TW202406285A - 隔離式切換式電源及其控制器和控制方法 - Google Patents

隔離式切換式電源及其控制器和控制方法 Download PDF

Info

Publication number
TW202406285A
TW202406285A TW112127728A TW112127728A TW202406285A TW 202406285 A TW202406285 A TW 202406285A TW 112127728 A TW112127728 A TW 112127728A TW 112127728 A TW112127728 A TW 112127728A TW 202406285 A TW202406285 A TW 202406285A
Authority
TW
Taiwan
Prior art keywords
voltage
signal
conduction
circuit
duration
Prior art date
Application number
TW112127728A
Other languages
English (en)
Inventor
陳雪峰
Original Assignee
美商茂力科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商茂力科技股份有限公司 filed Critical 美商茂力科技股份有限公司
Publication of TW202406285A publication Critical patent/TW202406285A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33538Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type
    • H02M3/33546Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only of the forward type with automatic control of the output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0041Control circuits in which a clock signal is selectively enabled or disabled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申請揭露了隔離式切換式電源及其控制器和控制方法。切換式電源包括具有初級線圈和次級線圈的變壓器、耦接至初級線圈的初級開關、耦接至次級線圈的次級開關。控制方法包括:對次級開關兩端電壓的最大值進行取樣保持,以提供第一電壓訊號;基於第一電壓訊號,提供小於第一電壓訊號的第二電壓訊號;從次級開關兩端電壓的增大到第二電壓訊號時開始計時,到次級開關兩端電壓增大到第一電壓訊號時結束計時,計時時間為第一時長;以及調整次級開關第二次導通的導通時長,使下一開關週期的第一時長與第一時間閾值接近。

