TW202403528A - Scanning method and apparatus - Google Patents

Scanning method and apparatus Download PDF

Info

Publication number
TW202403528A
TW202403528A TW112120761A TW112120761A TW202403528A TW 202403528 A TW202403528 A TW 202403528A TW 112120761 A TW112120761 A TW 112120761A TW 112120761 A TW112120761 A TW 112120761A TW 202403528 A TW202403528 A TW 202403528A
Authority
TW
Taiwan
Prior art keywords
radiation
energy range
radiation detector
axis
scanning
Prior art date
Application number
TW112120761A
Other languages
Chinese (zh)
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202403528A publication Critical patent/TW202403528A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

Disclosed herein is a method, comprising: scanning an object with an imaging system that has a radiation detector and a radiation source being stationary with respect to each other. In the scanning, for i=1, ..., M, one value of i at a time in that order, performing scanning (i) by translating the radiation detector along a same translation plane and along a direction (i). An Ox axis and an Oy axis are both on the translation plane and perpendicular to each other. Orthogonal projections of the directions (i) on the Oy axis do not point in two opposite directions. Orthogonal projections of the directions (i) on the Ox axis point alternatingly in 2 opposite directions. For i=1, ..., (M-1), the direction (i) and the direction (i+1) are not parallel to each other. Each point of the object is scanned by at least two scannings of the scannings.

Description

掃描方法及裝置Scanning methods and devices

本發明是有關於一種掃描方法及裝置。The present invention relates to a scanning method and device.

輻射檢測器是測量輻射特性的裝置。該特性的示例可以包括輻射的強度、相位和偏振的空間分佈。由輻射檢測器測量的輻射可以是已經透過物體的輻射。輻射檢測器測量的輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射可以是其他類型的,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有一個或多個輻射檢測器。A radiation detector is a device that measures the characteristics of radiation. Examples of such properties may include the intensity, phase, and spatial distribution of polarization of the radiation. The radiation measured by the radiation detector may be radiation that has passed through the object. The radiation measured by the radiation detector may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. Radiation can be of other types such as alpha rays and beta rays. An imaging system may include one or more image sensors, each of which may have one or more radiation detectors.

本文公開了一種方法,所述方法包括:用成像系統掃描物體,所述成像系統包括相對於彼此靜止的輻射檢測器和輻射源。所述掃描物體包括:對於i=1、......、M,按順序一次一個i值,通過(A)沿同一平移平面且(B)沿方向(i)平移所述輻射檢測器來執行掃描(i)。M為大於1的整數。Ox軸和Oy軸均在所述平移平面上且相互垂直。所述方向(i),i=1、......、M在所述Oy軸上的正交投影不指向兩個相反的方向。所述方向(i),i=1、......、M在所述Ox軸上的正交投影交替指向2個相反的方向。對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)相互不平行。所述物體的每個點被所述掃描(i),i=1、......、M中的至少兩次掃描掃描。Disclosed herein is a method comprising scanning an object with an imaging system including a radiation detector and a radiation source stationary relative to each other. The scanned object includes: for i=1,...,M, sequentially one value of i at a time, by translating the radiation detector (A) along the same translation plane and (B) in direction (i) to perform scan(i). M is an integer greater than 1. The Ox axis and the Oy axis are both on the translation plane and perpendicular to each other. The orthogonal projection of the direction (i), i=1,...,M on the Oy axis does not point to two opposite directions. In the direction (i), the orthogonal projections of i=1,...,M on the Ox axis point alternately in two opposite directions. For i=1, ..., (M-1), the direction (i) and the direction (i+1) are not parallel to each other. Each point of the object is scanned by at least two of the scans (i), i=1,...,M.

在一方面,對於i=1、......、(M-2),所述方向(i)和所述方向(i+2)相互平行。In one aspect, for i=1, ..., (M-2), said direction (i) and said direction (i+2) are parallel to each other.

在一方面,所述每個點被所述掃描(i),i=1、......、M中的不超過2次掃描掃描。In one aspect, each point is scanned by no more than 2 of said scans (i), i=1,...,M.

在一方面,所述平移平面或者(A)與所述輻射檢測器的所有面向源的感測元件相交,或者(B)是所述輻射檢測器的所有面向源的感測元件的最佳擬合平面。In one aspect, the translation plane either (A) intersects all source-facing sensing elements of the radiation detector, or (B) is a best approximation of all source-facing sensing elements of the radiation detector. Combined plane.

在一方面,在所述掃描(i),i=1、......、M的掃描期間的時間點,所述平移平面垂直於與所述輻射源和所述輻射檢測器的面向源的感測元件相交的直線。In one aspect, at a point in time during said scan (i), i=1,...,M, said translation plane is perpendicular to an orientation of said radiation source and said radiation detector. The straight line where the source and sensing elements intersect.

在一方面,所述輻射檢測器的感測元件平面與所述輻射源相交。In one aspect, the sensing element plane of the radiation detector intersects the radiation source.

在一方面,對於i的每個奇數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第一能量範圍的輻射束(i),對於i的每個偶數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第二能量範圍的輻射束(i),所述第一能量範圍和所述第二能量範圍不同。In one aspect, for each odd value of i, the scanning (i) includes sending a radiation beam (i) of the same first energy range to the object with the radiation source, and for each even value of i, The scanning (i) includes using the radiation source to send a radiation beam (i) of the same second energy range to the object, the first energy range and the second energy range being different.

在一方面,所述第一能量範圍和所述第二能量範圍不重疊。In one aspect, the first energy range and the second energy range do not overlap.

在一方面,對於i的每個值,所述掃描(i)包括回應於第三能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述輻射檢測器的計數器進行加1計數,以及回應於第四能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述計數器進行減1計數,所述第三能量範圍和所述第四能量範圍不重疊。In one aspect, for each value of i, the scan (i) includes incrementing a counter of the radiation detector by one in response to a third energy range of radiation particles impacting the radiation detector, and in response to Radiation particles in a fourth energy range impact the radiation detector and are counted down by one using the counter, and the third energy range and the fourth energy range do not overlap.

在一方面,對於i的每個值,所述掃描(i)包括:利用所述輻射檢測器的第一計數器記錄撞擊所述輻射檢測器的感測元件的第五能量範圍的輻射粒子的數量;以及利用所述輻射檢測器的第二計數器記錄撞擊所述感測元件的第六能量範圍的輻射粒子的數量。第五能量範圍和第六能量範圍不重疊。In one aspect, for each value of i, the scanning (i) includes recording, with a first counter of the radiation detector, a number of radiation particles of a fifth energy range striking a sensing element of the radiation detector. ; and recording, using a second counter of the radiation detector, the number of radiation particles in a sixth energy range that impact the sensing element. The fifth energy range and the sixth energy range do not overlap.

在一方面,所述掃描(i),i=1、......、M的分別在平行於所述Ox軸的方向上測量的所有M個平移距離都相同。In one aspect, all M translation distances measured in the direction parallel to the Ox axis of scan (i), i=1,...,M respectively, are the same.

在一方面,對於i=1、......、(M-1),(A)在平行於所述Oy軸的方向上的所述掃描(i)的平移距離和(B)在平行於所述Oy軸的方向上的所述掃描(i+1)的平移距離之和不超過所述輻射檢測器在平行於所述Oy軸的方向上的尺寸。In one aspect, for i=1,...,(M-1), (A) the translation distance of the scan (i) in the direction parallel to the Oy axis and (B) the The sum of the translation distances of the scans (i+1) in the direction parallel to the Oy axis does not exceed the size of the radiation detector in the direction parallel to the Oy axis.

在一方面,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)中的一個方向平行於所述Ox軸。In one aspect, for i=1, ..., (M-1), one of the direction (i) and the direction (i+1) is parallel to the Ox axis.

本文公開了一種裝置,所述裝置包括成像系統,所述成像系統包括相對於彼此靜止的輻射檢測器和輻射源。所述成像系統被配置為掃描物體。所述成像系統對所述物體的掃描包括:對於i=1、......、M,按順序一次一個i值,通過(A)沿同一平移平面和(B)沿方向(i)平移所述輻射檢測器來執行掃描(i)。M為大於1的整數。Ox軸和Oy軸均在所述平移平面上且相互垂直。所述方向(i),i=1、......、M在所述Oy軸上的正交投影不指向兩個相反的方向。所述方向(i),i=1、......、M在所述Ox軸上的正交投影交替指向2個相反的方向。對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)相互不平行。所述物體的每個點被所述掃描(i),i=1、......、M中的至少兩次掃描掃描。Disclosed herein is an apparatus that includes an imaging system that includes a radiation detector and a radiation source that are stationary relative to each other. The imaging system is configured to scan an object. Scanning of the object by the imaging system includes: for i=1,...,M, one i value at a time in sequence, by (A) along the same translation plane and (B) along the direction (i) Scan (i) is performed by translating the radiation detector. M is an integer greater than 1. The Ox axis and the Oy axis are both on the translation plane and perpendicular to each other. The orthogonal projection of the direction (i), i=1,...,M on the Oy axis does not point to two opposite directions. In the direction (i), the orthogonal projections of i=1,...,M on the Ox axis point alternately in two opposite directions. For i=1, ..., (M-1), the direction (i) and the direction (i+1) are not parallel to each other. Each point of the object is scanned by at least two of the scans (i), i=1,...,M.

