TW202335232A - Overlay metrology mark - Google Patents

Overlay metrology mark Download PDF

Info

Publication number
TW202335232A
TW202335232A TW111115027A TW111115027A TW202335232A TW 202335232 A TW202335232 A TW 202335232A TW 111115027 A TW111115027 A TW 111115027A TW 111115027 A TW111115027 A TW 111115027A TW 202335232 A TW202335232 A TW 202335232A
Authority
TW
Taiwan
Prior art keywords
axis
alignment
overlay measurement
measurement mark
feature
Prior art date
Application number
TW111115027A
Other languages
Chinese (zh)
Other versions
TWI809828B (en
Inventor
張凱
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/672,862 external-priority patent/US20230260924A1/en
Priority claimed from US17/673,155 external-priority patent/US20230259039A1/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI809828B publication Critical patent/TWI809828B/en
Publication of TW202335232A publication Critical patent/TW202335232A/en

Links

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Glass Compositions (AREA)

Abstract

The present application provides an overlay metrology mark for determining an overlay error between two successive layers of a substrate. The overlay metrology mark includes a first axis, a second axis, a target feature, a first alignment feature, and a second alignment feature. The second axis crosses the first axis. The target feature is disposed at an intersection of the first axis and the second axis. The first alignment feature is arranged on the first axis, the second alignment feature is arranged on the second axis, and the first and second alignment features are in pairs.

Description

疊對量測標記Overlay measurement marks

本申請案主張美國第17/672,862及17/673,155號專利申請案之優先權(即優先權日為「2022年2月16日」),其內容以全文引用之方式併入本文中。This application claims priority to U.S. Patent Application Nos. 17/672,862 and 17/673,155 (that is, the priority date is "February 16, 2022"), the contents of which are incorporated herein by reference in their entirety.

本揭露係關於一種用於檢查對準精度的疊對標記。特別是有關於一種用於對準一基底之不同層的一疊對量測標記。The present disclosure relates to an overlay mark for checking alignment accuracy. More particularly, it relates to a stack of measurement marks for aligning different layers of a substrate.

半導體積體電路產業已經經歷快速增長。在積體電路材料與設計方面的技術進步已經產生了數個世代的積體電路,其中每一世代的電路都比上一代更小、更複雜。如今,半導體元件以及積體電路包括具有小於一微米之尺寸的多個多層結構。The semiconductor integrated circuit industry has experienced rapid growth. Technological advances in integrated circuit materials and design have produced several generations of integrated circuits, each of which is smaller and more complex than the previous generation. Today, semiconductor devices and integrated circuits include multiple multilayer structures with dimensions less than one micron.

如所屬技術領域中所已知的,一微影製程是在製造半導體積體電路元件期間確定臨界尺寸的一步驟。藉由首先使用微影製程將一光罩(reticle)上的一圖案轉移到一光阻層而形成一電子電路圖案,然後,在一後續的蝕刻製程中,將該圖案從該光阻層轉移到一下層材料層,例如一介電層或一金屬層。As is known in the art, a lithography process is a step in determining critical dimensions during the fabrication of semiconductor integrated circuit devices. An electronic circuit pattern is formed by first transferring a pattern on a reticle to a photoresist layer using a lithography process, and then transferring the pattern from the photoresist layer in a subsequent etching process. to a lower material layer, such as a dielectric layer or a metal layer.

在一晶圓上之成功的一微影製程取決於對臨界尺寸以及對準精度的控制。隨著積體電路規模的不斷縮小,尤其是在20奈米以下,精確對準多個層已變得越來越困難。因此,精度的一測量,意即疊對誤差的測量,對半導體製造程序至關重要。一疊對遮罩用來當作測量疊對誤差的一工具,並在微影製程之後確定一光阻圖案是否與一晶片上的前一層精確對齊。A successful lithography process on a wafer depends on control of critical dimensions and alignment accuracy. As the scale of integrated circuits continues to shrink, especially below 20 nanometers, it has become increasingly difficult to accurately align multiple layers. Therefore, a measurement of accuracy, that is, measurement of overlay error, is critical to the semiconductor manufacturing process. A pair of masks is used as a tool to measure overlay errors and determine whether a photoresist pattern is accurately aligned with the previous layer on a wafer after the lithography process.

若是全部或部分的疊對遮罩並未正確對準的話,則結果的特徵可能無法與相鄰各層正確對準。這可能會導致元件性能降低或元件完全故障。雖然現有的疊對(量測)標記已用於防止不正確的對準,但這種方法對於小尺寸元件而言並不完全令人滿意。If all or part of the overlay mask is not aligned correctly, the resulting features may not align correctly with adjacent layers. This may result in reduced component performance or complete component failure. While existing overlay (gauge) marks have been used to prevent incorrect alignment, this approach is not entirely satisfactory for small size components.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above description of "prior art" is only to provide background technology, and does not admit that the above description of "prior art" reveals the subject matter of the present disclosure. It does not constitute prior art of the present disclosure, and any description of the above "prior art" None should form any part of this case.

本揭露之一實施例提供一種確認一基底的二連續層之間的一疊對誤差的疊對量測標記。該疊對量測標記包括一第一軸、一第二軸、一目標特徵、一第一對準特徵以及一第二對準特徵。該第二軸與該第一軸交叉。該目標特徵設置在該第一軸與該第二軸的一交叉處。該第一對準特徵設置在該第一軸上,該第二對準特徵設置在該第二軸上,且該第一對準特徵與該第二對準特徵是成對設置。One embodiment of the present disclosure provides an overlay measurement mark for confirming an overlay error between two consecutive layers of a substrate. The overlay measurement mark includes a first axis, a second axis, a target feature, a first alignment feature and a second alignment feature. The second axis intersects the first axis. The target feature is set at an intersection of the first axis and the second axis. The first alignment feature is disposed on the first axis, the second alignment feature is disposed on the second axis, and the first alignment feature and the second alignment feature are disposed in pairs.