Description

隔離式切換式電源及其控制器和控制方法
本揭露的實施例是關於電子電路,更具體地說,本發明是關於採用軟開關技術的隔離式切換式電源及其控制器和控制方法。
通用序列匯流排(USB)電源傳輸(PD)標準已開始被普及使用在智慧裝置和筆記型電腦製造商。USB PD標準允許更高的功率位準(高達100 W)和自適應調整的輸出電壓(例如5V~28V),這一趨勢需要更高的功率,更快的速度和更小的隔離式切換式電源。
然而,隨著矽基元件接近其理論效能極限,現有隔離式電源的進一步效能改進變得更加困難,難以在保持高效率和低成本的同時滿足PD標準的更高電源傳輸要求。
針對先前技術中存在的一個或多個問題,本發明的目的在於提供能夠在保持高效率和低成本的同時滿足PD標準更高電源傳輸需求的隔離式切換式電源及其控制器和控制方法。
根據本發明的實施例,提出了一種用於隔離式切換式電源的控制器,該隔離式切換式電源包括具有一初級線圈和一次級線圈的一變壓器、耦接至初級線圈的一初級開關以及耦接至次級線圈的一次級開關,其中該控制器包括一最大值偵測電路、一分壓電路、一計時電路以及一導通時長控制電路。最大值偵測電路耦接至次級開關以偵測次級開關兩端的電壓,用以提供代表次級開關兩端的電壓的一最大值的一第一電壓訊號。分壓電路,用以接收第一電壓訊號,並提供小於第一電壓訊號的一第二電壓訊號。計時電路,用以從次級開關兩端的電壓增大到第二電壓訊號時開始計時,到次級開關兩端的電壓增大到第一電壓訊號時結束計時,其中計時電路的一計時時間為一第一時長。導通時長控制電路,用以提供一導通時長控制訊號以控制次級開關的第二次導通的導通時長,使下一開關週期的第一時長與一第一時間閾值接近。
根據本發明的實施例,還提出了一種隔離式切換式電源,包括一控制器。控制器包括一最大值偵測電路、一分壓電路、一計時電路以及一導通時長控制電路。最大值偵測電路耦接至次級開關以偵測次級開關兩端的電壓,用以提供代表次級開關兩端的電壓的一最大值的一第一電壓訊號。分壓電路,用以接收第一電壓訊號,並提供小於第一電壓訊號的一第二電壓訊號。計時電路,用以從次級開關兩端的電壓增大到第二電壓訊號時開始計時,到次級開關兩端的電壓增大到第一電壓訊號時結束計時,其中計時電路的一計時時間為一第一時長。導通時長控制電路,用以提供一導通時長控制訊號以控制次級開關的第二次導通的導通時長,使下一開關週期的第一時長與一第一時間閾值接近。
根據本發明的實施例,還提出了一種隔離式切換式電源的控制方法,該隔離式切換式電源包括具有一初級線圈和一次級線圈的一變壓器、耦接至初級線圈的一初級開關以及耦接至該次級線圈的一次級開關。控制方法包括以下步驟。對次級開關兩端的電壓的一最大值進行取樣保持,以提供第一電壓訊號。基於第一電壓訊號,提供小於第一電壓訊號的一第二電壓訊號。從次級開關兩端的電壓達到第二電壓訊號時開始計時,到次級開關兩端的電壓增大到第一電壓訊號時結束計時,其中從開始計時到結束計時的一計時時間為一第一時長。調整次級開關一第二次導通的一導通時長,使下一開關週期的該第一時長與一第一時間閾值接近。
在本發明的實施例中,基於第一時長與第一時間閾值的比較,次級開關第二次導通的導通時長被即時地調整,使下一開關週期的第一時長接近第一時間閾值,以使得初級開關實現接近理論極限的完全的零電壓導通。此外,採用比矽基元件輸出電容更小和更高工作頻率的寬能隙元件,可以進一步降低初級開關零電壓導通時的電壓值,以最小化初級開關零電壓導通時的能量消耗,減小隔離式切換式電源的尺寸,從而實現更高的功率密度和更好的效率。
下面將詳細描述本發明的具體實施例,應當注意,這裡描述的實施例只用於舉例說明,並不用於限制本發明。在以下描述中,為了提供對本發明的透徹理解,闡述了大量特定細節。然而,對於本領域具有通常知識者顯而易見的是:不必採用這些特定細節來實行本發明。在其他實例中,為了避免混淆本發明,未具體描述已知的電路、材料或方法。
在整個說明書中,對「一個實施例」、「實施例」、「一個示例」或「示例」的描述意味著:結合該實施例或示例描述的特定特徵、結構或特性被包含在本發明至少一個實施例中。因此,在整個說明書的各個地方出現的用語「在一個實施例中」、「在實施例中」、「一個示例」或「示例」不一定都指同一實施例或示例。應當理解,當稱元件「耦接到」或「連接到」另一元件時,它可以是直接耦接或耦接到另一元件或者可以存在中間元件。相反,當稱元件「直接耦接到」或「直接連接到」另一元件時,不存在中間元件。此外,可以以任何適當的組合和、或子組合將特定的特徵、結構或特性組合在一個或多個實施例或示例中。此外,本領域具有通常知識者應當理解,在此提供的附圖都是為了說明的目的,並且附圖不一定是按比例繪製的。相同的附圖標記表示相同的元件。這裡使用的術語「及/或」包括一個或多個相關列出的項目的任一和所有組合。
本發明可以被應用於任何隔離式切換式電源。在接下來的詳細描述中,為了簡潔起見,僅以返馳式轉換器(flyback converter)為例來解釋本發明的具體工作原理。
圖1為根據本發明一實施例的隔離式切換式電源100的示意圖。如圖1所示,隔離式切換式電源100包括變壓器T、初級開關10、次級開關20以及控制器30。變壓器T具有初級線圈、次級線圈以及輔助線圈,以提供隔離。其中初級線圈和次級線圈均具有第一端和第二端,初級線圈的第一端接收輸入電壓Vin,次級線圈的第一端提供直流輸出電壓Vo,第二端耦接至次級參考接地(SGND)。初級開關10耦接在初級線圈的第二端與初級參考接地(PGND)之間。次級開關20耦接在次級線圈的第二端與負載之間。然而,本領域具有通常知識者可知,次級開關20也可耦接在次級線圈的第一端與負載之間。
初級開關10耦接至初級線圈,控制儲存在初級線圈的能量向次級線圈傳遞。次級開關20耦接至次級線圈,作為同步整流取代傳統的整流二極體來降低損耗,以提高隔離式切換式電源100的效率。此外,利用電路的寄生元件(例如初級開關10的輸出電容和變壓器激磁電感)在零電壓情形下導通初級開關10,可進一步降低切換損失。
在圖1所示的實施例中,切換式電源100工作在不連續導通模式(Discontinuous Conduction Mode,DCM),初級開關10零電壓導通。在初級開關10實現零電壓導通之前,次級開關20被導通兩次。具體地,當流過次級開關20的電流過零後,次級開關20的第一次導通結束,之後次級開關20還會被再次導通以產生一個流過變壓器T激磁電感的負電流。該負電流被用於放電初級開關10的輸出電容。在本發明的實施例中,根據每個開關週期內第一時長t D與第一時間閾值t D_ref的比較,即時調整次級開關20的第二次導通的導通時長TON,以完全放電初級開關10的輸出電容,使隨後的開關週期內第一時長t D接近第一時間閾值t D_ref,實現初級開關10的完全零電壓導通(Full ZVS)。
在圖1所示的實施例中,控制器30包括最大值偵測電路301、分壓電路302、計時電路303、閾值產生電路304、導通時長控制電路305、次級邏輯電路306、再次關斷偵測電路307、隔離電路308、電壓過零偵測電路309以及初級邏輯電路310。在一個實施例中,控制器30包括一個積體電路晶片,還包括多個引腳。
如圖1所示,最大值偵測電路301經引腳SRD耦接至次級開關20的汲極端以偵測次級開關兩端的電壓V Sec_SR,並在輸出端提供代表次級開關兩端電壓最大值的第一電壓訊號V SRD。分壓電路302耦接至最大值偵測電路301的輸出端以接收第一電壓訊號V SRD,在其輸出端提供第二電壓訊號k*V SRD。其中,k為大於0小於1的數值。在一個實施例中,分壓電路302對第一電壓訊號V SRD進行分壓,以提供第二電壓訊號k*V SRD。分壓電路302可包括電阻分壓器或者電容分壓器。在另一個實施例中,分壓電路302將偏壓電壓訊號(1-k)*V SRD從第一電壓訊號V SRD中減去,以在輸出端提供第二電壓訊號k*V SRD
