TW202345912A - 含抗原和dna之組成物及其用途 - Google Patents

含抗原和dna之組成物及其用途 Download PDF

Info

Publication number
TW202345912A
TW202345912A TW112108585A TW112108585A TW202345912A TW 202345912 A TW202345912 A TW 202345912A TW 112108585 A TW112108585 A TW 112108585A TW 112108585 A TW112108585 A TW 112108585A TW 202345912 A TW202345912 A TW 202345912A
Authority
TW
Taiwan
Prior art keywords
composition
cov
sars
pvax
protein
Prior art date
Application number
TW112108585A
Other languages
English (en)
Other versions
TWI843471B (zh
Inventor
劉士任
陳信偉
廖經倫
Original Assignee
財團法人國家衛生研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人國家衛生研究院 filed Critical 財團法人國家衛生研究院
Publication of TW202345912A publication Critical patent/TW202345912A/zh
Application granted granted Critical
Publication of TWI843471B publication Critical patent/TWI843471B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/12Viral antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/575Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20022New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/20011Coronaviridae
    • C12N2770/20034Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本發明提供了一種組成物,其中組成物包括一次單元疫苗,包括一第一劑量之一次單元;以及一核酸疫苗,包括一第二劑量之一載體。

Description

含抗原和DNA之組成物及其用途
本揭露提供一種組成物及其用途,特別是一種含抗原和DNA之組成物及其用途。
許多針對嚴重急性呼吸症候群冠狀病毒2型(SARS-CoV-2)的疫苗已經在臨床試驗中進行了測試,有些已經用於大規模接種;儘管如此,開發安全、有效和負擔得起的疫苗仍在進行之中。根據跨多個平台開發2019冠狀病毒疾病(COVID-19)疫苗的結果,已證實病毒表面的刺突糖蛋白是誘導保護性免疫反應的理想免疫原。
在所有疫苗平台中,DNA和mRNA疫苗具有獨特的優勢,包括快速設計和生產、成本效益和針對新出現的突變體的編碼序列易於操作。重要的是,它們的作用機制使目標抗原能夠以模擬自然感染的方式引入宿主免疫系統。更重要的是,抗原呈現細胞(antigen-presenting cells, APC)在體內產生所需抗原可通過第一類(class I)主要組織相容性複合體(major histocompatibility complex, MHC)活化CD8+ T細胞促進細胞內抗原的加工和呈現,通常導致CD4+ 第一型輔助T細胞1(T helper 1 cell, Th1)介導免疫反應,並避免與疫苗相關增強型呼吸道疾病(vaccine-associated enhanced respiratory disease, VAERD)併發症相關的Th2偏向性免疫反應。CD8+ T細胞還在誘導針對SARS-CoV-2變異體的交叉保護性免疫反應中發揮重要作用。此外,相比於mRNA疫苗,DNA疫苗具有更多的好處;DNA疫苗不需要額外的體外轉錄步驟,也不需要超低溫儲存,這限制了mRNA疫苗的全球運輸。
然而,DNA疫苗的阻礙在於難以有效進入細胞,抗原產生量有限,這導致免疫原性低,抗原特異性抗體反應差。為了確保DNA疫苗的功效,通常使用電脈衝或基因槍來促進質體DNA遞送到宿主細胞的細胞核中以進行編碼的蛋白質表達。
相反地,含有特定病毒蛋白的次單元蛋白疫苗在直接刺激抗原-特異性B細胞介導抗體分泌方面比在誘導T細胞介導的免疫反應方面更為有效,後者需要進一步的蛋白質到胜肽(protein-to-peptide)的過程。通常來說,必須將強效佐劑摻入次單元疫苗中以將抗原攜帶至APC或刺激輔助T細胞功能。
由於DNA和蛋白質疫苗利用不同的機制來引發免疫反應,結合這兩種疫苗的優點可能會克服每種疫苗類型的缺點。因此,迫切需要提供一種組成物以減輕和/或避免現有缺陷。
本發明提供一種組成物,包括:一次單元疫苗(subunit vaccine),包括一第一劑量之一次單元(subunit);以及一核酸疫苗,包括一第二劑量之一載體(vector)。
於本發明之一態樣中,該次單元疫苗之該次單元可包括病原體成分、重組蛋白、多醣、胜肽或其組合。
於本發明之一態樣中,該次單元疫苗之該次單元可包括該重組蛋白。
於本發明之一態樣中,該次單元疫苗之該次單元可包括重組SARS-CoV-2蛋白。
於本發明之一態樣中,該次單元疫苗之該次單元可包括重組SARS-CoV-2三聚刺突(trimeric spike, rTS)蛋白。
於本發明之一態樣中,該重組SARS-CoV-2三聚刺突(rTS)蛋白可包括一IZN4之三聚化結構域(trimerization domain)。
