TW202407097A - 用於自c1受質連續產生乙烯之微生物及方法 - Google Patents

用於自c1受質連續產生乙烯之微生物及方法 Download PDF

Info

Publication number
TW202407097A
TW202407097A TW112123482A TW112123482A TW202407097A TW 202407097 A TW202407097 A TW 202407097A TW 112123482 A TW112123482 A TW 112123482A TW 112123482 A TW112123482 A TW 112123482A TW 202407097 A TW202407097 A TW 202407097A
Authority
TW
Taiwan
Prior art keywords
microorganism
ethylene
microorganisms
liquid
nucleic acid
Prior art date
Application number
TW112123482A
Other languages
English (en)
Inventor
尚恩 丹尼斯 辛普森
詹妮佛 羅莎 厚姆格蘭
詹姆士 馬卡里司特 庫倫伯格
吉姆 傑佛利 達雷登
奧戴麗 潔恩 哈利斯
史戴芬妮 里艾農 瓊司
麥可 科普克
提莫西 詹姆士 波力塔諾
Original Assignee
美商朗澤科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商朗澤科技有限公司 filed Critical 美商朗澤科技有限公司
Publication of TW202407097A publication Critical patent/TW202407097A/zh

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本發明係關於方法及經基因工程改造的微生物,其用於藉由微生物醱酵,尤其藉由氣態受質之微生物醱酵連續產生乙烯。該等微生物為C1固定的。乙烯生產可藉由改變啟動子或養分限制手段來改良。

