體組成:(酸成分)2,6-萘二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/二乙二醇=92/8//80/20(mol%) (a3)以下述組成聚合而成之丙烯酸樹脂水分散體 丙烯酸乙酯/丙烯酸正丁酯/甲基丙烯酸甲酯/N-羥甲基丙烯醯胺/丙烯酸=65/21/10/2/2(質量%)之乳化聚合物(乳化劑:陰離子系界面活性劑) ((交聯劑)) (b3)六甲氧基羥甲基化三聚氰胺 (b4)水溶性聚甘油聚縮水甘油醚 (b5)含有㗁唑啉基之丙烯酸系聚合物(日本觸媒股份有限公司製造之「Epocros」(註冊商標)) 㗁唑啉基量4.5 mmol/g
<硬化性樹脂組合物(B')> (硬化性樹脂組合物(B'1)) 向100質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV1700B」)加入具有環狀矽氧烷骨架及全氟醚結構之氟化合物(信越化學製造 KY1203)0.5質量份、及光聚合起始劑(IGM Resins B.V製造 Omnirad127)5質量份而製備硬化性樹脂組合物(B'1)。該硬化性樹脂組合物(B'1)之胺基甲酸酯丙烯酸酯之質量平均分子量為2,000,上述中所製備之硬化性樹脂組合物(B'1)之硬化物即硬化樹脂層(B1)之折射率為1.53。
(硬化性樹脂組合物(B'2)) 向100質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV1700B」)加入具有胺基甲酸酯丙烯酸酯骨架之化合物(DIC製造 RS-90)0.5質量份、及光聚合起始劑(IGM Resins B.V製造 Omnirad127)5質量份而製備硬化性樹脂組合物(B'2)。該硬化性樹脂組合物(B'2)之胺基甲酸酯丙烯酸酯之質量平均分子量為2,000,上述中所製備之硬化性樹脂組合物(B'2)之硬化物即硬化樹脂層(B2)之折射率為1.53。
(硬化性樹脂組合物(B'3)) 向100質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV1700B」)加入含有長鏈矽氧烷骨架之氟化合物(DIC製造 RS-58)0.5質量份、及光聚合起始劑(IGM Resins B.V製造 Omnirad127)5質量份而製備硬化性樹脂組合物(B'3)。該硬化性樹脂組合物(B'3)之胺基甲酸酯丙烯酸酯之質量平均分子量為2,000,上述中所製備之硬化性樹脂組合物(B'3)之硬化物即硬化樹脂層(B3)之折射率為1.53。
(硬化性樹脂組合物(B'4)) 向60質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV-1700B」)加入微細氧化鋁粒子(表面修飾奈米粒子,CIK NANOTEK公司製造 ALMIBK-M114,平均粒徑13 nm)40質量份、光聚合起始劑(IGM Resins B.V製造 Omnirad127)5質量份、及調平劑(DIC公司製造 MEGAFAC「RS-90」)0.5質量份而製備硬化性樹脂組合物(B'4)。該硬化性樹脂組合物(B'4)之胺基甲酸酯丙烯酸酯之質量平均分子量為2,000,上述中所製備之硬化性樹脂組合物(B'4)之硬化物即硬化樹脂層(B4)之折射率為1.56。
[實施例1] 將上述基材膜PET1中之表層及中間層之原料分別投入至不同之熔融擠出機中,將各自之擠出溫度設為280℃而進行共擠出,於冷卻至25℃之流延鼓上進行冷卻固化,藉此獲得2種3層(表層/中間層/表層=3/59/3之噴出量(質量比))之無配向片(未延伸片)。 繼而,利用捲筒延伸機於機械方向(縱方向)上以80℃延伸至3.3倍,將上述硬化性樹脂組合物(A'1)以塗佈厚度(乾燥後)成為0.04 g/m 2之方式塗佈後,進而於拉幅機內,在寬度方向上以110℃延伸至3.5倍。最後以200℃進行熱處理,於橫方向上進行5%鬆弛。如此,獲得具有硬化樹脂層(A1)且厚度為65 μm(各表層:3 μm、中間層:59 μm)之積層聚酯膜(基材膜PET1/硬化樹脂層(A1))。
以被覆上述積層膜之硬化樹脂層(A1)之方式,將以上述方式製備之硬化性樹脂組合物(B'1)利用棒式塗佈機以塗佈厚度(乾燥後)成為5 μm之方式進行塗佈。於90℃下加熱1分鐘以使之乾燥後,以累計光量在氮氣環境下實施400 mJ/cm 2之紫外線照射,而使硬化性樹脂組合物(B'1)硬化,獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(B1)之積層構成之積層膜。
[比較例1] 除於實施例1中,將硬化性樹脂組合物(B'1)變更為以上述方式製備之硬化性樹脂組合物(B'2)以外,與實施例1同樣地進行製造,而獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(B2)之積層構成之積層膜。
[比較例2] 除於實施例1中,將硬化性樹脂組合物(B'1)變更為硬化性樹脂組合物(B'3)以外,與實施例1同樣地進行製造,而獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(B3)之積層構成之積層膜。
[比較例3] 除於實施例1中,將基材膜PET1變更為以下之基材膜PET2,且將實施例1中之積層聚酯膜變更為以下所獲得之積層聚酯膜以外,與實施例1同樣地進行製造,而獲得包含基材膜PET2/硬化樹脂層(A2)/硬化樹脂層(B1)之積層構成之積層膜。