於本發明之一態樣中,該核酸疫苗中包括的該載體可以是編碼與該次單元疫苗中包括的該重組蛋白相同或不同的一蛋白序列的一質體(plasmid)。
於本發明之一態樣中,該載體可以是編碼SARS-CoV-2三聚刺突(TS)序列的一質體。
於本發明之一態樣中,該次單元疫苗可更包括一第三劑量之一佐劑。
於本發明之一態樣中,該佐劑可為一鋁鹽。較佳地,該佐劑為氫氧化鋁(Al(OH) 3)、磷酸鋁(AlPO 4)或羥基氧化鋁(AlO(OH))。更佳地,該佐劑為氫氧化鋁(Al(OH) 3)。
於本發明之一態樣中,該第一劑量可在0.1μg至10μg的範圍內,較佳在0.1μg至5μg的範圍內,且最佳在0.1μg至1μg的範圍內。
於本發明之一態樣中,該第二劑量可在1μg至300μg的範圍內,較佳在1μg至200μg的範圍內,且最佳在5μg至100μg的範圍內。
於本發明之一態樣中,請求項8之組成物中,該第三劑量可在100μg至500μg的範圍內,較佳在150μg至400μg的範圍內,且最佳在200μg至300μg的範圍內。
於本發明之一態樣中,請求項1之組成物中之該佐劑為一鋁鹽。
本發明更提供一種預防或改善一需求主體的一疾病之方法,包括向該主體施用一預防有效量之前述組成物。
於本發明之一態樣中,該疾病可以是由一病毒所引起。
於本發明之一態樣中,該病毒可以屬於反轉錄病毒科( Retroviridae)、小病毒科( Parvoviridae)、副黏液病毒科( Paramyxoviridae)、冠狀病毒科( Coronaviridae)或疱疹病毒科( Herpesviridae)。較佳地,該病毒屬於冠狀病毒科。
於本發明之一態樣中,該病毒可為嚴重急性呼吸症候群冠狀病毒(SARS-CoV)、中東呼吸症候群冠狀病毒(MERS-CoV)或嚴重急性呼吸症候群冠狀病毒2型(SARS-CoV-2)。較佳地,該病毒為嚴重急性呼吸症候群冠狀病毒2型(SARS-CoV-2)。
於本發明之一態樣中,該預防有效量可以是對該需求主體的0.1mg至10mg的範圍內,較佳在0.1mg至5mg的範圍內,最佳在0.1mg至2mg的範圍內。
於本發明之一態樣中,該組成物可更包括穩定劑、懸浮劑、防腐劑、界面活性劑、溶解助劑(dissolution adjuvants)、pH調節劑或聚集抑制劑。
於本發明之一態樣中,該主體可以是動物主體,較佳是哺乳動物主體,更佳是人類主體。
本發明更提供了上述組成物在製備預防疾病的藥物中的應用。
本發明更提供了一種治療一需求主體一疾病之方法,包括向該主體施用一預防有效量之上述組成物。
本發明更提供了一種用於增強一需求主體的體液反應(humoral response)之方法,包括向該主體施用一預防有效量之上述組成物。
本發明更提供了一種在一需求主體中誘導Th1-顯性(Th1-dominant)免疫反應之方法,包括向該主體施用一預防有效量之上述組成物。
本發明更提供了一種在一需求主體中改善S-特異性T細胞反應之方法,包括向該主體施用一預防有效量之上述組成物。
本發明更提供了一種在一需求主體中增強抗體反應和保護作用之方法,包括向該主體施用一預防有效量之上述組成物。
本發明更提供了一種在一需求主體中增強抗原-特異性T細胞反應之方法,包括向該主體施用一預防有效量之上述組成物。
於本發明之一態樣中,所述抗原可以是卵白蛋白(ovalbumin, OVA)或三聚刺突蛋白。
下文將配合圖式並詳細描述,使本揭露的其他新穎特徵更明顯。
在下文描述中提供了本發明的不同實施例。這些實施例用於解釋本發明的技術內容,並不用於限制本發明的範圍。一實施例中描述的特徵可以通過適當的修改、替換、組合或分離應用於其他實施例。
除非另有說明,否則本文使用的詞語「一個(a)」、「一個(an)」和「一個(one)」表示「至少一個」。
除非另有說明,術語「細胞毒性T淋巴細胞(cytotoxic T lymphocytes)」、「細胞毒性T細胞(cytotoxic T cells)」和「CTL」在本發明中可互換使用。
本文使用的術語「預防(prevent)」、「預防(prevention)」或「預防(prophylaxis)」包括降低死亡率或發病率的任何措施。預防可分為一級預防、二級預防或三級預防。一級預防旨在避免疾病的發生,二級預防和三級預防包括預防疾病進展和症狀出現的措施,恢復功能和減輕疾病相關症狀,從而減少已有疾病的不良影響。或者是,預防可以包括廣泛的預防性治療,旨在減輕特定病症的嚴重性,例如,減少諸如發燒、哮喘(wheeze)、咳嗽和上呼吸道感染的臨床症狀。
本發明的組成物還可以用作疫苗。在本發明中,術語「疫苗」(也稱為「免疫原性組成物(immunogenic composition)」)是指當接種至動物體內時具有引發免疫反應功能的組成物。
可以配製本文所述的任何組成物以適用於各種給藥途徑,例如靜脈內、關節內、結膜內、顱內、腹膜內、胸膜內、肌肉內、鞘內或皮下給藥途徑。該組成物可以是水溶液或冷凍乾燥的製劑(lyophilized formulation)。
材料和方法
rTS的生產
為了生產具有預融合形式的分泌型SARS-CoV-2 S蛋白(rTS蛋白),編碼武漢株S蛋白(Wuhan strain S protein)的DNA片段被設計為包含一個無功能的弗林蛋白酶切割位點(furin cleavage site)(R682G、R683S、R685S)和鉸合環(hinge loop)中的兩個穩定的脯氨酸(prolines)(K986P、V987P)。此外,跨膜結構域(transmembrane domain)和C端細胞內尾部被移除(S-2P)或被三聚化結構域IZN4(S-三聚體(S-Trimer))取代,然後在羧基末端用組氨酸(8-mer)進行純化。兩種S變異體DNA構建體(constructs)均針對現代人種(Homo sapiens)進行了密碼子優化(codon-optimized),合成並通過GenScript(美國新澤西州皮斯卡塔韋(Piscataway, NJ, USA))克隆(clone)到pcDNA3.1(+)質體載體中。S-三聚體的生產是使用ExpiCHO™表達系統試劑盒(ThermoFisher Scientific,美國加利福尼亞州卡爾斯巴德)( Carlsbad, CA, USA)編譯的。簡而言之,根據製造商的說明,S-三聚體(或S-2P)是由ExpiCHO細胞用無血清培養基瞬時表達。將含有S-三聚體的培養基在4 oC下以15,000rpm離心30分鐘;隨後,將上清液透析至平衡緩衝液(50 mM Tris-HCl、150 mM NaCl和20 mM 咪唑;pH 8.9)。S-三聚體通過平衡的Ni 2+-NTA瓊脂糖管柱(GE)純化。最後,通過含有0.5 M咪唑的平衡緩衝液洗脫S-三聚體,並針對不含咪唑的緩衝液(20 mM磷酸鈉;pH=8.0)進行透析。