Description

用於自C1受質連續產生乙烯之微生物及方法
本揭示案係關於經基因工程改造的微生物及方法,其用於藉由微生物醱酵,尤其藉由氣態受質之微生物醱酵連續產生乙烯。
長期以來已認識到諸如費-托製程(Fischer-Tropsch process)之催化製程可用於將含有二氧化碳(CO 2)、一氧化碳(CO)及/或氫氣(H 2)之氣體(諸如工業廢氣或合成氣)轉化成多種燃料及化學物質。然而近年來,出現了氣體醱酵作為用於生物固定此類氣體之替代平台。詳言之,C1固定微生物已展現將含有CO 2、CO及/或H 2之氣體轉化成諸如乙醇及2,3-丁二醇之產物。乙烯為全球最廣泛生產之有機化合物,廣泛用於包括塑膠、溶劑及紡織物之行業。乙烯目前藉由蒸汽裂解化石燃料或使乙烷去氫化來生產。然而,各年生產的乙烯數以百萬公噸計,由此類製程生產的二氧化碳足以大幅提昇全球碳足跡。因此,經由可再生方法產生乙烯將有助於滿足來自能源及化學行業之巨大需求,同時亦有助於保護環境。然而,此類化學產品之高效生產可受到微生物生長緩慢、氣體吸收有限、對毒素敏感或碳受質轉變成非所要副產物之限制。因此,存在持續且未滿足的需求,亦即研發藉由氣態受質之微生物醱酵來高效產生乙烯,該氣態受質可容易地由可再生資源產生,且將提供廣泛之有用應用。
在以上背景下,本揭示案提供了相對於先前技術之某些優勢及進步。
儘管本文所揭示之本揭示案不限於特定優勢或功能性,但本揭示案提供能夠自氣態受質產生乙烯之方法及經基因工程改造的微生物,該微生物包含編碼乙烯形成酶(EFE)之異源核酸。
在本文所揭示之方法之一些態樣中,該微生物為一種能夠自氣態受質產生乙烯之重組C1固定微生物,其包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸。
在本文所揭示之微生物之一些態樣中,該微生物係關於一種能夠在乙烯生產中切換細胞負荷之重組C1固定微生物,該微生物包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸及一或多種誘導型啟動子。
如一實施例之微生物,其進一步包含編碼包含α-酮戊二酸通透酶(AKGP)之一組外源性酶的核酸,其中該核酸可操作地連接至啟動子。
如一實施例之微生物,其中該微生物係選自由以下組成之群:鉤蟲貪銅菌( Cupriavidus necator)及富養羅爾斯通氏菌( Ralstonia eutropha)。
如一實施例之微生物,其中該微生物為鉤蟲貪銅菌。
如一實施例之微生物,其進一步包含編碼α-酮戊二酸酯之核酸,其中該核酸經密碼子最佳化以在該微生物中表現。
如一實施例之微生物,其中該一或多種誘導型啟動子係選自H 2誘導型啟動子、磷酸酯限制誘導型啟動子、氮限制誘導型啟動子或其任何組合。
如一實施例之微生物,其中該EFE經密碼子最佳化以在該微生物中表現。
如一實施例之微生物,其進一步包含一或多個基因中之破壞性突變。
如一實施例之微生物,其中乙烯轉化成選自聚乙烯(PE)、聚對苯二甲酸伸乙酯(PET)、聚氯乙烯(PVC)、乙烯乙酸乙烯酯(EVA)、可持續航空燃料(SAF)或其任何組合的衍生材料。
如一實施例之微生物,其中該氣態受質包含CO 2及能量源。
如一實施例之微生物,其中該氣態受質包含CO 2,及H 2、O 2或兩者。
一個實施例係關於一種用於連續產生乙烯之方法,該方法包含:將氣態受質傳遞至含有如技術方案1之重組C1固定微生物在培養基中之培養物的生物反應器,以使得該微生物將該氣態受質轉化成乙烯;及自該生物反應器回收該乙烯。
一個實施例係關於一種培養如技術方案1之微生物的方法,其包含在包含氣態受質之培養基中生長該微生物,其中該氣態受質包含CO 2
如一實施例之方法,其中該氣態受質包含工業廢料產物或廢氣。
如一實施例之方法,其進一步包含能量源
如一實施例之方法,其中該能量源間歇地提供。
如一實施例之方法,其中該能量源為H 2
一個實施例係關於一種方法,其包含在包含氣態受質之培養基中生長該微生物,其中該氣態受質包含CO 2及能量源。
如一實施例之方法進一步包含共產生乙烯及微生物生物質。
如一實施例之方法,其中切換細胞負荷包含限制細胞內氧濃度之步驟。
如一實施例之方法,其中微生物生物質適合作為動物飼料。
如一實施例之方法,其中該氣態受質進一步包含H 2、O 2或兩者。
在本文所揭示之微生物的一些態樣中,微生物產生商品化學產物、微生物生物質、單細胞蛋白質(SCP)、一或多種中間物或其任何組合。
在本文所揭示之微生物之一些態樣中,微生物係衍生自選自由以下組成之群的親本細菌:鉤蟲貪銅菌。
在本文所揭示之微生物之一些態樣中,其中產物係選自以下之群:1-丁醇、丁酸酯、丁烯、丁二烯、甲基乙基酮、乙烯、丙酮、異丙醇、脂質、3-羥基丙酸酯、萜烯、異戊二烯、脂肪酸、脂肪醇、2-丁醇、1,2-丙二醇、1-丙醇、1-己醇、1-辛醇、分支酸衍生產物、3-羥基丁酸酯、1,3-丁二醇、2-羥基異丁酸酯或2-羥基異丁酸、異丁烯、己二酸、酮-己二酸、1,3-己二醇、3-甲基-2-丁醇、2-丁烯-1-醇、異戊酸酯、異戊醇或單乙二醇。
本揭示案進一步提供經基因工程改造的C1固定微生物,其進一步包含微生物生物質及至少一種賦形劑。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該動物飼料適用於飼餵肉牛、乳牛、豬、綿羊、山羊、馬、騾子、驢、鹿、水牛/野牛、美洲駝、羊駝、馴鹿、駱駝、野牛、大額牛、犛牛、雞、火雞、鴨、鵝、鵪鶉、珍珠雞、雛鳥/鴿子、魚、蝦、甲殼動物、貓、狗及嚙齒動物中的一或多者。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該微生物適用作單細胞蛋白質(SCP)。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該微生物適用作無細胞蛋白質合成(CFPS)平台。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該產物相對於該微生物為原生的。
在本文中所揭示之方法之一些態樣中,受質包含CO、CO 2及H 2中之一或多者。
在一些實施例中,厭氧及好氧氣體兩者均可用於在兩個或更多個不同生物反應器中進料個別培養物(例如厭氧培養物及好氧培養物),該等生物反應器均整合至同一製程流中。
在一些實施例中,本揭示案提供一種以生物聚合物形式儲存能量之方法,其包含在電解製程中間歇地處理由可再生及/或不可再生能量源產生之電能之至少一部分以產生至少H 2、O 2或CO;將來自電解製程之H 2、O 2或CO中之至少一者間歇地傳遞至含有培養物之生物反應器,該培養物包含液體養分培養基及能夠產生生物聚合物之微生物;及使培養物醱酵。
在一實施例中,本揭示案亦提供一種以生物聚合物形式儲存能量之系統,該系統包含:電解製程,其與可再生及/或不可再生能量源間歇流體連通以用於產生H 2、O 2或CO中之至少一者;工業設備,其用於生產至少C1原料;生物反應器,其與電解製程間歇流體連通及/或與工業設備連續流體連通,包含適用於間歇生長、醱酵及/或培養且容納能夠產生生物聚合物之微生物的反應容器。
在一些實施例中,本揭示案提供一種改良醱酵製程之效能及/或經濟性之方法,該醱酵製程定義在液體養分培養基中含有細菌培養物之生物反應器,其中該方法包含將包含來自工業製程之CO及/或CO 2中之一或兩者的C1原料傳遞至生物反應器中,其中C1原料具有一單位成本,將來自電解製程之H 2、O 2或CO中之至少一者間歇地傳遞至生物反應器中,其中電解製程具有一單位成本,以及使培養物醱酵以產生一或多種醱酵產物,其中一或多種醱酵產物中之各者具有一單位價值。在某些情況下,使用多個電解製程以便向生物反應器提供CO、CO 2及H 2中之一者或全部。
在另一實施例中,本地電網基於電力之可用性或低於臨限值價格之電力可用性提供作為由電力產生之電能間歇傳遞之電力,其中電力價格隨著需求之下降而下降,或者由本地電網設定。
在一實施例中,本揭示案可藉由以生物聚合物形式儲存能量來間歇地操作,其中產物轉化可在電網電力供應過剩的期間係間歇的,或者在電力稀缺或急需電力時閒置。本揭示案提供一種能夠經微調以藉由以生物聚合物形式儲存能量來幫助平衡電網系統的程序。
在一個實施例中,自養微生物間歇性地部分或全部消耗由電力可用性提供之能量。
在一個實施例中,本文所揭示之系統係關於產生細氣泡,且可包括容納液體的容器,包含複數個孔口的安置於該容器之上部且經組態以加速該容器中之液體之至少一部分的板,及安置於該容器內之具有距板底部約50 mm至約300 mm、500 mm或1000 mm定位之噴佈器表面的至少一個噴佈器。噴佈器可經組態以將氣泡注入液體中。在一些實例中,噴佈器可安置於容器內以產生氣泡在容器內上升之第一區域,且產生加速液體將氣泡打碎成細氣泡且流體流動通過容器之第二區域。流體可包括液體之經加速部分及細氣泡。在另外其他實例中,容器中氣相之表觀速度可為至少30 mm/s。噴佈器可為燒結噴佈器或孔口噴佈器。板之厚度可為約1 mm至約25 mm。加速液體之速度可為約8000 mm/s至約17000 mm/s。在其他實例中,加速液體之速度可為約12000 mm/s至約17000 mm/s。在一些實例中,自噴佈器注入液體中之氣泡可具有約2 mm至約20 mm之直徑。在另一實例中,自噴佈器注入液體中之氣泡可具有約5 mm至約15 mm或約7 mm至約13 mm之直徑。細氣泡之直徑可為約0.1 mm至約5 mm或約0.2 mm至約1.5 mm。複數個孔口亦可經組態以使容器中之至少90%液體加速。
在另一實施例中,本文所揭示之方法係關於產生細氣泡,其可包括經由安置於容器內且經組態以將氣泡注入液體中之至少一個噴佈器將氣體噴射至容納液體之容器中,及經由安置於容器之上部的多孔板使容器中之液體的一部分加速,其中液體可自板加速以將氣泡打碎成細氣泡。在一些實例中,容器中之氣相之表觀速度可為至少30 mm/s。在其他實例中,容器中之氣相之表觀速度可為約30 mm/s至約80 mm/s。噴佈器可為燒結噴佈器或孔口噴佈器。液體可自多孔板以約8000 mm/s至約17000 mm/s之速度加速。在一些實例中,液體可自多孔板以約12000 mm/s至約17000 mm/s之速度加速。自噴佈器注入液體的氣泡可具有約2 mm至約20 mm、或大於5 mm至約15 mm、或約7 mm至約13 mm之直徑。通常,自噴佈器注入液體之氣泡不為球狀的。注入氣泡可稱作粗氣泡。相比之下,細氣泡之直徑可為約0.1 mm至約5 mm或約0.2 mm至約1.5 mm。細氣泡通常為球形。液體流可在接近於板之位置處引入。噴佈器可垂直於或平行於板而安置,且噴佈器的頂表面或側表面可距板底部約50 mm至約300 mm、500 mm或1000 mm定位。
在又一實施例中,本文所揭示之系統係關於可包括以下之生物反應器:容納液體生長培養基的容器,可包括複數個孔口的安置於該容器之上部且經組態以加速該容器中之液體生長培養基之至少一部分的板,可包括至少一種C1碳源之受質,安置於該容器內之具有可距板底部約50 mm至約300 mm、500 mm或1000 mm定位之噴佈器表面的至少一個噴佈器,且噴佈器經組態以將受質氣泡注入液體生長培養基中。位於容器內之噴佈器可產生受質氣泡在容器內上升之第一區域,及加速液體生長培養基將受質氣泡打碎成受質細氣泡且流體流動通過容器之第二區域。流體可具有液體生長培養基之經加速部分且可具有受質細氣泡,及至少一種微生物於液體生長培養基中之培養物。至少一種微生物之培養物可厭氧地醱酵受質以產生至少一種醱酵產物。
在再一實施例中,本文所揭示之方法係關於在生物反應器中產生受質細氣泡,且可包括經由安置於容器內之至少一個噴佈器將至少一種C1碳源之受質氣泡噴射至容納液體生長培養基之容器中,及經由安置於容器之上部的多孔板使容器中之液體生長培養基的一部分加速。自板加速之液體生長培養基可將受質氣泡打碎成受質細氣泡。容器中氣相之表觀速度可為至少30 mm/s。至少一種微生物之培養物可包括於液體生長培養基中且可厭氧地醱酵受質以產生至少一種醱酵產物。
本揭示案之此等及其他特徵及優勢將自以下實施方式以及隨附申請專利範圍得到更充分地理解。應注意,申請專利範圍之範疇由其中敍述定義,而非由在本說明書中所闡述之特徵及優勢之特定論述定義。
相關申請案之交叉引用
本申請案主張於2022年6月21日申請之美國臨時專利申請案第63/366,758號之權利,其全部內容以引用之方式併入本文中。 序列表之引用
本申請案含有序列表,該序列表已以ST.26序列表XML格式以電子方式提交,且以全文引用之方式併入本文中。該ST.26序列表XML創建於2023年6月16日,命名為LT245TW1-Sequences.xml,且大小為16,722位元組。
籠統地給出實施例之以下描述。根據在下文標題「實例」下所給出之揭示內容進一步闡明本揭示案,其提供支援本揭示案之實驗資料、本揭示案之各種態樣之特定實例及執行本揭示案之方式。
本發明人意外地能夠工程改造C1固定微生物從而連續產生乙烯。
除非另外定義,否則如在整個本說明書中所用之以下術語定義如下:
本揭示案提供用於生物共產生蛋白質、化學物質及微生物生物質之微生物。「微生物」為微觀生物體,尤其為細菌、古菌、病毒或真菌。在一實施例中,本揭示案之微生物為細菌。
當關於微生物使用時,術語「非天然存在」意指微生物具有至少一種未發現於所提及物種之天然存在之品系(包括所提及物種之野生型品系)中的基因修飾。非天然存在之微生物通常在實驗室或研究設施中開發。本揭示案之微生物為非天然存在的。
術語「基因修飾」、「基因改變」或「基因工程改造」泛指人工操縱微生物之基因體或核酸。同樣,術語「經基因修飾的」、「經基因改變的」或「經基因工程改造的」係指含有此類基因修飾、基因改變或基因工程改造之微生物。此等術語可用於區分實驗室產生之微生物與天然存在之微生物。基因修飾方法包括例如異源基因表現、基因或啟動子插入或刪除、核酸突變、改變基因表現或不活化、酶工程改造、定向進化、基於知識之設計、隨機突變誘發方法、基因改組及密碼子最佳化。本揭示案之微生物經基因工程改造。
「重組」指示核酸、蛋白質或微生物為基因修飾、工程改造或重組之產物。通常,術語「重組」係指含有衍生自多個來源之基因材料或由其編碼之核酸、蛋白質或微生物,該等來源諸如兩種或更多種不同之微生物品系或物種。本揭示案之微生物一般為重組的。
「野生型」係指自然界中本來存在之生物體、品系、基因或特徵的典型形式,其區別於突變或變異形式。
「內源的」係指存在於或表現於衍生本揭示案之微生物的野生型或親本微生物中之核酸或蛋白質。舉例而言,內源基因為原生存在於衍生本揭示案之微生物的野生型或親本微生物中之基因。在一個實施例中,內源基因之表現可藉由諸如外源啟動子之外源調節元件控制。
「外源的」係指源自本揭示案之微生物之外的核酸或蛋白質。舉例而言,外源基因或酶可以人工方式或以重組方式產生且引入或表現於本揭示案之微生物中。外源基因或酶亦可自異源微生物分離且引入或表現於本揭示案之微生物中。外源核酸可調適以整合至本揭示案之微生物之基因體中或在本揭示案之微生物中保持在染色體外狀態,例如在質體中。
「異源的」係指不存在於衍生本揭示案之微生物的野生型或親本微生物中之核酸或蛋白質。舉例而言,異源基因或酶可衍生自不同的品系或物種且引入或表現於本揭示案之微生物中。異源基因或酶可以其存在於不同品系或物種中之形式引入或表現於本揭示案之微生物中。或者,可以某種方式修飾異源基因或酶,例如藉由對其在本揭示案之微生物中表現進行密碼子最佳化或藉由對其進行工程改造以改變功能,以便逆轉酶活性之方向或改變受質特異性。
特別地,在本文所述之微生物中表現的異源核酸或蛋白質可來源於芽孢桿菌屬( Bacillus)、梭菌屬( Clostridium)、貪銅菌屬( Cupriavidus)、埃希氏菌屬( Escherichia)、葡糖桿菌屬( Gluconobacter)、生絲微菌屬( Hyphomicrobium)、離胺酸芽孢桿菌屬( Lysinibacillus)、類芽孢桿菌屬( Paenibacillus)、假單胞菌屬( Pseudomonas)、沈積菌屬( Sedimenticola)、芽孢八疊球菌屬( Sporosarcina)、鏈黴菌屬( Streptomyces)、熱硫桿狀菌屬( Thermithiobacillus)、棲熱孢菌屬( Thermotoga)、玉蜀黍屬( Zea)、克雷伯氏菌屬( Klebsiella)、分枝桿菌屬( Mycobacterium)、沙門氏菌屬( Salmonella)、擬分枝桿菌屬( Mycobacteroides)、葡萄球菌屬( Staphylococcus)、伯克氏菌屬( Burkholderia)、李斯特氏菌屬( Listeria)、不動桿菌屬( Acinetobacter)、志賀氏菌屬( Shigella)、奈瑟氏菌屬( Neisseria)、博特氏桿菌屬( Bordetella)、鏈球菌屬( Streptococcus)、腸桿菌屬( Enterobacter)、弧菌屬( Vibrio)、退伍軍人桿菌屬( Legionella)、黃單胞菌屬( Xanthomonas)、沙雷氏菌屬( Serratia)、克羅諾桿菌屬( Cronobacter)、貪銅菌屬( Cupriavidus)、螺旋桿菌屬( Helicobacter)、耶爾森氏菌屬( Yersinia)、丙酸桿菌屬( Cutibacterium)、弗朗西斯氏菌屬( Francisella)、果膠桿菌屬( Pectobacterium)、弓形菌屬( Arcobacter)、乳桿菌屬( Lactobacillus)、希瓦氏菌屬( Shewanella)、伊文氏桿菌屬( Erwinia)、硫磺單胞菌屬( Sulfurospirillum)、消化球菌科( Peptococcaceae)、熱球菌屬( Thermococcus)、酵母屬( Saccharomyces)、火球菌屬( Pyrococcus)、大豆屬( Glycine)、人屬( Homo)、羅爾斯通氏菌屬( Ralstonia)、短桿菌屬( Brevibacterium)、甲基桿菌屬( Methylobacterium)、土芽孢桿菌屬( Geobacillus)、牛屬( bos)、雞屬( gallus)、厭氧球菌屬( Anaerococcus)、爪蟾屬( Xenopus)、鈍喙蜥屬( Amblyrhynchus)、家鼠屬( rattus)、小鼠屬( mus)、豬屬( sus)、赤球菌屬( Rhodococcus)、根瘤菌屬( Rhizobium)、巨型球菌屬( Megasphaera)、中生根瘤菌屬( Mesorhizobium)、消化球菌屬( Peptococcus)、土壤桿菌( Agrobacterium)、彎曲桿菌屬( Campylobacter)、醋酸桿菌屬( Acetobacterium)、嗜鹼菌屬( Alkalibaculum)、布勞特氏菌屬( Blautia)、丁酸桿菌屬( Butyribacterium)、真桿菌屬( Eubacterium)、穆爾氏菌屬( Moorella)、產醋桿菌屬( Oxobacter)、鼠孢菌屬( Sporomusa)、嗜熱厭氧桿菌屬( Thermoanaerobacter)、裂殖酵母屬( Schizosaccharomyces)、類芽孢桿菌屬( Paenibacillus)、假芽孢桿菌屬( Fictibacillus)、離胺酸芽孢桿菌屬( Lysinibacillus)、鳥胺酸芽胞桿菌屬( Ornithinibacillus)、鹵桿菌屬( Halobacillus)、庫特氏菌屬( Kurthia)、慢生芽胞桿菌屬( Lentibacillus)、無氧芽胞桿菌屬( Anoxybacillus)、土壤芽胞桿菌屬( Solibacillus)、維京桿菌屬( Virgibacillus)、脂環桿菌屬( Alicyclobacillus)、芽孢八疊球菌屬( Sporosarcina)、鹽漬微球菌屬( Salimicrobium)、芽孢八疊球菌屬( Sporosarcina)、動性球菌屬( Planococcus)、棒狀桿菌屬( Corynebacterium)、嗜熱好氧菌屬( Thermaerobacter)、硫化芽孢桿菌屬( Sulfobacillus)或共生短桿菌屬( Symbiobacterium)。
術語「聚核苷酸」、「核苷酸」、「核苷酸序列」、「核酸」及「寡核苷酸」可互換使用。其係指任何長度之核苷酸之聚合形式,該等核苷酸為去氧核糖核苷酸或核糖核苷酸,或其類似物。聚核苷酸可具有任何三維結構,且可執行任何已知或未知的功能。以下為聚核苷酸之非限制性實例:基因或基因片段之編碼或非編碼區、由連鎖分析定義之基因座(loci/locus)、外顯子、內含子、信使RNA(mRNA)、轉移RNA、核醣體RNA、短干擾RNA(siRNA)、短髮夾RNA(shRNA)、微小RNA(miRNA)、核酶、cDNA、重組聚核苷酸、分支聚核苷酸、質體、載體、任何序列之分離DNA、任何序列之分離RNA、核酸探針及引子。聚核苷酸可包含一或多種經修飾之核苷酸,諸如甲基化核苷酸或核苷酸類似物。若存在,則可在聚合物組裝之前或之後賦予核苷酸結構之修飾。核苷酸序列可能間雜有非核苷酸組分。可在聚合之後,諸如藉由與標記組分結合而進一步修飾聚核苷酸。
如本文所用,「表現」係指聚核苷酸自DNA模板轉錄(諸如成為mRNA或其他RNA轉錄物)之過程及/或轉錄mRNA隨後轉譯為肽、多肽或蛋白質之過程。轉錄物及經編碼多肽可統稱為「基因產物」。
術語「多肽」、「肽」及「蛋白質」在本文中可互換使用以指代任何長度之胺基酸之聚合物。聚合物可為直鏈或分支鏈,其可包含經修飾之胺基酸,且其可間雜有非胺基酸。該等術語亦涵蓋經修飾之胺基酸聚合物;例如,藉由二硫鍵形成、醣基化、脂質化、乙醯化、磷酸化或任何其他操縱,諸如與標記組分之結合。如本文所用,術語「胺基酸」包括天然及/或非天然或合成胺基酸,包括甘胺酸及D或L光學異構體,以及胺基酸類似物及肽模擬物。
術語「共聚物」為一種組合物,其包含兩種或更多種單體物種,在本揭示案之同一聚合物鏈中連接。
「酶活性」或簡言之「活性」泛指酶促活性,包括但不限於酶之活性、酶之量或酶催化反應之可用性。因此,「增加」酶活性包括增加酶之活性、增加酶之量或增加酶催化反應之可用性。類似地,「降低」酶活性包括降低酶之活性、降低酶之量或降低酶催化反應之可用性。
「突變的」係指與衍生本揭示案之微生物的野生型或親本微生物相比,在本揭示案之微生物中已經修飾的核酸或蛋白質。在一個實施例中,突變可為編碼酶之基因中之缺失、插入或取代。在另一實施例中,突變可為酶中一或多個胺基酸之缺失、插入或取代。
「經破壞之基因」係指以某種方式修飾之基因,以減少或消除基因之表現、基因之調節活性或所編碼蛋白質或酶之活性。破壞可使基因或酶部分不活化、完全不活化或缺失。破壞可為完全消除基因、蛋白質或酶之表現或活性的基因剔除(KO)突變。破壞亦可為減弱,其減少但不完全消除基因、蛋白質或酶之表現或活性。破壞可為減少、防止或阻斷由酶產生之產物之生物合成的任何東西。破壞可包括例如編碼蛋白質或酶之基因中之突變,涉及編碼酶之基因表現的基因調節元件中之突變,引入產生減少或抑制酶活性之蛋白質的核酸,或引入抑制蛋白質或酶表現之核酸(例如反義RNA、RNAi、TALEN、siRNA、CRISPR或CRISPRi)或蛋白質。破壞可使用此項技術中已知的任何方法引入。出於本揭示案之目的,破壞為實驗室產生的,而非天然存在的。
「親本微生物」為用於產生本揭示案之微生物的微生物。親本微生物可為天然存在之微生物(亦即野生型微生物)或先前已經修飾之微生物(亦即突變或重組微生物)。本揭示案之微生物可經修飾以表現或過度表現一或多種在親本微生物中不表現或不過度表現之酶。類似地,本揭示案之微生物可經修飾以含有一或多個親本微生物所不含之基因。本揭示案之微生物亦可經修飾以不表現或表現較低量之一或多種表現於親本微生物中之酶。
本揭示案之微生物可衍生自基本上任何親本微生物。
術語「衍生自」指示核酸、蛋白質或微生物由不同(例如,親本或野生型)核酸、蛋白質或微生物修飾或調適,以便產生新核酸、蛋白質或微生物。此類修飾或調適通常包括核酸或基因之插入、缺失、突變或取代。
本揭示案之微生物可基於功能特徵進一步分類。舉例而言,本揭示案之微生物可為或可衍生自C1固定微生物、好氧菌、厭氧菌、產乙酸菌、產乙醇菌、一氧化碳營養生物(carboxydotroph)、自養生物及/或甲烷營養生物(methanotroph)。本揭示案之微生物可選自化學自養生物(chemoautotroph)、氫營養生物(hydrogenotroph)、氫氧混合氣(knallgas)生物、甲烷營養生物或其任何組合。在一些實施例中,微生物可為氫氧化的、一氧化碳氧化的、氫氧混合氣的或其任何組合,具有在氣態碳源,諸如合成氣及/或CO 2上生長及合成生物質之能力,使得生產微生物在氣體培養下合成目標化學產物。本揭示案之微生物及方法可使得能夠低成本合成生物化學物質,其可以在價格上與石化產品及高等植物源性之胺基酸、蛋白質及其他生物養分競爭。在某些實施例中,此等胺基酸、蛋白質及其他生物養分之價格可顯著低於經由異營或微生物光營合成產生之胺基酸、蛋白質及其他生物養分。氫氧混合氣微生物、氫營養生物、一氧化碳營養生物及化學自養生物更廣泛地能夠捕捉CO 2或CO作為其唯一碳源以支持生物生長。在一些實施例中,此生長包括胺基酸及蛋白質之生物合成。氫氧混合氣微生物及其他氫營養生物可使用H 2作為用於呼吸及生物化學合成之還原電子源。在本發明之一些實施例中,氫氧混合氣生物體及/或氫營養生物及/或一氧化碳營養生物及/或其他一氧化碳營養微生物在氣體流上生長,該等氣體包括但不限於以下中之一或多者:CO 2;CO;H 2;以及溶解於水性溶液中之無機礦物質。在一些實施例中,氫氧混合氣微生物及/或氫營養生物及/或一氧化碳營養生物及/或其他一氧化碳營養及/或甲烷營養微生物將溫室氣體轉化成包括胺基酸及蛋白質之生物分子。
「C1」係指一碳分子,例如CO、CO 2、CH 4或CH 3OH。「C1含氧物」係指亦包含至少一個氧原子之一碳分子,例如CO、CO 2或CH 3OH。「C1碳源」係指充當本揭示案之微生物之部分或唯一碳源的一碳分子。舉例而言,C1碳源可包含CO、CO 2、CH 4、CH 3OH或CH 2O 2中之一或多者。較佳地,C1碳源包含CO及CO 2中之一或兩者。「C1固定微生物」為能夠自C1碳源產生一或多種產物之微生物。通常,本揭示案之微生物係C1固定細菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之C1固定微生物。
「厭氧菌」為生長不需要氧氣之微生物。若氧氣以高於某一臨限值存在,則厭氧菌可能會消極反應或甚至死亡。然而,一些厭氧菌能夠耐受低水平之氧氣(例如0.000001-5%的氧氣),有時稱為「微氧條件」。通常,本揭示案之微生物為厭氧菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之厭氧菌。
「產乙酸菌」為使用伍德-永達爾(Wood-Ljungdahl)路徑作為其能量保存及合成乙醯-CoA及乙醯-CoA衍生產物,諸如乙酸酯之主要機制之絕對厭氧細菌(Ragsdale,《生物化學與生物物理學學報( Biochim Biophys Acta)》,1784:1873-1898,2008)。具體而言,產乙酸菌使用伍德-永達爾路徑作為(1)用於自CO 2還原合成乙醯-CoA之機制、(2)末端電子接受能量保存過程、(3)用於在細胞碳之合成中固定(同化)CO 2之機制(Drake,產乙酸菌原核生物(Acetogenic Prokaryotes),見於《原核生物(TheProkaryotes)》,第3版,第354頁,紐約州紐約,2006)。所有天然存在之產乙酸菌均為C1固定型、厭氧型、自養型及非甲烷氧化型。通常,本揭示案之微生物為產乙酸菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之產乙酸菌。
「產乙醇菌」為產生或能夠產生乙醇之微生物。通常,本揭示案之微生物為產乙醇菌。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之產乙醇菌。
「自養生物」為能夠在不存在有機碳之情況下生長之微生物。相反,自養生物使用無機碳源,諸如CO及/或CO 2。通常,本揭示案之微生物為自養生物。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之自養生物。