在一方面,對於i=1、......、(M-2),所述方向(i)和所述方向(i+2)相互平行。In one aspect, for i=1, ..., (M-2), said direction (i) and said direction (i+2) are parallel to each other.

在一方面,所述每個點被所述掃描(i),i=1、......、M中的不超過2次掃描掃描。In one aspect, each point is scanned by no more than 2 of said scans (i), i=1,...,M.

在一方面,所述平移平面要麼(A)與所述輻射檢測器的所有面向源的感測元件相交,要麼(B)是所述輻射檢測器的所有面向源的感測元件的最佳擬合平面。In one aspect, the translation plane either (A) intersects all source-facing sensing elements of the radiation detector or (B) is a best approximation of all source-facing sensing elements of the radiation detector. Combined plane.

在一方面,在所述掃描(i),i=1、......、M的掃描期間的時間點,所述平移平面垂直於與所述輻射源和所述輻射檢測器的面向源的感測元件相交的直線。In one aspect, at a point in time during said scan (i), i=1,...,M, said translation plane is perpendicular to an orientation of said radiation source and said radiation detector. The straight line where the source and sensing elements intersect.

在一方面,所述輻射檢測器的感測元件平面與所述輻射源相交。In one aspect, the sensing element plane of the radiation detector intersects the radiation source.

在一方面,對於i的每個奇數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第一能量範圍的輻射束(i),對於i的每個偶數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第二能量範圍的輻射束(i),所述第一能量範圍和所述第二能量範圍不同。In one aspect, for each odd value of i, the scanning (i) includes sending a radiation beam (i) of the same first energy range to the object with the radiation source, and for each even value of i, The scanning (i) includes using the radiation source to send a radiation beam (i) of the same second energy range to the object, the first energy range and the second energy range being different.

在一方面,所述第一能量範圍和所述第二能量範圍不重疊。In one aspect, the first energy range and the second energy range do not overlap.

在一方面,對於i的每個值,所述掃描(i)包括回應於第三能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述輻射檢測器的計數器進行加1計數,以及回應於第四能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述計數器進行減1計數,所述第三能量範圍和所述第四能量範圍不重疊。In one aspect, for each value of i, the scan (i) includes incrementing a counter of the radiation detector by one in response to a third energy range of radiation particles impacting the radiation detector, and in response to Radiation particles in a fourth energy range impact the radiation detector and are counted down by one using the counter, and the third energy range and the fourth energy range do not overlap.

在一方面,對於i的每個值,所述掃描(i)包括:利用所述輻射檢測器的第一計數器記錄撞擊所述輻射檢測器的感測元件的第五能量範圍的輻射粒子的數量;以及利用所述輻射檢測器的第二計數器記錄撞擊所述感測元件的第六能量範圍的輻射粒子的數量。第五能量範圍和第六能量範圍不重疊。In one aspect, for each value of i, the scanning (i) includes recording, with a first counter of the radiation detector, a number of radiation particles of a fifth energy range striking a sensing element of the radiation detector. ; and recording, using a second counter of the radiation detector, the number of radiation particles in a sixth energy range that impact the sensing element. The fifth energy range and the sixth energy range do not overlap.

在一方面,在平行於所述Ox軸的方向上測量的所述掃描(i),i=1、......、M各自的所有M個平移距離都相同。In one aspect, all M translation distances of said scan (i), i=1,...,M each, measured in a direction parallel to said Ox axis, are the same.

在一方面,對於i=1、......、(M-1),(A)在平行於所述Oy軸的方向上的所述掃描(i)的平移距離和(B)在平行於所述Oy軸的方向上的所述掃描(i+1)的平移距離之和不超過所述輻射檢測器在平行於所述Oy軸的方向上的尺寸。In one aspect, for i=1,...,(M-1), (A) the translation distance of the scan (i) in the direction parallel to the Oy axis and (B) the The sum of the translation distances of the scans (i+1) in the direction parallel to the Oy axis does not exceed the size of the radiation detector in the direction parallel to the Oy axis.

在一方面,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)中的一個方向平行於所述Ox軸。In one aspect, for i=1, ..., (M-1), one of the direction (i) and the direction (i+1) is parallel to the Ox axis.

輻射檢測器radiation detector

圖1示意性地示出了作為示例的輻射檢測器100。輻射檢測器100可以包括像素150(也稱為感測元件150)陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。圖1的示例中的像素150陣列具有4列和7行;然而,一般來說,像素150陣列可以具有任意數量的行和任意數量的列。Figure 1 schematically shows a radiation detector 100 as an example. Radiation detector 100 may include an array of pixels 150 (also referred to as sensing elements 150). The array may be a rectangular array (as shown in Figure 1), a honeycomb array, a hexagonal array, or any other suitable array. The pixel 150 array in the example of Figure 1 has 4 columns and 7 rows; however, in general, the pixel 150 array can have any number of rows and any number of columns.

每個像素150可以被配置為檢測入射在其上的來自輻射源(未示出)的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括諸如光子(X射線、伽馬射線等)和亞原子粒子(α粒子、β粒子等)的輻射粒子。每個像素150可以被配置為在一段時間內對入射在其上的能量落入多個能量區間中的輻射粒子的數量進行計數。所有像素150可以被配置為在同一段時間內對多個能量區間內入射到其上的輻射粒子的數量進行計數。當入射的輻射粒子具有相似的能量時,像素150可以僅僅被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量單個輻射粒子的能量。Each pixel 150 may be configured to detect radiation incident thereon from a radiation source (not shown) and may be configured to measure characteristics of the radiation (eg, energy, wavelength, and frequency of the particles). Radiation may include radiation particles such as photons (X-rays, gamma rays, etc.) and subatomic particles (alpha particles, beta particles, etc.). Each pixel 150 may be configured to count, over a period of time, the number of radiation particles incident thereon whose energy falls within a plurality of energy bins. All pixels 150 may be configured to count the number of radiation particles incident thereon in multiple energy intervals over the same period of time. When the incident radiation particles are of similar energy, the pixel 150 may be configured simply to count the number of radiation particles incident thereon over a period of time without measuring the energy of the individual radiation particles.

每個像素150可以具有其自己的類比數位轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比信號數位化為數位信號,或者將表示多個入射輻射粒子的總能量的類比信號數位化為數位信號。像素150可以被配置為平行作業。例如,當一個像素150測量入射輻射粒子時,另一個像素150可能正在等待輻射粒子的到達。像素150可以不必是可單獨定址的。Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle into a digital signal, or to digitize an analog signal representing the total energy of multiple incident radiation particles. The signal is digitized into a digital signal. Pixels 150 may be configured for parallel operation. For example, while one pixel 150 is measuring incoming radiation particles, another pixel 150 may be waiting for the radiation particles to arrive. Pixels 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以具有諸如X射線望遠鏡、X射線乳房X線照相術、工業X射線缺陷檢測、X射線顯微鏡或顯微射線照相術、X射線鑄件檢查、X射線無損檢測、X射線焊接檢查、X射線數位減影血管造影等之類的應用。使用該輻射檢測器100代替照相板、照相膠片、PSP板、X射線圖像增強器、閃爍體或其他半導體X射線檢測器可能是合適的。The radiation detector 100 described herein may have a device such as an X-ray telescope, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, Applications such as welding inspection, X-ray digital subtraction angiography, etc. It may be suitable to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillator or other semiconductor X-ray detector.

圖2示意性地示出了根據一實施例的圖1的輻射檢測器100沿線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理和分析入射輻射在輻射吸收層110中產生的電信號的電子器件層120(其可以包括一個或多個ASIC或專用積體電路)。輻射檢測器100可以包括或不包括閃爍體(未示出)。輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料。半導體材料對於感興趣的輻射可以具有高質量衰減係數。Figure 2 schematically illustrates a simplified cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronics layer 120 (which may include one or more ASICs or application specific integrated circuits) for processing and analyzing electrical signals generated by incident radiation in the radiation absorbing layer 110 ). Radiation detector 100 may or may not include scintillator (not shown). Radiation absorbing layer 110 may include semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof. Semiconducting materials can have high-quality attenuation coefficients for the radiation of interest.