<基材膜PET2> 將基材膜PET1中之表層及中間層之原料分別投入至不同之熔融擠出機中,將各自之擠出溫度設為285℃而進行共擠出,並於冷卻至40℃之流延鼓上進行冷卻固化,藉此獲得2種3層(表層/中間層/表層=1/8/1之噴出量(質量比))之無配向片(未延伸片)。 繼而,利用捲筒延伸機於機械方向(縱方向)上以85℃延伸至3.4倍,將上述硬化性樹脂組合物(A'2)以塗佈厚度(乾燥後)成為0.1 g/m 2之方式塗佈後,進而於拉幅機內,在寬度方向上以110℃延伸至4.3倍。最後以235℃進行熱處理,於橫方向上進行2%鬆弛。如此,獲得具有硬化樹脂層(A2)且厚度為50 μm(各表層:5 μm、中間層:40 μm)之積層聚酯膜(基材膜PET2/硬化樹脂層(A2))。
[比較例4] 除於實施例1中,將硬化性樹脂組合物(B'1)變更為硬化性樹脂組合物(B'4)以外,與實施例1同樣地進行製造,而獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(B4)之積層構成之積層膜。
<評價結果> 將上述實施例及比較例中所獲得之各積層膜之特性示於下述表1。
[表1] 表1
      實施例1 比較例1 比較例2 比較例3 比較例4
硬化性樹脂組合物(B') 厚度(硬化後) 5 μm 5 μm 5 μm 5 μm 5 μm
(X)胺基甲酸酯(甲基)丙烯酸酯 UV1700B UV1700B UV1700B UV1700B UV1700B
(Y)具有環狀矽氧烷骨架之化合物 KY1203 - - KY1203 -
環狀矽氧烷骨架 環狀矽氧烷骨架
      RS-90 RS-58    RS-90
胺基甲酸酯丙烯酸酯骨架 長鏈矽氧烷骨架 胺基甲酸酯丙烯酸酯骨架
微粒子 - - - - 氧化鋁
硬化性樹脂組合物(A') (a)黏合劑 聚酯樹脂 聚酯樹脂 聚酯樹脂 聚酯樹脂 聚酯樹脂
(b)交聯劑 環氧化合物㗁唑啉化合物 環氧化合物㗁唑啉化合物 環氧化合物㗁唑啉化合物 三聚氰胺化合物 環氧化合物㗁唑啉化合物 環氧化合物㗁唑啉化合物
(c)粒子 氧化矽粒子氧化鋯溶膠 氧化矽粒子氧化鋯溶膠 氧化矽粒子氧化鋯溶膠 - 氧化矽粒子氧化鋯溶膠
   積層膜之構成 硬化樹脂層(B) B1 B2 B3 B1 B4
硬化樹脂層(A) A1 A1 A1 A2 A1
基材膜 PET-1 PET-1 PET-1 PET-2 PET-1
積層膜之全光線透過率T % 91.6 91.6 91.5 89.6 91.2
積層膜之霧度(透明性) % 0.8 0.7 0.9 0.7 0.9
判定
基材膜之寬度方向之 延遲之變化量(ΔRe) nm/m 530 530 530 530 530
耐SW性 霧度變化率 未達1% 1%以上 1%以上 未達1% 1%以上
判定 A B B A B
彎曲耐久性 R1.5 內折 times >200k >200k >200k >200k >200k
判定 A A A A A
硬化樹脂層之斷裂伸長率 % 1.9 1.6 1.9 1.5 1.5
硬化樹脂層之絕對反射率 at550 nm % 5.2 5.2 5.1 5.0 5.5
硬化樹脂層之透光率 at380 nm % 2.7 2.6 2.7 85.7 2.6
透光率 at400nm % 91.1 91.2 91.0 89.3 90.9
光線反射率之變動幅度(500-600 nm) - 0.2 0.4 0.5 1.1 0.4
干涉條紋 判定 A A A C A
水滴接觸角   處理前 ° 111 108 109 111 107
水滴接觸角 SW1,000往返 ° 105 71 76 105 85
水滴接觸角 SW2,000往返 ° 95 67 68 95 62
<探討> 根據上述實施例及比較例之結果,可知藉由具備於基材膜之表面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成,且使硬化樹脂層(A)為包含作為(A-a)黏合劑之具有縮合多環式芳香族結構之化合物、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')的硬化物,使硬化樹脂層(B)為包含(X)胺基甲酸酯丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')的硬化物,而具有柔軟性,並且能以高水準兼顧耐摩擦性(耐SW性,例如相較於初始膜霧度之變化未達1%之往返數為2000次以上)與反覆彎折性(於R=1.5之條件下可彎曲20萬次),接觸角亦較高,進而低干渉性亦優異。 與此相對,可知若如比較例1、比較例2及比較例4所示,僅設置不包含(X)胺基甲酸酯丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化樹脂層,則難以兼顧所需之耐摩擦性、反覆彎折性。再者,根據比較例4可知,即便於硬化性樹脂組合物(B')中含有粒子,亦無法獲得所需之耐摩擦性。 又,於在硬化性樹脂組合物(A')中不包含粒子之比較例3中,可知不具有足夠之低干渉性。 推測產生此種差異之原因在於硬化樹脂層(A)及硬化樹脂層(B)之構成。藉由硬化樹脂層(A)之組成,主要與基材膜之光干渉變小,藉此使得干涉條紋變得不易看見。並且,藉由採用預先調整了折射率(本案實施例中折射率設定為1.53)以使光干渉不易受到影響之硬化樹脂層(B)之構成,能兼顧所需之耐摩擦性與反覆彎折性。