在一些實施例中,該第一軸、該第二軸、該目標特徵、該第一對準特徵以及該第二對準特徵設置在該基底的至少一切割線中。In some embodiments, the first axis, the second axis, the target feature, the first alignment feature, and the second alignment feature are disposed in at least one cutting line of the substrate.

在一些實施例中,該第一軸與該第二對準特徵之間的一最短距離等於該第二軸與該第一對準特徵之間的一最短距離。In some embodiments, a shortest distance between the first axis and the second alignment feature is equal to a shortest distance between the second axis and the first alignment feature.

在一些實施例中,該目標特徵設置在該基底的一第一層上,而該第一軸、該第二軸、該第一對準特徵以及該第二對準特徵設置在該第一層上方或下方的一第二層上。In some embodiments, the target feature is disposed on a first layer of the substrate, and the first axis, the second axis, the first alignment feature, and the second alignment feature are disposed on the first layer. Above or below a second floor.

在一些實施例中,該目標特徵包括二線區段,而當該第一層與該第二層正確對準時,則該第一軸與該第二軸分別與該等線區段重疊。In some embodiments, the target feature includes a two-line segment, and when the first layer and the second layer are correctly aligned, the first axis and the second axis respectively overlap with the two-line segment.

在一些實施例中,該第一軸與該第二軸正交。In some embodiments, the first axis is orthogonal to the second axis.

在一些實施例中,該目標特徵具有一十字形狀。In some embodiments, the target feature has a cross shape.

在一些實施例中,該第一對準特徵與該第二對準特徵分別由多個重複的微結構(repetitious micro-structures)所構成。In some embodiments, the first alignment feature and the second alignment feature are each composed of a plurality of repetitive micro-structures.

在一些實施例中,該第一對準特徵與該第二對準特徵分別具有一正方形輪廓,並由複數個正方形微結構所構成。In some embodiments, the first alignment feature and the second alignment feature each have a square outline and are composed of a plurality of square microstructures.

在一些實施例中,該等微結構經由一對空缺區而相互分隔開。In some embodiments, the microstructures are separated from each other by a pair of vacant regions.

在一些實施例中,該等空缺區具有一第一寬度,而該等微結構具有一第二寬度,該第二寬度大於該第一寬度。In some embodiments, the vacancy areas have a first width, and the microstructures have a second width, and the second width is greater than the first width.

在一些實施例中,該對空缺區包括一水平空缺區以及一縱向空缺區,該第一軸延伸經過位在該第一軸處之該第一對準特徵的該水平空缺區,而該第二軸延伸經過位在該第二軸處之該第二對準特徵的該縱向空缺區。In some embodiments, the pair of voids includes a horizontal void and a longitudinal void, the first axis extends through the horizontal void of the first alignment feature at the first axis, and the third Two axes extend through the longitudinal void of the second alignment feature located at the second axis.

本揭露之一實施例提供一種確認一基底的複數個連續圖案化層之多個相對位置的疊對量測標記。該疊對量測標記包括一第一軸、一第二軸、一目標特徵以及複數個對準特徵。該第二軸與該第一軸正交且交叉。該目標特徵設置在該第一軸與該第二軸的一交叉處。該複數個對準特徵沿著該第一軸與該第二軸設置。One embodiment of the present disclosure provides an overlay measurement mark for confirming multiple relative positions of a plurality of consecutive patterned layers of a substrate. The overlay measurement mark includes a first axis, a second axis, a target feature and a plurality of alignment features. The second axis is orthogonal and crosses the first axis. The target feature is set at an intersection of the first axis and the second axis. The plurality of alignment features are disposed along the first axis and the second axis.

在一些實施例中,相鄰對的對準特徵之間的一距離是固定的。In some embodiments, a distance between adjacent pairs of alignment features is fixed.

在一些實施例中,該相鄰對的對準特徵藉由一相等距離而與該第一軸及該第二軸的該交叉處分隔開,且該相鄰對的對準特徵經配置以確定該複數個連續圖案化層的該等相對位置。In some embodiments, the adjacent pairs of alignment features are separated from the intersection of the first axis and the second axis by an equal distance, and the adjacent pairs of alignment features are configured to determine The relative positions of the plurality of consecutive patterned layers.

在一些實施例中,該第一軸將該第二軸分隔成一上區段以及一下區段;該第二軸將該第一軸分隔成一左區段以及一右區段;提供設置在該上區段與該下區段處的該複數個對準特徵以確定在該基底之一陣列區中的該複數個連續圖案化層的該等相對位置;且提供設置在該下區段與該上區段處的該複數個對準特徵以確定在鄰近該陣列區之一周圍區中的該複數個連續圖案化層的該等相對位置。In some embodiments, the first axis separates the second axis into an upper section and a lower section; the second axis separates the first axis into a left section and a right section; and is provided on the upper section. The plurality of alignment features at the section and the lower section determine the relative positions of the plurality of continuous patterned layers in an array region of the substrate; and providing disposed at the lower section and the upper section The alignment features at the segments determine the relative positions of the consecutive patterned layers in a surrounding region adjacent to the array region.

在一些實施例中,在製造該複數個對準特徵靠近該目標特徵的其中一個是在製造遠離該目標特徵設置之該複數個對準特徵中的另一個之前進行製造。In some embodiments, fabricating one of the plurality of alignment features proximate the target feature precedes fabricating another of the plurality of alignment features disposed away from the target feature.