作為示例,圖3示意性地示出了圖1的輻射檢測器100沿線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如p-i-n或p-n)。第二摻雜區113可以通過可選的本徵區112與第一摻雜區111分開。離散區114可以通過第一摻雜區111或本徵區112彼此分開。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,區域111是p型,區域113是n型,或者,區域111是n型,區域113是p型)。在圖3的示例中,第二摻雜區113的每個離散區域114形成具有第一摻雜區111和可選的本徵區112的二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣列中的一列的7個像素150,為了簡單起見,圖3中僅標記了其中的2個像素150)。多個二極體可以具有電觸點119A作為共用(公共)電極。第一摻雜區111還可以具有離散部分。As an example, Figure 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2. Specifically, the radiation absorbing layer 110 may include one or more diodes (eg, p-i-n or p-n) formed by one or more discrete regions 114 of the first doped region 111 , the second doped region 113 . The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . Discrete regions 114 may be separated from each other by first doped regions 111 or intrinsic regions 112 . The first doped region 111 and the second doped region 113 may have opposite types of doping (eg, region 111 is p-type and region 113 is n-type, or region 111 is n-type and region 113 is p-type). In the example of FIG. 3 , each discrete region 114 of the second doped region 113 forms a diode with a first doped region 111 and an optional intrinsic region 112 . That is, in the example of FIG. 3 , the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes corresponding to 7 pixels 150 in one column of the array of FIG. 1 , for simplicity, FIG. Only 2 of these pixels are labeled in 3150). Multiple diodes may have electrical contact 119A as a common (common) electrode. The first doped region 111 may also have discrete portions.

電子器件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的信號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(類比數位轉換器)。電子系統121可以包括由各像素150共用的元件或專用於單個像素150的元件。例如,電子系統121可以包括專用於每個像素150的放大器和在所有像素150之間共用的微處理器。電子系統121可以通過通孔131電連接到像素150。通孔之間的空間可以使用填充材料130填充,這可以增加電子器件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到像素150。Electronics layer 120 may include electronic systems 121 suitable for processing or interpreting signals generated by radiation incident on radiation absorbing layer 110 . Electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memories. Electronic system 121 may include one or more ADCs (analog-to-digital converters). Electronic system 121 may include components that are common to each pixel 150 or components that are specific to a single pixel 150 . For example, electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared among all pixels 150 . Electronic system 121 may be electrically connected to pixel 150 through via 131 . The spaces between the vias may be filled with filling material 130 , which may increase the mechanical stability of the connection of the electronic device layer 120 to the radiation absorbing layer 110 . Other bonding techniques may connect electronic system 121 to pixel 150 without using via 131 .

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可以被吸收並且通過多種機制產生一個或多個電荷載流子(例如,電子、電洞)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電觸點119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞語“電極”互換使用。在一實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被兩個不同的離散區114共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的像素150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向離散區114。即,這些電荷載流子中的少於2%、少於1%、少於0.1%或少於0.01%的電荷載流子流過該像素150。When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 including a diode, the radiation particles may be absorbed and generate one or more charge carriers (eg, electrons, holes) through a variety of mechanisms. Charge carriers can drift to one of the electrodes of the diode under an electric field. The electric field may be an external electric field. Electrical contact 119B may include discrete portions, each discrete portion being in electrical contact with discrete region 114 . The term "electrical contact" may be used interchangeably with the word "electrode". In one embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiating particle are not substantially shared by two different discrete regions 114 (herein "substantially not. . . . ..shared" means that less than 2%, less than 0.5%, less than 0.1% or less than 0.01% of these charge carriers flow to a different location than the remaining charge carriers. discrete area 114). Charge carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared with another of the discrete regions 114 . Pixels 150 associated with discrete regions 114 may be regions surrounding discrete regions 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%) of the charge carriers flow to the discrete region 114. That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of these charge carriers flow through the pixel 150 .

圖4示意性地示出了根據替代實施例的圖1的輻射檢測器100沿線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。半導體材料對於感興趣的輻射可以具有高質量衰減係數。在一實施例中,圖4的電子器件層120在結構和功能方面類似於圖3的電子器件層120。Figure 4 schematically shows a detailed cross-sectional view along line 2-2 of the radiation detector 100 of Figure 1 according to an alternative embodiment. More specifically, radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but not diodes. Semiconducting materials can have high-quality attenuation coefficients for the radiation of interest. In one embodiment, the electronic device layer 120 of FIG. 4 is similar in structure and function to the electronic device layer 120 of FIG. 3 .

當輻射撞擊包括電阻器但不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10到100000個電荷載流子。電荷載流子可以在電場下漂移到電觸點119A和119B。該電場可以是外部電場。電觸點119B可以包括離散部分。在一實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被電觸點119B的兩個不同的離散部分共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電觸點119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分相關聯的像素150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向電觸點119B的離散部分。即,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流過與電觸點119B的一個離散部分相關聯的像素。When radiation strikes the radiation absorbing layer 110, which includes a resistor but not a diode, it can be absorbed and produce one or more charge carriers through a variety of mechanisms. Radiating particles can produce anywhere from 10 to 100,000 charge carriers. Charge carriers can drift to electrical contacts 119A and 119B under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions. In one embodiment, the charge carriers may drift in all directions such that the charge carriers generated by a single radiated particle are not substantially shared by two different discrete portions of electrical contact 119B (herein "substantially not" ...shared" means less than 2%, less than 0.5%, less than 0.1% or less than 0.01% of the charge carriers compared to the remaining charge carriers subflow to a different discrete part). Charge carriers generated by radiation particles incident around the footprint of one of the discrete portions of electrical contact 119B are substantially not shared with another of the discrete portions of electrical contact 119B. A pixel 150 associated with a discrete portion of electrical contact 119B may be an area surrounding the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%) of the radiation produced by radiation particles incident therein or more than 99.99%) of the charge carriers flow to discrete portions of electrical contact 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow through a pixel associated with a discrete portion of electrical contact 119B.

成像系統imaging system

圖5示意性地示出了根據一實施例的成像系統500的透視圖。在一實施例中,成像系統500可以包括輻射檢測器100和輻射源510。Figure 5 schematically illustrates a perspective view of an imaging system 500 according to an embodiment. In an embodiment, imaging system 500 may include radiation detector 100 and radiation source 510 .

在一實施例中,物體520可以位於輻射檢測器100和輻射源510之間。例如,物體520可以是人體的一部分(例如,大腿)。在一實施例中,成像系統500可用於掃描物體520。In an embodiment, object 520 may be located between radiation detector 100 and radiation source 510 . For example, object 520 may be a part of a human body (eg, a thigh). In one embodiment, imaging system 500 may be used to scan object 520 .

在一實施例中,輻射檢測器100和輻射源510可以如圖5所示佈置(稱為側入射佈置),使得輻射檢測器100的感測元件平面104與輻射源510相交。關於感測元件平面104,如果輻射檢測器100的所有感測元件150共面,則感測元件平面104可以是與輻射檢測器100的所有感測元件150實際相交的平面。然而,如果輻射檢測器100的所有感測元件150不共面,則感測元件平面104可以是輻射檢測器100的所有感測元件150的最佳擬合平面(例如,最小二乘法)。In one embodiment, the radiation detector 100 and the radiation source 510 may be arranged as shown in FIG. 5 (referred to as a side-incidence arrangement) such that the sensing element plane 104 of the radiation detector 100 intersects the radiation source 510 . Regarding the sensing element plane 104 , the sensing element plane 104 may be a plane that actually intersects all the sensing elements 150 of the radiation detector 100 if all the sensing elements 150 of the radiation detector 100 are coplanar. However, if all sensing elements 150 of radiation detector 100 are not coplanar, sensing element plane 104 may be a best-fit plane (eg, least squares method) for all sensing elements 150 of radiation detector 100 .

如果(A)一平面與輻射檢測器100相交,並且(B)在輻射檢測器平移期間的任何時間點在該平面上的輻射檢測器100的每個點在輻射檢測器100的整個平移過程中都保持在該平面上,則稱輻射檢測器100沿該平面平移。If (A) a plane intersects the radiation detector 100 and (B) every point of the radiation detector 100 on that plane at any point during the translation of the radiation detector 100 throughout the translation of the radiation detector 100 If all remain on the plane, the radiation detector 100 is said to translate along the plane.

面向源的感測元件150是面向輻射源510的感測元件150。換而言之,來自輻射源510的輻射粒子可以撞擊面向源的感測元件150而不受任何其他感測元件150的干擾。在圖5中,有7個面向源的感測元件150(頂列)。The source-facing sensing element 150 is the sensing element 150 facing the radiation source 510 . In other words, radiated particles from the radiation source 510 can strike the source-facing sensing element 150 without interference from any other sensing element 150 . In Figure 5, there are seven source-facing sensing elements 150 (top column).

成像系統的操作Imaging system operation

在一實施例中,參考圖5,通常,成像系統500可以按如下操作。輻射源510可以向物體520發送輻射束512。輻射束512可以包括X射線。在示例中,輻射束512是扇形束。In one embodiment, referring to Figure 5, generally, imaging system 500 may operate as follows. Radiation source 510 may send radiation beam 512 to object 520 . Radiation beam 512 may include X-rays. In an example, radiation beam 512 is a fan beam.

在一實施例中,輻射檢測器100和輻射源510可以在成像系統500的操作期間相對於彼此靜止。In an embodiment, radiation detector 100 and radiation source 510 may be stationary relative to each other during operation of imaging system 500 .