先前,對於具有耐SW性較高之表面層之積層膜中,進行了如下研究,即,將目標耐SW性設計為所需水準(例如2000次以上等)時,必須視需要重新考慮構成所使用之基材膜之原料之結構設計,而進一步增大拉伸彈性模數。 與此相對,若使硬化樹脂層(A)或硬化樹脂層(B)成為特定構成,則亦能夠適當選擇在市場上流通之通用之基材膜,可獲得在基材膜選擇面上自由度增加之優點。
<硬化性樹脂組合物(C'1)> 將下述化合物(CI)~(CV)進行混合,而製備硬化性樹脂組合物C1。(CI)、(CII)、(CIII)、(CIV)、(CV)之混合比率設為7:69:12:10:2。
(化合物(C-a)) (CI):將包含聚乙二氧基噻吩及聚苯乙烯磺酸之導電劑(Agfa-Gevaert公司製造 Orgacon ICP1010)利用濃氨水進行中和而達到pH=9之導電劑,不揮發成分;1.2質量%、溶劑;水
(CII)以下述組成共聚而成之聚酯樹脂水分散體 單體組成: (酸成分)2,6-萘二甲酸/間苯二甲酸5-磺酸鈉=92/8(莫耳比)//(二醇成分)乙二醇/二乙二醇=80/20(莫耳比)
(化合物(C-c)) (AIII):下述式(3)中平均n=4之聚甘油
[化9]
(CIV):下述式(5)中,m+n之平均為10之在側鏈具有聚環氧乙烷之結構之非離子性界面活性劑
[化10] …式(5)
(CV):於疏水性基上具有支鏈全氟烯基且於親水性基上具有聚環氧乙烷鏈(平均鏈長8單位)之結構之氟系非離子性界面活性劑
<硬化性樹脂組合物(A'1)> 將下述化合物以a1:a2:b1:b2:c1:c2=55:17.5:5:15:2.5:5(固形物成分之質量%)進行混合。 ((A-a)黏合劑) (a1)以下述組成共聚而成之聚酯樹脂之水分散體 單體組成:(酸成分)對苯二甲酸/間苯二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/1,4-丁二醇/二乙二醇=56/40/4//70/20/10(mol%) (a2)以下述組成共聚而成之具有縮合多環式芳香族之聚酯樹脂之水分散體單體組成:(酸成分)2,6-萘二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/二乙二醇=92/8//80/20(mol%)
((A-b)交聯劑) (b1)作為環氧化合物之聚甘油聚縮水甘油醚 (b2)含㗁唑啉基之丙烯酸系聚合物(日本觸媒股份有限公司製造之「Epocros」(註冊商標)) 㗁唑啉基量7.7 mmоl/g
((A-c)粒子) (c1)平均粒徑70 nm之氧化矽粒子 (c2)平均粒徑20 nm之氧化鋯溶膠
<硬化性樹脂組合物(A'3)> 丙烯酸系黏合劑27.5質量份(ELAC介質:東洋油墨股份有限公司製造)、異氰酸酯硬化劑2.5質量份(Z202S:東洋油墨股份有限公司製造)、鋯粒子70質量份(ZP153:日本觸媒股份有限公司製造)
<硬化性樹脂組合物(B'5)> (氟化合物之合成) 將下述式(6)所示之化合物69.4質量份(0.1 mol)、丙烯酸2-羥基乙酯36.5質量份(0.315 mol)、甲苯111.9質量份調配於反應器中,當變得均勻時,添加作為觸媒之N,N-二乙基羥胺1.12質量份(0.0126 mol)。其後,於70℃下反應8小時。水洗後,將甲苯等蒸餾去除,獲得下述具有含氟原子之結構及環狀矽氧烷結構之化合物(7)。
[化11] …式(6)
[化12] …式(7)
向80質量份之(X)胺基甲酸酯(甲基)丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV1700B」)加入上述具有環狀矽氧烷骨架及全氟醚結構之氟化合物(7)0.5質量份、微細氧化鋁粒子(表面修飾奈米粒子,CIK NANOTEK股份有限公司製造 ALMIBK-M115,平均粒徑13 nm)20質量份、光聚合起始劑(IGM Resins B.V製造 Omnirad127)5質量份,而製備硬化性樹脂組合物(B'5)。該硬化性樹脂組合物(B'5)之質量平均分子量為2,000,硬化樹脂層(B5)之折射率為1.53。
[實施例2] 將上述基材膜PET1中之表層及中間層之原料分別投入至不同之熔融擠出機中,將各自之擠出溫度設為280℃而進行共擠出,並於冷卻至25℃之流延鼓上進行冷卻固化,藉此獲得2種3層(表層/中間層/表層=3/59/3之噴出量(質量比))之無配向片(未延伸片)。 繼而,利用捲筒延伸機於機械方向(縱方向)上以80℃延伸至3.3倍,將上述硬化性樹脂組合物(C'1)以塗佈厚度(乾燥後)成為0.03 g/m 2之方式塗佈後,進而於拉幅機內,於寬度方向上以110℃延伸至3.5倍。最後於200℃下進行熱處理,於橫方向上進行5%鬆弛。如此,獲得厚度為65 μm(各表層:3 μm、中間層:59 μm)之附帶硬化樹脂層(C)之積層聚酯膜(PET1/硬化樹脂層(C1))。 以被覆上述基材膜PET1之硬化樹脂層(C1)之方式,將下述硬化性樹脂組合物(A'3)利用棒式塗佈機以塗佈厚度(乾燥後)成為0.06 μm之方式進行塗佈。於100℃下加熱30秒鐘以進行乾燥,而獲得硬化樹脂層(A'3)(硬化前)。繼而,於硬化樹脂層(A'3)上將上述硬化性樹脂組合物(B'5)利用棒式塗佈機以塗佈厚度(乾燥後)成為2.5 μm之方式進行塗佈。於90℃下加熱1分鐘以進行乾燥,而獲得硬化樹脂層(B'5)(硬化前)。於氮氣環境下實施累計光量400 mJ/cm 2之紫外線照射,而使硬化樹脂層(A'3)(硬化前)及硬化樹脂層(B'5)(硬化前)硬化,從而獲得包含基材膜PET1/硬化樹脂層(C1)/硬化樹脂層(A3)/硬化樹脂層(B5)之積層構成之積層膜。 將利用上述方法評價所得之結果示於表2。