在一些實施例中,該第一軸、該第二軸、該目標特徵以及該複數個對準特徵設置在該基底的多個切割線中。In some embodiments, the first axis, the second axis, the target feature, and the plurality of alignment features are disposed in cutting lines of the substrate.

在一些實施例中,該第一軸與該第二軸具有大約15奈米的一長度。In some embodiments, the first axis and the second axis have a length of approximately 15 nanometers.

在一些實施例中,該目標特徵設置在該基底的一第一結構層上,且該第一軸、該第二軸以及該複數個對準特徵設置在位在該第一結構層上方或下方的一第二結構層上。In some embodiments, the target feature is disposed on a first structural layer of the substrate, and the first axis, the second axis and the plurality of alignment features are disposed above or below the first structural layer. on a second structural layer.

在一些實施例中,該複數個對準特徵經由一對空缺區而分割成四等分,且該第一軸或該第二軸延伸經過其中一個空缺區。In some embodiments, the plurality of alignment features are quartered by a pair of vacant areas, and the first axis or the second axis extends through one of the vacant areas.

在一些實施例中,該疊對量測標記具有一反射對稱(reflectional symmetry)或是旋轉對稱(rotational symmetry)。In some embodiments, the overlay measurement mark has a reflective symmetry or rotational symmetry.

本揭露之一實施例提供一種確認在一半導體製造期間的一疊對誤差的方法。該方法包括形成一第一結構層在一晶圓上,該第一結構層包括一目標特徵;形成一第二結構層在該第一結構層上,該第二結構層包括一第一軸、一第二軸以及一對對準特徵,其中該對對準特徵設置在該第一軸與該第二軸處;以及使用該第一軸相對於該目標特徵的一位置以及該第二軸相對於該目標特徵的一位置來確定該第一結構層與該第二結構層的一相對位移。One embodiment of the present disclosure provides a method of identifying a stack alignment error during a semiconductor manufacturing process. The method includes forming a first structural layer on a wafer, the first structural layer including a target feature; forming a second structural layer on the first structural layer, the second structural layer including a first axis, a second axis and a pair of alignment features, wherein the pair of alignment features are disposed at the first axis and the second axis; and using a position of the first axis relative to the target feature and the second axis relative to A relative displacement of the first structural layer and the second structural layer is determined at a position of the target feature.

在一些實施例中,該方法還包括記錄一基底的一影像,該基底包括該晶圓、該第一結構層以及該第二結構層;其中依據該至少一影像而確定該第一結構層與該第二結構層的該相對位移。In some embodiments, the method further includes recording an image of a substrate, the substrate including the wafer, the first structural layer and the second structural layer; wherein the first structural layer and the second structural layer are determined based on the at least one image. the relative displacement of the second structural layer.

在一些實施例中,形成該第一軸以平分該對對準特徵的其中一個;形成與該第一軸交叉的該第二軸以平分該對對準特徵中的另一個;且當該第一軸與該第二軸的一交叉處與該目標特徵重疊時,該第一結構層與該第二結構層正確地對準。In some embodiments, the first axis is formed to bisect one of the pair of alignment features; the second axis intersecting the first axis is formed to bisect the other of the pair of alignment features; and when the The first structural layer and the second structural layer are correctly aligned when an intersection of an axis and the second axis overlaps the target feature.

在一些實施例中,形成該第一軸以平分該對對準特徵的其中一個;形成與該第一軸交叉的該第二軸以平分該對對準特徵中的另一個;而當該第一軸與該第二軸的一交叉處偏離該目標特徵時,該第一結構層與該第二結構層並未正確地對準。In some embodiments, the first axis is formed to bisect one of the pair of alignment features; the second axis intersecting the first axis is formed to bisect the other of the pair of alignment features; and when the When an intersection of an axis and the second axis deviates from the target feature, the first structural layer and the second structural layer are not properly aligned.

在一些實施例中,當該第一軸與該第二軸的其中一個偏離該目標特徵時,則該第一結構層與該第二結構層並未正確地對準。In some embodiments, when one of the first axis and the second axis deviates from the target feature, the first structural layer and the second structural layer are not properly aligned.

在一些實施例中,使用一微影製程而形成該第二結構層。In some embodiments, a photolithography process is used to form the second structural layer.

在一些實施例中,該第二結構層包括光阻材料。In some embodiments, the second structural layer includes photoresist material.

在一些實施例中,該第一軸、該第二軸、該對對準特徵以及該目標特徵位在該晶圓上的至少一切割線中。In some embodiments, the first axis, the second axis, the pair of alignment features, and the target feature are located in at least one scribe line on the wafer.

由於上述包括相互交叉並延伸穿經該對準特徵之各中心的該第一軸與該第二軸的該疊對量測標記的配置,所以可有效且快速地完成用於校正該製程以將該疊對誤差保持在多個期望限制內的該疊對測量。Because of the arrangement of the overlapping measurement marks including the first axis and the second axis that intersect with each other and extend through the centers of the alignment features, the process for calibrating the process to align the alignment features can be efficiently and quickly accomplished. The overlay error remains within desired limits for the overlay measurement.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been summarized rather broadly above so that the detailed description of the present disclosure below may be better understood. Other technical features and advantages that constitute the subject matter of the patentable scope of the present disclosure will be described below. It should be understood by those of ordinary skill in the art that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purposes of the present disclosure. Those with ordinary knowledge in the technical field to which the present disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the present disclosure as defined in the appended patent application scope.