在一實施例中,當成像系統500掃描物體520時,輻射檢測器100和輻射源510可以沿方向102平移。換而言之,在輻射檢測器100和輻射源510沿方向102平移的同時,輻射檢測器100捕獲物體520的多個圖像。In one embodiment, radiation detector 100 and radiation source 510 may translate along direction 102 as imaging system 500 scans object 520 . In other words, while radiation detector 100 and radiation source 510 translate in direction 102, radiation detector 100 captures multiple images of object 520.

本專利申請(包括申請專利範圍)中的術語“圖像”不限於輻射的屬性(例如強度)的空間分佈。例如,術語“圖像”還可以包括物質或元素的密度的空間分佈。The term "image" in this patent application (including the scope of the claim) is not limited to the spatial distribution of properties (eg intensity) of radiation. For example, the term "image" may also include a spatial distribution of the density of a substance or element.

在一實施例中,可以選擇方向102,使得輻射檢測器100沿平移平面106平移,如圖5所示。在一實施例中,輻射檢測器100沿其平移的平移平面106可以(A)與輻射檢測器100的所有面向源的感測元件150相交,或者(B)是輻射檢測器100的所有面向源的感測元件150的最佳擬合平面。In one embodiment, direction 102 may be selected such that radiation detector 100 translates along translation plane 106, as shown in FIG. 5 . In one embodiment, the translation plane 106 along which the radiation detector 100 translates may (A) intersect all source-facing sensing elements 150 of the radiation detector 100 , or (B) be all source-facing sensing elements 150 of the radiation detector 100 the best-fitting plane of the sensing element 150 .

此外,在一實施例中,輻射檢測器100沿其平移的平移平面106可以垂直於直線108,在輻射檢測器100的平移過程中的一時間點(在X點),直線108與輻射源510和面向源的感測元件150相交。Additionally, in one embodiment, the translation plane 106 along which the radiation detector 100 translates may be perpendicular to the straight line 108 that is aligned with the radiation source 510 at one point in time during the translation of the radiation detector 100 (at point X). Intersects the source-facing sensing element 150 .

之字形掃描zigzag scan

圖6A至圖6F圖示了根據一實施例的當成像系統500對物體520執行6次掃描時成像系統500的操作。請注意,圖6A至圖6F示出了從輻射源510觀察到的輻射檢測器100和物體520的俯視圖。為了簡單起見,物體520僅在圖6A和圖6F中示出(即,未在圖6B至圖6E中示出)。6A-6F illustrate the operation of the imaging system 500 when the imaging system 500 performs 6 scans of the object 520 according to an embodiment. Note that FIGS. 6A-6F illustrate top views of radiation detector 100 and object 520 as viewed from radiation source 510 . For simplicity, object 520 is only shown in Figures 6A and 6F (ie, not shown in Figures 6B-6E).

具體地,在一實施例中,參考圖6A,在第一次掃描期間,輻射檢測器100可以沿著平移平面106從S位置平移到A位置並且沿著方向102A平移。請注意,如果成像系統500對平移平面106的一區域僅掃描一次,則該區域看起來(A)更亮,如果成像系統500對該區域掃描至少兩次,則該區域看起來(B)更暗。Specifically, in one embodiment, referring to Figure 6A, during a first scan, radiation detector 100 may translate along translation plane 106 from an S position to an A position and along direction 102A. Note that if the imaging system 500 scans an area of the translation plane 106 only once, the area appears (A) brighter, and if the imaging system 500 scans the area at least twice, the area appears (B) brighter. dark.

接下來,在一實施例中,參考圖6B,在第二次掃描期間,輻射檢測器100可以沿著平移平面106從A位置平移到B位置並且沿著方向102B平移。Next, in an embodiment, referring to FIG. 6B , during a second scan, radiation detector 100 may translate along translation plane 106 from position A to position B and in direction 102B.

接下來,在一實施例中,參考圖6C,在第三次掃描期間,輻射檢測器100可以沿著平移平面106從B位置平移到C位置並且沿著方向102C平移。Next, in an embodiment, referring to Figure 6C, during the third scan, the radiation detector 100 may translate along the translation plane 106 from the B position to the C position and along direction 102C.

接下來,在一實施例中,參考圖6D,在第四次掃描期間,輻射檢測器100可以沿著平移平面106從C位置平移到D位置並且沿著方向102D平移。Next, in an embodiment, referring to Figure 6D, during the fourth scan, the radiation detector 100 may translate along the translation plane 106 from the C position to the D position and along direction 102D.

接下來,在一實施例中,參考圖6E,在第五次掃描期間,輻射檢測器100可以沿著平移平面106從D位置平移到E位置並且沿著方向102E平移。Next, in one embodiment, referring to Figure 6E, during the fifth scan, the radiation detector 100 may translate along the translation plane 106 from the D position to the E position and along direction 102E.

接下來,在一實施例中,參考圖6F,在第六次掃描期間,輻射檢測器100可以沿著平移平面106從E位置平移到F位置並且沿著方向102F平移。Next, in one embodiment, referring to Figure 6F, during the sixth scan, radiation detector 100 may translate along translation plane 106 from the E position to the F position and along direction 102F.

在一實施例中,Ox軸和Oy軸可以被定義為使得Ox軸和Oy軸在平移平面106上且相互垂直,如圖6A至圖6F所示。In one embodiment, the Ox axis and the Oy axis may be defined such that the Ox axis and the Oy axis are on the translation plane 106 and perpendicular to each other, as shown in FIGS. 6A to 6F .

在一實施例中,參考圖6A至圖6F,6個方向102A、102B、102C、102D、102E、102F分別在Oy軸上的6個正交投影可以不指向兩個相反的方向。例如,在圖6A至圖6F中,6個方向102A、102B、102C、102D、102E、102F在Oy軸上的所有6個正交投影都指向下方。In one embodiment, referring to FIGS. 6A to 6F , the six orthogonal projections of the six directions 102A, 102B, 102C, 102D, 102E, and 102F respectively on the Oy axis may not point to two opposite directions. For example, in FIGS. 6A to 6F , all six orthogonal projections of the six directions 102A, 102B, 102C, 102D, 102E, and 102F on the Oy axis point downward.

在一實施例中,參考圖6A至圖6F,6個方向102A、102B、102C、102D、102E、102F分別在Ox軸上的6個正交投影可以交替指向2個相反的方向。例如,在圖6A中,方向102A在Ox軸上的正交投影指向右側。在圖6B中,方向102B在Ox軸上的正交投影指向左側。在圖6C中,方向102C在Ox軸上的正交投影指向右側。在圖6D中,方向102D在Ox軸上的正交投影指向左側。在圖6E中,方向102E在Ox軸上的正交投影指向右側。在圖6F中,方向102F在Ox軸上的正交投影指向左側。換而言之,6個方向102A、102B、102C、102D、102E、102F在Ox軸上的6個正投影交替指向左右(即2個相反的方向)。In one embodiment, referring to FIGS. 6A to 6F , the six orthogonal projections of the six directions 102A, 102B, 102C, 102D, 102E, and 102F respectively on the Ox axis can point alternately to two opposite directions. For example, in Figure 6A, the orthogonal projection of direction 102A on the Ox axis points to the right. In Figure 6B, the orthogonal projection of direction 102B on the Ox axis points to the left. In Figure 6C, the orthogonal projection of direction 102C on the Ox axis points to the right. In Figure 6D, the orthogonal projection of direction 102D on the Ox axis points to the left. In Figure 6E, the orthogonal projection of direction 102E on the Ox axis points to the right. In Figure 6F, the orthogonal projection of direction 102F on the Ox axis points to the left. In other words, the 6 orthographic projections of the 6 directions 102A, 102B, 102C, 102D, 102E, and 102F on the Ox axis alternately point to the left and right (ie, 2 opposite directions).

在一實施例中,對於6次掃描中的任意2次連續掃描,2個對應方向102可以不相互平行。例如,對於上述的第一次和第二次掃描,2個對應方向102A和102B不相互平行。又例如,對於上述的第二次和第三次掃描,2個對應方向102B和102C不相互平行。In one embodiment, for any two consecutive scans among the six scans, the two corresponding directions 102 may not be parallel to each other. For example, for the first and second scans described above, the two corresponding directions 102A and 102B are not parallel to each other. For another example, for the second and third scans mentioned above, the two corresponding directions 102B and 102C are not parallel to each other.

在一實施例中,參考圖6A至圖6F,物體520的每個點可以通過第一、第二、第三、第四、第五和第六次掃描中的至少兩次掃描被掃描(即,被成像系統500掃描至少兩次)。假設物體520是人的大腿。然後,對於人大腿的所述每個點,來自所述至少兩次掃描的資料可用於確定人大腿的所述每個點處的骨密度(稱為骨密度測定法)。In one embodiment, referring to FIGS. 6A to 6F , each point of the object 520 may be scanned by at least two of the first, second, third, fourth, fifth and sixth scans (i.e. , scanned by the imaging system 500 at least twice). Assume that object 520 is a human thigh. The data from the at least two scans can then be used to determine the bone density at each point of the person's thigh (referred to as bone densitometry).