[比較例5] 除不設置硬化樹脂層(A)以外,與實施例2同樣地進行製造,而獲得積層膜。將與實施例1同樣地進行評價所得之結果示於表2。
[比較例6] 除於實施例1中,不設置硬化樹脂層(C)以外,依據實施例1進行製造而獲得積層膜。即,將上述基材膜PET2中之表層及中間層之原料分別投入至不同之熔融擠出機中,將各自之擠出溫度設為285℃而使上述原料熔解後,於冷卻至40℃之流延鼓上進行冷卻固化,藉此以2種3層(表層/中間層/表層=1/8/1之噴出量(質量比))共擠出而獲得無配向片(未延伸片)。 繼而,利用捲筒延伸機於機械方向(縱方向)上以85℃延伸至3.4倍,將上述硬化性樹脂組合物(A'1)以塗佈厚度(乾燥後)成為0.1 g/m 2之方式塗佈後,進而於拉幅機內,於寬度方向上以110℃延伸至4.3倍後,於235℃下進行熱處理,於橫方向上進行2%鬆弛。如此,獲得厚度為50 μm(各表層:5 μm、中間層:40 μm)之附帶硬化樹脂層(A)之積層聚酯膜(PET2/硬化樹脂層(A1))。 以被覆上述積層膜之硬化樹脂層(A1)之方式,將以上述方式製備之硬化性樹脂組合物(B'5)利用棒式塗佈機以塗佈厚度(乾燥後)成為5 μm之方式進行塗佈。於90℃下加熱1分鐘以進行乾燥後,於氮氣環境下實施累計光量400 mJ/cm 2之紫外線照射而使硬化性樹脂組合物(B'5)硬化,從而獲得包含基材膜PET2/硬化樹脂層(A1)/硬化樹脂層(B5)之積層構成之積層膜。 將與實施例1同樣地進行評價所得之結果示於表2。
[表2] 表2
   實施例2 比較例5 比較例6
硬化性樹脂組合物(C') (X)胺基甲酸酯(甲基)丙烯酸酯 UV1700B UV1700B UV1700B
(Y)氟化合物 C'1 C'1 C'1
微粒子 氧化鋁 氧化鋁 氧化鋁
積層膜之構成 硬化樹脂層(C) 厚度(硬化後) 2.5 μm 1.5 μm 2.5 μm
硬化樹脂層(B) 硬化樹脂組合物(B') B'2 - B'1
硬化樹脂層(A) 硬化樹脂組合物(A') A'1 A'1 -
基材膜    PET-1 PET-1 PET-2
全光線透過率T % 91.1 91.2 91.3
膜霧度(透明性) % 0.6 0.7 0.5
判定
延遲之變化量(ΔRe) nm/m 530 530 530
耐SW性 霧度變化率 未達1% 未達1% 未達1%
判定 A A A
彎曲耐久性 R1.5 內折 times >200k >200k >200k
判定 A A A
絕對反射率 at550 nm % 4.5 5.8 4.5
透光率 at400 nm % 85.5 86.6 85.4
透光率 at380 nm % 1.0 1.0 0.9
反射率之變動幅度(500-600 nm) - 1.0 2.6 0.4
干涉條紋 判定 B D B
水滴接觸角  處理前 ° 110 110 110
水滴接觸角 SW1,000次往返 ° 104 104 104
水滴接觸角 SW2,000次往返 ° 100 98 100
抗靜電性 Ω/□ 6.50E+10 2.40.E+09 over
<探討> 根據上述實施例及比較例之結果,可知藉由具備於基材膜之表面依序積層有硬化樹脂層(C)、硬化樹脂層(A)及硬化樹脂層(B)之構成,且使上述硬化樹脂層(B)包含(X)胺基甲酸酯丙烯酸酯及(Y)具有環狀矽氧烷骨架及全氟醚結構之氟化合物,而具有柔軟性,並且能以高水準兼顧表面硬度(耐SW性,例如相較於初始膜霧度之變化未達1%之往返數為2000次以上)與反覆彎折性(於R=1.5之條件下可彎曲20萬次)。 與此相對,可知若為如比較例5所示僅設置硬化樹脂層(B)且無硬化樹脂層(A)之層構成、或如比較例2所示無硬化樹脂層(C)之層構成,則難以兼顧所需之硬塗性、反覆彎折性及低干渉性。推測產生此種差異之原因在於硬化樹脂層(A)與硬化樹脂層(B)之構成不同。又,由於硬化樹脂層(A)之組成,而導致其與硬化樹脂層(B)之光干渉變小,藉此使得干涉條紋變得不易看見。另一方面,藉由採用硬化樹脂層(B)之構成,可兼顧所需之耐摩擦性與反覆彎折性。
再者,亦可知藉由將硬化樹脂層(B)之構成材料及厚度比率設為特定範圍,而無需使供使用之基材膜之拉伸彈性模數變得極大,從而無需使用定製之基材膜。 先前,對於具有耐SW性較高之表面層之積層膜,將目標耐SW性設計為所需水準(例如2000次以上等)時,必須視需要重新考慮構成所使用之基材膜之原料之結構設計,而進一步增大拉伸彈性模數。 與此相對,若將上述硬化樹脂層(B)設為特定構成,則亦能夠適當選擇於市場上流通之通用之基材膜,而可獲得於基材膜選擇面上自由度增加之優點。