現在使用特定語言描述附圖中所示之本揭露的實施例或例子。應當理解,本揭露的範圍無意由此受到限制。所描述之實施例的任何修改或改良,以及本文件中描述之原理的任何進一步應用,所屬技術領域中具有通常知識者都認為是通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共享相同的元件編號。Specific language will now be used to describe the embodiments or examples of the present disclosure illustrated in the drawings. It should be understood that the scope of the present disclosure is not intended to be limited thereby. Any modifications or improvements to the described embodiments, as well as any further applications of the principles described in this document, are within the realm of ordinary skill in the art. Element numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another embodiment even if they share the same element number.

應當理解,雖然用語「第一(first)」、「第二(second)」、「第三(third)」等可用於本文中以描述不同的元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些用語所限制。這些用語僅用於從另一元件、部件、區域、層或部分中區分一個元件、部件、區域、層或部分。因此,以下所討論的「第一裝置(first element)」、「部件(component)」、「區域(region)」、「層(layer)」或「部分(section)」可以被稱為第二裝置、部件、區域、層或部分,而不背離本文所教示。It will be understood that, although the terms "first," "second," "third," etc. may be used herein to describe various elements, components, regions, layers and/or sections, These elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Therefore, a "first element", "component", "region", "layer" or "section" discussed below may be referred to as a second device , component, region, layer or portion without departing from the teachings herein.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. exists, but does not exclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

圖1是頂視示意圖,例示本揭露一些實施例的基底10。請參考圖1,基底10包括複數個晶粒區110,藉由多個第一切割線120與多個第二切割線130而相互分隔開。該等第一切割線120沿著一第一方向D1延伸,而該等第二切割線130沿著一第二方向D2延伸。在一些實施例中,第一方向D1以一水平方向延伸,且第二方向D2以一垂直方向延伸,而第二方向D2大致與第一方向D1正交。FIG. 1 is a schematic top view illustrating a substrate 10 according to some embodiments of the present disclosure. Referring to FIG. 1 , the substrate 10 includes a plurality of die regions 110 that are separated from each other by a plurality of first cutting lines 120 and a plurality of second cutting lines 130 . The first cutting lines 120 extend along a first direction D1, and the second cutting lines 130 extend along a second direction D2. In some embodiments, the first direction D1 extends in a horizontal direction, and the second direction D2 extends in a vertical direction, and the second direction D2 is substantially orthogonal to the first direction D1.

此外,每一個第一切割線120與該等第二切割線130以直角交叉。據此,被該等第一切割線120與該等第二切割線130所分割的該等晶粒區110通常具有直線形狀,且在基底10上設置成一矩陣配置。In addition, each first cutting line 120 intersects the second cutting lines 130 at right angles. Accordingly, the die regions 110 divided by the first cutting lines 120 and the second cutting lines 130 generally have a linear shape and are arranged in a matrix arrangement on the substrate 10 .

基底10可進行不同的製程,包括薄膜成形、微影、離子植入以及清洗,以形成多個積體電路在該等晶粒區110中,其中該等積體電路為一功能單元,而該功能單元最終成為一單晶粒或是晶片。在一些實施例中,不同特徵與多個結構層以形成該等積體電路是使用多個製程而在一單晶圓140中以及在單晶圓140上製造,該等製程包括氧化、沉積、摻雜、擴散、光阻塗佈(resist application)與剝離、曝光、顯影、蝕刻、金屬化、退火蟻及化學機械研磨,但並不以此為限。該積體電路可包括多個摻雜區、多個絕緣特徵以及未單獨描述且組合形成不同微電子元件的不同層,該等微電子元件包括一邏輯元件(例如一微控制器)或是一記憶體元件(例如一動態隨機存取記憶體或是一非揮發性記憶體)。The substrate 10 can be subjected to different processes, including film forming, lithography, ion implantation and cleaning, to form a plurality of integrated circuits in the die areas 110, where the integrated circuits are a functional unit, and the The functional unit eventually becomes a single die or chip. In some embodiments, the various features and structural layers used to form the integrated circuits are fabricated in and on a single wafer 140 using multiple processes, including oxidation, deposition, Doping, diffusion, resist application and stripping, exposure, development, etching, metallization, annealing and chemical mechanical polishing, but are not limited to this. The integrated circuit may include doped regions, insulating features, and different layers not individually described that combine to form different microelectronic components, including a logic component (such as a microcontroller) or a Memory device (such as a dynamic random access memory or a non-volatile memory).

基底10的晶圓140可包含矽。替代地或此外,晶圓140可包括其他半導體材料,例如III-V族半導體材料。在晶圓140上之該等層的例子包括多個介電層、多個摻雜層以及包括多個金屬材料的多個導電層。在一些實施例中,該等第一切割線120與該等第二切割線130可具有一寬度,大約為30到100微米,其取決於在晶圓140中以及在晶圓140上所製造之該等積體電路的尺寸。Wafer 140 of substrate 10 may include silicon. Alternatively or in addition, wafer 140 may include other semiconductor materials, such as III-V semiconductor materials. Examples of such layers on wafer 140 include dielectric layers, doped layers, and conductive layers including metallic materials. In some embodiments, the first dicing lines 120 and the second dicing lines 130 may have a width of approximately 30 to 100 microns, depending on the conditions fabricated in and on the wafer 140 . The size of the integrated circuits.