概括成像系統的操作的流程圖Flowchart outlining the operation of the imaging system

圖7示出了根據一實施例的概括成像系統500的操作的流程圖700。在步驟710中,該操作可以包括用成像系統掃描物體,該成像系統包括相對於彼此靜止的輻射檢測器和輻射源。例如,在上述實施例中,參考圖5,成像系統500掃描物體520,並且成像系統500包括相對於彼此靜止的輻射檢測器100和輻射源510。Figure 7 shows a flowchart 700 summarizing the operation of imaging system 500, according to an embodiment. In step 710, the operation may include scanning the object with an imaging system that includes a radiation detector and a radiation source that are stationary relative to each other. For example, in the above-described embodiment, referring to Figure 5, imaging system 500 scans object 520, and imaging system 500 includes radiation detector 100 and radiation source 510 that are stationary relative to each other.

同樣在步驟710中,所述掃描物體包括,對於i=1、......、M,按順序一次一個i值,通過(A)沿同一平移平面且(B)沿方向(i)平移輻射檢測器來執行掃描(i),其中M是大於1的整數。例如,在上述實施例中,參考圖5至圖6F,對於i=1、......、6,按順序一次一個i值,通過(A)沿同一平移平面106且(B)沿方向(i)平移輻射檢測器100來執行所述掃描(i),其中M=6。具體地,例如,參考圖6A,對於i=1,掃描(1)(即,第一次掃描)包括(A)沿平移平面106且(B)沿方向102A平移輻射檢測器100。Also in step 710, the scanning object includes, for i=1,...,M, sequentially one i value at a time, by (A) along the same translation plane and (B) along the direction (i) Scan (i) is performed by translating the radiation detector, where M is an integer greater than 1. For example, in the above embodiment, referring to FIGS. 5 to 6F , for i = 1, ..., 6, one i value at a time is sequentially moved (A) along the same translation plane 106 and (B) along the same translation plane 106 The scan (i) is performed by translating the radiation detector 100 in direction (i), where M=6. Specifically, for example, referring to Figure 6A, for i=1, scan (1) (ie, the first scan) includes (A) translating the radiation detector 100 along the translation plane 106 and (B) along the direction 102A.

同樣在步驟710中,Ox軸和Oy軸都在平移平面上且相互垂直。方向(i),i=1、......、M在Oy軸上的正交投影不指向兩個相反的方向。例如,在上述實施例中,參考圖5至圖6F,Ox軸和Oy軸都在平移平面106上且相互垂直。另外,方向102A、102B、102C、102D、102E、102F在Oy軸上的所有正投影都指向下方。Also in step 710, the Ox axis and the Oy axis are both on the translation plane and perpendicular to each other. Direction (i), i=1, ..., the orthogonal projection of M on the Oy axis does not point in two opposite directions. For example, in the above embodiment, referring to FIGS. 5 to 6F , both the Ox axis and the Oy axis are on the translation plane 106 and are perpendicular to each other. In addition, all orthographic projections of directions 102A, 102B, 102C, 102D, 102E, and 102F on the Oy axis point downward.

同樣在步驟710中,方向(i),i=1、......、M在Ox軸上的正交投影交替指向2個相反的方向。例如,在上述實施例中,參考圖5至圖6F,方向102A、102B、102C、102D、102E和102F在Ox軸上的正交投影交替指向左右(即2個相反的方向)。Also in step 710, direction (i), the orthogonal projections of i=1,...,M on the Ox axis point alternately into 2 opposite directions. For example, in the above embodiment, referring to FIGS. 5 to 6F , the orthogonal projections of directions 102A, 102B, 102C, 102D, 102E, and 102F on the Ox axis point alternately to the left and right (ie, 2 opposite directions).

同樣在步驟710中,對於i=1、......、(M-1),方向(i)和方向(i+1)不相互平行。例如,在上述實施例中,參考圖5至圖6F,對於6次掃描中的任意2次連續掃描,2個對應方向102不相互平行。具體地,例如,方向102A(圖6A)與方向102B(圖6B)不相互平行。類似地,方向102B(圖6B)和方向102C(圖6C)不相互平行,等等。Also in step 710, for i=1, ..., (M-1), direction (i) and direction (i+1) are not parallel to each other. For example, in the above embodiment, referring to FIGS. 5 to 6F , for any 2 consecutive scans among 6 scans, the 2 corresponding directions 102 are not parallel to each other. Specifically, for example, direction 102A (FIG. 6A) and direction 102B (FIG. 6B) are not parallel to each other. Similarly, direction 102B (Fig. 6B) and direction 102C (Fig. 6C) are not parallel to each other, and so on.

同樣在步驟710中,物體的每個點通過掃描(i),i=1、......、M中的至少兩次掃描被掃描。例如,在上述實施例中,參考圖6F,物體520的每個點通過第一、第二、第三、第四、第五和第六次掃描中的至少兩次掃描被掃描。Also in step 710, each point of the object is scanned by scanning (i), at least two scans of i=1,...,M. For example, in the above-described embodiment, referring to FIG. 6F , each point of the object 520 is scanned through at least two of the first, second, third, fourth, fifth and sixth scans.

其他實施例Other embodiments

精確掃描兩次Scan twice exactly

在上述實施例中,參考圖5至圖6F,物體520的每個點被成像系統500掃描至少兩次。在一實施例中,物體520的每個點被成像系統500掃描不超過兩次。換而言之,物體520的每個點被成像系統500精確掃描兩次,如圖6A至圖6F所示。In the above embodiment, referring to FIGS. 5 to 6F , each point of the object 520 is scanned by the imaging system 500 at least twice. In one embodiment, each point of object 520 is scanned by imaging system 500 no more than twice. In other words, each point of object 520 is scanned exactly twice by imaging system 500, as shown in Figures 6A-6F.

之字形掃描的交替能量範圍Alternating energy ranges for zigzag scans

在一實施例中,參考圖6A,在第一掃描期間,輻射源510可以向物體520發送第一能量範圍的第一輻射束(作為輻射束512的一部分)。換而言之,第一輻射束的每個輻射粒子具有在第一能量範圍內的能量。第一輻射束可以被輻射檢測器100用於執行第一掃描。In one embodiment, referring to FIG. 6A , during a first scan, radiation source 510 may send a first radiation beam of a first energy range to object 520 (as part of radiation beam 512 ). In other words, each radiation particle of the first radiation beam has an energy within the first energy range. The first radiation beam may be used by radiation detector 100 to perform a first scan.

類似地,在一實施例中,參考圖6C,在第三掃描期間,輻射源510可以向物體520發送第一能量範圍的第三輻射束(作為輻射束512的一部分)。第三輻射束可以由輻射檢測器100用於執行第三掃描。Similarly, in one embodiment, referring to FIG. 6C , during a third scan, radiation source 510 may send a third radiation beam of a first energy range to object 520 (as part of radiation beam 512 ). The third radiation beam may be used by the radiation detector 100 to perform the third scan.

類似地,在一實施例中,參考圖6E,在第五掃描期間,輻射源510可以向物體520發送第一能量範圍的第五輻射束(作為輻射束512的一部分)。第五輻射束可以被輻射檢測器100用於執行第五掃描。Similarly, in one embodiment, referring to FIG. 6E , during a fifth scan, radiation source 510 may send a fifth radiation beam of a first energy range to object 520 (as part of radiation beam 512 ). The fifth radiation beam may be used by the radiation detector 100 to perform a fifth scan.

在一實施例中,參考圖6B,在第二掃描期間,輻射源510可以向物體520發送第二能量範圍的第二輻射束(作為輻射束512的一部分)。換而言之,第二輻射束的每個輻射粒子具有在第二能量範圍內的能量。第二輻射束可以被輻射檢測器100用於執行第二掃描。In one embodiment, referring to FIG. 6B , during the second scan, radiation source 510 may send a second radiation beam of a second energy range to object 520 (as part of radiation beam 512 ). In other words, each radiation particle of the second radiation beam has an energy within the second energy range. The second radiation beam may be used by the radiation detector 100 to perform a second scan.

類似地,在一實施例中,參考圖6D,在第四掃描期間,輻射源510可以向物體520發送第二能量範圍的第四輻射束(作為輻射束512的一部分)。第四輻射束可以被輻射檢測器100用於執行第四掃描。Similarly, in one embodiment, referring to FIG. 6D , during the fourth scan, radiation source 510 may send a fourth radiation beam of a second energy range to object 520 (as part of radiation beam 512 ). The fourth radiation beam may be used by radiation detector 100 to perform a fourth scan.

類似地,在一實施例中,參考圖6F,在第六掃描期間,輻射源510可以向物體520發送第二能量範圍的第六輻射束(作為輻射束512的一部分)。第六輻射束可以被輻射檢測器100用於執行第六掃描。Similarly, in one embodiment, referring to FIG. 6F , during the sixth scan, radiation source 510 may send a sixth radiation beam of the second energy range to object 520 (as part of radiation beam 512 ). The sixth radiation beam may be used by radiation detector 100 to perform a sixth scan.