「一氧化碳營養生物」為能夠利用CO作為碳及能量之唯一來源之微生物。通常,本揭示案之微生物為一氧化碳營養生物。在一較佳實施例中,本揭示案之微生物衍生自表1中鑑別之一氧化碳營養生物。
「甲烷營養生物」為能夠使用甲烷作為唯一碳源及能量源之微生物。在某些實施例中,本揭示案之微生物為甲烷營養生物或衍生自甲烷營養生物。在其他實施例中,本揭示案之微生物並非甲烷營養生物或並非衍生自甲烷營養生物。
術語「氫氧混合氣」係指分子氫及氧氣之混合物。「氫氧混合氣微生物」為可在呼吸中使用氫作為電子供體及氧作為電子受體,以產生諸如腺苷-5'-三磷酸酯(ATP)的細胞內能量載體之微生物。
術語「氫氧」及「氫氧微生物」可分別與「氫氧混合氣」及「氫氧混合氣微生物」同義地使用。氫氧混合氣微生物通常藉助於氫化酶使用分子氫,其中自H 2供給之電子中之一些用於還原NAD +(及/或其他細胞內還原等效物)且來自H 2之電子中之一些用於好氧呼吸。氫氧混合氣微生物通常經由包括但不限於卡爾文循環(Calvin Cycle)或逆檸檬酸循環之路徑自營固定CO 2
然而,如上所述,本揭示案之微生物亦可衍生自基本上任何親本微生物,諸如選自由大腸桿菌( Escherichia coli)及釀酒酵母( Saccharomyces cerevisiae)組成之群的親本微生物。
在另一實施例中,本揭示案之微生物為好氧細菌。在一個實施例中,本揭示案之微生物包含好氧氫細菌。在一實施例中,好氧細菌包含至少一個經破壞之基因。
已知多種好氧細菌能夠對所揭示之方法及系統進行醱酵。適用於本發明之此類細菌的實例包括貪銅菌屬及雷爾氏菌屬( Ralstonia)之細菌。在一些實施例中,好氧細菌為鉤蟲貪銅菌或富養羅爾斯通氏菌。在一些實施例中,好氧細菌為嗜鹼菌貪銅菌( Cupriavidus alkaliphilus)。在一些實施例中,好氧細菌為巴塞爾貪銅菌( Cupriavidus basilensis)。在一些實施例中,好氧細菌為克姆品貪銅菌( Cupriavidus campinensis)。在一些實施例中,好氧細菌為吉氏貪銅菌( Cupriavidus gilardii)。在一些實施例中,好氧細菌為拉哈里斯貪銅菌( Cupriavidus laharis)。在一些實施例中,好氧細菌為耐金屬貪銅菌( Cupriavidus metallidurans)。在一些實施例中,好氧細菌為南投貪銅菌( Cupriavidus nantongensis)。在一些實施例中,好氧細菌為努馬如恩塞斯貪銅菌( Cupriavidus numazuensis)。在一些實施例中,好氧細菌為奧可西勒提科斯貪銅菌( Cupriavidus oxalaticus)。在一些實施例中,好氧細菌為波本貪銅菌( Cupriavidus pampae)。在一些實施例中,好氧細菌為罕見貪銅菌( Cupriavidus pauculus)。在一些實施例中,好氧細菌為皮納圖博火山貪銅菌( Cupriavidus pinatubonensis)。在一些實施例中,好氧細菌為植物貪銅菌( Cupriavidus plantarum)。在一些實施例中,好氧細菌為呼吸系統貪銅菌( Cupriavidus respiraculi)。在一些實施例中,好氧細菌為臺灣貪銅菌( Cupriavidus taiwanensis)。在一些實施例中,好氧細菌為漣川貪銅菌( Cupriavidus yeoncheonensis)。
在一些實施例中,微生物為鉤蟲貪銅菌DSM248或DSM541。
在一些實施例中,好氧細菌包含一或多種編碼天然存在之多肽的外源核酸分子,其中該多肽為核酮糖二磷酸羧化酶、乙醯-CoA乙醯轉移酶、3-羥基丁醯基-CoA去水酶、丁醯基-CoA去氫酶、丁醇去氫酶、電子轉移黃素蛋白大次單元、3-羥基丁醯基-CoA去氫酶、雙功能乙醛-CoA/醇去氫酶、乙醛去氫酶、醛去羰酶、醯基-ACP還原酶、L-1,2-丙二醇氧化還原酶、醯基轉移酶、3-側氧醯基-ACP合成酶、3-羥基丁醯基-CoA表異構酶/δ(3)-順-δ(2)-反-烯醯基-CoA異構酶/烯醯基-CoA水合酶/3-羥基醯基-CoA去氫酶、短鏈去氫酶、反-2-烯醯基-CoA還原酶或其任何組合。
在本揭示案之微生物中,碳通量策略性地遠離非必需或不合需要的產物且針對所關注產物。在某些實施例中,此等經破壞之基因使碳通量遠離非必需或不合需要的代謝節點且通過目標代謝節點以改良彼等目標代謝節點下游之產物生產。在一實施例中,選自養分、溶解氧或其任何組合的限制使碳通量轉向成為所要產物。
在一實施例中,醱酵培養液包含與生物反應器中之好氧微生物組合之進料流。在一些實施例中,進料流,例如碳源進料流、含可燃性氣體流及含氧氣體進料流與生物反應器中之微生物反應以至少部分形成醱酵培養液(其亦可包括其他產物、副產物及進料至生物反應器之其他培養基)。未反應之氧或微生物未消耗之氧作為溶解氧及氣態氧兩者存在於醱酵培養液內之分散氣相中。相同情形對於可溶的其他氣體亦成立。含有未反應組分,例如氧氣、氮氣、氫氣、二氧化碳及/或水蒸氣之分散氣相上升至生物反應器之頂部空間。
在一些實施例中,含氧氣體,例如空氣可直接進料至醱酵培養液中。在一個實施例中,含氧氣體可為富氧源,例如富氧空氣或純氧氣。在一實施例中,含氧氣體可包含大於6.0 vol.%之氧氣,例如大於10.0 vol.%、大於20.0 vol.%、大於40.0 vol.%、大於60.0 vol.%、大於80.0 vol.%或大於90.0 vol.%。在一些實施例中,含氧氣體可為純氧氣。
在一個實施例中,本揭示案之微生物能夠產生乙烯。一個實施例係關於一種能夠自碳源產生乙烯之重組C1固定微生物,其包含編碼包含至少一種乙烯形成酶(EFE)之一組外源性酶的核酸。在一些實施例中,EFE來源於丁香假單胞菌( Pseudomonas syringae)。如一實施例之微生物,其進一步包含編碼包含至少一種α-酮戊二酸通透酶(AKGP)之一組外源性酶的核酸。
如一實施例之微生物,其中編碼一組外源性酶之核酸包含至少一種EFE、至少一種AKGP或其任何組合。如一實施例之微生物,其中編碼一組外源性酶之核酸包含至少一種EFE及至少一種AKGP。如一實施例之微生物,其中編碼一組外源性酶的核苷酸插入至細菌載體質體、高複本數細菌載體質體、具有誘導型啟動子之細菌載體質體、同源重組系統之核苷酸引導序列、CRISPR Cas系統或其任何組合中。在一實施例中,啟動子為磷酸酯限制誘導型啟動子。在一些實施例中,啟動子為氮限制啟動子。在一些實施例中,啟動子為NtrC-P活化啟動子。在一些實施例中,啟動子為H 2誘導型啟動子。在一個實施例中,微生物包含細胞內氧濃度限制。在另一實施例中,該方法限制細胞內氧濃度。在一個實施例中,該方法包含控制溶解氧之步驟。在一實施例中,該方法包含以降低溶解氧濃度來降低乙烯生產。在一些實施例中,微生物包含分子開關。在一些實施例中,微生物包含在不同條件下切換細胞負荷之能力。
在一些實施例中,微生物為能夠將氣態受質轉化為碳及/或能量源之天然或經工程改造之微生物。在一個實施例中,氣態受質包括CO 2作為碳源。在一些實施例中,氣態受質包括H 2及/或O 2作為能量源。在一個實施例中,氣態受質包括氣體混合物,包含H 2及/或CO 2及/或CO。
在一些實施例中,該氣體醱酵產物係選自醇、酸、二酸、烯烴、萜烯、異戊二烯及炔烴。在一些實施例中,本文所揭示之方法及微生物用於改良乙烯生產。在一實施例中,本文所揭示之方法及微生物用於改良氣體醱酵產物之生產。
在一個實施例中,好氧細菌可產生諸如以下的產物:丙酮、異丙醇、3-羥基異戊醯基-CoA、3-羥基異戊酸酯、異丁烯、焦磷酸異戊烯酯、焦磷酸二甲基烯丙酯、異戊二烯、菌綠烯、3-羥基丁醯基-CoA、巴豆醯基-CoA、3-羥基丁酸酯、3-羥基丁醯基醛、1,3-丁二醇、2-羥基異丁醯基-CoA、2-羥基異丁酸酯、丁醯基-CoA、丁酸酯、丁醇、己酸酯、己醇、辛酸酯、辛醇、1,3-己二醇、2-丁烯-1-醇、異戊醯基-CoA、異戊酸酯、異戊醇、甲基丙烯醛、甲基-甲基丙烯酸酯或其任何組合。
在另一實施例中,本揭示案之細菌可產生乙烯、乙醇、丙烷、乙酸酯、1-丁醇、丁酸酯、2,3-丁二醇、乳酸酯、丁烯、丁二烯、甲基乙基酮(2-丁酮)、丙酮、異丙醇、脂質、3-羥基丙酸酯(3-HP)、萜烯、異戊二烯、脂肪酸、2-丁醇、1,2-丙二醇、1丙醇、1己醇、1辛醇、分支酸衍生產物、3羥丁酸酯、1,3丁二醇、2-羥基異丁酸酯或2-羥基異丁酸、異丁烯、己二酸、酮-己二酸、1,3己二醇、3-甲基-2-丁醇、2-丁烯-1-醇、異戊酸酯、異戊醇及單乙二醇,或其任何組合。
本揭示案提供能夠產生乙烯之微生物,產生乙烯包含在受質存在下培養本揭示案之微生物,由此微生物產生乙烯。
本揭示案之酶可經密碼子最佳化以在本揭示案之微生物中表現。「密碼子最佳化」係指核酸(諸如基因)突變以使特定品系或物種之核酸的轉譯最佳化或改良。密碼子最佳化可產生較快的轉譯速率或較高的轉譯準確性。在一較佳實施例中,本揭示案之基因經密碼子最佳化以在本揭示案之微生物中表現。儘管密碼子最佳化係指基礎基因序列,但密碼子最佳化通常會使得轉譯得到改良,且因此改良酶的表現。因此,本揭示案之酶亦可描述為經密碼子最佳化的。
本揭示案之酶中的一或多者可過度表現。「過度表現」係指與衍生出本揭示案之微生物的野生型或親本微生物相比本揭示案之微生物中的核酸或蛋白質的表現增加。過度表現可藉由此項技術已知的任何方式實現,包括修改基因複本數、基因轉錄速率、基因轉譯速率或酶降解速率。
本揭示案之酶可包含破壞性突變。「破壞性突變」係指減少或消除(亦即「破壞」)基因或酶的表現或活性的突變。破壞性突變可使基因或酶部分不活化、完全不活化或刪除基因或酶。破壞性突變可為剔除(KO)突變。破壞性突變可為減少、防止或阻斷酶產生之產物的生物合成的任何突變。破壞性突變可包括例如編碼酶之基因中的突變、涉及編碼酶之基因表現的基因調節元件中的突變、引入產生降低或抑制酶活性之蛋白質的核酸、或引入抑制酶表現的核酸(例如,反義RNA、siRNA、CRISPR)或蛋白質。破壞性突變可使用此項技術已知之任何方法引入。
破壞性突變之引入使得本揭示案之微生物與衍生本揭示案之微生物的親本微生物相比不產生目標產物或實質上不產生目標產物或產生目標產物之量減少。舉例而言,本揭示案之微生物可不產生目標產物或產生比親本微生物少至少約1%、3%、5%、10%、20%、30%、40%、50%、60%、70%、80%、90%或95%的目標產物。舉例而言,本揭示案之微生物可產生小於約0.001、0.01、0.10、0.30、0.50或1.0 g/L目標產物。
儘管本文提供酶之例示性序列及來源,但本揭示案決不限於此等序列及來源——其亦涵蓋變異體。術語「變異體」包括序列不同於參考核酸及蛋白質之序列(諸如先前技術中所揭示或本文中所例示之參考核酸及蛋白質之序列)的核酸及蛋白質。可使用執行與參考核酸或蛋白質實質上相同的功能之變異體核酸或蛋白質來實施本揭示案。舉例而言,變異體蛋白質可執行與參考蛋白質實質上相同的功能或催化實質上相同的反應。變異體基因可編碼與參考基因相同或實質上相同的蛋白質。變異體啟動子可具有與參考啟動子實質上相同的促進一或多種基因表現之能力。
此類核酸或蛋白質在本文中可稱為「功能等效變異體」。舉例而言,核酸之功能等效變異體可以包括對偶基因變異體、基因片段、突變基因、多形現象及其類似者。來自其他微生物之同源基因亦為功能等效變異體之實例。此等基因包括諸如丙酮丁醇梭菌( Clostridium acetobutylicum)、拜氏梭菌( Clostridium beijerinckii)或揚氏梭菌( Clostridium ljungdahlii)之物種中之同源基因,其詳情在諸如Genbank或NCBI之網站上公開可用。功能等效變異體亦包括其序列因針對特定微生物之密碼子最佳化而變化之核酸。核酸之功能等效變異體將較佳與參考核酸具有至少大約70%、大約80%、大約85%、大約90%、大約95%、大約98%或更大核酸序列一致性(同源性百分比)。蛋白質之功能等效變異體將較佳與參考蛋白質具有至少大約70%、大約80%、大約85%、大約90%、大約95%、大約98%或更大胺基酸一致性(同源性百分比)。變異體核酸或蛋白質之功能等效性可使用此項技術中已知之任何方法評價。
「互補性」係指核酸藉由傳統沃森-克里克(Watson-Crick)或其他非傳統類型與另一核酸序列形成氫鍵之能力。互補性百分比指示核酸分子中可與第二核酸序列形成氫鍵(例如,沃森-克里克鹼基配對)之殘基的百分比(例如,10個中有5、6、7、8、9、10個為50%、60%、70%、80%、90%及100%互補)。「完美互補」意謂核酸序列之所有連續殘基將與第二核酸序列中相同數目之連續殘基氫鍵結。如本文所用,「實質上互補」係指8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、35、40、45、50或更多個核苷酸之區域內至少60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%或100%的互補程度,或係指在嚴格條件下雜交之兩個核酸。
「雜交」係指一或多個聚核苷酸反應以形成複合體之反應,該複合體經由核苷酸殘基之鹼基之間的氫鍵結而穩定化。氫鍵結可藉由沃森克里克鹼基配對、胡斯坦結合(Hoogstein binding)或以任何其他序列特異性方式發生。複合體可包含形成雙螺旋體結構之兩股、形成多股複合體之三股或更多股、單個自雜交股或此等之任何組合。雜交反應可構成諸如起始PCR或藉由酶裂解聚核苷酸之較廣泛過程中之步驟。能夠與給定序列雜交之序列稱為給定序列之「互補序列」。
可使用此項技術中已知之任何方法將核酸遞送至本揭示案之微生物中。舉例而言,核酸可作為裸核酸遞送,或可與一或多種試劑,諸如脂質體一起調配。若適當,核酸可為DNA、RNA、cDNA或其組合。在某些實施例中可使用限制性抑制劑。額外載體可包括質體、病毒、噬菌體、黏質體及人工染色體。在一較佳實施例中,使用質體將核酸遞送至本揭示案之微生物。藉助於實例,轉化(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉化、化學或天然勝任、原生質體轉化、原噬菌體誘導或結合來實現。在具有活性限制酶系統之某些實施例中,可能有必要在將核酸引入微生物中之前將核酸甲基化。
此外,核酸可經設計以包含調節元件,諸如啟動子,以增加或以其他方式控制特定核酸之表現。啟動子可為組成型啟動子或誘導型啟動子。啟動子可為伍德-永達爾途徑啟動子、鐵氧化還原蛋白啟動子、丙酮酸鐵氧化還原蛋白氧化還原酶啟動子、Rnf複合體操縱子啟動子、ATP合成酶操縱子啟動子或磷酸轉乙醯酶/乙酸激酶操縱子啟動子。
應瞭解,本揭示案可使用序列與本文中具體例示之序列不同的核酸來實施,只要其執行實質上相同的功能。對於編碼蛋白質或肽之核酸序列,此意謂經編碼之蛋白質或肽具有實質上相同的功能。對於呈現啟動子序列之核酸序列,變異體序列將具有促進一或多個基因之表現的能力。此類核酸在本文中可稱為「功能等效變異體」。舉例而言,核酸之功能等效變異體包括對偶基因變異體、基因片段、包括突變(缺失、插入、核苷酸取代及其類似者)及/或多形現象及其類似者之基因。來自其他微生物之同源基因亦可視為本文中具體例示之序列之功能等效變異體之實例。
片語「功能等效變異體」亦應視為包括序列由於針對特定微生物之密碼子最佳化而變化之核酸。本文中之核酸之「功能等效變異體」將較佳地與所鑑別核酸具有至少大約70%、較佳地大約80%、更佳地大約85%、較佳地大約90%、較佳地大約95%或更大核酸序列一致性。
亦應瞭解,本揭示案可使用序列與本文中具體例示之胺基酸序列不同的多肽來實踐。此等變異體在本文中可稱為「功能等效變異體」。蛋白質或肽之功能等效變異體包括與所鑑別之蛋白質或肽具有至少40%、較佳50%、較佳60%、較佳70%、較佳75%、較佳80%、較佳85%、較佳90%、較佳95%或更大胺基酸一致性且具有與所關注之肽或蛋白質實質上相同功能的彼等蛋白質或肽。此類變異體在其範疇內包括蛋白質或肽之片段,其中片段包含多肽之截短形式,其中缺失可為1至5、至10、至15、至20、至25個胺基酸,且可在多肽之任一端自殘基1至25延伸,且其中缺失可具有區內任何長度;或可處於內部位置。本文中之特定多肽之功能等效變異體亦應視為包括由其他細菌物種中之同源基因表現之多肽,例如如先前段落中所例示。
本揭示案之微生物可使用此項技術中已知用於產生重組微生物之任何數目之技術由親本微生物及一或多個外源核酸製備。僅藉助於實例,轉化(包括轉導或轉染)可藉由電穿孔、超音波處理、聚乙二醇介導之轉化、化學或天然勝任力或結合來實現。適合的轉化技術例如描述於Sambrook J,Fritsch EF,Maniatis T:《分子選殖:實驗室手冊( Molecular Cloning:  A laboratory Manual)》,冷泉港實驗室出版社(Cold Spring Harbour Laboratory Press),冷泉港(Cold Spring Harbour),1989中。
在某些實施例中,由於在待轉化微生物中具有活性之限制系統,有必要將待引入微生物中之核酸甲基化。此可使用多種技術進行,包括下文所描述之彼等技術,且進一步例示於下文實例部分中。
藉助於實例,在一個實施例中,本揭示案之重組微生物藉由包含以下步驟之方法產生:將(i)如本文中所描述之表現構築體/載體及(ii)包含甲基轉移酶基因之甲基化構築體/載體引入至穿梭微生物中;表現甲基轉移酶基因;自穿梭微生物分離一或多個構築體/載體;及將一或多個構築體/載體引入至目的微生物中。
在一個實施例中,組成性表現步驟B之甲基轉移酶基因。在另一實施例中,誘導步驟B之甲基轉移酶基因之表現。
穿梭微生物為促進構成表現構築體/載體之核酸序列之甲基化的微生物,較佳地為限制陰性微生物。在一特定實施例中,穿梭微生物為限制陰性大腸桿菌、枯草芽孢桿菌( Bacillus subtilis)或乳酸乳球菌( Lactococcus lactis)。
甲基化構築體/載體包含編碼甲基轉移酶之核酸序列。
一旦表現構築體/載體及甲基化構築體/載體引入穿梭微生物中,則誘導存在於甲基化構築體/載體上之甲基轉移酶基因。誘導可藉由任何適合的啟動子系統實現,但在本揭示案之一個特定實施例中,甲基化構築體/載體包含誘導型lac啟動子且藉由添加乳糖或其類似物,更佳地異丙基-β-D-硫代半乳糖苷(IPTG)來誘導。其他適合的啟動子包括ara、tet或T7系統。在本揭示案之另一實施例中,甲基化構築體/載體啟動子為組成型啟動子。
在一個特定實施例中,甲基化構築體/載體具有對穿梭微生物之屬性具有特異性之複製起點,使得存在於甲基化構築體/載體上之任何基因表現於穿梭微生物中。較佳地,表現構築體/載體具有對目的微生物之屬性具有特異性之複製起點,使得存在於表現構築體/載體上之任何基因表現於目的微生物中。
甲基轉移酶之表現使得存在於表現構築體/載體上之基因甲基化。表現構築體/載體可接著根據多種已知方法中之任一者自穿梭微生物分離。僅藉助於實例,下文所描述之實例部分中所描述之方法可用於分離表現構築體/載體。
在一個特定實施例中,構築體/載體均同時分離。
可使用任何數目之已知方法將表現構築體/載體引入至目的微生物中。然而,藉助於實例,可使用下文實例部分中所描述之方法。由於表現構築體/載體經甲基化,因此存在於表現構築體/載體上之核酸序列能夠併入至目的微生物中且成功地表現。
據設想,可將甲基轉移酶基因引入至穿梭微生物中且過度表現。因此,在一個實施例中,所得甲基轉移酶可使用已知方法收集且活體外用於使表現質體甲基化。可接著將表現構築體/載體引入至目的微生物中以表現。在另一實施例中,將甲基轉移酶基因引入至穿梭微生物之基因體中,隨後將表現構築體/載體引入至穿梭微生物中,自穿梭微生物分離一或多個構築體/載體,且接著將表現構築體/載體引入至目的微生物中。
據設想,如上文所定義之表現構築體/載體及甲基化構築體/載體可組合以提供物質組合物。此類組合物在避開限制障壁機制以產生本揭示案之重組微生物方面具有特定效用。
在一個特定實施例中,表現構築體/載體及/或甲基化構築體/載體為質體。
一般熟習此項技術者將瞭解用於產生本揭示案之微生物之多種適合的甲基轉移酶。然而,藉助於實例,可使用枯草芽孢桿菌噬菌體ΦT1甲基轉移酶及後文實例中所描述之甲基轉移酶。考慮到所要甲基轉移酶及基因密碼之序列,將容易瞭解編碼適合的甲基轉移酶之核酸。
經調適以允許表現甲基轉移酶基因之任何數目之構築體/載體可用於產生甲基化構築體/載體。
在一個實施例中,受質包含CO 2及能量源。在一些實施例中,受質包含CO 2及能量源。在一實施例中,受質包含CO 2、H 2及O 2。在一些實施例中,受質包含CO 2及任何適合能量源。在一個實施例中,受質包含CO。在一個實施例中,受質包含CO2及CO。在另一實施例中,受質包含CO2及H2。在另一實施例中,受質包含CO2及CO及H2。
「受質」係指用於本揭示案之微生物之碳源及/或能量源。通常,受質係氣態的且包含C1碳源,例如CO、CO 2及/或CH 4。較佳地,受質包含CO或CO + CO 2之C1碳源。受質可進一步包含其他非碳組分,諸如H 2、N 2或電子。然而,在其他實施例中,受質可為碳水化合物,諸如糖、澱粉、纖維、木質素、纖維素或半纖維素或其組合。舉例而言,碳水化合物可為果糖、半乳糖、葡萄糖、乳糖、麥芽糖、蔗糖、木糖或其一些組合。在一些實施例中,受質不包含(D)-木糖(Alkim,《微生物細胞工廠( Microb Cell Fact)》,14: 127,2015)。在一些實施例中,受質不包含戊糖,諸如木糖(Pereira,《代謝工程( Metab Eng)》,34: 80-87,2016)。在一些實施例中,受質可包含氣態受質及碳水化合物受質(混合營養醱酵)。受質可進一步包含其他非碳組分,諸如H 2、N 2或電子。
在一些實施例中,氣態受質通常包含至少一些量的CO,諸如約1、2、5、10、20、30、40、50、60、70、80、90或100 mol% CO。氣態受質可包含一定範圍的CO,諸如約20-80、30-70或40-60 mol% CO。較佳地,氣態受質包含約40-70 mol% CO(例如軋鋼廠或高爐氣體)、約20-30 mol% CO(例如鹼性氧氣爐氣體)或約15-45 mol% CO(例如合成氣)。在一些實施例中,氣態受質可包含相對較低量的CO,諸如約1-10或1-20 mol% CO。本揭示案之微生物通常將氣態受質中之至少一部分CO轉化為產物。在一些實施例中,氣態受質不包含或實質上不包含(< 1 mol%)CO。
氣態受質可包含一些量的H 2。舉例而言,氣態受質可包含約1、2、5、10、15、20或30 mol%的H 2。在一些實施例中,氣態受質可包含相對較高量的H 2,諸如約60、70、80或90 mol%的H 2。在其他實施例中,氣態受質不包含或實質上不包含(< 1 mol%)H 2
氣態受質可包含一些量的CO 2。舉例而言,氣態受質可包含約1-80或1-30 mol%的CO 2。在一些實施例中,氣態受質可包含小於約20、15、10或5 mol%的CO 2。在另一實施例中,氣態受質不包含或實質上不包含(< 1 mol%)CO 2
氣態受質亦可以替代形式提供。舉例而言,氣態受質可溶解於液體中或吸附於固體支撐物上。
氣態受質及/或C1碳源可為作為工業製程之副產物獲得或來自一些其他來源(諸如來自汽車尾氣或生物質氣化)的廢氣(waste gas/off gas)。在某些實施例中,工業製程選自由以下組成之群:鐵類金屬產品製造(諸如軋鋼廠製造)、非鐵產品製造、石油精煉、煤炭氣化、電力生產、炭黑生產、氨生產、甲醇生產及焦炭製造。在此等實施例中,氣態受質及/或C1碳源可在其排放至大氣中之前使用任何便利方法自工業製程捕獲。
氣態受質及/或C1碳源可為合成氣,諸如藉由煤炭或精煉廠殘渣氣化、生物質或木質纖維素材料氣化或天然氣重整所獲得之合成氣。在另一實施例中,合成氣可獲自城市固體廢物或工業固體廢物之氣化。
當用於流入氣體醱酵生物反應器(亦即,氣體醱酵槽)中之流之情形下時,術語「原料」或「氣體醱酵原料」應理解為涵蓋任何材料(固體、液體或氣體)或流,其可直接或在加工原料之後提供受質及/或C1碳源至氣體醱酵槽或生物反應器。
術語「廢氣」或「廢氣流」可用於指代直接發射、燃燒而無額外價值回收或燃燒以用於能量回收目的之任何氣流。
術語「合成氣體」或「合成氣體」係指含有至少一種碳源,諸如一氧化碳(CO)、二氧化碳(CO 2)或其任何組合,及視情況氫氣(H 2)的氣態混合物,其可用作所揭示之氣體醱酵製程之原料且可由廣泛範圍之含碳材料,固體及液體產生。
受質及/或C1碳源可為作為工業製程的副產物獲得或來自另一來源,諸如汽車尾氣、沼氣、掩埋產氣、直接空氣捕獲或來自電解之廢氣。受質及/或C1碳源可為藉由熱解、焙燒或氣化產生之合成氣。換言之,可藉由熱解、焙燒或氣化來回收廢棄材料中之碳,以產生用作受質及/或C1碳源之合成氣。受質及/或C1碳源可為包含甲烷的氣體。
在某些實施例中,工業製程係選自鐵類金屬產品製造,諸如鋼鐵製造;非鐵產品製造、石油精煉、電力生產、炭黑生產、紙張及紙漿製造、氨生產、甲醇生產、焦炭製造、石油化工生產、碳水化合物醱酵、水泥製造、好氧消化、厭氧消化、催化製程、天然氣提取、纖維素醱酵、石油提取、地質儲層、來自諸如天然氣煤及石油之化石資源的氣體,或其任何組合。工業過程內之特定加工步驟之實例包括催化劑再生、流體催化劑裂解及催化劑再生。空氣分離及直接空氣捕獲係其他適合之工業過程。鋼鐵及鐵合金製造中之具體實例包括高爐煤氣、鹼性氧氣爐煤氣、焦爐煤氣、鐵爐爐頂煤氣之直接還原及來自冶鐵之殘餘氣體。在此等實施例中,受質及/或C1碳源可在其排放至大氣中之前使用任何已知方法自工業製程捕獲。
受質及/或C1碳源可為稱為合成氣的合成氣體,其可自重整、部分氧化或氣化製程中獲得。氣化製程的實例包括煤的氣化、精煉廠殘渣的氣化、石油焦的氣化、生物質的氣化、木質纖維素材料的氣化、廢木材的氣化、黑液的氣化、城市固體廢物的氣化、城市液體廢物的氣化、工業固體廢物的氣化、工業液體廢物的氣化、廢物衍生燃料的氣化、下水道的氣化、下水道污泥的氣化、廢水處理產生的污泥的氣化、沼氣的氣化。重整製程的實例包括蒸汽甲烷重整、蒸汽石腦油重整、天然氣重整、沼氣重整、掩埋產氣重整、石腦油重整及乾甲烷重整。部分氧化製程的實例包括熱及催化部分氧化製程、天然氣的催化部分氧化、烴的部分氧化。城市固體廢物的實例包括輪胎、塑膠、纖維,諸如鞋、服裝及紡織品中的纖維。城市固體廢物可僅為掩埋型廢物。城市固體廢料可以分類或未分類。生物質之實例可包括木質纖維素材料,且亦可包括微生物生物質。木質纖維素材料可包括農業廢物及森林廢物。
受質及/或C1碳源可為包含甲烷的氣流。此類含甲烷氣體可諸如在壓裂、廢水處理、牲畜業、農業及城市固體廢物掩埋期間自化石甲烷排放獲得。亦設想甲烷可經燃燒以產生電力或熱量,且C1副產物可用作受質或碳源。
氣態受質之組成可能對反應之效率及/或成本具有顯著影響。例如,氧氣(O 2)的存在可能會降低厭氧醱酵過程的效率。視受質之組成而定,可能需要處理、洗滌或過濾受質以移除任何非所要雜質,諸如毒素、非所要組分或灰塵顆粒,及/或增加所需組分之濃度。
不管用作原料之氣體的來源或精確含量如何,原料可定量(例如用於碳信用計算或可持續碳與整體產物之質量平衡)至生物反應器中以便維持對提供至培養物中之以下速率及碳量的控制。類似地,生物反應器之輸出物可定量(例如用於碳信用計算或可持續碳與總體產物之質量平衡)或包含可控制經由醱酵產生之輸出物及產物(例如乙烯、乙醇、乙酸酯、1-丁醇等)之流動的平衡連接件。此類閥門或計量機構可適用於多種目的,包括但不限於經由連接管道摻雜產物及量測既定生物反應器之輸出量,使得若產物與其他氣體或液體混合,則所得混合物可稍後質量平衡以確定由生物反應器產生之產物的百分比。
在某些實施例中,醱酵在不存在碳水化合物受質,諸如糖、澱粉、纖維、木質素、纖維素或半纖維素之情況下進行。