在圖1所示的實施例中,計時電路303具有第一輸入端、第二輸入端、第三輸入端和輸出端,其中第一輸入端經引腳SRD耦接至次級開關20的汲極端,接收次級開關20兩端的電壓V Sec_SR,第二輸入端耦接至最大值偵測電路301的輸出端以接收第一電壓訊號V SRD,第三輸入端耦接至分壓電路302的輸出端以接收第二電壓訊號k*V SRD。計時電路303從次級開關兩端電壓V Sec_SR增大到第二電壓訊號k*V SRD時開始計時,到次級開關兩端電壓V Sec_SR增大到第一電壓訊號V SRD時結束計時,計時電路303的計時時間為第一時長t D。在一個實施例中,計時電路303在輸出端提供第一控制訊號T D,其中第一控制訊號制訊號T D的有效時長寬度等於第一時長t D。在一個實施例中,計時電路303可包括多個比較器和邏輯閘電路的組合。
在圖1所示的實施例中,閾值產生電路304用於產生第二控制訊號T DREF,其中第二控制訊號T DREF的有效時長寬度等於第一時間閾值t D_ref。在一個實施例中,閾值產生電路304經引腳ZVS耦接至控制器30外部的參考電阻器R TD。在一個實施例中,使用者可通過選擇參考電阻器R TD來設定第一時間閾值t D_ref
在圖1所示的實施例中,導通時長控制電路305具有第一輸入端、第二輸入端和輸出端,其中第一輸入端接收第一控制訊號T D,第二輸入端接收第二控制訊號T DREF,基於第一控制訊號T D和第二控制訊號T DREF,導通時長控制電路305將第一時長t D與第一時間閾值t D_ref相比較,根據比較結果調整次級開關20第二次導通的導通時長TON,在其輸出端產生控制次級開關20關斷的導通時長控制訊號ZOFF,使得下一開關週期內的第一時長t D與第一時間閾值t D_ref接近。在一個實施例中,當第一時長t D小於第一時間閾值t D_ref時,導通時長控制電路305延長導通時長TON;當第一時長t D大於第一時間閾值t D_ref時,導通時長控制電路305縮短導通時長TON,以使得隨後開關週期的第一時長t D接近第一時間閾值t D_ref
繼續如圖1所示,次級邏輯電路306耦接至導通時長控制電路305以接收導通時長控制訊號ZOFF,基於導通時長控制訊號ZOFF,產生次級控制訊號CTRLS,經引腳SDrv耦接至次級開關20的控制端,以控制次級開關20的導通與關斷。
再次關斷偵測電路307偵測到次級開關20的第二次關斷時,提供初級導通致能訊號PRON至隔離電路308的輸入端。隔離電路308在輸出端產生與初級導通致能訊號PRON電隔離的同步訊號SYNC,以實現初級側與次級側的電隔離。隔離電路308可以包括光電耦合器、變壓器、容性隔離元件或任何其他合適的電隔離元件。在其他的實施例中,隔離電路308可以設置在控制器積體電路的外部。
電壓過零偵測電路309偵測初級開關10兩端的電壓V Pri_DS是否過零,並產生電壓過零偵測訊號PON。在一個實施例中,電壓過零偵測電路309耦接至變壓器T的輔助線圈,經控制器30的ZCD引腳接收代表初級開關兩端電壓V Pri_DS的偵測訊號V ZCD,並將電壓偵測訊號V ZCD與過零閾值V ZCD_TH進行比較,在輸出端提供電壓過零偵測訊號PON。在一個實施例中,過零閾值V ZCD_TH為20mV。
初級邏輯電路310耦接至隔離電路308的輸出端以接收同步訊號SYNC,耦接至電壓過零偵測電路309以接收過電壓零偵測訊號PON,基於同步訊號SYNC和電壓過零偵測訊號PON產生初級控制訊號CTRLP,並將該初級控制訊號CTRLP經引腳PDrv提供至初級開關10的控制端,以控制初級開關10。在一些實施例中,當同步訊號SYNC來臨且初級開關10兩端的電壓V Pri_DS過零時,初級開關10在延時t Delay後被零電壓導通。
一般地,矽基元件(例如MOSFET)由於其輸出電容大,需要較大的能量才能完全放電其輸出電容以實現零電壓導通。在實際應用中,出於成本和損耗的綜合考慮,矽基元件的輸出電容往往不會被完全放電。因此在實現零電壓導通技術時,僅能實現部分零電壓導通,矽基元件兩端的電壓往往不是0V而是15~25V。這樣的部分零電壓導通不僅會增加導通損耗,而且會引起次級開關兩端的電壓出現較大的突波,產生電磁干擾。
在本發明的一個實施例中,初級開關10可包括新興的寬能隙元件,例如基於氮化鎵(GaN)或碳化矽(SiC)的元件,代替傳統的矽基元件。寬能隙元件可以在較高的開關頻率下工作而不會降低效率,同時具有遠低於矽基元件的輸出電容,因此此類元件將進一步減小隔離轉換器的尺寸,同時帶來明顯的效率改進。而且,本發明的導通時長控制電路305可以根據當前週期偵測得到的第一時長t D與第一時間閾值t D_ref的比較結果,動態地調整次級開關第二次導通的導通時長TON,以根據實際的電路運行來自適應地實現對初級開關10的輸出電容的完全放電。在本發明的一個實施例中,過零閾值V ZCD_TH為幾十毫伏特,遠小於矽基元件零電壓導通時的電壓。
圖2為根據本發明一實施例的用於隔離式切換式電源100的控制方法200的方法流程圖。控制方法200包括步驟201~204。
在步驟201,對次級開關20兩端的電壓的最大值進行取樣保持,以提供第一電壓訊號V SRD
在步驟202,基於第一電壓訊號VSRD,提供小於第一電壓訊號V SRD的第二電壓訊號k*V SRD。在一個實施例中,k為大於0小於1的數。
在一個實施例中,對第一電壓訊號V SRD進行分壓,提供第二電壓訊號k*V SRD。在另一個實施例中,將一偏壓電壓訊號(1-k)*V SRD從第一電壓訊號V SRD中減去,以提供第二電壓訊號k*V SRD
在步驟203,從次級開關兩端的電壓V Sec_SR達到第二電壓訊號k*V SRD時開始計時,到次級開關兩端的電壓V Sec_SR增大到第一電壓訊號VSRD時結束計時,計時時間為第一時長t D
在步驟204,調整次級開關20第二次導通的導通時長TON,使下一開關週期的第一時長t D和第一時間閾值t D_ref接近。在一個實施例中,當第一時長t D小於第一時間閾值t D_ref時,延長次級開關20的導通時長TON;當第一時長t D大於第一時間閾值t D_ref時,縮短次級開關20的導通時長TON。
在圖2所示的實施例中,控制方法200還進一步包括步驟205~208。
在步驟205,偵測到次級開關20的二次關斷時,提供初級導通致能訊號PRON至隔離電路308的輸入端。在步驟206,耦接至隔離電路308的輸出端以接收與初級導通致能訊號PRON電隔離的同步訊號SYNC。在步驟207,偵測初級開關10兩端的電壓V Pri_DS是否過零,即偵測初級開關兩端的電壓V Pri_DS是否小於過零閾值V ZCD_TH,並產生電壓過零偵測訊號。在步驟208,當偵測到初級開關10兩端的電壓過零時,初級開關10在延時t Delay後被導通。
下面根據圖3來說明本發明實現完全零電壓導通的工作原理。
圖3為根據本發明一實施例的次級開關導通時長控制的原理的示意圖。如圖3的曲線1所示,次級開關20在第一次導通結束後,次級開關20沒有第二次導通,即導通時長TON為0。其中次級開關20第一次導通結束後,次級開關兩端電壓V Sec_SR以切換式電源輸出電壓Vo為中心值正弦振盪的振盪週期為Ts。