DNA疫苗質體的產生和表徵
對於pVax-TS的構建,TS的序列是人類密碼子使用優化的,由Genscript(美國新澤西州皮斯卡塔韋)合成並克隆到DNA疫苗載體pVax1(Thermo Fisher,美國馬薩諸塞州沃爾瑟姆)的NheI-NotI位點(圖6(E))。在感受態(competent)DH5α細胞中擴增用於動物疫苗接種的質體DNA,並使用無內毒素質體提取試劑盒(Qiagen,美國加利福尼亞州雷德伍德(Redwood, CA, USA))純化。通過限制酶消化,然後通過瓊脂糖凝膠電泳確定DNA片段大小來驗證最終質體儲存種(plasmid stocks)。通過轉染293 T細胞,然後使用抗-S抗體(Mab5)與空載體pVax1進行免疫印跡對比,證實了來自pVax-TS的rTS表達(圖7)。
動物疫苗接種
BALB/c和C57BL/6小鼠和敘利亞倉鼠獲自國家實驗動物繁育研究中心(National Laboratory Animal Breeding and Research Center)(台灣台北)。使用6至12週齡的小鼠或倉鼠。麻醉的動物每3週肌肉內注射一次各種疫苗,包括僅DNA、氫氧化鋁(明礬)中的蛋白質或明礬中的DNA和蛋白質的組合。通過尾靜脈或下頜下採血從小鼠和倉鼠採集血液樣本。所有動物都被安置在國家衛生研究院(NHRI)的動物中心,並按照機構動物照護協議進行照顧。所有實驗動物協議均經NHRI機構動物照護和使用委員會(IACUC)批准(協議號碼:NHRI-IACUC-109077-A)。
中和抗體分析
通過TCID 50試驗評估針對活SARS-CoV-2的中和抗體效價。如下生成活病毒(hCoV-19/Taiwan/4/2020)。SARS-CoV-2變異體(hCoV-19/Taiwan/4/2020)是從台灣疾病管制署(CDC)獲得的。於37 oC下在補充有2μg/mL TPCK-胰蛋白酶(Sigma)的M199培養基中生長的Vero細胞中擴增病毒。中和效價被確定為防止50%一式四份接種感染所需的血清稀釋度(serum dilution)的倒數。出於計算的目的,將低於1:20起始稀釋度的中和效價指定為10。
細胞因子試驗
使用細胞因子三明治ELISA評估脾細胞的細胞因子的產生。第二次接種疫苗7天後採集小鼠脾臟。在通過篩網機械均化成RPMI-1640培養基並懸浮於含有10%胎牛血清(FBS)的LCM中後,通過70 μm細胞過濾器(cell strainer)過濾收集脾細胞。在37 oC和5%CO 2條件下,在24孔盤(5 × 10 6個細胞/孔)中用重組SARS-CoV-2 S(10 μg/ml)刺激獲得的脾細胞。3天後,收集上清液以通過使用不同的細胞因子ELISA試劑盒(Invitrogen,美國馬薩諸塞州沃爾瑟姆(Waltham, MA, USA))來量化產生的Th1(IFN-γ和IL-2)和Th2細胞因子(IL-13、IL-5和IL-4)的量,如製造商的說明所述。
ELISPOT試驗
為了表徵SARS-CoV-2刺突特異性T細胞反應,在第二次疫苗接種一週後採集小鼠的脾臟。根據製造商的說明,使用小鼠IFN-γ ELISPOT試驗試劑盒(BD Biosciences)評估每隻小鼠脾臟中分泌IFN-γ或IL-2的細胞的數量。將脾細胞(5 × 10 5個細胞/孔)接種到含有10 μg/ml重組S-2P或合成肽(S 444-458KVGGNYNYLYRLFRK(SEQ ID 1)和S 535-543KNKCVNFNF(SEQ ID 2))的孔盤中,一式二份,已被報導為BALB/c小鼠中的CD4 +和CD8 +T細胞表位。在37 oC和5% CO 2中再刺激脾細胞2天後,通過用PBST洗滌3次將細胞從孔盤上移除。然後,將孔盤與生物素化檢測抗體(1:250)在37 oC下培養2小時。每個孔都充滿染色溶液(3-胺-9-乙基咔唑,Sigma-Aldrich,美國馬薩諸塞州伯靈頓(Burlington, MA, USA))以顯示任何斑點。30分鐘後,將孔板置於自來水下以終止反應。使用ELISPOT分析儀(Cellular Technology Ltd.,美國俄亥俄州夏克高地(Shaker Heights, OH, USA))對斑點進行計數。
細胞內細胞因子染色
在第二次接種疫苗7天後收集脾細胞。在SARS-CoV-2 S蛋白胜肽池(peptide pool)存在的情況下,將單細胞懸浮液(1 × 10 6個細胞/200 μl)在圓底96孔微孔盤中培養24小時(表1)。在4 oC下使用以下抗小鼠單克隆抗體對細胞表面標記物染色30分鐘:抗-CD3e-PerCP/Cy5.5(BioLegend,克隆:145-2C11)、抗-CD4-FITC(BD Biosciences,克隆:RM4-5),抗-CD8-BV650(BioLegend,克隆:53-6.7)和抗-CD19-BV510(BioLegend,克隆:6D5)。然後,根據製造商的說明使用裂解溶液和透化溶液(Permeabilizing Solution)(BD Biosciences)固定並透化細胞,隨後用抗-IFN-γ-PE(BD Biosciences,克隆:RM4-5)和抗-TNF-α-APC(eBioscience,克隆:MP6-XT22)在4 oC下染色1小時。所有樣本均使用Attune NxT流式細胞儀(Thermo Fisher Scientific)採集,並使用FlowJo軟體v10.6.0進行分析。