除乙烯之外,本揭示案之微生物可經培養以產生一或多種副產物。舉例而言,除了乙烯以外,本揭示案之微生物亦可產生或可經工程改造以產生乙醇(WO 2007/117157)、乙酸酯(WO 2007/117157)、1-丁醇(WO 2008/115080、WO 2012/053905及WO 2017/066498)、丁酸酯(WO 2008/115080)、2,3-丁二醇(WO 2009/151342及WO 2016/094334)、乳酸酯(WO 2011/112103)、丁烯(WO 2012/024522)、丁二烯(WO 2012/024522)、甲基乙基酮(2-丁酮)(WO 2012/024522及WO 2013/185123)、乙烯(WO 2012/026833)、丙酮(WO 2012/115527)、異丙醇(WO 2012/115527)、脂質(WO 2013/036147)、3-羥基丙酸酯(3-HP)(WO 2013/180581)、萜烯,包括異戊二烯(WO 2013/180584)、脂肪酸(WO 2013/191567)、2-丁醇(WO 2013/185123)、1,2-丙二醇(WO 2014/036152)、1-丙醇(WO 2017/066498)、1-己醇(WO 2017/066498)、1-辛醇(WO 2017/066498)、分支酸衍生產物(WO 2016/191625)、3-羥基丁酸酯(WO 2017/066498)、1,3-丁二醇(WO 2017/066498)、2-羥基異丁酸酯或2-羥基異丁酸(WO 2017/066498)、異丁烯(WO 2017/066498)、己二酸(WO 2017/066498)、1,3-己二醇(WO 2017/066498)、3-甲基-2-丁醇(WO 2017/066498)、2-丁烯-1-醇(WO 2017/066498)、異戊酸酯(WO 2017/066498)、異戊醇(WO 2017/066498)及/或單乙二醇(WO 2019/126400)。在某些實施例中,微生物生物質本身可視為產物。此等產物可進一步轉化產生柴油、噴射機燃料、可持續航空燃料(SAF)及/或汽油之至少一種組分。在某些實施例中,乙烯可以催化方式轉化成另一產物、製品或其任何組合。此外,可藉由此項技術中已知的任何方法或方法之組合進一步加工微生物生物質以產生單細胞蛋白(SCP)。除一或多種目標化學產物以外,本揭示案之微生物亦可產生乙醇、乙酸酯及/或2,3-丁二醇。在另一實施例中,本揭示案之微生物及方法改良產物、蛋白質、微生物生物質或其任何組合之生產。
「原生產物」為由未經基因修飾之微生物產生之產物。舉例而言,乙醇、乙酸酯及2,3-丁二醇為自產乙醇梭菌( Clostridium autoethanogenum)、揚氏梭菌及拉氏梭菌之原生產物。「非原生產物」為由經基因修飾之微生物產生之產物,而非由衍生出經基因修飾之微生物之未經基因修飾之微生物產生之產物。據所知,乙烯不由任何天然存在之微生物產生,因此其為所有微生物的非原生產物。
「選擇性」係指目標產物之產量與藉由微生物產生之所有醱酵產物之產量的比率。本揭示案之微生物可經工程改造而以一定選擇性或最小選擇性產生產物。在一個實施例中,目標產物,諸如乙二醇占由本揭示案之微生物產生之所有醱酵產物的至少約5%、10%、15%、20%、30%、50%或75%。在一個實施例中,乙烯占由本揭示案之微生物產生之所有醱酵產物之至少10%,使得本揭示案之微生物對乙二醇之選擇性為至少10%。在另一實施例中,乙烯占由本揭示案之微生物產生之所有醱酵產物之至少30%,使得本揭示案之微生物對乙烯之選擇性為至少30%。
一或多種醱酵產物中之至少一者可為培養物產生之生物質。至少一部分微生物生物質可轉化為單細胞蛋白(SCP)。至少一部分單細胞蛋白可用作動物飼料之組分。
在一個實施例中,本揭示案提供了一種動物飼料,其包含微生物生物質及至少一種賦形劑,其中該微生物生物質包含在包含CO、CO2及H2中之一或多者的氣態受質上生長的微生物。
「單細胞蛋白」(SCP)係指可用於富含蛋白質之人類食物及/或動物飼料中,通常替代蛋白質補充物之習知來源,諸如豆粕或魚粉之微生物生物質。為產生單細胞蛋白或其他產物,該製程可包含額外的分離、加工或處理步驟。舉例而言,該方法可包含對微生物生物質進行滅菌,使微生物生物質離心及/或將微生物生物質乾燥。在某些實施例中,微生物生物質使用噴霧乾燥或槳葉乾燥來乾燥。該方法亦可包含使用此項技術中已知之任何方法降低微生物生物質之核酸含量,因為攝入高核酸含量之膳食可能導致核酸降解產物積聚及/或胃腸窘迫。單細胞蛋白可適用於餵養動物,諸如家畜或寵物。特定言之,動物飼料可適用於餵養一或多種肉牛、奶牛、豬、綿羊、山羊、馬、騾子、驢、鹿、水牛/野牛、美洲駝、羊駝、馴鹿、駱駝、野牛、大額牛、犛牛、雞、火雞、鴨、鵝、鵪鶉、珍珠雞、雛鳥/鴿子、魚、蝦、甲殼動物、貓、狗及嚙齒動物。動物飼料之組成可根據不同動物之營養要求調整。此外,該製程可包含將微生物生物質與一或多種賦形劑摻合或組合。
「微生物生物質」係指包含微生物細胞之生物材料。舉例而言,微生物生物質可包含純的或實質上純的細菌、古細菌、病毒或真菌培養物或由其組成。當最初自醱酵培養液中分離時,微生物生物質通常含有大量的水。此水可藉由乾燥或加工微生物生物質來移除或減少。
「賦形劑」可指可添加至微生物生物質以增強或改變動物飼料之形式、特性或營養含量之任何物質。舉例而言,賦形劑可包含以下中之一或多者:碳水化合物、纖維、脂肪、蛋白質、維生素、礦物質、水、調味劑、甜味劑、抗氧化劑、酶、防腐劑、益生菌或抗生素。在一些實施例中,賦形劑可為乾草、稻草、青貯料、穀物、油或脂肪或其他植物材料。賦形劑可為Chiba,第18部分:《飼料調配及常見飼料成分(Diet Formulation and Common Feed Ingredients)》,《動物營養手冊(Animal Nutrition Handbook)》,第3修訂版,第575-633頁,2014中所鑑別之任何飼料成分。
「生物聚合物」係指由活生物體之細胞產生之天然聚合物。在某些實施例中,生物聚合物為PHA。在某些實施例中,生物聚合物為PHB。
「生物塑膠」係指由可再生生物質來源生產之塑膠材料。生物塑膠可由可再生資源,諸如植物脂及油、玉米澱粉、稻草、木片、鋸末或回收之食物垃圾生產。
在本文中,提及酸(例如乙酸或2-羥基異丁酸)應理解為亦包括相應的鹽(例如乙酸鹽或2-羥基異丁酸鹽)。
通常,在生物反應器中進行培養。術語「生物反應器」包括培養/醱酵裝置,其由一或多個容器、塔或管道佈置組成,諸如連續攪拌槽反應器(CSTR)、固定細胞反應器(ICR)、滴流床反應器(TBR)、氣泡柱、氣升式醱酵器、靜態混合器或適用於氣液接觸之其他容器或其他裝置。在一些實施例中,生物反應器可包含第一生長反應器及第二培養/醱酵反應器。可將受質提供至此等反應器中之一或兩者。如本文所用,術語「培養」及「醱酵」可互換使用。此等術語涵蓋培養/醱酵製程之生長階段及產物生物合成階段。
通常在含有足以准許微生物生長之養分、維生素及/或礦物質之水性培養基中維持培養物。較佳地,水性培養基為厭氧微生物生長培養基,諸如基本厭氧微生物生長培養基。適合之培養基為此項技術中所熟知。
培養/醱酵期望應在生產乙二醇之適當條件下進行。必要時,培養/醱酵在厭氧條件下進行。應考慮之反應條件包括壓力(或分壓)、溫度、氣體流速、液體流速、培養基pH、培養基氧化還原潛力、攪拌速率(若使用連續攪拌槽反應器)、接種物水平、確保液相中之氣體不會變成限制性之最大氣體受質濃度及避免產物抑制之最大產物濃度。詳言之,可控制受質之引入速率以確保液相中氣體之濃度不會變成限制性的。
在高壓下操作生物反應器允許增加自氣相至液相之氣體質量轉移之速率。因此,通常較佳地,在高於大氣壓之壓力下進行培養/醱酵。同樣,由於給定氣體轉化率部分地隨受質保留時間而變並且保留時間決定了生物反應器之所需體積,所以使用加壓系統可大大減小所需生物反應器之體積,並且因此大大降低培養/醱酵設備之資金成本。此反過來意謂當將生物反應器保持在高壓而非大氣壓下時,可減少保留時間,該保留時間被定義為生物反應器中之液體體積除以輸入氣體流速。最優反應條件將部分取決於所使用之特定微生物。然而,通常,較佳地,在高於大氣壓之壓力下進行醱酵。同樣,由於給定氣體轉化率部分地隨受質保留時間而變並且實現所要之保留時間又決定了生物反應器之所需容積,所以使用加壓系統可大大減小所需生物反應器之容積,並且因此大大降低醱酵設備之資金成本。
「噴佈器」可包含用於將氣體引入液體中、以氣泡形式注入、攪拌其或將氣體溶解於液體中之裝置。例示噴佈器可包括孔口噴佈器、燒結噴佈器及鑽孔管噴佈器。在某些組態中,鑽孔管噴佈器可水平地安裝。在其他實例中,噴佈器可豎直地或水平地安裝。在一些實例中,噴佈器可為多孔板或環、燒結玻璃、燒結鋼、多孔橡膠管、多孔金屬管、多孔陶瓷或不鏽鋼、鑽孔管、不鏽鋼鑽孔管、聚合鑽孔管等。噴佈器可具有各種等級(孔隙度)或可包括某些大小之孔口以產生特定大小之氣泡或氣泡大小範圍。
「容器」、「反應容器」或「管柱」可為容器或容納器,其中一或多個氣體及液體流(stream/flow)可引入以用於氣泡產生及/或細氣泡產生,且用於後續氣體-液體接觸、氣體吸收、生物或化學反應或表面活性材料吸附。在反應容器中,氣及液相可沿豎直方向流動。在反應容器中,具有大於由液體賦予之拖曳力之浮力的來自噴佈器之較大氣泡可向上上升。具有小於或等於由液體賦予之拖曳力之浮力的較小細氣泡可隨液體向下流動,如由本文所揭示之系統及方法所描述。管柱或反應容器可不受限於任何特定態樣(高度相對於直徑)比率。管柱或反應容器亦可不受限於任何特定材料,且可由適合於製程之任何材料,諸如不鏽鋼、PVC、碳鋼或聚合材料構築。管柱或反應容器可含有在生物及化學工程加工中常見的內部組件,諸如一或多個靜態混合器。反應容器亦可由外部或內部加熱或冷卻元件,諸如水套、熱交換器或冷卻旋管組成。反應容器亦可與一或多個泵流體接觸以使液體、氣泡、細氣泡及或系統之一或多種流體循環。
「多孔板」或「板」可包含板或類似佈置,其經設計以有助於將可呈多個液體射流(亦即加速液體流)形式之液體或額外液體引入容器中。多孔板可具有複數個均勻或不均勻地分佈在整個板上之孔隙或孔口,其允許液體自板之頂部流動至板之底部。在一些實例中,孔口可為球形、矩形、六方柱形、圓錐形、五方柱形、圓柱形、截頭圓錐形或圓形。在其他實例中,板可包含一或多個噴嘴,其經調適以產生流動至管柱中之液體射流。板亦可含有呈任何分佈或對準之通道,其中此類通道經調適以接收液體且促進流動通過至反應容器中。板可由具有預定義數目之雷射燒、機器加工或鑽孔之孔隙或孔口的不鏽鋼製成。特定孔口大小可視所需細氣泡大小及所需液體、細氣泡及/或流體速度而定。可需要特定孔口形狀以達成自板之適當液體加速度及速度以使噴佈器氣泡打碎或剪切成所要細氣泡大小,且產生足夠整體流體下流以在反應容器中將細氣泡及液體向下攜載。孔口之形狀亦可影響製造簡易性及相關成本。根據一個實施例,直孔口可因易於製造而為最佳的。
如本文所揭示之系統及方法在容器內採用使用多孔板產生之多個液體射流或加速液體流部分,該多孔板用於使液體加速且使氣泡打碎成具有比原始氣泡更大的表觀表面積的較小細氣泡。最初藉由用完全安置於反應容器內之噴佈器注入氣體產生原始氣泡。在一個實例中,自噴佈器注入液體中之原始氣泡可具有約2 mm至約20 mm之直徑。在另一實例中,自噴佈器注入液體中之原始氣泡可具有約5 mm至約15 mm之直徑。在其他實例中,自噴佈器注入液體中之原始氣泡可具有約7 mm至約13 mm之直徑。在注入後,原始氣泡隨後向上遷移通過液體且遇到多個液體射流或加速液體流部分,其將原始氣泡打碎成細氣泡。所得細氣泡及液體在向下流體流中在反應器容器中向下流動。受質之細氣泡向微生物提供碳源及視情況能量源,該等微生物隨後產生一或多種所要產物。噴佈器位於容器內以產生原始氣泡在容器內上升之第一區域,且產生加速液體將原始氣泡打碎成細氣泡且流體流動通過容器之第二區域,其中流體包含液體之經加速部分及細氣泡。
歸因於多相系統之性質,最大化產物產生之一種方法為增加氣體至液體之質量轉移。轉移至反應液體之氣體受質愈多,所產生之所要產物愈多。本揭示案之較小細氣泡提供增加之表觀表面積,從而產生增加之氣體至液體質量轉移速率,克服已知溶解度問題。另外,本文所揭示之下流反應器系統可有效增加細氣泡之滯留時間。細氣泡留存在反應液體中之時間增加通常提供增加量之所產生之反應產物,以及更大的與微生物接觸之表面積。因此,本文所揭示之系統及方法藉由產生使氣體至液體表觀表面積最大化之細氣泡,從而產生高氣體至液體質量轉移速率,而相對於先前系統改良。此外,本文所揭示之系統及方法提供未藉由先前系統及方法達成之表觀氣體及液體速度,使得產生具有高氣相滯留時間之細氣泡,從而高效地產生化學及生物反應產物。
在某些實施例中,醱酵在不存在光之情況下或在不存在足以滿足光合微生物之能量需求之光量之情況下進行。在某些實施例中,本揭示案之微生物為非光合微生物。
可使用此項技術已知之任何方法或方法組合自醱酵培養液中分離或純化目標產物,該(等)方法包括例如分餾、蒸發、滲透蒸發、氣提、相分離及萃取醱酵(包括例如液-液萃取)。在某些實施例中,目標產物藉由以下自醱酵培養液中回收:自生物反應器中不斷移出培養液之一部分、自培養液分離微生物細胞(宜藉由過濾)及自培養液中回收一或多種目標產物。可例如藉由蒸餾回收醇類及/或丙酮。可例如藉由吸附於活性炭上而回收酸。分離之微生物細胞較佳地返回至生物反應器中。移出目標產物之後殘留之無細胞滲透物亦較佳地返回至生物反應器中。可在無細胞滲透物返回至生物反應器中之前向其中添加另外之養分(諸如維生素B)來補充培養基。純化技術可包括親和標籤純化(例如His、Twin-Strep及FLAG)、基於珠粒之系統、基於尖端之方法及用於更大規模自動化純化之FPLC系統。亦揭示不依賴於親和標籤之純化方法(例如鹽析、離子交換及尺寸排阻)。
在一些實施例中,所產生之化學產物可使用此項技術中已知之任何適合分離及/或純化技術分離及富集,包括純化。在一實施例中,所產生之化學產物為氣態的。在一個實施例中,化學產物為液體。在一實施例中,氣態化學產物可以通過過濾器、氣體分離膜、氣體純化器或其任何組合。在一個實施例中,化學產物藉由吸附管柱分離。在另一實施例中,化學產物在分離後儲存於一或多個缸中。在一個實施例中,化學產物整合於油、氣體、精煉廠、石化操作或其任何組合之基礎架構或製程中。基礎架構或製程可為現有或新的。在一實施例中,氣體醱酵產物整合至油及氣體生產、運輸及精煉及/或化學複合體中。在另一實施例中,原料之來源來自油、氣體、精煉廠、石化操作或其任何組合。在一實施例中,氣體醱酵產物整合於油、氣體、精煉廠、石化操作或其任何組合之基礎架構或製程中,且原料之來源來自油、氣體、精煉廠、石化操作或其任何組合。
在一些實施例中,蒸餾可用於純化產物氣體。在一實施例中,可採用氣液萃取。在一實施例中,液體產物分離亦可經由使用有機相之萃取來富集。在另一實施例中,純化可涉及選自超過濾、一或多種層析技術或其任何組合之其他標準技術。
本揭示案之方法可進一步包含自醱酵培養液分離氣體醱酵產物。氣體醱酵產物可使用此項技術中已知之任何方法或方法之組合自醱酵培養液分離或純化,該(等)方法包括例如蒸餾、模擬移動床製程、膜處理、蒸發、滲透蒸發、氣提、相分離、離子交換或萃取醱酵,包括例如液-液萃取。如美國專利第2,769,321號中所描述,其揭示內容以全文引用之方式併入本文中,可根據此項技術中已知之方法或方法之組合分離乙烯。在一個實施例中,自生物反應器培養容器收集所產生之乙烯。
在一個實施例中,可使用逆滲透及/或滲透蒸發自醱酵培養液濃縮氣體醱酵產物(US 5,552,023)。水可藉由蒸餾移除且底部物(含有高比例氣體醱酵產物)可隨後使用蒸餾或真空蒸餾回收以產生高純度流。替代地,在存在或不存在藉由逆滲透及/或滲透蒸發之濃縮之情況下,氣體醱酵產物可藉由以醛反應性蒸餾(Atul,《化學工程學( Chem Eng Sci)》59: 2881-2890,2004)或使用烴共沸蒸餾(US 2,218,234)來進一步純化。在另一種方法中,氣體醱酵產物可自水性溶液中捕捉在活性碳或聚合物吸收劑上(使用或不使用逆滲透及/或滲透蒸發),且使用低沸點有機溶劑回收(Chinn,藉由可再生吸附至活性碳上自稀水性溶液中回收二醇、糖及相關之多OH化合物(Recovery of Glycols, Sugars, and Related Multiple -OH Compounds from Dilute-Aqueous Solution by Regenerable Adsorption onto Activated Carbons),加利福尼亞大學伯克利分校(University of California Berkeley),1999)。隨後可藉由蒸餾自有機溶劑回收氣體醱酵產物。在某些實施例中,氣體醱酵產物藉由以下自醱酵培養液中回收:自生物反應器中連續地移出培養液之一部分、自培養液分離微生物細胞(宜藉由過濾)及自培養液中回收氣體醱酵產物。亦可自培養液中分離或純化出副產物(諸如醇或酸)。可例如藉由蒸餾回收醇。可例如藉由吸附於活性炭上而回收酸。在某些實施例中,可將分離的微生物細胞返回生物反應器。此外,在一些實施例中,分離之微生物細胞可再循環至生物反應器。取出目標產物後剩餘的無細胞滲透物亦較佳全部或部分返回生物反應器。可在無細胞滲透物返回至生物反應器中之前向其中添加另外之養分(諸如維生素B)來補充培養基。
已證明自水性培養基回收二醇有多種方式。已使用模擬移動床(SMB)技術自乙醇及相關含氧物之水性混合物中回收2,3-丁二醇(美國專利8,658.845)。亦證明反應性分離能有效回收二醇。在一些實施例中,藉由含二醇流與醛之反應、二醇之分餾及再生、最終分餾以回收濃縮之二醇流來進行乙二醇之回收。參見例如美國專利7,951,980。
在一個實施例中,該方法包含回收如上文所揭示產生之乙烯。在一個實施例中,該方法進一步包含在回收乙烯之後在一或多種化學產物之生產中轉化或使用乙烯。
乙烯為廣泛用於工業中之高價值氣態化合物。在一實施例中,乙烯可用作麻醉劑或用作水果熟化劑,以及用於生產多種其他化學產物。在一些實施例中,乙烯可用於產生聚乙烯及其他聚合物,諸如苯乙烯、聚苯乙烯、環氧乙烷、二氯化乙烯、二溴化乙烯、氯乙烷及乙苯。環氧乙烷為例如界面活性劑及清潔劑之生產及乙二醇生產中之關鍵原材料,乙二醇作為防凍產品用於汽車工業中。在關於二氯化乙烯、二溴化乙烯及氯乙烷之一個實施例中,可用於產生產物,諸如聚氯乙烯、三氯乙烯、過氯乙烯、甲基氯仿、聚偏二氯乙烯及共聚物及溴乙烷。在一實施例中,乙苯為苯乙烯之前驅體,苯乙烯用於生產聚苯乙烯(用作絕緣產品)及苯乙烯-丁二烯(其為適用於輪胎及鞋類之橡膠)。在另一實施例中,產物為乙烯丙烯二烯單體(EPDM)橡膠、乙烯丙烯(EPR/EPM)橡膠或其任何組合。
應瞭解,本發明之方法可與用於由乙烯產生下游化學產物之一或多種方法整合或連接。在一些實施例中,本發明之方法可將乙烯直接或間接地進料至足以用於轉化或產生其他有用化學產物之化學製程或反應。
在一些實施例中,乙烯轉化成烴液體燃料。在一實施例中,乙烯在催化劑下寡聚,以選擇性地產生選自汽油、縮合物、芳族物、重油稀釋劑、餾出物或其任何組合之目標產物。在其他實施例中,餾出物選自柴油、噴射機燃料、可持續航空燃料(SAF)或其任何組合。
在一個實施例中,乙烯寡聚用於針對所期望的產物。在一實施例中,乙烯之寡聚可由均相催化劑、非均相催化劑或其任何組合且具有過渡金屬作為活性部位來催化。在一些實施例中,乙烯藉由寡聚進一步轉化為長鏈烴。在其他實施例中,直鏈烯烴為來自乙烯寡聚之主要產物。在一些實施例中,α烯烴為來自乙烯寡聚之主要產物。在一實施例中,烯烴經歷升級製程。在一些實施例中,烯烴之升級製程為氫化。在一實施例中,烯烴經歷烯烴轉化技術。在一些實施例中,乙烯併入或轉化為可持續航空燃料(SAF)。在一個實施例中,乙烯與丙烯、2-丁烯或其任何組合互相轉化。在一實施例中,丙烯轉化為聚丙烯。
作為原料,乙烯可用於製造諸如聚乙烯(PE)、聚對苯二甲酸乙二酯(PET)及聚氯乙烯(PVC)之聚合物,以及纖維及其他有機化學物質。此等產品用於廣泛多種工業及消費者市場,諸如包裝、運輸、電氣/電子、紡織及建築行業以及消費者化學品、塗料及黏著劑。
乙烯可氯化至二氯化乙烯(EDC)且可隨後破裂以產生氯乙烯單體(VCM)。幾乎所有VCM均用於製造聚氯乙烯,該聚氯乙烯在建築行業中具有其主要應用。
其他乙烯衍生物包括用於線性低密度聚乙烯(LLDPE)製備之α烯烴、清潔劑醇及塑化劑醇;乙酸乙烯酯單體(VAM),其用於黏著劑、油漆、紙塗料及阻擋樹脂中;及工業乙醇,其用作溶劑或用於製造諸如乙酸乙酯及丙烯酸乙酯之化學中間物。乙烯可轉化成乙烯-乙酸乙烯酯(EVA)或聚(乙烯-乙酸乙烯酯)(PEVA)。EVA可轉化成熱塑性塑膠材料。EVA可併入或用於製造熱熔黏著劑、熱膠棒、足球鞋釘、塑膠包裹物、工藝泡沫板及泡沫貼紙。EVA可併入或用於製造藥物遞送裝置。在一些實施例中,EVA可用於製造發泡體。在一個實施例中,EVA發泡體在運動設備中用作襯墊,該設備包括滑雪靴、自行車坐墊、曲棍球墊、拳擊及混合式武術手套及頭盔、花式滑水靴、滑水靴、釣魚竿及漁線輪把手。在一些實施例中,EVA發泡體用作運動鞋中之減震器。EVA可用作基於EVA之壓縮成型發泡體。EVA可併入或用於製造商業漁具浮標及漂浮眼鏡。EVA可併入或用於製造用於結晶矽太陽能電池之封裝材料。在一些實施例中,EVA可併入或用於製造拖鞋、涼鞋、釣魚竿、軟木塞替代物、包裝、紡織品、書籍裝訂、黏合塑膠膜、金屬表面、塗覆紙、石膏及水泥抹面中的可再分散粉末,及內裝修水性塗料中的塗覆調配物。EVA可進行水解以提供乙烯乙烯醇(EVOH)共聚物。EVA可用於矯正器、衝浪板及滑雪板牽引墊、車墊、人工花、柴油燃料冷流改善器,作為HEPA過濾器中之隔板、熱塑性護齒套、用於皮革處理及防水、尼古丁經皮貼片及塑膠模型套組部件。
乙烯可進一步用作單體基質用於藉助於使用金屬氯化物或金屬氧化物催化劑之配位聚合產生各種聚乙烯寡聚物。最常見的催化劑由氯化鈦(III),所謂的戚格勒-納他催化劑組成。另一種常見催化劑為藉由將氧化鉻(VI)沈積於矽石上製備之菲利浦(Phillips)催化劑。
由此產生之聚乙烯寡聚物可根據其密度及分支進行分類。此外,機械特性明顯視變數而定,諸如支化之程度及類型、晶體結構及分子量。存在若干類型之乙烯,其可由乙烯產生,包括但不限於: 超高分子量聚乙烯(UHMWPE); 超低分子量聚乙烯(ULMWPE或PE-WAX); 較高分子量聚乙烯(HMWPE); 高密度聚乙烯(HDPE); 高密度交聯聚乙烯(HDXLPE); 交聯聚乙烯(PEX或XLPE); 中密度聚乙烯(MDPE); 線性低密度聚乙烯(LLDPE); 低密度聚乙烯(LDPE); 極低密度聚乙烯(VLDPE);及 氯化聚乙烯(CPE)。
低密度聚乙烯(LDPE)及線性低密度聚乙烯(LLDPE)主要進入膜應用,諸如食品及非食品封裝、收縮及拉伸膜及非封裝用途。高密度聚乙烯(HDPE)主要用於吹塑及注射模製應用,諸如容納器、桶、家用商品、帽及托板。HDPE亦可擠製成水管、氣管及灌溉管,以及垃圾袋、手提袋及工業襯裡的薄膜。
根據一個實施例,根據上述揭示內容形成之乙烯可經由根據下式之直接氧化轉化為環氧乙烷: C 2H 4+ O 2→ C 2H 4O 由此產生之環氧乙烷為多種商業上重要之方法中的關鍵化學中間物,該等製程包括製造單乙二醇。其他EO衍生物包括乙氧基化物(用於洗髮精、廚房清潔劑等)、二醇醚(溶劑、燃料等)及乙醇胺(界面活性劑、個人護理產品等)。
根據本揭示案之一個實施例,如上文所描述產生之環氧乙烷可藉助於下式用於生產商業數量之單乙二醇: (CH 2CH 2)O + H 2O → HOCH 2CH 2OH 根據另一實施例,所主張之微生物可經修飾以直接生產單乙二醇。如揭示內容以全文引用的方式併入本文中之WO 2019/126400中所描述,微生物進一步包含以下中之一或多者:能夠將乙醯基-CoA轉化為丙酮酸酯之酶;能夠將丙酮酸酯轉化為草醯乙酸酯的酶;能夠將丙酮酸酯轉化為蘋果酸酯之酶;能夠將丙酮酸酯轉化為磷酸烯醇丙酮酸酯的酶;能夠將草醯乙酸酯轉化為檸檬醯基-CoA的酶;能夠將檸檬醯基-CoA轉化為檸檬酸酯的酶;能夠使檸檬酸酯轉化為烏頭酸酯及烏頭酸酯為異檸檬酸酯的酶;能夠將磷酸烯醇丙酮酸酯轉化為草醯乙酸酯的酶;能夠將磷酸烯醇丙酮酸酯轉化成2-磷酸基-D-甘油酸酯的酶;能夠將2-磷酸基-D-甘油酸酯轉化成3-磷酸基-D-甘油酸酯的酶;能夠將3-磷酸基-D-甘油酸酯轉化成3-磷酸基羥丙酮酸酯的酶;能夠將3-磷酸基羥丙酮酸酯轉化成3-磷酸基-L-絲胺酸的酶;能夠將3-磷酸基-L-絲胺酸轉化為絲胺酸的酶;能夠將絲胺酸轉化為甘胺酸的酶;能夠將5,10-亞甲基四氫葉酸轉化為甘胺酸的酶;能夠將絲胺酸轉化為羥基丙酮酸的酶;能夠將D-甘油酸酯轉化為羥基丙酮酸的酶;能夠將蘋果酸酯轉化成乙醛酸酯之酶;能夠將乙醛酸酯轉化成羥乙酸酯之酶;能夠將羥基丙酮酸酯轉化成乙醇醛之酶;及/或能夠將乙醇醛轉化成乙二醇之酶。
在一個實施例中,微生物包含以下中的一或多者:能夠將草醯乙酸酯轉化為檸檬酸酯之異源酶;能夠將甘胺酸轉化為乙醛酸酯之異源酶;能夠將異檸檬酸酯轉化為乙醛酸酯之異源酶;能夠將乙醇酸酯轉化為乙醇醛之異源酶;或其任何組合。在一些實施例中,其中能夠將草醯乙酸酯轉化為檸檬酸酯之異源酶為檸檬酸[Si]-合成酶[2.3.3.1]、ATP檸檬酸合成酶[2.3.3.8];或檸檬酸(Re)-合成酶[2.3.3.3];能夠將甘胺酸轉化為乙醛酸酯之異源酶為丙胺酸-乙醛酸轉胺酶[2.6.1.44]、絲胺酸-乙醛酸轉胺酶[2.6.1.45]、絲胺酸-丙酮酸轉胺酶[2.6.1.51]、甘胺酸-草醯乙酸轉胺酶[2.6.1.35]、甘胺酸轉胺酶[2.6.1.4]、甘胺酸去氫酶[1.4.1.10]、丙胺酸去氫酶[1.4.1.1]或甘胺酸去氫酶[1.4.2.1];能夠將異檸檬酸酯轉化為乙醛酸酯之異源酶為異檸檬酸解離酶[4.1.3.1];及/或能夠將乙醇酸酯轉化為乙醇醛之異源酶為乙醇醛去氫酶[1.2.1.21]、乳醛去氫酶[1.2.1.22]、丁二酸-半醛去氫酶[1.2.1.24]、2,5-二側氧基戊酸去氫酶[1.2.1.26]、醛去氫酶[1.2.1.3/4/5]、甜菜鹼-醛去氫酶[1.2.1.8]或醛鐵氧化還原蛋白氧化還原酶[1.2.7.5];或其任何組合。
根據任一所描述方法產生之單乙二醇可用作多種產品之組分,包括作為原料用於織物應用製備聚酯纖維,包括非織物、用於尿布之覆蓋原料、建築材料、建造材料、築路織物、過濾器、填充纖維、毛氈、運輸裝飾、紙及膠帶加固、帳篷、繩索及繩索、船帆、魚網、安全帶、洗衣袋、合成動脈替代品、地毯、墊子、服裝、床單及枕套、毛巾、窗簾、帷幔、床單及毯子。
MEG可獨立地用作液體冷卻劑、防凍劑、防腐劑、脫水劑、鑽井流體或其任何組合。所產生之MEG亦可用於生產次要產品,例如用於絕緣材料之聚酯樹脂、聚酯膜、除冰液、傳熱液、汽車防凍液及其他液體冷卻劑、防腐劑、脫水劑、鑽井液、基於水之黏著劑、乳膠漆及瀝青乳液、電解電容器、紙張及合成皮革。
重要地,所產生之單乙二醇可根據兩種主要製程中之一者轉化為聚酯樹脂聚對苯二甲酸伸乙酯(「PET」)。第一製程包含根據以下兩步法利用對苯二甲酸二甲酯對單乙二醇進行轉酯化: 第一步驟 C 6H 4(CO 2CH 3) 2+ 2 HOCH 2CH 2OH → C 6H 4(CO 2CH 2CH 2OH) 2+ 2 CH 3OH 第二步驟 nC 6H 4(CO 2CH 2CH 2OH) 2→ [(CO)C 6H 4(CO 2CH 2CH 2O)] n+ nHOCH 2CH 2OH
或者,單乙二醇可為利用對苯二甲酸根據以下反應之酯化反應的個體: nC 6H 4(CO 2H) 2+ nHOCH 2CH 2OH → [(CO)C 6H 4(CO 2CH 2CH 2O)] n+ 2 nH 2O
根據單乙二醇之轉酯化或酯化製備之聚對苯二甲酸伸乙酯對於許多封裝應用,諸如瓶,且尤其在包括塑膠瓶之瓶的生產中具有顯著適用性。其亦可用於生產諸如滌綸之高強度紡織纖維,作為與諸如人造絲、羊毛及棉花等其他纖維的耐用壓製摻合物的一部分,用於絕緣服裝、家俱及枕頭中使用之纖維填充物,在人造絲中,如地毯纖維、汽車輪胎紗線、傳送帶及傳動帶、消防及花園軟管的增強材料、安全帶、用於穩定排水溝、涵洞及鐵路床的無紡布,以及用作尿布表層的無紡布,以及一次性醫用服裝。
在較高分子量下,PET可製成高強度塑膠,其可藉由與其他熱塑性塑膠一起使用之所有常見方法成形。藉由擠壓PET膜產生磁性記錄帶及照相膜。熔融PET可吹塑成型為高強度及剛性亦對氣體及液體幾乎不可滲透之透明容納器。在此形式中,PET已廣泛用於瓶,尤其塑膠瓶,且用於瓶。
本揭示案提供了包含由微生物且根據本文所述方法產生的乙二醇的組合物。例如,包含乙二醇之組合物可為防凍劑、防腐劑、脫水劑或鑽井液。