從曲線1依次抬升到曲線5,次級開關20的導通時長TON逐漸增大,在初級開關10導通時次級開關兩端的電壓V Sec_SR隨之被逐漸抬高。當初級開關10實現完全的零電壓導通時,次級開關兩端的電壓V Sec_SR被抬升至曲線5。因而次級開關兩端電壓V Sec_SR跟隨曲線5從第二電壓訊號k*V SRD上升到第一電壓訊號V SRD的持續時間被設定為第一時間閾值t D_ref。根據圖3所示的實施例,第一時間閾值t D_ref被設定為: 其中k為第二電壓訊號與第一電壓訊號的比值。在其中一個實施例中,k=0.75。
繼續如圖3中的曲線3所示,當初級開關10被導通時,其負電流不足以將次級開關兩端的電壓V Sec_SR上拉至k*V SRD。這種情況下,次級開關20兩端的電壓V Sec_SR從第二電壓訊號k*V SRD上升到第一電壓訊號V SRD的持續時間被計時為0,即第一時長t D為0。顯然地,第一時間閾值t D_ref大於第一時長t D。回應於第一時間閾值t D_ref與第一時長t D的第一時間差值(此時為t D_ref),次級開關20進行第二次導通且導通時長TON增大,以進一步抬高下一開關週期的次級開關兩端的電壓V Sec_SR,使其第一時長t D接近第一時間閾值t D_ref。如圖3的曲線4所示,次級開關兩端的電壓V Sec_SR在初級開關10被導通時繼續被抬高,使得第一時長t D進一步接近第一時間閾值t D_Ref。直至次級開關兩端的電壓V Sec_SR跟隨曲線5,第一時長t D等於第一時間閾值t D_Ref,方可實現完全的零電壓導通。
可見,為實現初級開關10完全的零電壓導通,可以增大次級開關20第二次導通的導通時長TON。較長的導通時間TON可以導致較高幅值的負電流,並且當初級開關10導通時將產生較低電壓位準的初級開關兩端電壓V Pri_DS
然而,若次級開關20第二次導通的導通時長TON過長,將導致第一時長t D超過第一時間閾值t D_Ref,造成不必要的能量浪費。在這種情形下,因應於第一時長t D與第一時間閾值t D_ref的第二時間差值,導通時長控制電路305將縮短次級開關20的導通時長TON,使得下一開關週期的第一時長t D減小並接近第一時間閾值t D_ref,以提供使初級開關10實現完全零電壓導通的最小能量。因此,本發明的零電壓導通技術可節省初級開關10的導通損耗。
以k為0.75為例,次級開關兩端的電壓V Sec_SR跟隨曲線5從0.75*V SRD上升到V SRD的持續時間被設定為t D_Ref,該值由外部參考電阻R TD設置。理論上,無論第一電壓訊號V SRD和輸出電壓Vo是多少,對於完全的零電壓導通,第一時間閾值t D_Ref是固定值。因此,通過設置適當的電阻R TD,可以得到不同輸入輸出電壓下完全的零電壓導通。因此採用本發明的實施例,隔離式切換式電源100可以滿足USB PD應用所要求的高功率密度、高開關頻率、高效以及電磁干擾標準,同時維持整個隔離式切換式電源的低成本。
圖4為根據本發明一實施例的用於隔離式切換式電源的控制器30A的電路原理圖。圖4所示的控制器30A與圖1所示的控制器30基本相似,區別之處在於,圖4所示的控制器30A進一步包括位於次級側的初級關斷偵測電路311、電流過零偵測電路312、準諧振控制電路313以及位於初級側的電流比較電路314。
在圖4所示的實施例中,初級關斷偵測電路311偵測初級開關10是否關斷,產生初級關斷偵測訊號PROFF。初級關斷偵測電路311可以基於次級開關20兩端的電壓、流過次級開關20的電流、次級線圈兩端的電壓等電參數來判斷初級開關10是否關斷。初級關斷偵測電路311也可以通過其他方式從初級側獲取指示初級開關10是否關斷的訊號。
電流過零偵測電路312偵測流過次級開關20的電流是否過零,並產生過零偵測訊號ZCD1。準諧振控制電路313耦接至次級開關20以偵測切換式電源的諧振電壓,並在諧振電壓的目標波谷處產生第二次導通致能訊號ZON。本領域具有通常知識者應當理解,本發明可以被應用於任何不連續導通模式下的隔離式切換式電源。圖4給出的準諧振控制僅僅是示例性的,採用其他方式控制的不連續導通模式下的隔離式返馳式轉換器同樣滿足本發明的精神和保護範圍。
如前所述,導通時長控制電路305調節次級開關第二次導通的導通時長TON,並在次級開關20的導通時長達到TON時產生導通時長控制訊號ZOFF。
次級邏輯電路306A具有第一輸入端、第二輸入端、第三輸入端、第四輸入端和輸出端,其中第一輸入端耦接至初級關斷偵測電路311以接收初級關斷偵測訊號PROFF,第二輸入端耦接至電流過零偵測電路312的輸出端以接收電流過零偵測訊號ZCD1,第三輸入端耦接至準諧振控制電路313以接收第二次導通致能訊號ZON,第四輸入端耦接至導通時長控制電路305A以接收導通時長控制訊號ZOFF。次級邏輯電路306A基於初級關斷偵測訊號PROFF和電流過零偵測訊號ZCD1產生次級控制訊號CTRLS以控制次級開關20的第一次切換。此外次級邏輯電路306A還基於第二次導通致能訊號ZON和導通時長控制訊號ZOFF產生次級控制訊號CTRLS以控制次級開關20的第二次切換。再次關斷偵測電路307偵測到次級開關20的第二次關斷時,提供初級導通致能訊號PRON。
此外,切換式電源100A還包括電流比較電路314。電流比較電路314具有第一輸入端、第二輸入端和輸出端,其中第一輸入端接收代表流過初級開關10電流的初級電流取樣訊號ISENP,第二輸入端接收第一閾值電壓VTH1。電流比較電路314將初級電流取樣訊號ISENP與第一閾值電壓VTH1進行比較,在輸出端產生電流比較訊號POFF。初級邏輯電路310耦接至電流比較電路314的輸出端以接收電流比較訊號POFF,並基於電流比較訊號POFF、電壓過零偵測訊號PON以及同步訊號SYNC,產生初級控制訊號CTRLP以控制初級開關10。當流過初級開關10的電流ISENP達到第一閾值電壓VTH1時,初級開關10被關斷。第一閾值電壓VTH1可以為定值,也可隨同步訊號SYNC變化而變化。
圖5為根據本發明一實施例的隔離式切換式電源的工作的波形圖。如圖5所示,在切換式電源的一個開關週期內,例如在時刻t1,初級控制訊號CTRLP由高電位變為低電位,初級開關10被關斷。在初級開關10被關斷後,次級開關20兩端的電壓V Sec_SR由正電壓變為負電壓,使得次級控制訊號CTRLS由低電位變為高電位,次級開關20隨之被第一次導通。
隨後,在時刻t2,流過次級開關20的次級電流ISENS減小至零,次級控制訊號CTRLS由高電位變為低電位,次級開關20隨之被關斷,次級開關20的第一次導通結束。
接下來,流過初級側和次級側的電流都為零時,儲能元件與開關的寄生電容開始諧振,產生諧振電壓,該諧振電壓的波形由位於次級側的準諧振電路313偵測到。在時刻t3,由於採用準諧振控制,偵測到次級開關20兩端的電壓V Sec_SR的諧振電壓達到當前工作週期的目標波谷(例如第三個波谷)時,第二次導通致能訊號ZON由低電位變為高電位,次級控制訊號CTRLS也隨之變高,次級開關20被第二次導通。
在時刻t4,導通時長控制訊號ZOFF的有效電位來臨時,次級控制訊號CTRLS隨之由高電位變為低電位,次級開關20被第二次關斷,次級開關20的第二次導通結束。如圖5所示,此時次級開關20第二次導通的導通時長為TON1。
此外,再次關斷偵測電路307偵測到次級開關20的第二次關斷時,提供初級導通致能訊號PRON。當初級導通致能訊號PRON的正緣來臨,幾乎與此同時,隔離電路308輸出的同步訊號SYNC也由低電位變為高電位。隨後電壓過零偵測電路309偵測到輔助線圈上的電壓V ZCD過零,初級開關10在延時t Delay後被導通。