表1. BALB/c小鼠中的SARS-CoV-2刺突特異性T細胞表位
名稱 胜肽序列
CD4 T細胞表位
S61-75 NVTWFHAIHVSGTNG (SEQ ID 3)
S339-363 AWNRKRISNCVA (SEQ ID 4)
S444-458 KVGGNYNYLYRLFRK (SEQ ID 5)
CD8 T細胞表位
S268-275 GYLQPRTF (SEQ ID 6)
S535-543 KNKCVNFNF (SEQ ID 7)
S1052-1060 FPQSAPHGV (SEQ ID 8)
敘利亞倉鼠的病毒攻擊(Viral challenge)
如前所述,在敘利亞倉鼠中進行SARS-CoV-2攻擊的動物模型。簡言之,敘利亞倉鼠用PBS(陰性對照)、100 µg pVax-ST、0.5 µg ST/Al(OH) 3或與pVax-ST混合的ST/Al(OH) 3進行IM免疫接種。PBS對照和複合疫苗的每次注射體積為每IM劑量100 μl。第45天用1 x 10 5TCID 50劑量的SARS-CoV-2對倉鼠進行鼻內攻擊。在SARS-CoV-2病毒攻擊後,每組四隻倉鼠在第3天犧牲用於病毒載量量化。每天記錄每組中其他四隻倉鼠的體重,直到第6天犧牲。為了確定肺部的病毒載量,使用gentle-MACS®解離器(Miltenyi Biotec)在2 mL PBS中將左肺組織均質化。在600 x g下離心5分鐘後,收集澄清的上清液用於活病毒滴定(TCID 50試驗)和病毒RNA定量。
蘇木精(Hematoxylin)和伊紅(eosin)(H&E)染色
為了通過H&E染色評估肺組織病理學,將來自倉鼠的肺組織固定在10%福馬林中並包埋石蠟。製備切片並用H&E染色。肺部病理學包括整體病變範圍、肺細胞增生和炎症浸潤,由NHRI(台灣苗栗)核心病理設施中心的臨床病理學家評估。通過使用以下評分系統,基於從每組中每隻動物收集的總肺葉的每個切片的發炎面積的百分比來確定分數:0=無病理變化;1=浸潤面積(infiltration area) ≤ 10%;2=浸潤面積10%;3=浸潤面積 ≥ 50%。當觀察到肺水腫和/或肺泡出血時,增加一個額外的分數。圖像中所有肺葉的總分顯示為個別動物。
統計分析
統計數據的分析通過使用GraphPad Prism軟體進行。雙尾Mann-Whitney測試用於比較兩個實驗組。使用Kruskal-Wallis ANOVA和Dunn的多重比較測試(multiple comparisons tests)對多組進行比較。在不同時間點對多組應用雙向方差分析(Two-way ANOVA)。P值 < 0.05被認為是顯著的。ns,不顯著。
實施例1
含有明礬製劑的rTS蛋白和DNA增強了小鼠的體液反應。
設計了一種rTS蛋白,其保持穩定的三聚體構造,具有2P修飾和與三聚化結構域IZN4融合的C端。為了測試是否可以通過與編碼TS序列的質體混合來提高rTS/明礬次單元疫苗的免疫原性(immunogenicity),通過將TS編碼序列插入pVax1構建了TS表達質體pVax-TS,pVax1是一種常見用於DNA疫苗開發的載體(圖6)。
首先,如材料和方法中所述配製不同劑量(5μg、20μg或100μg)的pVax-TS與rTS/明礬。BALB/c小鼠(n=5~6隻/組)每隔3週IM免疫接種兩次;收集血清樣本並通過酵素免疫吸附法(ELISA)分析以確定抗-S總IgG抗體效價(圖1(A))。結果表明,用含有5 μg或20 μg pVax-TS的rTS/明礬進行免疫接種會像rTS/明礬組一樣引發抗-S IgG的產生,而在指定的時間點使用含有100 μg pVax-TS的製劑進行免疫接種可將抗-S IgG效價提高至顯著高於rTS/明礬組的程度(圖1(B))。此外,為了評估100 μg pVax-TS質體DNA對這種組合疫苗誘導免疫的貢獻,BALB/c小鼠單獨用pVax-TS或pVax-TS/明礬或pVax-TS/rTS組合免疫接種。IM免疫接種100 μg pVax-TS誘導了比PBS對照免疫接種更高的抗-S IgG效價(第28、42和56天分別為40x、70x和5x)。然而,使用與明礬佐劑或rTS混合的pVax-TS進行免疫接種並沒有進一步增強抗-S IgG效價,僅在接受pVax-TS + rTS/明礬組合疫苗的小鼠中顯著增加並在第二次接種疫苗後三週時達到峰值(第42天)(圖1(C))。該結果表明通過將rTS/明礬與pVax-TS DNA結合誘導的抗-S IgG反應的協同增強。
為了研究由TS DNA+蛋白組合疫苗誘導的體液反應,分析了第42天收集的血清中的總抗-S IgG(圖2(A))、抗-S IgGl(圖2(B))、抗-S IgG2a(圖2(C))和SARS-CoV-2中和(NT)的效價(圖2(E))。此外,空pVax1與rTS/明礬的組合被納入比較,以評估細菌質體DNA的佐劑效果。儘管肌內(IM)注射pVax-TS(100 μg)誘導了相對較低的抗-S 總IgG效價和IgG2a偏向性體液反應,IgG2a/IgG1比率變化很大(圖2(D)),但它也引發了NT效價相當於rTS/明礬誘導的效價。重要的是,與其他疫苗接種方案相比,pVax-TS+rTS/明礬疫苗接種誘導了最高效價的S-特異性總IgG、IgG1和IgG2a、最高的IgG2a/IgG1比率和顯著更高的NT效價。然而,與rTS/明礬相比,使用rTS/明礬配製的pVax-only並未增強小鼠的抗體反應,但確實誘導了顯著更高的IgG2a效價和更高的IgG2a/IgG1比率,這表明儘管明礬通常會誘導Th2偏向性免疫,但仍存在Th1偏向性免疫反應。這些數據可能歸因於以下事實,pVax-TS通過其主鏈結構表現出導向Th1的佐劑效應,而在注射部位以明礬為佐劑的額外TS抗原的表達可以增強S-特異性抗體反應。
實施例2
用配製有TS DNA的rTS/明礬接種疫苗誘導Th1顯性(dominant)免疫反應。