<硬化性樹脂組合物> (硬化性樹脂組合物(A'1)) 將下述化合物以a1:a2:b1:b2:c1:c2=55:17.5:5:15:2.5:5(固形物成分之質量%)進行混合。 ((A-a)黏合劑樹脂) (a1)以下述組成共聚而成之聚酯樹脂之水分散體 單體組成:(酸成分)對苯二甲酸/間苯二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/1,4-丁二醇/二乙二醇=56/40/4//70/20/10(mol%) (a2)以下述組成共聚而成之具有縮合多環式芳香族之聚酯樹脂之水分散體 單體組成:(酸成分)2,6-萘二甲酸/間苯二甲酸5-磺酸鈉//(二醇成分)乙二醇/二乙二醇=92/8//80/20(mol%) ((A-b)交聯劑) (b1)作為環氧化合物之聚甘油聚縮水甘油醚 (b2)含有㗁唑啉基之丙烯酸系聚合物(日本觸媒股份有限公司製造之「Epocros」(註冊商標)) 㗁唑啉基量7.7 mmоl/g ((A-c)粒子) (c1)平均粒徑70 nm之氧化矽粒子 (c2)平均粒徑20 nm之氧化鋯溶膠
[實施例3] 以被覆上述基材膜PET1之硬化樹脂層(A)之方式,將以下述方式製備之硬化性樹脂組合物(D'1)利用棒式塗佈機以塗佈厚度(乾燥後)成為5 μm之方式進行塗佈。於90℃下加熱1分鐘以進行乾燥後,於氮氣氛圍下實施累計光量400 mJ/cm 2之紫外線照射,而獲得硬化樹脂層(D'1)(硬化前)。使該硬化樹脂層(D'1)(硬化前)硬化,而獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(D1)之積層構成之積層膜。 再者,藉由X射線光電子光譜法(XPS)所測定之積層膜最表面(硬化樹脂層(D)側之面)之氟原子濃度比例(F2/F1)為0.013。
(硬化性樹脂組合物(D'1)) 加入作為(D-a)成分之80質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV1700B」)及20質量份之胺基甲酸酯丙烯酸酯(Mitsubishi Chemical公司製造 紫光「UV7610B」)、5質量份之以下所記載之(D-b1)成分、及0.2質量份之具有含氟原子之結構及環狀矽氧烷結構之氟化合物(D-c1)、5質量份之光聚合起始劑(IGM Resins B.V製造 Omnirad127),而製備硬化性樹脂組合物(D'1)。
((D-b1)成分) B-b1:使用以如下方式合成之含四級銨鹽基之聚合物溶液(D-b1)。合成方法如下所示。 首先,向具備溫度計、攪拌機、水冷式冷凝器及氮氣吹入口之四口燒瓶中添加聚己內酯一元醇(重量平均分子量2,000)83.2份、間異丙烯基-α,α'-二甲基苄基異氰酸酯16.7份、月桂酸二辛基錫0.03份,於80℃下進行反應,於殘存異氰酸基成為0.03%以下之時點結束反應,而獲得聚酯巨單體(b-1m)。 向具備溫度計、攪拌機、水冷式冷凝器、氮氣吹入口之四口燒瓶中添加聚酯巨單體(b-1m)10份、甲基丙烯醯氧基乙基三甲基氯化銨15份、甲基丙烯酸環己酯5份、偶氮二異丁腈0.2份及甲基乙基酮20份、異丙醇50份,於氮氣流下以70℃進行8小時聚合,而含四級銨鹽基之聚合物(D-b1)溶液。
((D-c1)氟化合物之合成) 將下述式(2)所表示之化合物69.4質量份(0.1 mol)、丙烯酸2-羥基乙酯36.5質量份(0.315 mol)、甲苯111.9質量份調配於反應器中,在變得均勻時,添加作為觸媒之N,N-二乙基羥基胺1.12質量份(0.0126mol)。其後,於70℃下反應8小時。水洗後,將甲苯等蒸餾去除,而獲得下述具有含氟原子之結構及環狀矽氧烷結構之化合物(3)。
[化13] …式(2)
[化14] …式(3)
[實施例4] 除變更硬化樹脂層(D)之厚度以外,與實施例1同樣地進行製造,獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(D1)之積層構成之積層膜。
[實施例5] 除變更具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c1)之添加量以外,與實施例4同樣地進行製造,而獲得包含基材膜PET1/硬化樹脂層(A1)/硬化樹脂層(D2)之積層構成之積層膜。 即,除使用硬化性樹脂組合物(D'2)代替硬化性樹脂組合物(D'1)以外,與實施例4同樣地獲得積層膜,上述硬化性樹脂組合物(D'2)係除將具有含氟原子之結構及環狀矽氧烷結構之氟化合物(D-c1)設為0.5質量份以外與(D'1)相同。
[比較例7] 除於實施例3中,使用硬化性樹脂組合物(D'3)代替硬化性樹脂組合物(D'1)以外,與實施例3同樣地進行製造,而獲得積層膜,上述硬化性樹脂組合物(D'3)係除不含有(D-b)成分(含四級銨鹽之聚合物)以外與(D'1)相同。
[比較例8] 除於實施例3中,使用硬化性樹脂組合物(D'4)代替硬化性樹脂組合物(D'1)以外,與實施例3同樣地進行製造,而獲得積層膜,上述硬化性樹脂組合物(D'4)係除不含有具有環狀矽氧烷骨架及全氟醚結構之氟化合物(D-c1)以外與(D'1)相同。
<評價結果> 將上述實施例及比較例中所獲得之各積層膜之特性示於下述表3。
[表3] 表3
   實施例3 實施例4 實施例5 比較例7 比較例8
硬化性樹脂組合物(D') 厚度(硬化後) 5 μm 2.5 μm 2.5 μm 5 μm 5 μm
3官能以上之(甲基)丙烯酸酯(D-a)(份) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20)
含有四級銨鹽基之聚合物(D-b)(份) D-b1(5) D-b1(5) D-b1(5) - D-b1(5)