本揭示案亦提供了包含由微生物且根據本文所述方法產生的乙二醇的聚合物。此類聚合物可為例如均聚物,諸如聚乙二醇或共聚物(諸如聚對苯二甲酸乙二酯)。此等聚合物之合成方法在此項技術中係熟知的。參見例如Herzberger等人,《化學評論( Chem Rev.)》,116(4): 2170-2243 (2016)及Xiao等人,《工業與工程化學研究( Ind Eng Chem Res.)》,54(22):  5862-5869 (2015)。
本揭示案進一步提供聚乙二醇結合物。在一些實施例中,聚乙二醇(PEG)結合物包括與生物醫藥劑、蛋白質、抗體、抗癌藥物或其任何組合結合之PEG。在其他實施例中,PEG結合物為對苯二甲酸二乙酯(DET)。在一些實施例中,PEG結合物為二甲氧基乙烷。
本揭示案進一步提供了包含聚合物之組合物,該等聚合物包含由微生物且根據本文所述方法產生的乙二醇。例如,組合物可為纖維、樹脂、膜或塑膠。
在一個實施例中,根據本揭示案之方法生產的乙醇或乙基醇可用於多種產品應用,包括消毒洗手液(WO 2014/100851)、甲烯乙二醇及甲醇中毒的治療方法(WO 2006/088491),作為醫藥溶劑,用於諸如止痛藥品的應用(WO 2011/034887)及口部衛生產品(美國專利第6,811,769號),以及抗菌防腐劑(美國專利申請案第2013/0230609號)、發動機燃料(美國專利第1,128,549號)、火箭燃料(美國專利第3,020,708號)、塑膠、燃料電池(美國專利第2,405,986號)、家用壁爐燃料(美國專利第4,692,168號),作為工業化學品前驅體(美國專利第3,102,875號)、大麻溶劑(WO 2015/073854),作為冬化提取溶劑(WO 2017/161387),作為塗料遮蔽產品(WO 1992/008555),作為塗料或酊劑(美國專利第1,408,091號)、純化及提取DNA及RNA(WO 1997/010331),及作為各種化學反應的冷卻浴(美國專利第2,099,090號)。除前述內容之外,藉由所揭示方法產生之乙醇可用於乙醇可能另外適用之任何其他應用中。
在另一實施例中,根據該方法產生之異丙醇或異丙醇(IPA)可用於許多產物應用中,包括呈分離形式或呈用於產生更複雜產物之原料形式。異丙醇亦可用於化妝品及個人護理產品、除冰劑、塗料及樹脂、食品、油墨、黏合劑及醫藥品,包括諸如藥用錠劑以及消毒劑、滅菌劑及護膚霜的產品的溶劑。
所產生之IPA可用於天然產物(諸如,植物油及動物油及脂肪)之提取及純化。其他應用包括其作為清潔劑及乾燥劑用於製造電子部件及金屬,且作為醫療及獸醫學產品中之氣霧劑溶劑的用途。其亦可用作啤酒製造中之冷卻劑、耦合劑、聚合改質劑、除冰劑及防腐劑。
或者,根據本揭示案方法產生之IPA可用於製造額外有用的化合物,包括塑膠、衍生物酮,諸如甲基異丁基酮(MIBK)、異丙胺及異丙酯。再此外,IPA可根據下式轉化成丙烯:
CH 3CH 2CH 2OH → CH 3-CH=CH 2
所產生之丙烯可用作單體基底,其用於藉助於鏈生長聚合經由氣相或塊體反應器系統產生各種聚丙烯寡聚物。最常見的催化劑由氯化鈦(III),所謂的戚格勒-納他催化劑及茂金屬催化劑組成。
如此產生之聚丙烯寡聚物可根據立體異構性分類,且可藉由聚丙烯丸粒之擠出或模塑製成多種產品,包括管道產品、耐熱製品,諸如水壺及食品容納器、一次性瓶(包括塑膠瓶)、透明袋子、諸如墊子、地墊等地板材料、繩索、不乾膠貼紙以及可用於建築材料的發泡聚丙烯。聚丙烯亦可用於親水性服裝及醫藥敷料。
一個實施例係關於提供能夠自氣態受質產生乙烯之方法及經基因工程改造的微生物,該微生物包含編碼乙烯形成酶(EFE)之異源核酸。
在本文所揭示之方法之一些態樣中,該微生物為一種能夠自氣態受質產生乙烯之重組C1固定微生物,其包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸。
在本文所揭示之微生物之一些態樣中,該微生物係關於一種能夠在乙烯生產中切換細胞負荷之重組C1固定微生物,該微生物包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸及一或多種誘導型啟動子。
如一實施例之微生物,其進一步包含編碼包含α-酮戊二酸通透酶(AKGP)之一組外源性酶的核酸,其中該核酸可操作地連接至啟動子。
如一實施例之微生物,其中該微生物係選自由以下組成之群:鉤蟲貪銅菌及富養羅爾斯通氏菌。
如一實施例之微生物,其中該微生物為鉤蟲貪銅菌。
如一實施例之微生物,其進一步包含編碼α-酮戊二酸通透酶之核酸,其中該核酸經密碼子最佳化以在該微生物中表現。
如一實施例之微生物,其中該一或多種誘導型啟動子係選自H 2誘導型啟動子、磷酸酯限制誘導型啟動子、氮限制誘導型啟動子或其任何組合。
如一實施例之微生物,其中誘導型啟動子為磷酸酯限制誘導型啟動子。
如一實施例之微生物,其中磷酸酯濃度為約0-0.5 mM。
如一實施例之微生物,其中磷酸酯濃度為約0.52 mM。
如一實施例之微生物,其中該EFE經密碼子最佳化以在該微生物中表現。
如一實施例之微生物,其進一步包含一或多個基因中之破壞性突變。
如一實施例之微生物,其中乙烯轉化成選自聚乙烯(PE)、聚對苯二甲酸伸乙酯(PET)、聚氯乙烯(PVC)、乙烯乙酸乙烯酯(EVA)、可持續航空燃料(SAF)或其任何組合的衍生材料。
如一實施例之微生物,其中該氣態受質包含CO 2及能量源。
如一實施例之微生物,其中該氣態受質包含CO 2,及H 2、O 2或兩者。
一個實施例係關於一種用於連續產生乙烯之方法,該方法包含:將氣態受質傳遞至含有如技術方案1之重組C1固定微生物在培養基中之培養物的生物反應器,以使得該微生物將該氣態受質轉化成乙烯;及自該生物反應器回收該乙烯。
一個實施例係關於一種培養根據一實施例之微生物的方法,其包含在包含氣態受質之培養基中生長該微生物,其中該氣態受質包含CO 2
如一實施例之方法,其中該氣態受質包含工業廢料產物或廢氣。
如一實施例之方法,其進一步包含能量源
如一實施例之方法,其中該能量源間歇地提供。
如一實施例之方法,其中該能量源為H 2
一個實施例係關於一種方法,其包含在包含氣態受質之培養基中生長該微生物,其中該氣態受質包含CO 2及能量源。
如一實施例之方法進一步包含共產生乙烯及微生物生物質。
如一實施例之方法,其中切換細胞負荷包含限制細胞內氧濃度之步驟。
如一實施例之方法,其中切換細胞負荷包含限制溶解氧濃度之步驟。
如一實施例之方法,其中溶解氧濃度為至少約0.5飽和%(%sat.)至1.0%sat.且至多為約50%sat.至60%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.5%sat.至1.0%sat.且至多為約60%sat.至70%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.5%sat.至1.0%sat.且至多為約70%sat.至80%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.5%sat.至1.0%sat.且至多為約80%sat.至90%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.5%sat.至1.0%sat.且至多為約90%sat.至100%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.01%sat.至1.0%sat.且至多為約50%sat.至60%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.01%sat.至1.0%sat.且至多為約60%sat.至70%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.01%sat.至1.0%sat.且至多為約70%sat.至80%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.01%sat.至1.0%sat.且至多為約80%sat.至90%sat.。
如一實施例之方法,其中溶解氧濃度為至少約0.01%sat.至1.0%sat.且至多為約90%sat.至100%sat.。
如一實施例之方法,其中約4 vol.%至約30 vol.% O 2進料至入口中。
如一實施例之方法,其中約1 vol.%至約50 vol.% O 2進料至入口中。
如一實施例之方法,其中切換細胞負荷包含限制穩態磷酸酯濃度之步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0 mM至約0.50 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.05 mM至約0.50 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.01 mM至約0.60 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.01 mM至約0.70 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.01 mM至約0.80 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.01 mM至約0.90 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.01 mM至約1.0 mM的步驟。
如一實施例之方法,其中切換細胞負荷包含將穩態磷酸酯濃度限制在約0.52 mM的步驟。
如一實施例之方法,其中微生物生物質適合作為動物飼料。
如一實施例之方法,其中該氣態受質進一步包含H 2、O 2或兩者。
在本文所揭示之微生物的一些態樣中,微生物產生商品化學產物、微生物生物質、單細胞蛋白質(SCP)、一或多種中間物或其任何組合。
在一些態樣中,微生物生物質具有單位價值。在一個實施例中,微生物生物質具有市值。
在本文所揭示之微生物之一些態樣中,微生物係衍生自選自由以下組成之群的親本細菌:鉤蟲貪銅菌。
在本文所揭示之微生物之一些態樣中,其中產物係選自以下之群:1-丁醇、丁酸酯、丁烯、丁二烯、甲基乙基酮、乙烯、丙酮、異丙醇、脂質、3-羥基丙酸酯、萜烯、異戊二烯、脂肪酸、脂肪醇、2-丁醇、1,2-丙二醇、1-丙醇、1-己醇、1-辛醇、分支酸衍生產物、3-羥基丁酸酯、1,3-丁二醇、2-羥基異丁酸酯或2-羥基異丁酸、異丁烯、己二酸、酮-己二酸、1,3-己二醇、3-甲基-2-丁醇、2-丁烯-1-醇、異戊酸酯、異戊醇或單乙二醇。
本揭示案進一步提供經基因工程改造的C1固定微生物,其進一步包含微生物生物質及至少一種賦形劑。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該動物飼料適用於飼餵肉牛、乳牛、豬、綿羊、山羊、馬、騾子、驢、鹿、水牛/野牛、美洲駝、羊駝、馴鹿、駱駝、野牛、大額牛、犛牛、雞、火雞、鴨、鵝、鵪鶉、珍珠雞、雛鳥/鴿子、魚、蝦、甲殼動物、貓、狗及嚙齒動物中的一或多者。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該微生物適用作單細胞蛋白質(SCP)。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該微生物適用作無細胞蛋白質合成(CFPS)平台。
本揭示案進一步提供經基因工程改造的C1固定微生物,其中該產物相對於該微生物為原生的。
在本文中所揭示之方法之一些態樣中,受質包含CO、CO 2及H 2中之一或多者。 實例
以下實例進一步說明本揭示案,但當然不應視為以任何方式限制其範疇。 實例 1 :自作為唯一碳及能量源的甲酸酯生產乙烯。
編碼乙烯形成酶之基因針對在鉤蟲貪銅菌中表現經密碼子調適且合成。將經調適之基因以及組成型啟動子P10選殖至宿主範圍廣泛的表現載體pBBR1MCS2中。所得產物用於轉化大腸桿菌且藉由PCR鑑別之陽性殖株藉由DNA定序來確認。隨後經由電穿孔將序列確認的質體轉化至鉤蟲貪銅菌PHB-4中,且在含有50 mg/L氯黴素之胰蛋白酶大豆培養液(TSB)瓊脂盤上選擇。含有pBBR1-Efe質體之轉化體經由定序確認,且單一菌落隨後在TSB中在30℃下生長隔夜且用於製造甘油儲備液以儲存在-80℃下。經由在含有50 mg/L氯黴素之TSB盤上劃線且在30℃下培育72小時進行菌株復活。
來自新劃線TSB盤之單一菌落用於接種在具有彈扣蓋之14 mL法爾康(Falcon)圓底聚苯乙烯試管中之含有50 mg/L氯黴素之3 mL TSB。在於30℃及200 rpm下在Thermo MAXQ振盪器中隔夜培育之後,0.25 mL培養物用於接種在125 mL錐形燒瓶(Erlenmeyer flask)中之25 mL甲酸酯培養基。
此培養物在30℃及200 rpm下與不同時間添加以控制pH在6.5至7.5之間的65 mM甲酸一起培育48小時。在48小時之後,將20 mL培養物轉移至160 mL血清瓶中,添加65 mM甲酸,且用氣密隔膜密封瓶。再培育16小時之後,用氣密式注射器移除60 mL之頂部空間體積且經由GC分析乙烯生產。在定製Wasson系統上分析樣品中之多種烴及含氧物。乙烯在50 m × 0.53 μm Wasson PN 2378管柱上分離且經由GC FID分析。
如圖2中所展示,具有Efe表現質體的鉤蟲貪銅菌菌株(pBBR1-Efe)產生超過100 ppm乙烯,而含有空pBBR1質體之對照菌株未偵測到乙烯。
如圖4中所示,反應縮寫如下:ACALD,乙醛去氫酶(乙醯化);ACONT1,烏頭酸酶(檸檬酸脫水酶);ACONT2,烏頭酸酶(異檸檬酸脫水酶);AKGDH,2-側氧戊二酸(Oxogluterate)去氫酶;ALCD2x,醇去氫酶(乙醇);ASPTA,天冬胺酸轉胺酶;ATPS4m,ATP合成酶(對於一個ATP四個質子);CITt,檸檬酸轉運;CS,檸檬酸合成酶;CYTCOBO3,細胞色素氧化酶bo3(泛醇-8:4個質子);EFE,乙烯形成反應;ENO,烯醇酶;FBA,果糖-二磷酸醛醇縮酶;FBP,果糖-二磷酸酶;FDH,甲酸去氫酶;FUM,延胡索酸酶;GAPD,甘油醛-3-磷酸去氫酶;GLUDC,麩胺酸去羧酶;GLUS,麩胺酸合成酶;H2td,氫轉運;HYDS,氫化酶(NADH);ICDHx,異檸檬酸去氫酶(NAD);ICITt,異檸檬酸轉運;LACDH,L-乳酸去氫酶;MDH,蘋果酸去氫酶;ME1,蘋果酸酶(NAD);NADH16,NADH去氫酶(泛醌-8及3個質子);O2t,O2轉運(擴散);PDH1,丙酮酸去氫酶E1組分;PDH2,丙酮酸去氫酶E2組分(二氫硫辛醯胺乙醯轉移酶);PDH3,二氫硫辛醯胺去氫酶;PGK,磷酸甘油酸激酶;PGM,磷酸甘油酸變位酶;PPC,磷酸烯醇丙酮酸羧化酶;PRUK,磷酸核酮糖激酶;RBPC,核酮糖-二磷酸羧化酶;RPE,核酮糖5-磷酸3-表異構酶;SUCDi,丁二酸去氫酶(不可逆);SUCOAS,丁二醯基-CoA合成酶(ADP形成);TKT2,轉酮醇酶。
所列出之基因如下:
ACALD:H16_A1806或H16_B0596或H16_A2747或H16_B0551
ACONT1:H16_A2638或H16_B0568或H16_A1907
ACONT2:H16_A2638或H16_B0568或H16_A1907
AKGDH:(H16_A2325及H16_A2324及H16_B1098)或(H16_A3724及H16_A2325及H16_A2324)或(H16_A2325及H16_A2324及H16_A1377)或(H16_A2323及H16_A2325及H16_A2324)
ALCD2x:H16_B2470或H16_B0517或H16_A3330或H16_B1433或H16_A0757或H16_B1699或H16_B1834或H16_B1745
ASPTA:H16_A2857
ATPS4m:H16_A3643及H16_A3642及H16_A3639及H16_A3636及H16_A3637及H16_A3638及H16_A3640及H16_A3641
CS:(H16_A2627及H16_B0357及H16_B2211)或(H16_A2627及H16_B0357及H16_A1229)或(H16_A2627及H16_B0357及H16_B0414)
CYTCOBO3:H16_A3396及H16_A3397及H16_A3398及H16_A2319及H16_A2318及H16_A2316及H16_B2062及H16_B2059及H16_A0342及H16_A0343及H16_A0347及H16_A0345
ENO:H16_A1188
FBA:H16_B0278或H16_B1384或H16_A0568或PHG416
FBP:H16_B1390或H16_A0999或PHG422
FDH:(H16_B1700及H16_B1701)或(H16_A0640及H16_A0642及H16_A0641及H16_A0644)或H16_A3292或(H16_A2934及H16_A2937及H16_A2936及H16_B1471)或(H16_B1454及H16_B1452及H16_B1453)或H16_B1383
FUM:H16_B0103或H16_A2528
GAPD:H16_B1386或H16_A3146或PHG418
GLUDC:H16_A2930
GLUS:H16_B2194或H16_A3430或H16_B2192或H16_A3431或H16_B2193
HYDS:PHG088及PHG089及PHG090及PHG091
ICDHx:H16_B1016
LACDH:H16_A0666
MDH:H16_B0334或H16_A2634
ME1:H16_A3153
NADH16:H16_A1051及H16_A1052及H16_A1050及H16_A1055及H16_A1056及H16_A1053及H16_A1054及H16_A1061及H16_A1060及H16_A1063及H16_A1062及H16_A1059及H16_A1058及H16_A1057及H16_A0251
PDH1:H16_A1374或H16_B1300或H16_B0145或H16_B2234或H16_B2233或H16_A1753
PDH2:H16_A1375或H16_B0146
PDH3:H16_A3724或H16_A2323或H16_A1377或H16_B1098
PGK:H16_A0566或H16_B1385或PHG417
PGM:H16_A0332或H16_A0493
PPC:H16_A2921
PRUK:H16_B1389或PHG421
RBPC:(PHG426及PHG427)或(H16_B1394及H16_B1395)
RPE:(H16_B1391及H16_A3317)或(PHG423及H16_A3317)
SUCDi:H16_B0204及H16_A2632及H16_A2631及H16_A2630及H16_A2629
SUCOAS:H16_A0548及H16_A0547
TKT2:(H16_B1388及H16_A3147)或(PHG420及H16_A3147)。 實例 2 :自作為能量源的 CO 2 H 2 連續生產乙烯。
編碼乙烯形成酶之基因針對在鉤蟲貪銅菌中表現經密碼子調適且合成。將經調適之基因以及組成型啟動子P10選殖至宿主範圍廣泛的表現載體pBBR1MCS2中。所得產物用於轉化大腸桿菌且藉由PCR鑑別之陽性殖株藉由DNA定序來確認。隨後經由電穿孔將序列確認的質體轉化至鉤蟲貪銅菌PHB-4中,且在含有50 mg/L氯黴素之胰蛋白酶大豆培養液(TSB)瓊脂盤上選擇。含有pBBR1-Efe質體之轉化體經由定序確認,且單一菌落隨後在TSB中在30℃下生長隔夜且用於製造甘油儲備液以儲存在-80℃下。經由在含有50 mg/L氯黴素之TSB盤上劃線且在30℃下培育72小時進行菌株復活。
來自新劃線TSB盤之單一菌落用於接種在具有彈扣蓋之14 mL法爾康圓底聚苯乙烯試管中之含有50 mg/L氯黴素之3 mL TSB。在於30℃及200 rpm下在Thermo MAXQ振盪器中隔夜培育之後,1 mL培養物用於接種在200 mL肖特瓶(Schott bottle)中之100 mL LB。細胞在30℃及200 rpm下生長直至達至約0.3-0.4之光學密度為止。
100 mL上述培養物用於接種含有600 mL 2×啟動培養基之1.4 L Infors HT Multifors 2 CSTR。反應器在30℃下培育且以250 rpm攪拌及150 nccm氣流(3.14% O 2,41% H 2,3% CO 2,52.86% N 2)起始。攪動及氣流隨著培養物生長逐漸上升至1450 rpm及750 nccm。當OD 600超過0.5時,使用具有7 µL/hr普朗尼克(Pluronic)31R1消泡劑之4×培養基使培養變成連續的。進料氧氣百分比逐漸增加以促進生物質生產,其餘部分之氮氣百分比降低,受出口氧氣百分比保持低於4.5%之約束作為安全措施。
經由305不鏽鋼將來自反應器之氣體樣品引至由微型GC(製造商:Qmicro)控制之流選擇閥。樣品隨後在Rt-U BOND XP PLOT管柱上在等溫條件(70℃)下經由導熱性偵測器(TCD)分析。
一旦培養物經良好建立,氣體分率自O 2限制調整至H 2限制條件,使得觀測到非零溶解氧(DO)濃度。乙烯生產隨著系統進入穩態且隨著氣體分率調整而變化,但生產維持超過11天(圖3)。在此時段期間,H 2分率範圍為11-18%且O 2分率為5.5-6.6%,並且CO 2保持在3%且N 2為其餘部分。當切換回O 2限制條件時,乙烯生產停止,指示氧氣可用性對乙烯生產之重要性。 實例 3 :在鉤蟲貪銅菌中自 CO 2 H 2 產生乙烯期間消除不合需要之副產物的基因缺失策略之基因體級模型化。
如藉由Park等人,《BMC系統生物學(BMC Systems Biology)》,5: 101,2011所描述,採用鉤蟲貪銅菌的基因體級代謝模型來預測自CO 2及H 2產生乙烯期間消除不合需要之副產物的基因缺失。將異源乙烯形成反應添加至野生型鉤蟲貪銅菌模型結構中以表示併入非原生化合物生產路徑。如下模擬乙烯生產:使用基於約束之計算模型化技術通量平衡分析(FBA)及線性最小化代謝調整(LMOMA)(Maia,《GECCO Ί7遺傳及進化計算會議論文集(Proceedings of the Genetic and Evolutionary Computation Conference Companion on - GECCO Ί7)》,紐約州紐約(New York, New York),ACM出版社(ACM Press),1661-1668,2017)使用cobrapy版本0.8.2(Ebrahim.,COBRApy:「基於約束的Python重構及分析(COnstraints-Based Reconstruction and Analysis for Python)」,《BMC系統生物學(BMC SystBiol)》,7: 74,2013),使用optlang版本1.2.3(Jensen,Optlang:「用於數學最佳化的代數模型化語言(Algebraic Modeling Language for Mathematical Optimization)」,《開放原始碼軟體雜誌(The Journal of Open Source Software)》,2,doi: 10.21105/joss.00139,2017)作為解答器介面,且使用Gurobi Optimizer版本7.0.2作為最佳化解答器。 1 :基因缺失預測移除不合需要之副產物,同時仍允許生物質形成及乙烯產生:
消除之副產物 不活化酶活性(反應ID) 基因-反應相關性
乳酸酯 乳酸去氫酶(LACDH) H16_A0666
γ-胺基丁酸酯 麩胺酸去羧酶(GLUDC) H16_A2930
檸檬酸酯,異檸檬酸酯 檸檬酸合成酶(CS) (H16_A2627及H16_B0357及H16_B2211)或(H16_A2627及H16_B0357及H16_A1229)或(H16_A2627及H16_B0357及H16_B0414)
乙醇 醇去氫酶(ALDC2x) H16_B2470或H16_B0517或H16_A3330或H16_B1433或H16_A0757或H16_B1699或H16_B1834或H16_B1745
腐胺 鯡精胺酶(AGMT) H16_A0044
異檸檬酸酯 烏頭酸酶1 & 2(ACONT1,ACONT2) H16_A2638或H16_B0568或H16_A1907
腐胺 精胺酸去羧酶(ARGDC) H16_A2930
尿刊酸酯 組胺酸氨解離酶(HISAL) H16_A3018
實例 4 :在麩胺酸去羧酶( GLUDC H16_A2930 基因座產生無痕缺失。
同源臂擴增及組裝。為了在 鉤蟲貪銅菌 H16中產生 麩胺酸去羧酶( GLUDC 開讀框的無痕缺失,500 bp同源臂使用κ 2×主混合物自 鉤蟲貪銅菌 H16gDNA PCR擴增,且使用Thermo Fisher之GeneArt無縫選殖及組裝酶混合物吉布森(Gibson)組裝至自殺質體pK18mobsacB中。簡言之,正向及反向引子在Geneious Prime中設計以包括與pK18mobsacB相容之用限制酶BamHI消化之5'及3'吉布森尾。引子及同源臂序列提供於下表###中。正確同源臂擴增子大小在1%瓊脂糖凝膠上驗證且使用Zymo DNA Clean and Concentrator套組管柱純化。將純化之同源臂以100 ng之質量各自與100 ng之經BamHI消化之pK18mobsacB在20 μL具有GeneArt無縫選殖酶混合物的反應物中組合且在室溫下培育30分鐘。隨後,3 μL之反應混合物用於轉化化學勝任型DH10B大腸桿菌且塗鋪於含有50 ng/μL康黴素(kanamycin)抗生素之LB瓊脂培養基上。盤在37℃下培育24小時,且藉由PCR篩選菌落以驗證各同源臂插入序列之存在。陽性菌落在補充有50 ng/μL康黴素,使用Qiagen MINI Prep套組準備之5 mL LB培養液中隔夜生長,且使用Illumina MiSeq系統對質體進行序列驗證。
經由結合之轉化。含有左側及右側500 bp同源臂之序列驗證之pK18mobsacB質體電穿孔至S17-1大腸桿菌細胞中且塗鋪於補充有50 ng/μL康黴素之LB上。挑取單一菌落且用於接種5 mL補充有50 ng/μL康黴素之LB培養液以產生結合供體菌株。為了產生結合接受體菌株,挑取在補充有300 ng/μL健他黴素(gentamycin)之LB瓊脂上生長之鉤蟲貪銅菌H16單一菌落且用於接種補充有300 ng/μL健他黴素之5 mL LB培養液。供體大腸桿菌培養物在37℃下在250 rpm振盪下生長隔夜,而接受體鉤蟲貪銅菌培養物在30℃下在200 rpm振盪下生長隔夜。第二天早晨,藉由在6000 rpm下在25℃下離心3分鐘收集細胞,且使集結粒再懸浮於50 μL LB培養基中。將50 μL供體細胞及接受體細胞混合且點樣於不含抗生素之LB瓊脂上之無菌親水性過濾器上。
選擇及反選擇。盤在30℃下培育隔夜,且第二天早晨藉由使用無菌鑷子將過濾器對折且轉移至含有1 mL LB之管而自過濾器移出細胞。藉由渦旋將細胞自過濾器移走,且製備連續稀釋液(10 0至10 -3)且以100 μL體積塗鋪於含有300 ng/μL康黴素之LB瓊脂上。盤在30℃下培育5天。接著,菌落在含有300 ng/μL康黴素之LB瓊脂盤及含有20%蔗糖加300 ng/μL康黴素之LB瓊脂盤上複製膜片塗鋪(replica-patched)。在康黴素而非蔗糖加康黴素上生長之菌落(初級整合體)在含有300 ng/μL康黴素之LB瓊脂盤上劃線純化,且隨後在30℃下在不含抗生素之LB培養液中培養隔夜。第二天早晨,將100 μL體積之連續稀釋(10 0至10 -3)培養物在含有20%蔗糖(不含抗生素)之瓊脂上在30℃下塗鋪隔夜,以選擇二級重組體。在含有20%蔗糖之LB瓊脂(具有及不具有300 ng/μL康黴素)上膜片塗鋪耐蔗糖菌落,以選擇耐蔗糖且抗生素敏感性之重組體。最後,12個SucR、KanS菌落經準備進行PCR及定序以驗證 GLUDC H16_A2930基因座缺失。 2 GLUDC H16_A2930 基因座之引子及同源臂序列