如圖5所示,當初級開關10在A點被導通時,初級開關兩端的電壓V Pri_DS還比較大,次級開關兩端的電壓V Sec_SR被迅速上拉至第二電壓訊號 k*V SRD。計時電路303開始計時,直到次級開關兩端的電壓V Sec_SR增大到第一電壓訊號V SRD時,計時電路303停止計時,計時時間為第一時長(標記為t D1)。如圖5所示,此處的第一時長t D1很短,遠小於第一時間閾值t D_ref
根據本發明的實施例,為實現完全的零電壓導通,在下一開關週期,導通時長控制電路305基於第一時長t D1和閾值產生電路304提供的第一時間閾值t D_ref,增大或延長次級開關20第二次導通的導通時長,以使得第一時長t D2逐漸接近第一時間閾值t D_ref
如圖5所示,在下一開關週期內,次級開關20的導通時長TON2增大,而且當初級開關10在B點處導通時,初級開關兩端電壓V Pri_DS遠小於A點處導通時的電壓位準。隨後計時電路303工作,偵測次級開關兩端的電壓V Sec_SR從第二電壓訊號k*V SRD增大到第一電壓訊號V SRD的持續時長,即第一時長(此處標記為t D2)。由於第一時長t D2仍然小於第一時間閾值t D_ref,導通時長控制電路305基於第一時間閾值t D_ref與第一時長t D2的第一時間差值,增大次級開關20第二次導通的導通時長TON3。隨後,當初級開關10在C點處導通時,初級開關兩端電壓V Pri_DS進一步降低,進一步小於B點處導通時的電壓位準。在C點處,初級開關10實現零電壓導通。在下一開關週期,第一時長t D3進一步接近第一時間閾值t D_ref
可見,根據本發明的實施例,導通時長控制電路305基於當前週期的第一時長t D與第一時間閾值t D_ref的比較,不斷調整次級開關20第二次導通的導通時長TON,使得下一開關週期的第一時長t D接近第一時間閾值t D_ref,最終在幾個開關週期後,初級開關10實現完全的零電壓導通。
圖6為根據本發明一實施例的計時電路303A和閾值產生電路304A的電路的原理圖。如圖6所示,計時電路303A包括第一比較電路3031、第二比較電路3032以及邏輯電路3033。第一比較電路3031將次級開關兩端的電壓V Sec_SR與第一電壓訊號V SRD進行比較,在輸出端產生第一比較訊號CP1。在一個實施例中,當次級開關兩端的電壓V Sec_SR增大至第一電壓訊號V SRD時,第一比較訊號CP1具有高電位。在圖6所示的實施例中,第一比較電路3031包括比較器CMP1。比較器CMP1的反相輸入端耦接至最大值偵測電路301的輸出端以接收第一電壓訊號V SRD,正相輸入端耦接至控制器30A的SRD引腳以接收次級開關兩端的電壓V Sec_SR,輸出端提供第一比較訊號CP1。
第二比較電路3032將次級開關兩端的電壓V Sec_SR與第二電壓訊號k*V SRD進行比較,在輸出端產生第二比較訊號CP2。在一個實施例中,當次級開關兩端的電壓V Sec_SR增大至第二電壓訊號k*V SRD時,第二比較訊號CP2具有高電位。在圖5所示的實施例中,第二比較電路3032包括比較器CMP2。比較器CMP2的反相輸入端耦接至分壓電路302的輸出端以接收第二電壓訊號k*V SRD,正相輸入端耦接至控制器30A的SRD引腳以接收次級開關兩端的電壓V Sec_SR,輸出端提供第二比較訊號CP2。
邏輯電路3033基於第一比較訊號CP1和第二比較訊號CP2,產生第一控制訊號T D。在一個實施例中,第一控制訊號T D的高電位寬度為第一時長t D。在圖6所示的實施例中,邏輯電路3033包括RS正反器FF1。RS正反器FF1具有設定端、重設端和輸出端,其中設定端接收第二比較訊號CP2,重設端接收第一比較訊號CP1,在輸出端產生第一控制訊號T D,該第一控制訊號T D的有效時長為第一時長t D
閾值產生電路304A用於提供有效時長為第一時間閾值t D_ref的第二控制訊號T DREF。在圖6所示的實施例中,閾值產生電路304A包括電流鏡電路3041、參考電容器Cs、開關控制電路3042以及第三比較電路3043。電流鏡電路3041具有電流設定端和電流輸出端,其中電流設定端經控制器30A的ZVS端耦接至參考電阻器R TD以設定控制電流Is。參考電容器Cs具有第一端和第二端,其中第一端耦接至電流鏡電路3041的電流輸出端,第二端耦接至次級參考接地。
開關控制單元3042耦接至第二比較電路3032的輸出端接收第二比較訊號CP2,回應於第二比較訊號CP2,對參考電容器Cs進行充電,充電電流為控制電流Is。如圖6所示,開關控制單元3042包括RS正反器FF2、常閉開關Q1和常開開關Q2。其中RS正反器FF2具有設定端、重設端和輸出端,其中設定端耦接至第二比較電路3032的輸出端以接收第二比較訊號CP2,重設端耦接以接收第二控制訊號T DREF,輸出端耦接至常閉開關Q1的控制端。常閉開關Q1耦接在供電電源VP與參考電容器Cs的第一端之間。常開開關Q2與參考電容器Cs並聯耦接,其控制端耦接以接收第二控制訊號T DREF
第三比較電路3043將參考電容器Cs兩端的電壓VCs與參考電壓Vref相比較,基於比較結果產生第二控制訊號T DREF。在圖6所示的實施例中,第三比較電路包括比較器CMP3。比較器CMP3的反相輸入端耦接至參考電容器Cs的第一端以接收參考電容器兩端的電壓VCs,正相輸入端接收參考電壓Vref,輸出端提供第二控制訊號T DREF
在一個實施例中,閾值產生電路304A還進一步包括單觸發電路3044,耦接在第三比較電路3043的輸出端與常開開關Q2的控制端之間,用於在參考電容器兩端的電壓VCs達到參考電壓Vref時,重設參考電容器Cs兩端的電壓VCs。
繼續如圖6所示,導通時長控制電路305具有接收第一控制訊號T D的第一端和接收第二控制訊號T DREF的第二端,基於第一控制訊號T D和第二控制訊號T DREF,在輸出端提供導通時長控制訊號ZOFF,以控制次級開關20第二次導通的導通時長TON。
圖7為根據本發明一實施例的導通時長控制電路305A的電路圖。在圖7所示的實施例中,導通時長控制電路305A包括時長比較電路3051、充電控制單元3052、放電控制單元3053、第一電容器C1、第二電容器C2以及第四比較電路3054。
時長比較電路3051具有第一輸入端、第二輸入端、第一輸出端和第二輸出端,其中第一輸入端耦接至計時電路303A的輸出端以接收第一控制訊號T D,第二輸入端耦接至閾值產生電路304A的輸出端以接收第二控制訊號T DREF,時長比較電路3051基於第一控制訊號T D和第二控制訊號T DREF,在第一輸出端提供第一致能訊號T1,在第二輸出端提供第二致能訊號T2。其中第一致能訊號T1代表第一時間閾值t D_ref與第一時長t D的第一時間差值。其中第二致能訊號T1代表第一時長t D與第一時間閾值t D_ref的第二時間差值。
在圖7所示的實施例中,時長比較電路3051包括第一及閘電路AND1與第二及閘電路AND2。第一及閘電路AND1具有第一輸入端、第二反相輸入端以及輸出端,其中第一輸入端耦接至計時電路304A的輸出端以接收第二控制訊號T DREF,第二反相輸入端接收第一控制訊號T D,在輸出端產生代表第一時長t D小於第一時間閾值t D_ref的第一致能訊號T1。第二及閘電路AND2具有第一輸入端、第二反相輸入端以及輸出端,其中第一輸入端耦接至計時電路303A的輸出端以接收第一控制訊號T D,第二反相輸入端接收第二控制控制訊號T DREF,在輸出端在輸出端產生代表第一時長t D大於第一時間閾值t D_ref的第二致能訊號T2。