為了進一步評估脾臟中S-特異性T細胞分泌的細胞因子概況,用上述不同的疫苗方案免疫接種BALB/c小鼠(n=6隻/組)。在第二次接種1週後,通過ELISA測定刺激的脾細胞上清液中IFN-γ、IL-2、IL-4、IL-5和IL-13(圖3(A)-3(E))量的變化。如預期地,由於Th1細胞因子(IFN-γ和IL-2)的數量有限,明礬佐劑rTS產生了一種偏向Th2的細胞因子譜,其中Th1/Th2細胞因子的比率相對較低,而在rTS/明礬接種小鼠的脾細胞中檢測到更大量的Th2細胞因子(IL-4、IL-5和IL-13)分泌。與rTS/明礬組相比,pVax-TS單獨組和rTS/明礬加上pVax組未顯示出顯著增加的Th1細胞因子量,但表現出部分抑制Th2細胞因子分泌,導致具有更高Th1/Th2細胞因子比率的Th1偏向性反應(圖3(F)-3(H))。pVax-TS+rTS/明礬接種組的脾細胞的IFN-r和IL-2分泌量在各組中最高,IL-4和IL-13細胞因子分泌量與rTS/明礬組相當,Th1/Th2細胞因子的比率相對較高(圖3(F)-3(H))。這些發現表明,pVax-TS+rTS/明礬方案實質上誘導了混合的Th1/Th2免疫反應,其中Th1免疫反應占主導地位。
實施例3
用rTS/明礬加上pVax-TS進行疫苗接種改善S-特異性T細胞反應。
由於Th1介導的免疫反應通常與細胞免疫的誘導有關,因此研究了用TS DNA+蛋白質組合疫苗免疫接種後小鼠中刺突特異性T細胞的發育。BALB/c小鼠(n=8隻/組)以3週的間隔進行IM免疫接種,並在第二次接種一週後犧牲。然後,從每組小鼠中分離出的脾細胞用刺突胞外結構域、CD4+ T細胞表位(S444-458)或CD8+ T細胞表位(S535-543)進行離體再刺激。通過ELISpot評估脾細胞的S-特異性細胞反應,以定量IFN-γ分泌細胞的數量(圖4(A))。
在完全培養基中培養兩天後,所有組的IFN-γ分泌細胞的平均頻率低於20點/106個細胞,包括用S蛋白或胜肽刺激的PBS對照組。與細胞因子產生概況一致,用rTS/明礬方案免疫接種在脾臟中產生最少數量的S-和S444-458-特異性IFN-γ分泌T細胞(58.25±43.34和32.25±8.45)和最小反應CD8+ T細胞表位刺激(21.75±8.8)。
單獨使用pVax-TS DNA免疫接種產生顯著增加的S-和S535-543-特異性IFN-γ分泌細胞量(149.1±96.52和114.1±81.64),個體之間存在明顯差異。此外,接受pVax-TS+rTS/明礬組合疫苗的BALB/c小鼠比其他小鼠產生顯著更高頻率的S-和S444-458-特異性T細胞(183.6±75.08;123.9±37.98);當用CD8+ T細胞表位(S535-543)刺激時,他們的脾細胞有一些IFN-γ分泌細胞(66.75±45.7)與pVax-TS-only組相當。值得注意的是,使用pVax-TS DNA進行肌內(IM)疫苗接種可誘導偏向CD8+ T細胞反應的細胞免疫。此外,明礬佐劑rTS與pVax-TS的組合誘導了更強大的CD4+ T細胞反應,但並未顯著損害CD8+ T細胞免疫反應的發展。
接下來,驗證了由不同疫苗接種方案引發的效應子(effector)CD4+(圖4(B))和CD8+(圖4(C))T細胞的比率。在用S-特異性T細胞表位池(表1)再刺激24小時後,通過細胞內染色(ICS)用靶向T細胞標記物和細胞因子的抗體對脾細胞進行染色(圖8)。流式細胞分析技術顯示,在第二次接種疫苗一週後單獨接受pVax-TS或接受rTS/明礬的組之間沒有統計學上的顯著差異。然而,接種pVax-TS+rTS/明礬的小鼠顯示產生S-特異性IFN-γ-和TNF-α的CD8+ T細胞(圖4(C))和TNF-α+CD4+ T細胞量的顯著增加。然而,這些小鼠脾臟中的IFN-γ+CD4+ T細胞百分比與接受pVax-TS DNA疫苗的小鼠相似(圖4(B))。總體而言,pVax-TS與rTS/明礬方案相結合可協同引發S-特異性CD4+和CD8+ T細胞介導的免疫。
實施例4
pVax-TS+rTS/明礬組合疫苗增強敘利亞倉鼠的抗體反應和保護作用。
基於小鼠數據,測試了SARS-CoV-2病毒攻擊研究中的DNA+蛋白質組合疫苗方案。由於小鼠ACE2受體對SARS-CoV-2刺突蛋白的結合親和力有限,敘利亞倉鼠被用作替代的SARS-CoV-2感染模型,因為該物種的ACE2受體與SARS-CoV-2刺突蛋白緊密結合並介導病毒進入。在這項動物研究中,倉鼠(n=8隻/組)接受兩次肌內注射PBS對照、pVax-TS、rTS/明礬或pVax-TS+rTS/明礬,間隔3週,並在第45天鼻內感染SARS-CoV-2(圖5(A))。在指定的時間點收集血清樣本,並通過測量抗-S IgG效價(圖5(B))和活病毒NT效價(圖5(C))進行抗體反應評估。在接種pVax-TS+rTS/明礬疫苗第一劑和追加劑後,倉鼠在第14、28和42天產生顯著增加的抗-S IgG和中和抗體的效價,但在接種單獨pVax-TS DNA或rTS/明礬的倉鼠之間沒有檢測到顯著差異。
在攻擊研究中,來自四組的倉鼠感染了200中位數組織培養感染劑量(TCID50)的SARS-CoV-2。為了分析肺部的組織病理學和病毒載量,感染後第3天犧牲每組一半的倉鼠(n=4隻/組);每天監測另一半的體重變化(%),然後在感染後第6天(dpi)犧牲。感染後,單獨接種rTS/明礬或加上pVax-TS的倉鼠在接種後的前6天體重不會減輕,而PBS對照組的倉鼠體重在接種後的6天內體重逐漸減輕約15%。單獨接種pVax-TS DNA的倉鼠體重略有下降,但體重減輕明顯少於PBS對照組(圖5(D))。在感染後第3天,病毒效價(log 9.61 TCID50/ml)表明PBS對照組的倉鼠的肺中的急性病毒複製。與PBS對照組相比,單獨接受pVax-TS(log 7.15 TCID50/ml)或rTS/明礬(log 6.11 TCID50/ml)的倉鼠的肺病毒效價沒有顯著降低。然而,在pVax-TS+rTS/明礬組,肺中的病毒複製被很好地控制在可檢測的極限以下(圖5(E))。感染後第6天的組織病理學分析顯示,在PBS組的肺部觀察到更大的炎症和組織損傷。除了含有用pVax-TS+rTS/明礬接種的倉鼠的組之外,所有接種疫苗的倉鼠的組均顯示出比PBS組更少的肺部損傷,沒有顯著差異(圖5(F)、5(G))。這些發現表明,保護效力與疫苗方案引發的抗-S IgG效價呈正相關。總而言之,這些結果支持小鼠研究的數據,並證明組合疫苗方案可引發強大的體液免疫反應,以抑制病毒複製並保護倉鼠免受肺部損傷。