SEQ ID NO 序列類型 序列
1 F-引子左同源臂 5'-TCGAGCTCGGTACCCGGGCAGGCGAGGCGCCG-3'
2 R-引子左同源臂 5'-GGATGCCCGGCGCCAGTCCGCGTT-3'
3 F-引子右同源臂 5'-GACTGGCGCCGGGCATCCTTGATGGAAAG-3'
4 F-引子右同源臂 5'-TGCAGGTCGACTCTAGAGCGTTCGTGGATTTCAAGGGC-3'
5 左同源臂(500 bp) 5'CAGGCGAGGCGCCGCGTGTATTTGATTGATACCAACGTCATCAGCG AAACGCGCAAGCGCGAGCGCGCCAACCCCGGCGTGCGCGCGTTCTTCC GGCAGGCGGCGCGGGAAGGTGCCGCGCTCTACCTGTCGGCGCTGACCG TGGGCGAGCTCCAGCGTGGCGTAGCGCTGATCCGCCATCGCGGCGATA CGGCGCAGGCCGAGCTGCTGGAGCAATGGCTGGCGACCGTGCTGGAGG ATTTTGGCCGGCTGGTGTTGCCGGTCGATGCCGACGTCGCCCAGGTCT GGGGCCAGCTGCGCGCGCCGCGGCCTGAGCACGCGCTGGACAAGTTCA TTGCCGCCACCGCGCTGATCCATGACCTGACCATTGTCACGCGCAATG TTGAGGATTTCCGCGGCACGGGCGCGATGCTGCTGAATCCGTTCACCT AGCCCCACCTCAAAAGAAAGGACCCCGCATAGCGGGGCCCTGCTCACG TCAGCGGAACGCGGACTGGCGC-3'
6 右同源臂(500 bp) 5'-CGGGCATCCTTGATGGAAAGCAGGACATAAAGGACTTGAGCCACA TGGCCGGCATGAGGTTCCCCGCTGCGGCGACATGTGGCTCTGACGTCA GGTGTGGCGGCCATTCTCGGGGCCAGCCTTCCGGCAAACGCCGGCATT GTAATGCGCTCAGGTCTTCGGCAGTGTGACACCGTGCTGGCCCTGGTA CTTGCCGCCGCGGTCGCGGTACGAGGTCTCGCAGACTTCGTCGCTCTC GAAGAACAGCACCTGGGCGCAACCCTCGCCGGCGTAGATCTTGGCGGG CAGCGGCGTGGTGTTGGAGAACTCCAGCGTCACATAGCCTTCCCACTC CGGCTCGAACGGCGTCACATTGACGATGATGCCGCAGCGGGCGTAGGT GCTCTTGCCCAGGCAGATGGTCAGCACGCTGCGCGGGATCCGGAAGTA TTCCATCGTGCGCGCCAGCGCGAACGAATTGGGCGGGATGATGCAGAC ATCGCCCTTGAAATCCACGAACG-3'
7 pK18mobsacB空自殺質體 5'-TGCCGCAAGCACTCAGGGCGCAAGGGCTGCTAAAGGAAGCGGAAC ACGTAGAAAGCCAGTCCGCAGAAACGGTGCTGACCCCGGATGAATGTC AGCTACTGGGCTATCTGGACAAGGGAAAACGCAAGCGCAAAGAGAAAG CAGGTAGCTTGCAGTGGGCTTACATGGCGATAGCTAGACTGGGCGGTT TTATGGACAGCAAGCGAACCGGAATTGCCAGCTGGGGCGCCCTCTGGT AAGGTTGGGAAGCCCTGCAAAGTAAACTGGATGGCTTTCTTGCCGCCA AGGATCTGATGGCGCAGGGGATCAAGATCTGATCAAGAGACAGGATGA GGATCGTTTCGCATGATTGAACAAGATGGATTGCACGCAGGTTCTCCG GCCGCTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACA ATCGGCTGCTCTGATGCCGCCGTGTTCCGGCTGTCAGCGCAGGGGCGC CCGGTTCTTTTTGTCAAGACCGACCTGTCCGGTGCCCTGAATGAACTC CAAGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCT TGCGCAGCTGTGCTCGACGTTGTCACTGAAGCGGGAAGGGACTGGCTG CTATTGGGCGAAGTGCCGGGGCAGGATCTCCTGTCATCTCACCTTGCT CCTGCCGAGAAAGTATCCATCATGGCTGATGCAATGCGGCGGCTGCAT ACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGC ATCGAGCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGAT GATCTGGACGAAGAGCATCAGGGGCTCGCGCCAGCCGAACTGTTCGCC AGGCTCAAGGCGCGGATGCCCGACGGCGAGGATCTCGTCGTGACCCAT GGCGATGCCTGCTTGCCGAATATCATGGTGGAAAATGGCCGCTTTTCT GGATTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGAC ATAGCGTTGGCTACCCGTGATATTGCTGAAGAGCTTGGCGGCGAATGG GCTGACCGCTTCCTCGTGCTTTACGGTATCGCCGCTCCCGATTCGCAG CGCATCGCCTTCTATCGCCTTCTTGACGAGTTCTTCTGAGCGGGACTC TGGGGTTCGCTAGAGGATCGATCCTTTTTAACCCATCACATATACCTG CCGTTCACTATTATTTAGTGAAATGAGATATTATGATATTTTCTGAAT TGTGATTAAAAAGGCAACTTTATGCCCATGCAACAGAAACTATAAAAA ATACAGAGAATGAAAAGAAACAGATAGATTTTTTAGTTCTTTAGGCCC GTAGTCTGCAAATCCTTTTATGATTTTCTATCAAACAAAAGAGGAAAA TAGACCAGTTGCAATCCAAACGAGAGTCTAATAGAATGAGGTCGAAAA GTAAATCGCGCGGGTTTGTTACTGATAAAGCAGGCAAGACCTAAAATG TGTAAAGGGCAAAGTGTATACTTTGGCGTCACCCCTTACATATTTTAG GTCTTTTTTTATTGTGCGTAACTAACTTGCCATCTTCAAACAGGAGGG CTGGAAGAAGCAGACCGCTAACACAGTACATAAAAAAGGAGACATGAA CGATGAACATCAAAAAGTTTGCAAAACAAGCAACAGTATTAACCTTTA CTACCGCACTGCTGGCAGGAGGCGCAACTCAAGCGTTTGCGAAAGAAA CGAACCAAAAGCCATATAAGGAAACATACGGCATTTCCCATATTACAC GCCATGATATGCTGCAAATCCCTGAACAGCAAAAAAATGAAAAATATC AAGTTTCTGAATTTGATTCGTCCACAATTAAAAATATCTCTTCTGCAA AAGGCCTGGACGTTTGGGACAGCTGGCCATTACAAAACGCTGACGGCA CTGTCGCAAACTATCACGGCTACCACATCGTCTTTGCATTAGCCGGAG ATCCTAAAAATGCGGATGACACATCGATTTACATGTTCTATCAAAAAG TCGGCGAAACTTCTATTGACAGCTGGAAAAACGCTGGCCGCGTCTTTA AAGACAGCGACAAATTCGATGCAAATGATTCTATCCTAAAAGACCAAA CACAAGAATGGTCAGGTTCAGCCACATTTACATCTGACGGAAAAATCC GTTTATTCTACACTGATTTCTCCGGTAAACATTACGGCAAACAAACAC TGACAACTGCACAAGTTAACGTATCAGCATCAGACAGCTCTTTGAACA TCAACGGTGTAGAGGATTATAAATCAATCTTTGACGGTGACGGAAAAA CGTATCAAAATGTACAGCAGTTCATCGATGAAGGCAACTACAGCTCAG GCGACAACCATACGCTGAGAGATCCTCACTACGTAGAAGATAAAGGCC ACAAATACTTAGTATTTGAAGCAAACACTGGAACTGAAGATGGCTACC AAGGCGAAGAATCTTTATTTAACAAAGCATACTATGGCAAAAGCACAT CATTCTTCCGTCAAGAAAGTCAAAAACTTCTGCAAAGCGATAAAAAAC GCACGGCTGAGTTAGCAAACGGCGCTCTCGGTATGATTGAGCTAAACG ATGATTACACACTGAAAAAAGTGATGAAACCGCTGATTGCATCTAACA CAGTAACAGATGAAATTGAACGCGCGAACGTCTTTAAAATGAACGGCA AATGGTACCTGTTCACTGACTCCCGCGGATCAAAAATGACGATTGACG GCATTACGTCTAACGATATTTACATGCTTGGTTATGTTTCTAATTCTT TAACTGGCCCATACAAGCCGCTGAACAAAACTGGCCTTGTGTTAAAAA TGGATCTTGATCCTAACGATGTAACCTTTACTTACTCACACTTCGCTG TACCTCAAGCGAAAGGAAACAATGTCGTGATTACAAGCTATATGACAA ACAGAGGATTCTACGCAGACAAACAATCAACGTTTGCGCCGAGCTTCC TGCTGAACATCAAAGGCAAGAAAACATCTGTTGTCAAAGACAGCATCC TTGAACAAGGACAATTAACAGTTAACAAATAAAAACGCAAAAGAAAAT GCCGATGGGTACCGAGCGAAATGACCGACCAAGCGACGCCCAACCTGC CATCACGAGATTTCGATTCCACCGCCGCCTTCTATGAAAGGTTGGGCT TCGGAATCGTTTTCCGGGACGCCCTCGCGGACGTGCTCATAGTCCACG ACGCCCGTGATTTTGTAGCCCTGGCCGACGGCCAGCAGGTAGGCCGAC AGGCTCATGCCGGCCGCCGCCGCCTTTTCCTCAATCGCTCTTCGTTCG TCTGGAAGGCAGTACACCTTGATAGGTGGGCTGCCCTTCCTGGTTGGC TTGGTTTCATCAGCCATCCGCTTGCCCTCATCTGTTACGCCGGCGGTA GCCGGCCAGCCTCGCAGAGCAGGATTCCCGTTGAGCACCGCCAGGTGC GAATAAGGGACAGTGAAGAAGGAACACCCGCTCGCGGGTGGGCCTACT TCACCTATCCTGCCCGGCTGACGCCGTTGGATACACCAAGGAAAGTCT ACACGAACCCTTTGGCAAAATCCTGTATATCGTGCGAAAAAGGATGGA TATACCGAAAAAATCGCTATAATGACCCCGAAGCAGGGTTATGCAGCG GAAAAGCGCTGCTTCCCTGCTGTTTTGTGGAATATCTACCGACTGGAA ACAGGCAAATGCAGGAAATTACTGAACTGAGGGGACAGGCGAGAGACG ATGCCAAAGAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGG TAGTGATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCG ATCAACGTCTCATTTTCGCCAAAAGTTGGCCCAGGGCTTCCCGGTATC AACAGGGACACCAGGATTTATTTATTCTGCGAAGTGATCTTCCGTCAC AGGTATTTATTCGGCGCAAAGTGCGTCGGGTGATGCTGCCAACTTACT GATTTAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTT CTATCAGCTCCTGAAAATCTCGATAACTCAAAAAATACGCCCGGTAGT GATCTTATTTCATTATGGTGAAAGTTGGAACCTCTTACGTGCCGATCA ACGTCTCATTTTCGCCAAAAGTTGGCCCAGGGCTTCCCGGTATCAACA GGGACACCAGGATTTATTTATTCTGCGAAGTGATCTTCCGTCACAGGT ATTTATTCGGCGCAAAGTGCGTCGGGTGATGCTGCCAACTTACTGATT TAGTGTATGATGGTGTTTTTGAGGTGCTCCAGTGGCTTCTGTTTCTAT CAGGGCTGGATGATCCTCCAGCGCGGGGATCTCATGCTGGAGTTCTTC GCCCACCCCAAAAGGATCTAGGTGAAGATCCTTTTTGATAATCTCATG ACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCC GTAGAAAAGATCAAAGGATCTTCTTGAGATCCTTTTTTTCTGCGCGTA ATCTGCTGCTTGCAAACAAAAAAACCACCGCTACCAGCGGTGGTTTGT TTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGCTTC AGCAGAGCGCAGATACCAAATACTGTTCTTCTAGTGTAGCCGTAGTTA GGCCACCACTTCAAGAACTCTGTAGCACCGCCTACATACCTCGCTCTG CTAATCCTGTTACCAGTGGCTGCTGCCAGTGGCGATAAGTCGTGTCTT ACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGTCG GGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACC TACACCGAACTGAGATACCTACAGCGTGAGCTATGAGAAAGCGCCACG CTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAAGCGGCAGGGTC GGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTAT CTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTT TTGTGATGCTCGTCAGGGGGGCGGAGCCTATGGAAAAACGCCAGCAAC GCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCTTTTGCTCACATG TTCTTTCCTGCGTTATCCCCTGATTCTGTGGATAACCGTATTACCGCC TTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGC GAGTCAGTGAGCGAGGAAGCGGAAGAGCGCCCAATACGCAAACCGCCT CTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTT CCCGACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAG CTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGT ATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACACAGGAAACAGC TATGACATGATTACGAATTCGAGCTCGGTACCCGGGGATCCTCTAGAG TCGACCTGCAGGCATGCAAGCTTGGCACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCA CATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGAT CGCCCTTCCCAACAGTTGCGCAGCCTGAATGGCGAATGGCGATAAGCT AGCTTCACGC-3'
在序列確認 GLUDC H16_A2930基因座缺失之後,經由電穿孔將實例1中所描述之EFE表現構築體轉化至此菌株中,且在含有50 mg/L氯黴素之胰蛋白酶大豆培養液(TSB)瓊脂盤上選擇。含有pBBR1-Efe質體之轉化體經由定序確認,且單一菌落隨後在TSB中在30℃下生長隔夜且用於製造甘油儲備液以儲存在-80℃下。經由在含有50 mg/L氯黴素之TSB盤上劃線且在30℃下培育72小時進行菌株復活。如上文實例中所描述在甲酸酯或CO2/H2上進行醱酵以生產乙烯。
如上文所描述進行有利於乙烯生產及/或減少副產物形成之額外基因缺失及染色體整合。 實例 5 :用於在容器內產生氣泡之系統
容器100中產生氣泡之系統的實例(圖5)。系統100包含圓柱形反應器102。液體進入反應器102之入口或頂部101。液體可經由與系統100流體連通之外部泵進入頂部101。根據某些實施例,進入頂部101之液體藉由與系統100流體連通之外部泵再循環。液體進入多孔板104之頂部,且液體藉由穿過板104中之孔口來加速。根據某些實例,板104可經組態以加速反應器102中之液體的例如至少、大於、小於、等於約1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、96、97、98、99至約100%或其中任何數值。噴佈器106將氣泡自氣體源108注入至液體中。噴佈器106安置於反應器102內以使得產生第一區域,其中所注入氣泡在反應器102內上升且遇到離開板104底部之加速液體112。來自板104之加速液體112將上升氣泡打碎成細氣泡,由此增加所要化學或生物反應所需之表觀表面積。細氣泡之直徑可在約0.1 mm至約5 mm、或約0.5 mm至約2 mm之範圍內。在一些實例中,細氣泡可包括約0.2 mm至1.5 mm之直徑。根據另一實施例,細氣泡之直徑可為例如至少、大於、小於、等於約0.001、0.002、0.003、0.004、0.005、0.006、0.007、0.008、0.009、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.1、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3.0、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4.0、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9至約5.0 mm或其間任何數值。噴佈器106進一步安置於反應器102內以使得產生第二區域,其中液體及細氣泡之流體流可向下流動。
細氣泡相較於注入氣泡可具有降低的上升速度。歸因於加速液體之總體流動,含有液體及細氣泡之流體116可具有淨向下流動。流體116之向下速度大於細氣泡之整體上升速度。流體116可在出口111處離開反應器102。板104可具有約1 mm至25 mm之厚度(及孔口之深度)。根據另一實施例,板厚度可為例如至少、大於、小於、等於約0.5、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49至約50 mm或其間任何數值。
如(圖5)中所繪示,系統100之組件的尺寸可視所需用途或製程而變化。根據某些實施例,反應器102之直徑可為例如至少、大於、小於、等於約0.5、1.0、1.5、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5至約20.0公尺或其間任何數值。根據其他實施例,反應器102之長度可為例如至少、大於、小於、等於約5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、10.5、11.0、11.5、12.0、12.5、13.0、13.5、14.0、14.5、15.0、15.5、16.0、16.5、17.0、17.5、18.0、18.5、19.0、19.5、20.5、21.5、22.0、22.5、23.0、23.5、24.0、24.5、25.0、26.0、27.0、28.0、29.0、30.0、31.0、32.0、33.0、34.0、35.0、36.0、37.0、38.0、39.0、40.0、41.0、42.0、43.0、44.0、45.0、46.0、47.0、48.0、49.0至約50.0公尺或其間任何數值。
自板104加速之液體或液體之一部分的速度可藉由以下方程式確定:
QL = N x (π/4) x d2 x vj
其中QL為液體容量流速率(m3/s),vj為噴射速度,N為板上孔口之總數目,d為孔口之直徑,且π為數學符號派(pi)。根據一個實施例,來自板104之加速液體的速度可為例如至少、大於、小於、等於約5000、5500、6000、6500、7000、7500、8000、8500、9000、9500、10000、10500、11000、11500、12000、12500、13000、13500、14000、14500、15000、15500、16000、16500、17000、17500、18000、18500、19000、19500至約20000 mm/s或其間任何數值。如圖5中所描繪,加速液體112之速度對於將由噴佈器106注入液體之氣泡打碎成適當大小之細氣泡,且確保液體及細氣泡之流體具有足以產生淨向下流體流之速度至關重要。主反應容器中之表觀液體速度VL可藉由以下方程式計算:VL=QL/AC,其中QL為反應容器中液體之容量流速率(m3/s),且AC為反應容器之截面積。因此,若液相佔據反應容器之整個截面積,則表觀液體速度表示液相之速度。根據實施例,表觀液體速度亦可包括停滯液體及細氣泡之區域或空隙,及/或淨向下流體流。對於相同液體流動速率,氣體流動速率可視實際應用而變化。氣相之表觀速度VG可藉由以下方程式確定:VG=QG/AC,其中QG為自噴佈器注入液體之氣體之容量流速率(m3/s),且AC為反應容器之截面積。根據另一實施例,容器中之氣相之表觀速度可為例如至少、大於、小於、等於約5、10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95至約100 mm/s或其間任何數值。根據再一實施例,容器中之氣相之表觀速度可為例如大約50至60 mm/s。
將一噴佈器或多個噴佈器106安置於反應器102內,且安置在反應器102之上部中具有額外優勢:降低反應器102頂部之靜水壓,從而有助於提高氣體至液體質量轉移速率且降低能量要求。此外,使所需反應器組件最小化,而歸因於反應器大小減小,氣體至液體質量轉移速率藉由較小反應器佔據面積最大化。在一些實施例中,舉例而言,本文中所揭示之系統及方法達成至少125 m 3/min之氣體至液體質量轉移速率。在其他實例中,氣體至液體質量轉移速率可為例如至少、大於、小於、等於約100、105、110、115、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195至約200 m 3/min或其間任何數值。另外,本文所揭示之噴佈器組態、所達成氣及液相之表觀速度及提高的氣體至液體質量轉移速率克服與先前及習知反應器之氣及液相系統之使用相關聯的已知障礙。尤其在具有氣體受質及水性培養物之生物反應器中。
本文中所引用之所有參考文獻,包括公開案、專利申請案及專利均特此以引用之方式併入,其引用程度就如同個別且具體地指示各參考文獻以引用之方式併入且全文闡述於本文中一般。在本說明書中對任何先前技術之參考並非且不應視為承認先前技術形成任何國家所致力領域之公共常識的一部分。
除非本文中另外規定或明顯地與上下文相矛盾,否則在描述揭示內容之上下文中(尤其在以下申請專利範圍之上下文中)使用術語「一(a/an)」及「該(the)」及類似提及術語應解釋為涵蓋單數及複數兩者。除非另外指出,否則術語「包含」、「具有」、「包括」及「含有」應理解為開放性術語(亦即,意謂「包括但不限於」)。術語「基本上由……組成」將組成、製程或方法之範疇限制於指定材料或步驟,或不實質上影響該組成、製程或方法之基本及新穎特徵的材料或步驟。使用替代術語(例如「或」)應理解為意謂替代物之一者、兩者或其任何組合。如本文所用,除非另外規定,否則術語「約」意謂指定範圍、值或結構之±20%。
除非本文另外指出,否則本文對值範圍之敍述僅意欲用作個別地提及屬於該範圍內之各個別值的簡寫方法,且各個別值係併入本說明書中,如同其在本文中個別地敍述一般。舉例而言,除非另外指明,否則任何濃度範圍、百分比範圍、比率範圍、整數範圍、大小範圍或厚度範圍均理解為包括所列舉範圍內之任何整數值,且適當時包括其分數(諸如整數之十分之一及百分之一)。
除非本文另外指明或上下文另外明顯矛盾,否則本文所描述之所有方法可以任何適合順序進行。除非另外主張,否則使用本文中所提供之任何及所有實例或例示性語言(例如,「諸如」)僅意欲更好地闡明本揭示案,且不對本揭示案之範疇造成限制。本說明書中之任何語言均不應被解釋為將任何未要求保護之元件指示為實踐本揭示案所必須的。
本文中描述本揭示案之較佳實施例。在閱讀前述描述之後,彼等較佳實施例之變化形式對於一般熟習此項技術者可變得顯而易見。本發明人期望熟習此項技術者適當時採用此類變化,且本發明人意欲以不同於本文中特定描述之其他方式來實施本揭示案。相應地,本揭示案包括如適用法律准許之隨附於本文之申請專利範圍中所陳述之主題的所有修改及等效物。此外,除非本文另有說明或與上下文明顯矛盾,否則本揭示案涵蓋在其所有可能變化中之上述元素之任何組合。
100:容器,系統 101:頂部 102:反應器 104:板 106:噴佈器 108:氣體源 111:出口 112:加速液體 116:流體
本揭示案之此等及其他態樣(應全部視為其新穎態樣)將參考附圖自以下僅藉助於實例給出之描述而變得顯而易見,在附圖中:
圖1展示示意圖,其展示具有用於乙烯生產之乙烯形成酶之異源表現的鉤蟲貪銅菌中CO2固定、中心碳代謝及TCA循環之路徑
圖2展示藉由生長於作為唯一碳及能量源的甲酸酯上時,具有乙烯形成酶表現之鉤蟲貪銅菌菌株(pBBR1-Efe)及空白載體對照物(pBBR1)之乙烯生產。
圖3展示在CSTR中在11天時段內,自作為唯一碳源的CO 2藉由具有乙烯形成酶表現之鉤蟲貪銅菌菌株(pBBR1-Efe)之連續乙烯生產。
圖4展示示意性通量平衡分析預測基因剔除策略(紅色箭頭),其用以在鉤蟲貪銅菌中自CO 2及H 2之乙烯生產期間消除不合需要的副產物。基因標註提供於各酶名稱下方(額外細節參見表1)。
圖5示意性地描繪根據本文所揭示之系統及方法的用於在容器內產生氣泡之系統。
圖6展示當在磷酸酯限制基本培養基中生長時,經由組成型或磷酸酯限制誘導型啟動子表現乙烯形成酶(Efe)之鉤蟲貪銅菌菌株以及空白載體對照物(pBBR1)之乙烯生產。
TW202407097A_112123482_SEQL.xml