氟化合物(D-c)(份) D-c1 (0.2) D-c1 (0.2) D-c1 (0.5) D-c1 (0.2) -
積層膜之構成 硬化樹脂層(D) D1 D1 D2 D3 D4
硬化樹脂層(A) A1 A1 A1 A1 A1
基材膜 PET PET PET PET PET
全光線透過率T % 89.7 89.7 89.7 90.8 91.5
膜霧度(透明性) % 0.5 0.5 0.5 0.6 0.5
判定
延遲之變化量(ΔRe) nm/m 530 530 530 530 530
耐SW性 霧度變化率 未達1% 未達1% 未達1% 未達1% 1%以上
判定 A A A A B
彎曲耐久性 R1.5 內折 times >200k >200k >200k >200k >200k
判定 A A A A A
透光率 at380 nm % 2.8 2.7 2.8 2.8 2.8
透光率 at400 nm % 87.5 88.5 88.3 86.1 88.2
光線反射率之變動幅度(500-600 nm) - 0.5 0.8 0.9 0.5 0.5
干涉條紋 判定 A B B A A
水滴接觸角               處理前 ° 110 109 111 110 63
水滴接觸角               SW500次往返 ° 107 99 106 85 53
水滴接觸角               SW1,000次往返 ° 98 90 105 73 62
抗靜電性(表面固有電阻值) Ω/□ 1.71E+10 1.66E+11 6.08E+10 over 1.80E+10
針對實施例4、5、及下述比較例9~11中所獲得之積層膜,進而評價耐摩耗性。將結果示於下述表4。
[比較例9] 除於實施例4中,使用硬化性樹脂組合物(D'3)代替硬化性樹脂組合物(D'1)以外,與實施例2同樣地進行製造,而獲得積層膜,上述硬化性樹脂組合物(D'3)係除不含有(D-b1)成分(含四級銨鹽之聚合物)以外與(D'1)相同。
[比較例10] 除於實施例5中,使用硬化性樹脂組合物(D'5)代替硬化性樹脂組合物(D'2)以外,與實施例2同樣地進行製造,而獲得積層膜,上述硬化性樹脂組合物(D'5)係除不含有(D-b1)成分(含四級銨鹽之聚合物)以外與(D'2)相同。
[比較例11] 除於實施例4中,使用硬化性樹脂組合物(D'4)代替硬化性樹脂組合物(D'1)以外,與實施例2同樣地進行製造,而獲得積層膜,上述硬化性樹脂組合物(D'4)係除不含有具有環狀矽氧烷骨架及全氟醚結構之氟化合物(D-c1)以外與(D'1)相同。
[表4] 表4
   實施例4 實施例5 比較例9 比較例10 比較例11
硬化性樹脂組合物(D') 厚度(硬化後) 2.5 μm 2.5 μm 2.5 μm 2.5 μm 2.5 μm
3官能以上之(甲基)丙烯酸酯(D-a)(份) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20) UV1700B/UV7610B(80/20)
含四級銨鹽基之聚合物(D-b)(份) D-b1(5) D-b1(5) - - D-b1(5)
氟化合物(D-c)(份) D-c1(0.2) D-c1(0.5) D-c1(0.2) D-c1(0.5) -
積層膜之構成 硬化樹脂層(D) D1 D2 D3 D5 D4
硬化樹脂層(A) A1 A1 A1 A1 A1
基材膜 PET PET PET PET PET
水滴接觸角       處理前 ° 109 111 108 109 63
水滴接觸角       100次往返 ° 96 98 88 85 48
耐摩耗性 判定 × × ×
<探討> 根據上述實施例及比較例之結果,可知藉由具備於基材膜之至少一表面依序積層有硬化樹脂層(A)及硬化樹脂層(D)之構成,且使上述硬化樹脂層(D)包含3官能以上之(甲基)丙烯酸酯(D-a)、含四級銨鹽基之聚合物(D-b)、具有含氟原子之結構及環狀矽氧烷結構之化合物(D-c),能以高水準兼顧抗靜電性與防污性。又,可知干涉條紋不易看見,亦滿足實用之反覆彎折特性或耐摩擦性。 再者,關於防污性,係根據如下情況來評價,即藉由利用SW進行處理,而使得水滴接觸角於處理前後之變化較小。 與此相對,可知若僅為如比較例7及比較例8之任一者之成分,則難以兼顧所需之抗靜電性與防污性,亦不滿足耐摩耗性。 推測產生此種差異之原因在於硬化樹脂層(D)之構成不同。又,藉由硬化樹脂層(A)之組成,與硬化樹脂層(D)之光干渉變小,藉此使得干涉條紋不易看見。進而,可知比較例8之積層膜之耐SW性亦較差。 進而,根據實施例9~11可知,具備滿足本發明中規定之組成之硬化樹脂層(A)及硬化樹脂層(D)之積層膜之耐摩耗性亦優異。 [產業上之可利用性]
本發明之積層膜於高水準下耐摩擦性(於耐SW性評價中,例如2000次以上)及反覆彎折性(內折、R=1.5之條件下可彎曲20萬次)良好,可用作各種表面保護用膜。其中,可適宜用於尤其是需要可撓性之顯示器用構件(表面保護膜等)等光學用途。 又,本發明之積層膜於高水準下耐摩擦性(於耐SW性評價中,例如2000次以上)及反覆彎折性(內折、R=1.5之條件下可彎曲20萬次)良好,並且,抗靜電性良好,能對應對各種表面保護用。其中,可適宜用於尤其是需要可撓性之顯示器用構件(表面保護膜等)等光學用途。 進而,本發明之積層膜能以高水準兼顧抗靜電性與防污性,進而耐摩耗性亦優異,因此能應對各種表面保護用。其中,可適宜用於尤其是需要可撓性之顯示器用構件(表面保護膜等)等光學用途。