充電控制單元3052接收第一致能訊號T1,基於第一致能訊號T1控制第一充電電流源I1對第一電容器C1進行充電。如圖7所示,充電控制單元3052耦接在第一充電電流源I1的輸出端與第一電容器C1的第一端之間,第一電流源I1的供電端耦接至供電電源,第一電容器C1的第二端接地。第一電流源I1對電容器C1的充電時長由第一時間差值決定。在圖7所示的實施例中,充電控制單元3052包括耦接在第一充電電流源I1的輸出端與第一電容器C1的第一端之間的開關S1。在其他實施例中,第一充電電流源I1具有致能控制端,僅在第一致能訊號T1有效時對第一電容器C1進行充電。
放電控制單元3053接收第二致能訊號T2,基於第二致能訊號T2控制第一放電電流源I2對第一電容器C1進行放電。如圖7所示,放電控制單元3053耦接在第一電容器C1的第一端與放電電流源I2的輸入端之間,第一放電電流源I2的輸出端接地。第一放電電流源I2對電容器C1的放電時長由第二時間差值決定。在圖7所示的實施例中,放電控制單元3053包括耦接在第一放電電流源I2的輸入端與第一電容器C1第一端之間的開關S2。在其他實施中,第一放電電流源I2具有致能控制端,僅在第二致能訊號訊號T2有效時對第一電容器C1進行放電。
第二電容器C2具有第一端和第二端,其中第一端經開關S3耦接至第一充電電流源I1的輸出端,第二端接次級參考接地。開關S3受第二次導通致能訊號ZON的控制,當次級開關20第二次被導通時,第一充電電流源I1開始對第二電容器C2進行充電,第二電容器兩端的電壓VC2開始增大。第四比較電路3054將第一電容器兩端的電壓VC1與第二電容器兩端的電壓VC2進行比較,產生導通時長控制訊號ZOFF。在一個實施例中,當第二電容器兩端的電壓VC2增大到第一電容器兩端的電壓VC1時,導通時長控制訊號ZOFF翻轉為高電位,次級開關20被關斷。在圖7所示的實施例中,第四比較電路3054包括比較器CMP4。比較器CMP4的正相輸入端耦接至第二電容器C2的第一端以接收第二電容器兩端的電壓VC2,反相輸入端耦接至第一電容器C1的第二端以接收第一電容器兩端的電壓VC1,在其輸出端提供導通時長控制訊號ZOFF。
在圖7所示的實施例中,當次級開關20開始第二次導通時,即第二次導通致能訊號ZON由低電位變為高電位時,第二電容器C2兩端的電壓VC2從零電壓開始增大。直到第二電容器C2兩端的電壓達到第一電容器兩端的電壓VC1時,第四比較電路3054的輸出翻轉,其輸出端的導通時長控制訊號ZOFF從低電位變為高電位,次級開關20被第二次關斷。隨後,第二電容器C2兩端的電壓VC2被單觸發電路3055的輸出重設至零電壓。
圖8為根據本發明一實施例的產生導通時長控制訊號的方法204的方法流程圖。在圖8所示的實施例中,產生導通時長控制訊號的方法204進一步包括步驟2041~2045。
在步驟2041,第一時長小於第一時間閾值,因應於第一時間閾值同第一時長的第一時間差值,利用第一充電電流源對第一電容器進行充電。其中對第一電容器的充電時長由第一時間差值決定。
在步驟2042,第一時長大於第一時間閾值,因應於第一時長與第一時間閾值的第二時間差值,利用第一放電電流源對第一電容器進行放電。其中對第一電容器的放電時長由第二時間差值決定。
在步驟2043,因應於次級開關的第二次導通,利用第一充電電流源對第二電容器進行充電,使第二電容器兩端的電壓從零開始增大。
在步驟2044,將第一電容器兩端的電壓與第二電容器兩端的電壓相比較。
在步驟2045,當第二電容器兩端的電壓增大至第一電容器兩端的電壓時,產生導通時長控制訊號,以關斷次級開關。
在一個進一步的實施例中,方法204進一步包括步驟2046。 在步驟2046,將第二電容器兩端的電壓重設至零電壓。
在說明書中,相關術語例如第一和第二等可以只是用於將一個實體或動作與另一個實體或動作區分開,而不必或不意味著在這些實體或動作之間的任意實體這種關係或者順序。數位順序例如「第一」、「第二」、「第三」等僅僅指的是多個中的不同個體,並不意味著任何順序或序列,除非申請專利範圍語言有具體限定。在任何一個申請專利範圍中的文本的順序並不意味著處理步驟必須以根據這種順序的臨時或邏輯順序進行,除非申請專利範圍語言有具體規定。在不脫離本發明範圍的情況下,這些處理步驟可以按照任意順序互換,只要這種互換不會造成申請專利範圍語言矛盾並且不會出現邏輯上謬誤。
雖然已參照幾個典型實施例描述了本發明,但應當理解,所用的術語是說明和示例性、而非限制性的術語。由於本發明能夠以多種形式具體實施而不脫離發明的精神或實質,所以應當理解,上述實施例不限於任何前述的細節,而應在隨附申請專利範圍所限定的精神和範圍內廣泛地解釋,因此落入申請專利範圍或其等效範圍內的全部變化和變型都應為隨附申請專利範圍所涵蓋。
100:隔離式切換式電源 10:初級開關 20:次級開關 30:控制器 301:最大值偵測電路 302:分壓電路 303,303A:計時電路 304,304A:閾值產生電路 305,305A:導通時長控制電路 306:次級邏輯電路 307:再次關斷偵測電路 308:隔離電路 309:電壓過零偵測電路 310:初級邏輯電路 311:初級關斷偵測電路 312:電流過零偵測電路 313:準諧振控制電路 314:電流比較電路 3031,3032,3043,3054:比較電路 CMP1,CMP2,CMP3,CMP4:比較器 3033:邏輯電路 FF1,FF2:正反器 3041:電流鏡電路 3042:開關控制單元 3051:時長比較電路 3052:充電控制單元 3053:放電控制單元 3055:單觸發電路 T:變壓器 R TD:電阻器 Cin,Co,Cs,C1,C2:電容器 Q1,Q2,S1,S2,S3,S4:開關 AND1,AND2:及閘電路 ZCD,PDrv,SRD,ZVS,SDrv:引腳 Vin,Vo,PGND,SGND,V ZCD,PON,CTRLP,SYNC,V Sec_SR,V SRD,k*V SRD,T D,T DREF,CTRLS,PRON,PON,POFF,PROFF,ZCD1, ZON,ZOFF,CP1,CP2,VP,Is,Vref,T1,T2,I1,I2,ISENS,TON1,TON2,TON3:訊號 t D,t D1,t D2,t D3:第一時長 t D_ref:第一時間閾值 t 1,t 2,t 3,t 4,t 5:時刻 200:控制方法 201~208,2041~2046:流程步驟
為了更好的理解本發明,將根據以下附圖對本揭露進行詳細描述。 [圖1]為根據本發明一實施例的隔離式切換式電源的示意圖; [圖2]為根據本發明一實施例的用於隔離式切換式電源的控制方法的流程圖; [圖3]為根據本發明一實施例的次級開關的導通時長控制的原理的示意圖; [圖4]為根據本發明一實施例的用於隔離式切換式電源的控制器的方塊圖; [圖5]為根據本發明一實施例的隔離式切換式電源的工作的波形圖; [圖6]為根據本發明一實施例的計時電路和閾值產生電路的電路圖; [圖7]為根據本發明一實施例的導通時長控制電路的電路圖; [圖8]為根據本發明一實施例的產生導通時長控制訊號的方法的流程圖。 在附圖中,相同或對應的標號被用以表示相同或對應的元件。
10:初級開關
20:次級開關
30:控制器
100:隔離式切換式電源
301:最大值偵測電路
302:分壓電路
303:計時電路
304:閾值產生電路
305:導通時長控制電路
306:次級邏輯電路
307:再次關斷偵測電路
308:隔離電路
309:電壓過零偵測電路
310:初級邏輯電路
T:變壓器
RTD:電阻器
Cin,Co:電容器
ZCD,PDrv,SRD,ZVS,SDrv:引腳
Vin,Vo,PGND,SGND,VZCD,PON,CTRLP,SYNC,VSec_SR,VSRD,k*VSRD,TD,TDREF,CTRLS,PRON,ZOFF:訊號