Claims (20)

  1. 一種能夠自氣態受質產生乙烯之重組C1固定微生物,其包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸。
  2. 一種能夠在乙烯生產中切換細胞負荷之重組C1固定微生物,該微生物包含編碼包含乙烯形成酶(EFE)之一組外源性酶的核酸及一或多種誘導型啟動子。
  3. 如請求項1之微生物,其進一步包含編碼包含α-酮戊二酸通透酶(AKGP)之一組外源性酶的核酸,其中該核酸可操作地連接至啟動子。
  4. 如請求項1之微生物,其中該微生物係選自由以下組成之群:鉤蟲貪銅菌( Cupriavidus necator)及富養羅爾斯通氏菌( Ralstonia eutropha)。
  5. 如請求項4之微生物,其中該微生物為鉤蟲貪銅菌。
  6. 如請求項2之微生物,其進一步包含編碼α-酮戊二酸通透酶之核酸,其中該核酸經密碼子最佳化以在該微生物中表現。
  7. 如請求項2之微生物,其中該一或多種誘導型啟動子係選自H 2誘導型啟動子、磷酸酯限制誘導型啟動子、氮限制誘導型啟動子或其任何組合。
  8. 如請求項2之微生物,其中該EFE經密碼子最佳化以在該微生物中表現。
  9. 如請求項1之微生物,其進一步包含一或多個基因中之破壞性突變。
  10. 如請求項1之微生物,其中乙烯轉化成選自聚乙烯(PE)、聚對苯二甲酸伸乙酯(PET)、聚氯乙烯(PVC)、乙烯-乙酸乙烯酯(EVA)、可持續航空燃料(SAF)或其任何組合的衍生材料。
  11. 如請求項1之微生物,其中該氣態受質包含CO 2及能量源。
  12. 如請求項1之微生物,其中該氣態受質包含CO 2,及H 2、O 2或兩者。
  13. 一種用於連續產生乙烯之方法,該方法包含:將氣態受質傳遞至含有如請求項1之重組C1固定微生物在培養基中之培養物的生物反應器,以使得該微生物將該氣態受質轉化成乙烯;及自該生物反應器回收該乙烯。
  14. 如請求項13之方法,其中該氣態受質包含工業廢料產物或廢氣。
  15. 如請求項13之方法,其進一步包含能量源。
  16. 如請求項15之方法,其中該能量源間歇地提供。
  17. 如請求項13之方法,其中該氣態受質包含CO 2及能量源。
  18. 如請求項17之方法,其中該能量源為H 2
  19. 如請求項17之方法,其中該氣態受質進一步包含H 2、O 2或兩者。
  20. 如請求項13之方法,其進一步包含限制溶解氧濃度之步驟,由此切換細胞負荷。
TW112123482A 2022-06-21 2023-06-21 用於自c1受質連續產生乙烯之微生物及方法 TW202407097A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263366758P 2022-06-21 2022-06-21
US63/366,758 2022-06-21