在製造之後,基底10藉由一技術而分隔成多個單獨的積體電路,該技術例如分割(dicing)或是鋸切(sawing)。通常,沿著該等第一切割線120與該等第二切割線130而鋸切,以分隔成該等晶粒區110。舉例來說,該等單獨的積體電路可分開各自封裝。替代地,該等單獨的積體電路可封裝在多個多晶片模組中。尤其是,當執行一分割操作時,則浪費該晶圓沿著該等第一切割線120與該等第二切割線130的區域。After fabrication, the substrate 10 is separated into individual integrated circuits by a technique such as dicing or sawing. Typically, sawing is performed along the first cutting lines 120 and the second cutting lines 130 to separate the grain regions 110 . For example, the individual integrated circuits may be individually packaged. Alternatively, the individual integrated circuits may be packaged in multiple multi-chip modules. In particular, when performing a dividing operation, the area of the wafer along the first cutting lines 120 and the second cutting lines 130 is wasted.

圖2是放大示意圖,例示圖1中的區域A。請參考圖2,晶粒區110可包括一陣列區112以及一周圍區114,而周圍區114鄰進陣列區112。舉例來說,當該等積體電路為一動態隨機存取記憶體時,在陣列區112中提供有一記憶體胞陣列(如圖3所示),其包括用於儲存資料的複數個記憶體胞1124,且需要外部輸入與輸出的多個周圍電路位在周圍區114中。FIG. 2 is an enlarged schematic diagram illustrating area A in FIG. 1 . Referring to FIG. 2 , the die area 110 may include an array area 112 and a surrounding area 114 , and the surrounding area 114 is adjacent to the array area 112 . For example, when the integrated circuit is a dynamic random access memory, a memory cell array (as shown in FIG. 3 ) is provided in the array area 112, which includes a plurality of memories for storing data. Cell 1124, and a plurality of surrounding circuits requiring external inputs and outputs are located in the surrounding area 114.

請參考圖3,在一些實施例中,記憶體胞1124設置在一字元線WL與一位元線BL的一交叉處。用於存取儲存在該等記憶體胞1124中的該等周圍電路可包括一位址緩衝器1142、一列解碼器1144、多個感測放大器1146、一行解碼器1148、一輸入/輸出(I/O)緩衝器1150以及一時脈產生器1152,但並不以此為限。位址緩衝器1142獲取一外部提供地址以選擇在記憶體胞陣列1122中的該等記憶體胞1124其中之一,並響應於該外部提供地址以產生一內部行位址以及一內部列位址。Referring to FIG. 3 , in some embodiments, the memory cell 1124 is disposed at an intersection of a word line WL and a bit line BL. The peripheral circuitry for accessing the memory cells 1124 may include an address buffer 1142, a column decoder 1144, a plurality of sense amplifiers 1146, a row decoder 1148, an input/output (I /O) buffer 1150 and a clock generator 1152, but is not limited to this. The address buffer 1142 obtains an externally provided address to select one of the memory cells 1124 in the memory cell array 1122 and generates an internal row address and an internal column address in response to the externally provided address. .

解碼該內部列位址以選擇由該內部列位址所指定之一列(字元線)的列解碼器1144電性耦接到位址緩衝器1142以及該等字元線WL。電性耦接到I/O緩衝器1150與該等位元線BL的該等感測放大器1146經配置以檢測並放大記憶體胞1124連接到由列解碼器1144所選擇之字元線WL的資料。電性耦接到該等感測放大器1146的行解碼器1148使用來自位址緩衝器1142的該內部列位址,以選擇在記憶體胞陣列112中之相對應的一行(位元線)。A column decoder 1144 that decodes the internal column address to select a column (word line) specified by the internal column address is electrically coupled to the address buffer 1142 and the word lines WL. The sense amplifiers 1146 electrically coupled to the I/O buffer 1150 and the bit lines BL are configured to detect and amplify the connection of the memory cell 1124 to the word line WL selected by the column decoder 1144 material. A row decoder 1148 electrically coupled to the sense amplifiers 1146 uses the internal column address from the address buffer 1142 to select a corresponding row (bit line) in the memory cell array 112 .

時脈產生器1152電性耦接到位址緩衝器1142、該等感測放大器1146、行解碼器1148以及I/O緩衝器1150。時脈產生器1152可為一電子振盪器,其產生一時脈訊號,用於同步該積體電路之該等周圍電路的操作。The clock generator 1152 is electrically coupled to the address buffer 1142, the sense amplifiers 1146, the row decoder 1148, and the I/O buffer 1150. The clock generator 1152 may be an electronic oscillator that generates a clock signal for synchronizing the operation of the peripheral circuits of the integrated circuit.

在一讀取操作期間,其中一個感測放大器1146依據一所選擇的記憶體胞1124的儲存資料而放大在一所選擇的位元線中產生的一電壓差,並經由I/O緩衝器1150將一放大的結果作為讀取資料而輸出到一外部元件。在一寫入操作期間,依據經由I/O緩衝器1150輸入的寫入資料,具有一預定振福的一電壓差產生在一所選擇的位元線上,且藉此將寫入資料儲存到一所選擇的記憶體胞1124中。During a read operation, one of the sense amplifiers 1146 amplifies a voltage difference generated in a selected bit line based on the stored data of a selected memory cell 1124 and passes it through the I/O buffer 1150 An amplified result is output to an external component as read data. During a write operation, according to the write data input through the I/O buffer 1150, a voltage difference with a predetermined amplitude is generated on the selected bit line, and thereby the write data is stored in a in the selected memory cell 1124.

請再參考圖2,依據一些實施例,每一個陣列區112被其中一個周圍區114所圍繞。此外,每一個周圍區114可選擇地包括一密封環116,其圍繞一個別的陣列區112以在該等晶粒區110分隔期間避免破裂(cracks)傳到基底10的該個別陣列區112中。Referring again to FIG. 2 , according to some embodiments, each array area 112 is surrounded by one of the surrounding areas 114 . Additionally, each surrounding region 114 optionally includes a sealing ring 116 surrounding an individual array region 112 to prevent cracks from propagating into the individual array region 112 of the substrate 10 during separation of the die regions 110 .