Claims (15)

  1. 一種用於一隔離式切換式電源的控制器,該隔離式切換式電源包括具有一初級線圈和一次級線圈的一變壓器、耦接至該初級線圈的一初級開關以及耦接至該次級線圈的一次級開關,其中該控制器包括: 一最大值偵測電路,耦接至該次級開關以偵測該次級開關兩端的電壓,用以提供代表該次級開關兩端的電壓的一最大值的一第一電壓訊號; 一分壓電路,用以接收該第一電壓訊號,並提供小於該第一電壓訊號的一第二電壓訊號; 一計時電路,用以從該次級開關兩端的電壓增大到該第二電壓訊號時開始計時,到該次級開關兩端的電壓增大到該第一電壓訊號時結束計時,其中該計時電路的一計時時間為一第一時長;以及 一導通時長控制電路,用以提供一導通時長控制訊號以控制該次級開關的一第二次導通的一導通時長,使下一開關週期的該第一時長與一第一時間閾值接近。
  2. 如請求項1所述的控制器,更包括: 一再次關斷偵測電路,用以偵測到該次級開關的一第二次關斷時,提供一初級導通致能訊號; 一隔離電路,具有一輸入端及一輸出端,其中該輸入端用以接收該初級導通致能訊號,該輸出端用以產生與該初級導通致能訊號電隔離的一同步訊號; 一電壓過零偵測電路,用以偵測該初級開關兩端的電壓是否過零,而產生一電壓過零偵測訊號; 一初級邏輯電路,耦接至該隔離電路的該輸出端以接收該同步訊號,耦接至該電壓過零偵測電路以接收該電壓過零偵測訊號,基於該同步訊號和該電壓過零偵測訊號產生一初級控制訊號。
  3. 如請求項1所述的控制器,其中該第一時間閾值t D_ref被設定為: , 其中 T s 為該次級開關第一次導通結束後,該次級開關兩端的電壓以該隔離式切換式電源的一輸出電壓為中心值正弦振盪的一振盪週期, k為該第二電壓訊號與該第一電壓訊號的一比值。
  4. 如請求項3所述的控制器,其中該比值 k為0.75。
  5. 如請求項1所述的控制器,其中該計時電路包括: 一第一比較電路,用以將該次級開關兩端的電壓與該第一電壓訊號進行比較,以產生一第一比較訊號; 一第二比較電路,用以將該第二電壓訊號與該次級開關兩端的電壓進行比較,以產生一第二比較訊號;以及 一邏輯電路,具有一設定端、一重設端和一輸出端,其中該設定端接收該第二比較訊號,該重設端接收該第一比較訊號,在該邏輯電路的該輸出端產生一第一控制訊號,該第一控制訊號的一有效時長為一第一時長。
  6. 如請求項5所述的控制器,更包括一閾值產生電路,用以提供該有效時長為該第一時間閾值的一第二控制訊號,其中該閾值產生電路包括: 一電流鏡電路,具有一電流設定端和一電流輸出端,其中該電流設定端耦接至一參考電阻器以設定一控制電流; 一參考電容器,具有一第一端和一第二端,其中該參考電容器的該第一端耦接至該電流鏡電路的該電流輸出端,該參考電容器的第二端耦接至一參考接地; 一開關控制單元,用以因應於該第二比較訊號,以該控制電流對該參考電容器進行充電;以及 一第三比較電路,用以將該參考電容器兩端的電壓與該參考電壓相比較,以產生該第二控制訊號。
  7. 如請求項1所述的控制器,其中該導通時長控制電路包括: 一充電控制單元,用以因應於該第一時間閾值與該第一時長的一第一時間差值,將一第一充電電流源耦接至一第一電容器,以對該第一電容器進行充電; 一放電控制單元,用以因應於該第一時長與該第一時間閾值的一第二時間差值,將該第一電容器耦接至一第一放電電流源,以對該第一電容器進行放電; 一第二電容器,用以因應於該次級開關的該第二次導通,將該第一充電電流源耦接至該第二電容器,對該第二電容器進行充電;以及 一第四比較電路,用以將該第一電容器兩端的電壓與該第二電容器兩端的電壓進行比較,產生該導通時長控制訊號。
  8. 如請求項1所述的控制器,其中該初級開關和該次級開關中的至少一個包括一氮化鎵開關或一碳化矽開關。
  9. 一種隔離式切換式電源,包括如請求項1至8中任一項所述的控制器。
  10. 一種隔離式切換式電源的控制方法,該隔離式切換式電源包括具有一初級線圈和一次級線圈的一變壓器、耦接至該初級線圈的一初級開關以及耦接至該次級線圈的一次級開關,其中該控制方法包括: 對該次級開關兩端的電壓的一最大值進行取樣保持,以提供第一電壓訊號; 基於該第一電壓訊號,提供小於該第一電壓訊號的一第二電壓訊號; 從該次級開關兩端的電壓達到該第二電壓訊號時開始計時,到該次級開關兩端的電壓增大到該第一電壓訊號時結束計時,其中從開始計時到結束計時的一計時時間為一第一時長;以及 調整該次級開關一第二次導通的一導通時長,使下一開關週期的該第一時長與一第一時間閾值接近。
  11. 如請求項10所述的控制方法,其中該第一時間閾值被設定為: , 其中 T s 為該次級開關第一次導通結束後,該次級開關兩端的電壓以該隔離式切換式電源的一輸出電壓為中心值正弦振盪的一振盪週期, k為該第二電壓訊號與該第一電壓訊號的一比值。
  12. 如請求項11所述的控制方法,其中該比值 k為0.75。
  13. 如請求項11所述的的控制方法,其中設定該第一時間閾值的步驟包括: 以一參考電阻器以設定一控制電流;以及 從該次級開關兩端的電壓達到該第二電壓訊號時開始計時,對一參考電容器以該控制電流進行充電,該參考電容器兩端的電壓從零開始增大至達到一參考電壓時結束計時,其中該計時時間為該第一時間閾值。
  14. 如請求項10所述的控制方法,其中調整該次級開關的該第二次導通的該導通時長的步驟包括: 因應於該第一時長小於該第一時間閾值,延長該次級開關的該第二次導通的該導通時長;以及 因應於該第一時長大於該第一時間閾值,縮短該次級開關的該第二次導通的該導通時長。
  15. 如請求項14所述的控制方法,其中: 因應於該第一時間閾值與該第一時長的一第一時間差值,將一第一充電電流源耦接至一第一電容器,以對該第一電容器進行充電; 因應於該第一時長與該第一時間閾值的一第二時間差值,將一第一放電電流源耦接至該第一電容器,以對該第一電容器進行放電; 因應於該次級開關的該第二次導通,將該第一充電電流源耦接至一第二電容器,以對該第二電容器進行充電;以及 當該第二電容器兩端的電壓達到該第一電容器兩端的電壓時,關斷該次級開關。
TW112127728A 2022-07-27 2023-07-25 隔離式切換式電源及其控制器和控制方法 TW202406285A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2022108914373 2022-07-27
CN202210891437.3A CN115173710A (zh) 2022-07-27 2022-07-27 隔离式开关变换器及其控制器和控制方法