2:基材膜 4:硬化樹脂層(A) 6:硬化樹脂層(B) 10:積層膜
圖1係對積層膜之構成進行說明之剖視圖。
2:基材膜
4:硬化樹脂層(A)
6:硬化樹脂層(B)
10:積層膜

Claims (26)

  1. 一種積層膜,其具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(B)之構成, 上述硬化樹脂層(A)為包含(A-a)黏合劑之硬化性樹脂組合物(A')之硬化物, 上述硬化樹脂層(B)為包含(X)胺基甲酸酯(甲基)丙烯酸酯及(Y)具有環狀矽氧烷骨架之化合物之硬化性樹脂組合物(B')之硬化物。
  2. 如請求項1之積層膜,其中上述硬化性樹脂組合物(A')進而包含(A-b)交聯劑及(A-c)粒子,上述(A-a)黏合劑包含具有縮合多環式芳香族結構之化合物。
  3. 如請求項1之積層膜,其中於上述基材膜與上述硬化樹脂層(A)之間具備硬化樹脂層(C),該硬化樹脂層(C)為包含抗靜電劑之硬化性樹脂組合物(C')之硬化物,上述(Y)具有環狀矽氧烷骨架之化合物為具有環狀矽氧烷骨架及全氟醚結構之氟化合物。
  4. 一種積層膜,其具備於基材膜之至少一面依序積層有硬化樹脂層(A)及硬化樹脂層(D)之構成,硬化樹脂層(A)為包含(A-a)黏合劑、(A-b)交聯劑及(A-c)粒子之硬化性樹脂組合物(A')之硬化物,上述硬化樹脂層(D)為包含(D-a)3官能以上之(甲基)丙烯酸酯、(D-b)含四級銨鹽基之聚合物、(D-c)具有含氟原子之結構及環狀矽氧烷結構之化合物之硬化性樹脂組合物(D')的硬化物。
  5. 如請求項2之積層膜,其中上述(Y)具有環狀矽氧烷骨架之化合物為具有全氟醚結構之氟化合物。
  6. 如請求項4或5之積層膜,其中藉由X射線光電子光譜法(XPS)所測定之於加速電壓200 eV下進行了10秒鐘Ar蝕刻之處的氟原子濃度(F2;原子%)相對於積層膜最表面(硬化樹脂層表面)之氟原子濃度(F1:原子%)的比例(F2/F1)為0.2以下。
  7. 如請求項2之積層膜,其中於在上述硬化樹脂層(B)之表面實施了下述耐鋼絲絨性試驗之情形時,往返2000次後之膜霧度之變化率未達1%; (耐鋼絲絨性試驗) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(B)之最表面施加1 kg之負載,一面以速度50 mm/sec往返摩擦2000次,測定摩擦前後之積層膜之霧度值,算出相較於初始膜霧度(摩擦前之膜霧度)之變化率; 變化率(%)=(摩擦後膜霧度-初始膜霧度)/初始膜霧度×100。
  8. 如請求項4之積層膜,其中上述硬化樹脂層(D)之下述耐摩擦性評價之往返次數為1000次以上, (耐摩擦性評價) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(D)之最表面施加1 kg之負載,一面以速度50 mm/sec往返摩擦,利用目視確認硬化樹脂層(D)表面有無損傷,並測定霧度值;計測無目視可確認之損傷且相較於初始膜霧度之變化未達1%之往返數。
  9. 如請求項3之積層膜,其中上述硬化樹脂層(B)之下述耐摩擦性評價之往返次數為2000次以上, (耐摩擦性評價) 利用摩擦試驗機並使用#0000號之鋼絲絨,一面以2 cm見方對硬化樹脂層(B)之最表面施加1 kg之負載,一面以速度50 mm/sec往返摩擦,利用目視確認硬化樹脂層(B)表面有無損傷,並測定霧度值;計測無目視可確認之損傷且相較於初始膜霧度之變化未達1%之往返數。
  10. 如請求項2或3之積層膜,其於以下之反覆彎折試驗中之反覆彎折次數為20萬次以上; (反覆彎折試驗) 使用彎折試驗機,以積層膜之硬化樹脂層側成為內側表面之方式以最小半徑R=1.5進行彎折試驗,目視確認內側表面有無硬化樹脂層之龜裂產生,測定直至龜裂產生為止之反覆彎折次數。
  11. 如請求項2至4中任一項之積層膜,其膜霧度為1.0%以下。
  12. 如請求項2之積層膜,其中上述硬化樹脂層(A)及上述硬化樹脂層(B)(硬化樹脂層)之斷裂伸長率為0.5%以上。
  13. 如請求項2或3之積層膜,其中上述硬化樹脂層(B)表面之波長380 nm之透光率為3%以下。
  14. 如請求項2或3之積層膜,其中上述硬化樹脂層(B)表面之波長500~600 nm之最大反射率差為1.5%以下。
  15. 如請求項2至4中任一項之積層膜,其中上述基材膜包含紫外線吸收劑。
  16. 如請求項2至4中任一項之積層膜,其中上述硬化樹脂層(A)包含(A-c)粒子,且該(A-c)粒子為粒徑不同之2種粒子。
  17. 如請求項2之積層膜,其中上述具有縮合多環式芳香族結構之化合物為具有縮合多環式芳香族結構之聚酯樹脂。
  18. 如請求項4之積層膜,其中上述(A-a)黏合劑包含具有縮合多環式芳香族結構之化合物。
  19. 如請求項2至4中任一項之積層膜,其中上述基材膜為聚酯膜。
  20. 如請求項2至4中任一項之積層膜,其中上述基材膜為聚對苯二甲酸乙二酯(PET)膜。
  21. 如請求項19之積層膜,其中波長590 nm之光以0°之角度入射至上述聚酯膜面時之延遲(Re)為1400 nm以下。