在一實施例中,第一能量範圍和第二能量範圍可以不同。在一實施例中,第一能量範圍和第二能量範圍可以不重疊。In one embodiment, the first energy range and the second energy range may be different. In an embodiment, the first energy range and the second energy range may not overlap.

輻射檢測器的每個感測元件的雙向計數器Bidirectional counter for each sensing element of the radiation detector

在一實施例中,參考圖1至圖5,輻射檢測器100的電子器件層120可以包括輻射檢測器100的每個感測元件150的計數器(未示出)。In one embodiment, referring to FIGS. 1-5 , the electronics layer 120 of the radiation detector 100 may include a counter (not shown) for each sensing element 150 of the radiation detector 100 .

在一實施例中,如果第三能量範圍的輻射粒子撞擊所述每個感測元件150,則所述每個感測元件的計數器可以進行加1計數(即,其計數加1);如果第四能量範圍的輻射粒子撞擊所述每個感測元件150,則所述每個感測元件的計數器可以進行減1計數(即,其計數減1),並且第三能量範圍和第四能量範圍不重疊。請注意,輻射檢測器100的所述每個感測元件150的計數器是雙向計數器。In an embodiment, if radiated particles in the third energy range impact each sensing element 150, the counter of each sensing element may count by 1 (ie, its count is increased by 1); if the When radiated particles of four energy ranges impact each sensing element 150, the counter of each sensing element can count by 1 (ie, its count is decremented by 1), and the third energy range and the fourth energy range No overlap. Please note that the counter of each sensing element 150 of the radiation detector 100 is a bidirectional counter.

每個感測元件的兩個計數器Two counters per sensing element

在一實施例中,參考圖1至圖5,輻射檢測器100的電子器件層120可以包括輻射檢測器100的每個感測元件150的第一計數器(未示出)和第二計數器(未示出)。在一實施例中,所述每個感測元件150的第一計數器可以記錄撞擊所述每個感測元件150的第五能量範圍的輻射粒子的數量;所述每個感測元件150的第二計數器可以記錄撞擊所述每個感測元件150的第六能量範圍的輻射粒子的數量,並且第五能量範圍與第六能量範圍不重疊。In one embodiment, referring to FIGS. 1 to 5 , the electronic device layer 120 of the radiation detector 100 may include a first counter (not shown) and a second counter (not shown) of each sensing element 150 of the radiation detector 100 . Shows). In one embodiment, the first counter of each sensing element 150 may record the number of radiation particles in the fifth energy range that hit each sensing element 150; The second counter may record the number of radiation particles in the sixth energy range that hit each sensing element 150, and the fifth energy range does not overlap with the sixth energy range.

Ox軸上的平移距離相同The translation distance on the Ox axis is the same

在一實施例中,參考圖6A至圖6F,(A)在平行於Ox軸的方向上測量的第一次掃描(圖6A)的平移距離(即距離102Ax),(B)在平行於Ox軸的方向(未示出)上測量的第二次掃描(圖6B)的平移距離,(C)在平行於Ox軸的方向(未示出)上測量的第三次掃描(圖6C)的平移距離,(D)在平行於Ox軸的方向(未示出)上測量的第四次掃描(圖6D)的平移距離,(E)在平行於Ox軸的方向(未示出)上測量的第五次掃描(圖6E)的平移距離,以及(F)在平行於Ox軸的方向(未示出)上測量的第六次掃描(圖6F)的平移距離可以相同。也就是說,6次掃描的6個水平平移距離都相同。請注意,為了簡單起見,圖6A中僅示出了第一水平平移距離(即,距離102Ax)(即,未示出其他5個水平平移距離)。In one embodiment, referring to Figures 6A to 6F, (A) the translation distance (ie, distance 102Ax) of the first scan (Figure 6A) measured in the direction parallel to the Ox axis, (B) in the direction parallel to the Ox axis Translation distance of the second scan (Fig. 6B) measured in the direction of the Ox axis (not shown), (C) of the third scan (Fig. 6C) measured in the direction parallel to the Ox axis (not shown) Translation distance, (D) Translation distance of the fourth scan (Fig. 6D) measured in a direction parallel to the Ox axis (not shown), (E) measured in a direction parallel to the Ox axis (not shown) The translation distance of the fifth scan (Figure 6E), and (F) the translation distance of the sixth scan (Figure 6F) measured in a direction parallel to the Ox axis (not shown) can be the same. In other words, the six horizontal translation distances of the six scans are all the same. Note that for simplicity, only the first horizontal translation distance (ie, distance 102Ax) is shown in Figure 6A (ie, the other 5 horizontal translation distances are not shown).

2個連續垂直平移距離之和The sum of 2 consecutive vertical translation distances

在一實施例中,參考圖6B,(A)在平行於Oy軸的方向上的第一次掃描的平移距離(即距離102Ay)和(B)在平行於Oy軸的方向上的第二次掃描的平移距離(即距離102By)之和可以不超過輻射檢測器100在平行於Oy軸的方向上的尺寸(即尺寸100y)。In one embodiment, referring to FIG. 6B , (A) the translation distance of the first scan in the direction parallel to the Oy axis (ie, the distance 102Ay) and (B) the second scan in the direction parallel to the Oy axis. The sum of the scanning translation distances (ie, the distance 102By) may not exceed the size of the radiation detector 100 in a direction parallel to the Oy axis (ie, the size 100y).

總的來說,上述實施例可以表述如下:(A)在平行於Oy軸的方向上的掃描(i)的平移距離和(B)在平行於Oy軸的方向上的掃描(i+1)的平移距離之和可以不超過輻射檢測器100在平行於Oy軸的方向上的尺寸(i=1、2、3、4、5)。In summary, the above embodiments can be expressed as follows: (A) the translation distance of scanning (i) in the direction parallel to the Oy axis and (B) the scanning (i+1) in the direction parallel to the Oy axis The sum of the translation distances may not exceed the size of the radiation detector 100 in the direction parallel to the Oy axis (i=1, 2, 3, 4, 5).

特例—水平平移Special case—horizontal translation

在一實施例中,參考圖6A至圖6F,對於任意兩個連續掃描,2個對應的平移方向102之一可以平行於Ox軸。例如,參考圖6A和圖6B,2個方向102A和102B之一可以平行於Ox軸。具體地,例如,方向102A可以指向東南,方向102B可以指向正西(即平行於Ox軸)。在本特例中,參考圖6B,距離102Ay等於尺寸100y,距離100By為零。In one embodiment, referring to FIGS. 6A to 6F , for any two consecutive scans, one of the two corresponding translation directions 102 may be parallel to the Ox axis. For example, referring to Figures 6A and 6B, one of the 2 directions 102A and 102B may be parallel to the Ox axis. Specifically, for example, direction 102A may point southeast, and direction 102B may point due west (ie, parallel to the Ox axis). In this particular example, referring to Figure 6B, distance 102Ay is equal to dimension 100y and distance 100By is zero.

關於平移方向的更多資訊More information about translation direction

在一實施例中,參考圖6A至圖6F和圖7的步驟710,對於i=1、......、(M-2),方向(i)和方向(i+2)可以相互平行。例如,方向102A和方向102C相互平行。又例如,方向102B與方向102D相互平行。In one embodiment, referring to FIGS. 6A to 6F and step 710 of FIG. 7 , for i=1,...,(M-2), the direction (i) and the direction (i+2) may be mutually exclusive. parallel. For example, direction 102A and direction 102C are parallel to each other. For another example, direction 102B and direction 102D are parallel to each other.

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不旨在限制,真實範圍和精神由所附申請專利範圍指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the appended claims.

2-2:線 100:輻射檢測器 100By、102Ax、102Ay:距離 100y:尺寸 102、102A、102B、102C、102D、102E、102F:方向 104:感測元件平面 106:平移平面 108:直線 110:輻射吸收層 111:第一摻雜區 112:本徵區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子器件層 121:電子系統 130:填充材料 131:通孔 150:像素 500:成像系統 510:輻射源 512:輻射束 520:物體 700:流程圖 710:步驟 A、B、C、D、E、F、S:位置 Ox、Oy:軸 X:點 2-2: Line 100: Radiation detector 100By, 102Ax, 102Ay: distance 100y: size 102, 102A, 102B, 102C, 102D, 102E, 102F: direction 104: Sensing element plane 106:Translation plane 108: straight line 110: Radiation absorbing layer 111: First doped region 112:Eigen region 113: Second doping region 114: Discrete area 119A, 119B: Electrical contacts 120: Electronic device layer 121: Electronic systems 130: Filling material 131:Through hole 150: pixels 500: Imaging system 510: Radiation source 512: Radiation Beam 520:Object 700:Flowchart 710: Steps A, B, C, D, E, F, S: Location Ox, Oy: axis X: point

圖1示意性地示出了根據一實施例的輻射檢測器。 圖2示意性地示出了根據一實施例的輻射檢測器的簡化剖視圖。 圖3示意性地示出了根據一實施例的輻射檢測器的詳細剖視圖。 圖4示意性地示出了根據替代實施例的輻射檢測器的詳細剖視圖。 圖5示意性地示出了根據一實施例的成像系統的透視圖。 圖6A至圖6F圖示了根據一實施例的成像系統的操作。 圖7示出了根據一實施例的概括成像系統的操作的流程圖。 Figure 1 schematically shows a radiation detector according to an embodiment. Figure 2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment. Figure 3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment. Figure 4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment. Figure 5 schematically shows a perspective view of an imaging system according to an embodiment. 6A-6F illustrate the operation of an imaging system according to an embodiment. Figure 7 shows a flowchart summarizing the operation of an imaging system, according to an embodiment.