Publications (1)

Publication Number Publication Date
TW202406285A true TW202406285A (zh) 2024-02-01

Family

ID=83496215

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112127728A TW202406285A (zh) 2022-07-27 2023-07-25 隔離式切換式電源及其控制器和控制方法

Country Status (3)

Country Link
US (1) US20240039417A1 (zh)
CN (1) CN115173710A (zh)
TW (1) TW202406285A (zh)

Also Published As

Publication number Publication date
CN115173710A (zh) 2022-10-11
US20240039417A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
CN109245569B (zh) 反激式变换器及其控制电路
TWI521852B (zh) 隔離式開關變換器及其控制器和控制方法
CN107078645B (zh) 在松弛震荡极值处具有切换请求的输出侧控制器
TWI821832B (zh) 準諧振控制的開關變換器及其控制器和控制方法
CN108712062B (zh) 开关控制电路、芯片、适配器及开关控制方法
TWI811910B (zh) 隔離式開關變換器及其控制器和控制方法
JP7378495B2 (ja) 能動非放散クランプ回路を備える電力コンバーターおよびそれぞれの制御装置
KR101542645B1 (ko) 온 시간 샘플링 방지
JP7095784B2 (ja) スイッチング電源装置
US20230109722A1 (en) Switching Mode Power Supply With Zero Voltage Switching And The Method Thereof
CN211656009U (zh) 开关电源的控制装置、芯片及开关电源
KR20090011715A (ko) 컨버터 및 그 구동 방법
CN113381615A (zh) 用于隔离电压变换器的能量回收电路及方法
CN111404380B (zh) 开关电源电路及方法
TW202414972A (zh) 隔離切換式電源及其控制器和控制方法
TWI841989B (zh) 非對稱半橋返馳變換器電源及其控制晶片和控制方法
TW202406285A (zh) 隔離式切換式電源及其控制器和控制方法
Wu et al. Quasi-resonant flyback converter with new valley voltage detection mechanism
TW202406284A (zh) 隔離式切換式電源及其控制器和控制方法
CN113890393A (zh) 开关电源电路及其控制电路和方法
TW202222022A (zh) 主動箝位返馳式轉換器
KR102230495B1 (ko) 전원 공급 장치
TWI842520B (zh) 非對稱半橋返馳式變換器電源及其控制電路
CN109347317A (zh) 一种零电压pfc变换器
US20240275272A1 (en) Methods and systems of power-factor-correction converters