實施例5
用卵白蛋白(OVA)評估T細胞反應。
於本發明中,TS DNA和蛋白質與明礬通過直接肌內注射共同遞送改善了TS的免疫原性,已經證明增強了抗-S抗體反應的動力學和幅度、病毒中和效力和刺突特異性T細胞反應。為了進一步探索將DNA和蛋白質與明礬結合的策略是否可以普遍增強抗原特異性T細胞反應,採用卵白蛋白(OVA)作為抗原,來評估用pVax-OVA單獨、rOVA/明礬或pVax-OVA與rOVA/明礬組合肌內注射接種兩次的C57BL/6小鼠的T細胞反應。通過該實驗,確認無論抗原是TS還是OVA,DNA+蛋白質組合疫苗都增強CD4+和CD8+ T細胞免疫力(圖9(A)和(B))。重要的是,發現將OVA DNA和蛋白質與明礬結合同時增加了抗原-特異性CD8+ T細胞的數量和效應子功能(圖9(C)和(D)),這與增強的細胞毒性T-淋巴細胞(CTL)殺傷能力有關(圖9(E)和(F))。
於本發明中,通過直接肌內(IM)注射到囓齒類動物中,用重組SARS-CoV-2三聚刺突(rTS)蛋白及其編碼質體配製的明礬的免疫原性和功效,對接受裸DNA、蛋白質/明礬或DNA+蛋白質/明礬組合疫苗進行了全面評估。結果表明,組合疫苗方案實現了兩種疫苗的共同遞送,並協同增強了體液和細胞反應,有望預防SARS-CoV-2感染。
基於精心設計的臨床試驗的這些中期結果,這種rTS蛋白和質體DNA與明礬混合的簡單製劑應該是安全的,並且很容易適用於在人體臨床試驗中誘導保護性免疫。此外,DNA疫苗的快速製造工藝適用於使用DNA編碼的新變異體S結合初始rTS的新一代疫苗,可以對新變異體的爆發提供快速反應。
上述具體實施例應當理解為僅是示例性的,並不以任何方式限制本發明的其餘部分,並且不同實施例的特徵可以混合和匹配,只要它們不相互衝突即可。
圖1是一組圖,顯示了由TS蛋白+DNA與明礬組合誘導的抗-S IgG的協同增加。(A)顯示疫苗接種和血清收集時間表之示意圖。BALB/c小鼠(5~6隻/組)在第0天和第21天用指定疫苗組合中的S-三聚體(S-Trimer)/Al(OH) 3肌內(IM)免疫接種兩次。PBS注射組用作空白對照。在第0、28、42和56天收集血清。使用酵素免疫分析法(ELISA)檢測在指定時間點收集的血清樣本中的(B, C)抗-S IgG效價。每個符號代表一隻小鼠的終點效價;每個條形代表該組IgG終點效價的幾何平均值±95%信賴區間(CI)。通過雙尾Mann-Whitney測試確定佐劑疫苗組之間的統計學顯著差異。*P < 0.05,**P < 0.008,ns:不顯著。 圖2是一組圖,顯示由明礬配製的Trimer-S蛋白+DNA誘導的體液反應。BALB/c小鼠(9隻/組)在第0天和第21天用100 μg pVax-TS(綠色符號)、TS/明礬(藍色符號)、TS/明礬結合100 μg pVax-1(黃色符號)或TS/明礬結合100 μg pVax-TS(紅色符號)IM免疫接種兩次。注射PBS作為空白對照。通過ELISA測定血清樣本(第42天)中的(A)總抗-S IgG效價、(B)抗-S IgG1效價和(C)抗-S IgG 2a效價。(D)IgG2a/IgG1比率是根據用ELISA測定的S-特異性抗體效價所計算的。對第二次免疫後3週(第42天)收集的血清樣本評估對活SARS-CoV-2的中和活性。每個符號代表一隻小鼠的IgG終點效價或倒數50%抑制稀釋ID50效價;每個條形代表該組IgG終點效價的幾何平均值±95%信賴區間(CI)。通過雙尾Mann-Whitney測試確定佐劑疫苗組之間的統計學顯著差異。*P < 0.05,**P < 0.008,***P < 0.0005,****P < 0.0001,ns:不顯著。 圖3是一組圖,顯示用TS/明礬與pVax-TS結合的免疫增加Th1細胞因子產生。BALB/c小鼠(n=6隻/組)以3週的間隔(第0天和第21天)按指示接種疫苗組合兩次。第二次接種疫苗後一週(第28天)收集脾細胞(Splenocytes),並與SARS-CoV-2 S胞外結構域(ectodomain)一起培養以刺激細胞因子分泌。通過三明治ELISA測定分泌的Th1細胞因子包括(A)IFN-γ和(B)IL-2以及分泌的Th2細胞因子包括(C)IL-4、(D)IL-5和(E)IL-13的量。Th1/Th2比率的計算方法是將IFN-γ的產生量除以每種Th2細胞因子的產生量,即(F)IFN-γ/IL-4、(G)IFN-γ/IL-5或(H)IFN-γ/IL-13。每個符號代表一隻小鼠的細胞因子值;每組細胞因子值表示為幾何平均值±95%信賴區間(CI)。所有比較的統計分析均使用雙尾Mann-Whitney測試進行。*P < 0.05,**P < 0.008,ns:不顯著。 圖4是一組圖,顯示用pVax-TS配製的TS/明礬疫苗可增強S-特異性T細胞反應。第二次接種疫苗後一週,從PBS對照處理或免疫的BALB/c小鼠(n=8隻/組)採集脾臟。(A)每個個體的脾細胞在培養基中培養作為對照,或用SARS-CoV-2刺突胞外結構域、CD4+ T細胞表位或CD8+ T細胞表位刺激兩天。通過ELISpot評估IFN-γ分泌細胞的數量。如上所述收集脾細胞,並與S-特異性T細胞表位一起培養24小時。脾細胞門控於CD3a+/CD19-細胞上,以使用流式細胞分析技術(flow cytometry)確定T細胞群。(B)產生IFN-γ和TNF-α的CD4+ T細胞的百分比。(C)產生IFN-γ和TNF-α的CD8+ T細胞的百分比。每個符號代表一隻小鼠;每個條形代表每組的平均值±標準差。通過雙尾Mann-Whitney測試確定統計學上的顯著差異。* p < 0.05、** p < 0.008 和 *** p < 0.0005 被認為是顯著的;ns:不顯著。 圖5是一組圖,顯示在倉鼠中TS/明礬與pVax-TS結合的免疫反應和保護功效。(A)顯示倉鼠研究的疫苗接種、血清樣本收集和SARS-CoV-2攻擊時間表的示意圖。