100:輻射檢測器 100: Radiation detector

102:方向 102: Direction

104:感測元件平面 104: Sensing element plane

106:平移平面 106:Translation plane

108:直線 108: straight line

150:像素 150: pixels

500:成像系統 500: Imaging system

510:輻射源 510: Radiation source

512:輻射束 512: Radiation Beam

520:物體 520:Object

X:點 X: point

Claims (26)

一種掃描方法,包括: 用成像系統掃描物體,所述成像系統包括相對於彼此靜止的輻射檢測器和輻射源,其中,所述掃描物體包括: 對於i=1、......、M,按順序一次一個i值,通過(A)沿同一平移平面且(B)沿方向(i)平移所述輻射檢測器來執行掃描(i),其中M為大於1的整數, 其中,Ox軸和Oy軸均在所述平移平面上且相互垂直, 其中,所述方向(i),i=1、......、M在所述Oy軸上的正交投影不指向兩個相反的方向, 其中,所述方向(i),i=1、......、M在所述Ox軸上的正交投影交替指向2個相反的方向, 其中,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)相互不平行,並且 其中,所述物體的每個點被所述掃描(i),i=1、......、M中的至少兩次掃描掃描。 A scanning method that includes: An object is scanned with an imaging system including a radiation detector and a radiation source stationary relative to each other, wherein the scanned object includes: For i=1,...,M, scan (i) is performed sequentially one value at a time by translating the radiation detector (A) along the same translation plane and (B) in direction (i) , where M is an integer greater than 1, Wherein, the Ox axis and the Oy axis are both on the translation plane and perpendicular to each other, Wherein, the orthogonal projection of the direction (i), i=1,...,M on the Oy axis does not point to two opposite directions, Wherein, in the direction (i), the orthogonal projections of i=1,...,M on the Ox axis point alternately in two opposite directions, Wherein, for i=1,...,(M-1), the direction (i) and the direction (i+1) are not parallel to each other, and Wherein, each point of the object is scanned by at least two of the scans (i), i=1,...,M. 如請求項1所述的掃描方法,其中,對於i=1、......、(M-2),所述方向(i)和所述方向(i+2)相互平行。The scanning method as claimed in claim 1, wherein for i=1,..., (M-2), the direction (i) and the direction (i+2) are parallel to each other. 如請求項1所述的掃描方法,其中,所述每個點被所述掃描(i),i=1、......、M中的不超過2次掃描掃描。The scanning method as described in claim 1, wherein each point is scanned by no more than 2 scans in (i), i=1,...,M. 如請求項1所述的掃描方法,其中,所述平移平面或者(A)與所述輻射檢測器的所有面向源的感測元件相交,或者(B)是所述輻射檢測器的所有面向源的感測元件的最佳擬合平面。The scanning method of claim 1, wherein the translation plane either (A) intersects all source-facing sensing elements of the radiation detector, or (B) is all source-facing sensing elements of the radiation detector The best-fitting plane of the sensing element. 如請求項4所述的掃描方法,其中,在所述掃描(i),i=1、......、M的掃描期間的時間點,所述平移平面垂直於與所述輻射源和所述輻射檢測器的面向源的感測元件相交的直線。The scanning method according to claim 4, wherein at the time point during the scan (i), i=1,...,M, the translation plane is perpendicular to the radiation source A straight line intersecting the source-facing sensing element of the radiation detector. 如請求項1所述的掃描方法,其中,所述輻射檢測器的感測元件平面與所述輻射源相交。The scanning method according to claim 1, wherein the sensing element plane of the radiation detector intersects the radiation source. 如請求項1所述的掃描方法, 其中,對於i的每個奇數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第一能量範圍的輻射束(i), 其中,對於i的每個偶數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第二能量範圍的輻射束(i), 其中,所述第一能量範圍和所述第二能量範圍不同。 Scanning method as described in request 1, wherein for each odd value of i, said scanning (i) includes sending a radiation beam (i) of the same first energy range to said object with said radiation source, wherein, for each even value of i, said scanning (i) includes sending a radiation beam (i) of the same second energy range to said object with said radiation source, Wherein, the first energy range and the second energy range are different. 如請求項7所述的掃描方法,其中,所述第一能量範圍和所述第二能量範圍不重疊。The scanning method of claim 7, wherein the first energy range and the second energy range do not overlap. 如請求項1所述的掃描方法, 其中,對於i的每個值,所述掃描(i)包括回應於第三能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述輻射檢測器的計數器進行加1計數,以及回應於第四能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述計數器進行減1計數, 其中,所述第三能量範圍和所述第四能量範圍不重疊。 Scanning method as described in request 1, wherein, for each value of i, the scan (i) includes incrementing a counter of the radiation detector by one in response to a third energy range of radiation particles impacting the radiation detector, and in response to a fourth Radiation particles in the energy range impact the radiation detector and the counter is used to count down by 1, Wherein, the third energy range and the fourth energy range do not overlap. 如請求項1所述的掃描方法,其中,對於i的每個值,所述掃描(i)包括: 利用所述輻射檢測器的第一計數器記錄撞擊所述輻射檢測器的感測元件的第五能量範圍的輻射粒子的數量;以及 利用所述輻射檢測器的第二計數器記錄撞擊所述感測元件的第六能量範圍的輻射粒子的數量,並且 其中,第五能量範圍和第六能量範圍不重疊。 The scanning method as described in claim 1, wherein for each value of i, the scanning (i) includes: recording, with a first counter of the radiation detector, a number of radiation particles of a fifth energy range that strike a sensing element of the radiation detector; and recording, with a second counter of the radiation detector, a number of radiation particles of a sixth energy range striking the sensing element, and Among them, the fifth energy range and the sixth energy range do not overlap. 如請求項1所述的掃描方法,其中,所述掃描(i),i=1、......、M的分別在平行於所述Ox軸的方向上測量的所有M個平移距離都相同。The scanning method as described in claim 1, wherein in the scan (i), all M translation distances of i=1,...,M respectively measured in the direction parallel to the Ox axis All the same. 如請求項11所述的掃描方法,其中,對於i=1、......、(M-1),(A)在平行於所述Oy軸的方向上的所述掃描(i)的平移距離和(B)在平行於所述Oy軸的方向上的所述掃描(i+1)的平移距離之和不超過所述輻射檢測器在平行於所述Oy軸的方向上的尺寸。The scanning method as claimed in claim 11, wherein for i=1,..., (M-1), (A) the scanning (i) in a direction parallel to the Oy axis The sum of the translation distances (B) of the scan (i+1) in the direction parallel to the Oy axis does not exceed the size of the radiation detector in the direction parallel to the Oy axis . 如請求項12所述的掃描方法,其中,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)中的一個方向平行於所述Ox軸。The scanning method as claimed in claim 12, wherein for i=1, ..., (M-1), the direction (i) and one of the directions (i+1) are parallel on the Ox axis. 一種掃描裝置,包括成像系統,所述成像系統包括相對於彼此靜止的輻射檢測器和輻射源, 其中,所述成像系統被配置為掃描物體, 其中,所述成像系統對所述物體的掃描包括: 對於i=1、......、M,按順序一次一個i值,通過(A)沿同一平移平面和(B)沿方向(i)平移所述輻射檢測器來執行掃描(i),其中M為大於1的整數, 其中,Ox軸和Oy軸均在所述平移平面上且相互垂直, 其中,所述方向(i),i=1、......、M在所述Oy軸上的正交投影不指向兩個相反的方向, 其中,所述方向(i),i=1、......、M在所述Ox軸上的正交投影交替指向2個相反的方向, 其中,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)相互不平行,並且 其中,所述物體的每個點被所述掃描(i),i=1、......、M中的至少兩次掃描掃描。 A scanning device including an imaging system including a radiation detector and a radiation source stationary relative to each other, wherein the imaging system is configured to scan the object, Wherein, the scanning of the object by the imaging system includes: For i=1,...,M, scan (i) is performed sequentially one value at a time by translating the radiation detector (A) along the same translation plane and (B) in direction (i) , where M is an integer greater than 1, Wherein, the Ox axis and the Oy axis are both on the translation plane and perpendicular to each other, Wherein, the orthogonal projection of the direction (i), i=1,...,M on the Oy axis does not point to two opposite directions, Wherein, in the direction (i), the orthogonal projections of i=1,...,M on the Ox axis point alternately in two opposite directions, Wherein, for i=1,...,(M-1), the direction (i) and the direction (i+1) are not parallel to each other, and Wherein, each point of the object is scanned by at least two of the scans (i), i=1,...,M. 如請求項14所述的掃描裝置,其中,對於i=1、......、(M-2),所述方向(i)和所述方向(i+2)相互平行。The scanning device according to claim 14, wherein for i=1,..., (M-2), the direction (i) and the direction (i+2) are parallel to each other. 如請求項14所述的掃描裝置,其中,所述每個點被所述掃描(i),i=1、......、M中的不超過2次掃描掃描。The scanning device as claimed in claim 14, wherein each point is scanned by no more than 2 scans in (i), i=1,...,M. 如請求項14所述的掃描裝置,其中,所述平移平面或者(A)與所述輻射檢測器的所有面向源的感測元件相交,或者(B)是所述輻射檢測器的所有面向源的感測元件的最佳擬合平面。The scanning device of claim 14, wherein the translation plane either (A) intersects all source-facing sensing elements of the radiation detector, or (B) is all source-facing sensing elements of the radiation detector The best-fitting plane of the sensing element. 如請求項17所述的掃描裝置,其中,在所述掃描(i),i=1、......、M的掃描期間的時間點,所述平移平面垂直於與所述輻射源和所述輻射檢測器的面向源的感測元件相交的直線。The scanning device according to claim 17, wherein at the time point during the scan (i), i=1,...,M, the translation plane is perpendicular to the radiation source. A straight line intersecting the source-facing sensing element of the radiation detector. 如請求項14所述的掃描裝置,其中,所述輻射檢測器的感測元件平面與所述輻射源相交。The scanning device of claim 14, wherein the sensing element plane of the radiation detector intersects the radiation source. 如請求項14所述的掃描裝置, 其中,對於i的每個奇數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第一能量範圍的輻射束(i), 其中,對於i的每個偶數值,所述掃描(i)包括用所述輻射源向所述物體發送相同第二能量範圍的輻射束(i), 其中,所述第一能量範圍和所述第二能量範圍不同。 A scanning device as claimed in claim 14, wherein for each odd value of i, said scanning (i) includes sending a radiation beam (i) of the same first energy range to said object with said radiation source, wherein, for each even value of i, said scanning (i) includes sending a radiation beam (i) of the same second energy range to said object with said radiation source, Wherein, the first energy range and the second energy range are different. 如請求項20所述的掃描裝置,其中,所述第一能量範圍和所述第二能量範圍不重疊。The scanning device of claim 20, wherein the first energy range and the second energy range do not overlap. 如請求項14所述的掃描裝置, 其中,對於i的每個值,所述掃描(i)包括回應於第三能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述輻射檢測器的計數器進行加1計數,以及回應於第四能量範圍的輻射粒子撞擊所述輻射檢測器而利用所述計數器進行減1計數, 其中,所述第三能量範圍和所述第四能量範圍不重疊。 A scanning device as claimed in claim 14, wherein, for each value of i, the scan (i) includes incrementing a counter of the radiation detector by one in response to a third energy range of radiation particles impacting the radiation detector, and in response to a fourth Radiation particles in the energy range impact the radiation detector and the counter is used to count down by 1, Wherein, the third energy range and the fourth energy range do not overlap. 如請求項14所述的掃描裝置,其中,對於i的每個值,所述掃描(i)包括: 利用所述輻射檢測器的第一計數器記錄撞擊所述輻射檢測器的感測元件的第五能量範圍的輻射粒子的數量;以及 利用所述輻射檢測器的第二計數器記錄撞擊所述感測元件的第六能量範圍的輻射粒子的數量,並且 其中,第五能量範圍和第六能量範圍不重疊。 The scanning device of claim 14, wherein for each value of i, the scanning (i) includes: recording, with a first counter of the radiation detector, a number of radiation particles of a fifth energy range that strike a sensing element of the radiation detector; and recording, with a second counter of the radiation detector, a number of radiation particles of a sixth energy range striking the sensing element, and Among them, the fifth energy range and the sixth energy range do not overlap. 如請求項14所述的掃描裝置,其中,所述掃描(i),i=1、......、M的分別在平行於所述Ox軸的方向上測量的所有M個平移距離都相同。The scanning device according to claim 14, wherein in the scan (i), all M translation distances of i=1,...,M respectively measured in the direction parallel to the Ox axis All the same. 如請求項24所述的掃描裝置,其中,對於i=1、......、(M-1),(A)在平行於所述Oy軸的方向上的所述掃描(i)的平移距離和(B)在平行於所述Oy軸的方向上的所述掃描(i+1)的平移距離之和不超過所述輻射檢測器在平行於所述Oy軸的方向上的尺寸。The scanning device according to claim 24, wherein for i=1,..., (M-1), (A) the scanning (i) in a direction parallel to the Oy axis The sum of the translation distances (B) of the scan (i+1) in the direction parallel to the Oy axis does not exceed the size of the radiation detector in the direction parallel to the Oy axis . 如請求項25所述的掃描裝置,其中,對於i=1、......、(M-1),所述方向(i)和所述方向(i+1)中的一個方向平行於所述Ox軸。The scanning device according to claim 25, wherein for i=1, ..., (M-1), the direction (i) and one of the directions (i+1) are parallel on the Ox axis.
TW112120761A 2022-07-08 2023-06-02 Scanning method and apparatus TW202403528A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/104549 WO2024007285A1 (en) 2022-07-08 2022-07-08 Scanning of objects with radiation detectors
WOPCT/CN2022/104549 2022-07-08