通常,該積體電路被限制在晶粒區110中且不會延伸到或跨過將被鋸切之基底10的該等第一切割線120以及該等第二切割線130。然而,一些可靠度與功能量測標記配置在該等第一切割線120以及該等第二切割線130中,以測量且特徵化晶圓級的多個結構變化。在一些實施例中,在多個產品晶圓140上,該量測標記置放在該等第一切割線120與該等第二切割線130中,以獲得與至少一個特定製程節點相關聯的不同物理特性以及效能指標。Typically, the integrated circuit is confined within the die region 110 and does not extend to or across the first scribe lines 120 and the second scribe lines 130 of the substrate 10 to be sawed. However, some reliability and functional measurement marks are disposed in the first scribe lines 120 and the second scribe lines 130 to measure and characterize structural changes at the wafer level. In some embodiments, the measurement marks are placed in the first dicing lines 120 and the second dicing lines 130 on the plurality of product wafers 140 to obtain information associated with at least one specific process node. Different physical properties and performance indicators.

舉例來說,用於為了將多個重疊誤差保持在多個期望限度內而校正一對準的疊對量測標記200,可形成在該等第一切割線120以及該等第二切割線130中,這允許疊對量測標記200置放在晶圓140上而不會佔用該積體電路的空間。在一些實施例中,疊對量測標記200適合於一以影像為基礎的疊對量測技術。值得注意的是,當執行分割操作時,則破壞在該等第一切割線120與該等第二切割線130中的疊對量測標記200。For example, overlay measurement marks 200 for correcting an alignment in order to maintain overlay errors within desired limits may be formed on the first cutting lines 120 and the second cutting lines 130 This allows overlay measurement marks 200 to be placed on wafer 140 without taking up space on the integrated circuit. In some embodiments, the overlay measurement mark 200 is suitable for an image-based overlay measurement technology. It is worth noting that when the segmentation operation is performed, the overlapping measurement marks 200 in the first cutting lines 120 and the second cutting lines 130 are destroyed.

疊對量測標記200可包括一第一軸210、一第二軸212、一目標特徵214、一第一對準特徵215a以及一第二對準特徵215b。第一軸210在第一方向D1延伸,而第二軸212在一第二方向D2延伸,而第二方向D2與第一方向D1正交。具有一十字形狀的目標特徵214設置在第一軸210與第二軸212的一交叉處。第一對準特徵215a設置在第一軸210上,而第二對準特徵215b設置在第二軸212上。The overlay measurement mark 200 may include a first axis 210, a second axis 212, a target feature 214, a first alignment feature 215a, and a second alignment feature 215b. The first axis 210 extends in a first direction D1, and the second axis 212 extends in a second direction D2, and the second direction D2 is orthogonal to the first direction D1. The target feature 214 having a cross shape is disposed at an intersection of the first axis 210 and the second axis 212 . The first alignment feature 215a is provided on the first axis 210 and the second alignment feature 215b is provided on the second axis 212.

此外,第一對準特徵215a與第二對準特徵215b是成對的,以確定在基底10的二連續層之間的一重疊誤差。如圖4所描述,在第一軸210與第二對準特徵215b之間的一最短距離d等於在第二軸212與第一對準特徵215a之間的一最短距離d。Furthermore, the first alignment feature 215a and the second alignment feature 215b are paired to determine an overlay error between two consecutive layers of the substrate 10. As depicted in Figure 4, a shortest distance d between the first axis 210 and the second alignment feature 215b is equal to a shortest distance d between the second axis 212 and the first alignment feature 215a.

一般認為,疊對量測標記200的尺寸應盡可能大,以便最大化用於疊對測量的資訊量。然而,疊對量測標記200的尺寸上限可由用於測量重疊及/或切割線數量的一量測工具(圖未示)的一視場所確定。該視場通常是指界定可用於由該量測工具所截取之疊對量測標記200的影像區域的一光學邊緣(optical perimeter),並且該切割線數量通常是指用於放置疊對量測標記200之該等第一切割線120以及該等第二切割線130所允許的可用空間。舉例來說,第一軸210與第二軸212可具有一長度L,其並未大於28微米。在一些實施例中,第一軸210與第二軸212的長度L大約為15微米。It is generally believed that the size of the overlay measurement mark 200 should be as large as possible in order to maximize the amount of information used for the overlay measurement. However, the upper limit of the size of the overlay measurement mark 200 may be determined by a field of view of a measurement tool (not shown) used to measure the number of overlaps and/or cutting lines. The field of view typically refers to an optical perimeter defining the image area available for overlay measurement marks 200 captured by the measurement tool, and the number of cutting lines typically refers to the number of cut lines used to place the overlay measurement Mark 200 the available space allowed by the first cutting lines 120 and the second cutting lines 130 . For example, the first axis 210 and the second axis 212 may have a length L that is not greater than 28 microns. In some embodiments, the length L of the first axis 210 and the second axis 212 is approximately 15 microns.

圖5是頂視示意圖,例示本揭露一些實施例的對準特徵216。對準特徵216的幾何結構經配置以找到在該量測工具的一影像解析度與製程的穩健性之間的一適當平衡。請參考圖5,該等對準特徵216具有一正方形輪廓。然而,該等對準特徵216的一尺寸以及一形狀可廣泛地變化。舉例來說,該等對準特徵216可形成多個形狀,例如圓形、三角形、矩形、多邊形及類似形狀。Figure 5 is a top view schematic diagram illustrating alignment features 216 of some embodiments of the present disclosure. The geometry of the alignment features 216 is configured to find an appropriate balance between an image resolution of the metrology tool and the robustness of the process. Referring to Figure 5, the alignment features 216 have a square outline. However, a size and a shape of the alignment features 216 can vary widely. For example, the alignment features 216 may form shapes such as circles, triangles, rectangles, polygons, and the like.