Publications (1)

Publication Number Publication Date
TW202407097A true TW202407097A (zh) 2024-02-16

Family

ID=90822590

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112123482A TW202407097A (zh) 2022-06-21 2023-06-21 用於自c1受質連續產生乙烯之微生物及方法

Country Status (1)

Country Link
TW (1) TW202407097A (zh)

Similar Documents

Publication Publication Date Title
US11939567B2 (en) Gas-fed fermentation reactors, systems and processes utilizing gas/liquid separation vessels
US20130309739A1 (en) Methods and systems for processing biomass material
JP2019517806A (ja) ガス供給発酵反応器、システムおよび方法
US20230407271A1 (en) Microorganisms and methods for the continuous production of ethylene from c1-substrates
TW202407097A (zh) 用於自c1受質連續產生乙烯之微生物及方法
CN116348603A (zh) 重组微生物及其用途
US20240026413A1 (en) Microorganisms and methods for the continuous co-production of high-value, specialized proteins and chemical products from c1-substrates
US20230407362A1 (en) Microorganisms and methods for the continuous co-production of tandem repeat proteins and chemical products from c1-substrates
TWI837582B (zh) 重組微生物及其用途
US20240026275A1 (en) Method and system for monitoring and controlling continuous gas fermentation with biomarkers
US20230129301A1 (en) Recombinant microorganisms and uses therefor
US20230050887A1 (en) Recombinant microorganisms as a versatile and stable platform for production of antigen-binding molecules
US20220315876A1 (en) Method and system for storing energy in the form of biopolymers
AU2020369556B2 (en) Separation of acetate from fermentation broth
US20230065430A1 (en) Microorganisms and methods for improved biological production of ethylene glycol
EP4381076A1 (en) Microorganisms and methods for improved biological production of ethylene glycol
CN117693588A (zh) 用于改进乙二醇的生物产生的微生物和方法
AU2024203354A1 (en) Recombinant microorganisms and uses therefor
TW202235621A (zh) 重組微生物及其用途
TW202344683A (zh) 可再生化學品生產分散整合至現有油、氣體、石油及化學品生產及工業基礎設施中
CN117836419A (zh) 转导免疫细胞的方法