  22. 如請求項19之積層膜,其中波長590 nm之光以0°之角度入射至上述聚酯膜面時之快軸方向之延遲(Re)之變化量為10 nm以上600 nm/m以下。
  23. 如請求項2或3之積層膜,其中上述硬化樹脂層(B)之厚度為10.0 μm以下。
  24. 如請求項2至4中任一項之積層膜,其係用於表面保護。
  25. 如請求項24之積層膜,其係用於顯示器。
  26. 如請求項25之積層膜,其係用於前面板。
TW112124803A 2022-07-01 2023-07-03 積層膜 TW202409214A (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2022-106904 2022-07-01
JP2022106904 2022-07-01
JP2022-125547 2022-08-05
JP2022-125546 2022-08-05
JP2022125547 2022-08-05
JP2022125546 2022-08-05

Publications (1)

Publication Number Publication Date
TW202409214A true TW202409214A (zh) 2024-03-01

Family

ID=89380794

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112124803A TW202409214A (zh) 2022-07-01 2023-07-03 積層膜

Country Status (2)

Country Link
TW (1) TW202409214A (zh)
WO (1) WO2024005216A1 (zh)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010253767A (ja) * 2009-04-23 2010-11-11 Mitsubishi Rayon Co Ltd ハードコート成形品及びその製造方法、ならびに活性エネルギー線硬化性コーティング組成物
JP5839645B2 (ja) * 2011-10-22 2016-01-06 三菱樹脂株式会社 積層ポリエステルフィルム
JP2016002764A (ja) * 2014-06-19 2016-01-12 日本合成化学工業株式会社 積層体及びその用途、並びに積層体の製造方法
JP6531531B2 (ja) * 2014-07-18 2019-06-19 東レ株式会社 積層フィルム、および積層フィルムの製造方法
JP6891410B2 (ja) * 2016-06-20 2021-06-18 Dic株式会社 ウレタン(メタ)アクリレート樹脂及び積層フィルム
JP6977698B2 (ja) * 2018-10-22 2021-12-08 信越化学工業株式会社 (メタ)アクリレート化合物、それを含むコーティング組成物および被覆物品

Also Published As

Publication number Publication date
WO2024005216A1 (ja) 2024-01-04

Similar Documents

Publication Publication Date Title
KR101607728B1 (ko) 광학용 이접착성 폴리에스테르 필름
JP4770971B2 (ja) 光学用易接着性ポリエステルフィルム
KR101404875B1 (ko) 이접착성 열가소성 수지 필름
JP5568992B2 (ja) 光学用易接着性ポリエステルフィルム
KR101699997B1 (ko) 적층 필름
JP5434568B2 (ja) 成型用ハードコートフィルム
JP2011133890A (ja) 光学用易接着性ポリエステルフィルム及び光学用積層ポリエステルフィルム
CN105848897B (zh) 双轴拉伸叠层聚酯膜
JP5835405B2 (ja) 易接着性ポリエステルフィルム
JP2011153290A (ja) 易接着熱可塑性樹脂フィルム
JP6213750B2 (ja) 偏光子保護用ポリエステルフィルム
US20210286107A1 (en) Hardcoat film and article and image display device having hardcoat film
JP5493811B2 (ja) 易接着性ポリエステルフィルム
JP4771021B2 (ja) 光学用易接着性ポリエステルフィルム
TW201412538A (zh) 積層聚酯薄膜
JP2014034124A (ja) 偏光子保護用ポリエステルフィルム
JP5493810B2 (ja) 易接着性ポリエステルフィルム
JP5304635B2 (ja) 易接着性熱可塑性樹脂フィルム
TW201940565A (zh) 乾式膜抗蝕劑基材用聚酯膜
TW202409214A (zh) 積層膜
JP5743846B2 (ja) 積層ポリエステルフィルム
JP5560693B2 (ja) 成型用ハードコートフィルム及び成型体
JP4771020B2 (ja) 光学用易接着性ポリエステルフィルム
JP5720205B2 (ja) 易接着性熱可塑性樹脂フィルム
JP2024022490A (ja) 積層フィルム