在一些實施例中,每一個對準特徵216藉由具有一第一寬度W1的多個空缺區2162而分隔成四等分。在一些實施例中,該等對準特徵216由多個正方形微結構2164所組成,該等正方形微結構2164藉由相互交叉的一對空缺區2162而分隔開。如圖5所描述,該等微結構2164具有一第二寬度W2,其大於第一寬度W1。值得注意的是,每一個微結構2164之一特徵尺寸的一下限是藉由該量測工具之解析度範圍(resolution limit)所決定。In some embodiments, each alignment feature 216 is divided into four equal parts by a plurality of vacant areas 2162 having a first width W1. In some embodiments, the alignment features 216 are composed of a plurality of square microstructures 2164 separated by a pair of intersecting void regions 2162 . As depicted in FIG. 5 , the microstructures 2164 have a second width W2 that is larger than the first width W1 . It is worth noting that the lower limit of the characteristic size of each microstructure 2164 is determined by the resolution limit of the measurement tool.

圖6是頂視示意圖,例示本揭露一些實施例用於對準在晶圓140上之不同層的疊對量測標記200。請參考圖6,疊對量測標記200可包括一第一軸210、一第二軸212、一目標特徵214以及複數個對準特徵216。第一軸210在第一方向D1延伸,第二軸212在第二方向D2延伸,而第一軸210與第二軸212交叉成一直角。目標特徵214設置在第一軸210與第二軸212的一交叉處。FIG. 6 is a top view schematic diagram illustrating overlay measurement marks 200 for aligning different layers on a wafer 140 according to some embodiments of the present disclosure. Referring to FIG. 6 , the overlay measurement mark 200 may include a first axis 210 , a second axis 212 , a target feature 214 and a plurality of alignment features 216 . The first axis 210 extends in the first direction D1, the second axis 212 extends in the second direction D2, and the first axis 210 and the second axis 212 intersect at a right angle. The target feature 214 is disposed at an intersection of the first axis 210 and the second axis 212 .

在一些實施例中,目標特徵214可由交叉成一X形狀的二線段2142與2144(如圖7所示)所組成。請再參考圖6,該等對準特徵216沿著第一軸210與第二軸212並以在相鄰對的對準特徵216之間的一等距離而設置。換言之,相鄰對的對準特徵之間的一距離是固定的。請參考圖6及圖7,一些對準特徵216設置在目標特徵214之線段2142的任一側上,且另一些對準特徵216設置在目標特徵214之線段2144的任一側上。在一些實施例中,疊對量測標記200具有一十字形輪廓。In some embodiments, the target feature 214 may be composed of two line segments 2142 and 2144 (as shown in FIG. 7 ) that intersect to form an X shape. Referring again to FIG. 6 , the alignment features 216 are disposed along the first axis 210 and the second axis 212 and at an equal distance between adjacent pairs of alignment features 216 . In other words, a distance between adjacent pairs of alignment features is fixed. Referring to FIGS. 6 and 7 , some alignment features 216 are disposed on either side of the line segment 2142 of the target feature 214 , and other alignment features 216 are disposed on either side of the line segment 2144 of the target feature 214 . In some embodiments, the overlay measurement mark 200 has a cross-shaped outline.

請參考圖6,出於分析目的,疊對量測標記200可分隔成多個區段。任意數量的區段可用於重疊誤差的此分析。在一些實施例中,疊對量測標記200分隔成四個區段。在一些實施例中,第一軸210可將第二軸212分隔成兩個相等區段,例如一上區段以及一下區段。類似地,第二軸212可將第一軸210分隔成兩個相等區段,例如一左區段以及一右區段。Referring to FIG. 6 , for analysis purposes, the overlay measurement mark 200 can be divided into multiple sections. Any number of bins can be used for this analysis of overlap errors. In some embodiments, the overlay measurement mark 200 is divided into four sections. In some embodiments, the first shaft 210 may separate the second shaft 212 into two equal sections, such as an upper section and a lower section. Similarly, the second axis 212 may divide the first axis 210 into two equal sections, such as a left section and a right section.

該等對準特徵216依據其位置而分組成一第一對準組220以及一第二對準組230。舉例來說,第一對準組220可包括設置在第一軸210之該左區段處與在第二軸212之該上區段處的該等對準特徵216,而第二對準組230可包括設置在第一軸210之該右區段處與在第二軸212之該下區段處的該等對準特徵216。The alignment features 216 are grouped into a first alignment group 220 and a second alignment group 230 based on their positions. For example, the first alignment group 220 may include the alignment features 216 disposed at the left section of the first axis 210 and at the upper section of the second axis 212, while the second alignment group 230 may include alignment features 216 disposed at the right section of the first shaft 210 and at the lower section of the second shaft 212 .