倉鼠(n=8隻/組)在第0天和第21天用PBS或指定的疫苗組合進行兩次IM免疫接種。在第0、14、28和42天通過牙齦採血收集血清。敘利亞倉鼠在第45天鼻內感染了1x10 5TCID50活SARS-CoV-2。基於(B)抗-S終點IgG效價和(C)野生型SARS-CoV-2中和效價評估體液免疫反應。(D)在感染SARS-CoV-2後每天記錄倉鼠體重變化(%)。(E)通過TCID50試驗測定感染SARS-CoV-2的倉鼠在感染後3天(dpi 3)肺部的病毒效價。(F)感染後6天(dpi 6)的受感染倉鼠的肺切片的H&E染色的代表性組織病理學圖像,其中紫色表示發炎區域。(G)肺部病變的病理嚴重程度被評估為每個切片中發炎區域的百分比。符號代表一隻動物;條形表示每組終點效價和ID50效價的幾何平均值和95%信賴區間;水平線表示平均值和標準差(SD)。對於抗體效價、病毒效價和病理嚴重程度的統計分析,各組之間的顯著差異是通過雙尾Mann-Whitney測試確定。體重變化(%)的比較是採用具有多重比較測試的雙向方差分析(ANOVA)。* p < 0.05,** p < 0.008,*** p < 0.0005,**** p < 0.0001,ns:不顯著。 圖6是一組圖,顯示pVax基DNA疫苗的構建和表徵。(A)pVax1空載體和(B)pVax-TS和(C)pVax-OVA的質體圖譜,它們分別表達SARS-CoV-2三聚體-S(TS)和卵白蛋白(OVA)。(D)pVax1、(E)pVax-TS和(F)pVax-OVA的質體DNA經限制酶消化後的瓊脂糖凝膠電泳(Agarose gel electrophoresis)。 圖7是一組圖,顯示轉染的HEK293T細胞中pVax-TS和pVax-OVA表現的驗證。用空載體(pVax-1)、SARS-CoV-2三聚體-S表現載體(pVax-TS)或rOVA表現載體(pVax-OVA)轉染HEK293T細胞。收集細胞裂解物和培養物上清液,並通過(A, C)SDS-PAGE和(B, D)抗SARS-CoV-2刺突抗體或抗OVA抗體進行免疫印跡分析(immunoblotting)。第M道:分子量梯度(ladder),相關條帶以千道爾頓為單位標記;第1、5道:pVax-1轉染的HEK293T細胞裂解物;第2、6道:來自pVax-1轉染的HEK293T細胞的培養物上清液;第3道:pVax-TS轉染的HEK293T細胞裂解物;第4道:來自pVax-TS轉染的HEK293T細胞的培養物上清液;第7道:pVax-OVA轉染的HEK293T細胞裂解物;以及第4道:來自pVax-OVA轉染的HEK293T細胞的培養物上清液。 圖8是一組圖,顯示了流式細胞分析技術分析的流程圖,以確定來自免疫小鼠的淋巴細胞中的效應T細胞。(A)裂解的脾細胞包括淋巴細胞,(B)淋巴細胞群中的單細胞(single cell),(C)CD3+ T細胞門控的CD4+ T細胞,(D)淋巴細胞門控的T細胞(CD3+CD19-),(E)由CD3+ T細胞門控的CD8+ T細胞,(F, G)由CD4+ T細胞門控的效應T輔助細胞(CD4+IFNγ+或CD4+TNFα+),以及(I, J)CD8+ T細胞門控的效應細胞毒性T細胞(CD8+IFNγ+或CD8+TNFα+)的流式細胞分析技術圖。 圖9是一組圖,顯示具有明礬的複合DNA+蛋白質疫苗可增加效應CTL量。C57BL/6小鼠(8隻/組)在第0天和第21天用pVax-OVA(100 μg)、rOVA/明礬或rOVA/明礬與pVax-1(100 μg)結合IM免疫接種兩次。PBS注射組用作空白對照。第二次接種疫苗後一週從個別小鼠身上採集脾臟。來自每個個體的脾細胞在培養基中培養作為對照或用(A)OT-I表位或(B)OT-II表位再刺激。通過ELISpot評估IFN-γ分泌細胞的數量。(C, D)使用流式細胞分析技術分析產生IFN-γ和TNF-α的CD8+ T細胞的百分比。(E, F)疫苗誘導的體內CTL殺傷試驗。(E)通過流式細胞分析技術分析脾臟中OT-I肽(SII)加載靶標(CFSEhigh)和無關肽(irrelevant peptide)(RAH)-加載對照細胞(CFSElow)的概況。(F)特異性裂解的百分比通過以下式計算:特異性裂解(Specific lysis) %=[(% RAH 肽 × A) -% SII 肽] / (% RAH 肽 × A)。調整因子A=來自原生對照的SII肽/RAH肽。每個符號代表一隻小鼠;每個條形代表每組的平均值±標準差。通過雙尾Mann–Whitney測試確定統計學上的顯著差異。* p < 0.05、** p < 0.008 和 *** p < 0.0005 被認為是顯著的;ns:不顯著。
TW202345912A_112108585_SEQL.xml

Claims (20)

  1. 一種組成物,包括: 一次單元疫苗,包括一第一劑量之一次單元;以及 一核酸疫苗,包括一第二劑量之一載體。
  2. 如請求項1所述之組成物,其中該次單元疫苗之該次單元包括重組蛋白、多醣、胜肽或其組合。
  3. 如請求項2所述之組成物,其中該次單元疫苗之該次單元包括該重組蛋白。
  4. 如請求項3所述之組成物,其中該次單元疫苗之該次單元包括重組SARS-CoV-2蛋白。
  5. 如請求項3所述之組成物,其中該次單元疫苗之該次單元包括重組SARS-CoV-2三聚刺突(rTS)蛋白。
  6. 如請求項5所述之組成物,其中該重組SARS-CoV-2三聚刺突(rTS)蛋白包括一IZN4之三聚化結構域。
  7. 如請求項1所述之組成物,其中該載體是編碼SARS-CoV-2三聚刺突(TS)序列的一質體。
  8. 如請求項1所述之組成物,其中該次單元疫苗更包括一第三劑量之一佐劑。
  9. 如請求項8所述之組成物,其中該佐劑為一鋁鹽。
  10. 如請求項1所述之組成物,其中該第一劑量在0.1μg至10μg的範圍內。
  11. 如請求項1所述之組成物,其中該第二劑量在1μg至300μg的範圍內。
  12. 如請求項8所述之組成物,其中該第三劑量在100μg至500μg的範圍內。