Publications (1)

Publication Number Publication Date
TW202403528A true TW202403528A (en) 2024-01-16

Family

ID=89454597

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112120761A TW202403528A (en) 2022-07-08 2023-06-02 Scanning method and apparatus

Country Status (2)

Country Link
TW (1) TW202403528A (en)
WO (1) WO2024007285A1 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5270923A (en) * 1989-11-02 1993-12-14 General Electric Company Computed tomographic image reconstruction method for helical scanning using interpolation of partial scans for image construction
CN100558298C (en) * 2007-10-11 2009-11-11 上海交通大学 Conical bundle CT reestablishment method based on helix saddle line
CN107764846B (en) * 2017-10-20 2020-04-14 重庆大学 Orthogonal linear scanning CL imaging system and analysis method
WO2020010593A1 (en) * 2018-07-12 2020-01-16 Shenzhen Xpectvision Technology Co., Ltd. Methods of making a radiation detector
EP3847485A4 (en) * 2018-09-07 2022-04-06 Shenzhen Xpectvision Technology Co., Ltd. An image sensor having radiation detectors of different orientations
CN112638257A (en) * 2018-09-19 2021-04-09 深圳帧观德芯科技有限公司 Image forming method
WO2020056712A1 (en) * 2018-09-21 2020-03-26 Shenzhen Xpectvision Technology Co., Ltd. An imaging system
EP3908185B1 (en) * 2019-01-10 2023-10-18 Shenzhen Xpectvision Technology Co., Ltd. An imaging system having radiation detectors of different orientations
CN115135993A (en) * 2020-11-25 2022-09-30 深圳帧观德芯科技有限公司 Imaging system

Also Published As

Publication number Publication date
WO2024007285A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
US11740188B2 (en) Method of phase contrast imaging
US20220346737A1 (en) Method of phase contrast imaging
TW202403528A (en) Scanning method and apparatus
TW202222069A (en) Imaging systems and imaging methods
TW202027357A (en) Image system and method for operating the same
WO2024138360A1 (en) Arrangements of radiation detectors in an image sensor
TWI802283B (en) Imaging systems
TWI814258B (en) Imaging methods using radiation detectors
TWI831514B (en) Imaging methods using bi-directional counters
TW202326175A (en) Methods of operation of imaging systems
TWI842236B (en) Methods of operation of image sensors
TWI842206B (en) Imaging systems with image sensors for side radiation incidence during imaging and method of using the same
WO2024031301A1 (en) Imaging systems and corresponding operation methods
US11948285B2 (en) Imaging systems with multiple radiation sources
WO2023123301A1 (en) Imaging systems with rotating image sensors
WO2023039701A1 (en) 3d (3-dimensional) printing with void filling
WO2023122921A1 (en) Image sensors with small and thin integrated circuit chips
TW202329481A (en) Methods of operation of image sensors
WO2022222122A1 (en) Imaging methods using an image sensor with multiple radiation detectors
TW202331301A (en) Method and system for performing diffractometry
TW202221291A (en) Imaging methods and imaging systems
TW202307463A (en) Method of determination of photon origination points using radiation detectors and radiation sensing system
TW202228432A (en) Imaging method and imaging system
TW202321735A (en) Image sensors with shielded electronics layers
TW202326176A (en) Imaging systems with image sensors for side radiation incidence during imaging