  13. 如請求項1所述之組成物,其中該佐劑為一鋁鹽。
  14. 一種預防或改善一需求主體的一疾病之方法,包括向該主體施用一預防有效量之請求項1-13中任一項之組成物。
  15. 如請求項14所述之方法,其中該疾病是由一病毒所引起。
  16. 如請求項15所述之方法,其中該病毒屬於反轉錄病毒科、小病毒科、副黏液病毒科、冠狀病毒科或疱疹病毒科。
  17. 如請求項16所述之方法,其中該病毒屬於冠狀病毒科。
  18. 如請求項15所述之方法,其中該病毒為嚴重急性呼吸症候群冠狀病毒(SARS-CoV)、中東呼吸症候群冠狀病毒(MERS-CoV)或嚴重急性呼吸症候群冠狀病毒2型(SARS-CoV-2)。
  19. 如請求項14所述之方法,其中該預防有效量是對該需求主體的0.1mg至10mg的範圍內。
  20. 如請求項14所述之方法,其中該主體是人類主體。
TW112108585A 2022-03-11 2023-03-08 含抗原和dna之組成物及其用途 TWI843471B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263319030P 2022-03-11 2022-03-11
US63/319,030 2022-03-11

Publications (2)

Publication Number Publication Date
TW202345912A true TW202345912A (zh) 2023-12-01
TWI843471B TWI843471B (zh) 2024-05-21

Family

ID=

Also Published As

Publication number Publication date
WO2023183136A1 (en) 2023-09-28
WO2023183136A9 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
CN113164586B (zh) 免疫组合物及其制备方法与应用
JP6419695B2 (ja) Ul128複合体の送達及びcmv感染の予防のためのmvaワクチン
CN110198736B (zh) 带状疱疹疫苗组合物
WO2004076645A2 (en) Compositions and methods for cytomegalovirus treatment
US20230381297A1 (en) Attenuated poxvirus vector based vaccine for protection against covid-19
US11925685B2 (en) DNA antibody constructs encoding anti-ZIKV envelope antibodies
US20080241069A1 (en) Methods and compositions for treating IgE-mediated diseases
TW202334198A (zh) 用於避免感染與治療遠程新冠肺炎之針對SARS-CoV-2 OMICRON BA.4/BA.5的疫苗組成物
CN108503696B (zh) 一种酵母细胞表达的寨卡病毒亚单位疫苗
TW202208400A (zh) 來自sars–cov–2之保守肽抗原決定基於開發廣泛型covid–19疫苗之用途
CN112512569A (zh) 表达多个巨细胞病毒(cmv)抗原的mva载体及其用途
TWI843471B (zh) 含抗原和dna之組成物及其用途
CA3219206A1 (en) Sars-cov-2 subunit vaccine
TW202345912A (zh) 含抗原和dna之組成物及其用途
CA3219201A1 (en) Sars-cov-2 subunit vaccine
JP2023554587A (ja) Sars-cov-2 スパイクタンパク質の受容体結合ドメインにコンジュゲートまたは融合している抗体およびワクチン目的でのそれらの使用
CA3184406A1 (en) A dna plasmid sars-coronavirus-2/covid-19 vaccine
KR20230022160A (ko) 사이토메갈로바이러스의 gB와 펜타머의 융합 단백질 및 당해 융합 단백질을 포함하는 백신
WO2019075300A9 (en) Mayaro virus consensus antigens, dna antibody constructs for use against mayaro virus, and combinations thereof
Liao et al. Co‐delivery of a trimeric spike DNA and protein vaccine with aluminum hydroxide enhanced Th1‐dominant humoral and cellular immunity against SARS‐CoV‐2
US20240226291A9 (en) Combination of novel vaccines against zika virus and dna antibody constructs for use against zika virus
CN118284431A (zh) SARS-CoV-2亚单位疫苗
CN117999089A (zh) SARS-CoV-2亚单位疫苗
US20200237895A1 (en) Mayaro virus consensus antigens, dna antibody constructs for use against mayaro virus, and combinations thereof
WO2023079529A1 (en) Re-focusing protein booster immunization compositions and methods of use thereof