在一些實施例中,可提供第一對準組220的該等對準特徵216以確定重疊誤差是否存在陣列區112中(如圖8所示),而可提供第二對準組230的該等對準特徵216以確定重疊誤差是否存在周圍區114中。在每一個區段處之該等對準特徵216的數量可廣泛地變化。如圖所示,在每一個區段處之該等對準特徵216的數量與在其他區段中之該等對準特徵216的數量相同;因此,疊對量測標記200可具有一反射對稱(reflectional symmetry)或是一旋轉對稱(rotational symmetry)。In some embodiments, the alignment features 216 of the first alignment group 220 may be provided to determine whether overlay errors exist in the array region 112 (as shown in FIG. 8 ), while the second alignment group 230 may be provided. Equally align features 216 to determine if overlay errors exist in surrounding area 114 . The number of alignment features 216 at each section can vary widely. As shown, the number of alignment features 216 at each section is the same as the number of alignment features 216 in other sections; therefore, the overlay measurement mark 200 may have a reflective symmetry (reflectional symmetry) or a rotational symmetry (rotational symmetry).

請再參考圖6,在陣列區112或周圍區114中的該等對準特徵216是成對的,用於測量基底10之不同層的重疊誤差。在一些實施例中,設置在第一軸210處並藉由一預定距離而與第二軸212分隔開的對準特徵216,以及設置在第二軸212處並藉由該預定距離而與第一軸210分隔開的對準特徵216是成對的,用於重疊的測量,如圖7所示。簡言之,將藉由相同最短距離而與第一及第二軸210、212之交叉處分隔開以及在相同對準組中的該等對準特徵216是成對的,以確定基底10之二連續圖案化層的相對位置。Referring again to FIG. 6 , the alignment features 216 in the array area 112 or the surrounding area 114 are paired and used to measure overlay errors of different layers of the substrate 10 . In some embodiments, the alignment feature 216 is disposed at the first axis 210 and separated from the second axis 212 by a predetermined distance, and the alignment feature 216 is disposed at the second axis 212 and separated from the second axis 212 by the predetermined distance. The first axis 210 spaced alignment features 216 are paired for overlapping measurements as shown in FIG. 7 . Briefly, the alignment features 216 are paired apart from the intersection of the first and second axes 210 , 212 by the same shortest distance and in the same alignment group to determine the alignment of the substrate 10 The relative position of two consecutive patterned layers.

如圖5及圖7所描述,設定第一軸210延伸經過設置在第一軸210處之對準特徵216的水平空缺區2162,且設計第二軸212延伸經過設置在第二軸212處之對準特徵216的縱向空區區2162,以幫助重疊誤差的量測。As described in FIGS. 5 and 7 , the first axis 210 is set to extend through the horizontal vacant area 2162 of the alignment feature 216 disposed at the first axis 210 , and the second axis 212 is designed to extend through the horizontal gap 2162 disposed at the second axis 212 . Align the longitudinal void area 2162 of the feature 216 to aid in the measurement of overlay error.

請參考圖6,第一及第二對準組220、230分別包括四對對準特徵222a到222d以及232a到232d。值得注意的是,由不同灰度(shades of gray)所表示的該等對準特徵216可表示設置在基底10之不同層處的多個對準特徵216。可提供最接近目標特徵214之一第一對對準特徵222a,以確定重疊誤差是否存在一陣列主動區中(例如在陣列區112中的一主動區);可提供一第二對對準特徵222b,以確定重疊誤差是否存在督個位元線接觸點中;可提供一第三對對準特徵222c,以確定重疊誤差是否存在多個字元線中;以及可提供離目標特徵214最遠的一第四對對準特徵222d,以確定重疊誤差是否存在多個位元線中。Referring to FIG. 6 , the first and second alignment groups 220 and 230 respectively include four pairs of alignment features 222a to 222d and 232a to 232d. Notably, the alignment features 216 represented by different shades of gray may represent multiple alignment features 216 disposed at different layers of the substrate 10 . A first pair of alignment features 222a may be provided closest to one of the target features 214 to determine whether an overlay error exists in an active region of the array (eg, an active region in the array region 112); a second pair of alignment features may be provided 222b to determine whether an overlap error exists in each bit line contact point; a third pair of alignment features 222c may be provided to determine whether an overlap error exists in multiple word lines; and the furthest feature 214 from the target may be provided A fourth pair of alignment features 222d to determine whether overlay errors exist in multiple bit lines.

此外,可提供最接近目標特徵214之一第五對對準特徵232a,以確定重疊誤差是否存在周圍區114的一陣列區中;可提供一第六對對準特徵232b,以確定重疊誤差是否發生在周圍區114之至少一個閘極導體中;可提供一第七對對準特徵232c,以確定重疊誤差是否存在至少一接觸支撐點中;以及可提供離目標特徵214最遠的一第八對對準特徵232d,以確定重疊誤差是否存在至少一PFET接觸點中。可觀察到,在形成設置在遠離目標特徵214的該等對準特徵216之前,設置在接近目標特徵214的該等對準特徵216是形成在晶圓140上。Additionally, a fifth pair of alignment features 232a may be provided that is closest to one of the target features 214 to determine whether an overlay error exists in an array region of the surrounding area 114; a sixth pair of alignment features 232b may be provided to determine whether an overlay error exists Occurs in at least one gate conductor of surrounding area 114; a seventh pair of alignment features 232c may be provided to determine whether an overlay error exists in at least one contact support point; and an eighth pair furthest from the target feature 214 may be provided. Alignment features 232d are aligned to determine whether an overlay error exists in at least one PFET contact point. It can be observed that the alignment features 216 disposed proximal to the target feature 214 are formed on the wafer 140 before the alignment features 216 disposed distal to the target feature 214 .

圖9是流程示意圖,例示本揭露一些實施例在半導體製程期間確定疊對誤差的方法300。圖10是剖視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。請參考圖9及圖10,確定在半導體製程期間之重疊誤差的方法300可開始於步驟S301,其為一第一層150沉積在一晶圓140上。晶圓140通常可為一矽晶圓。晶圓140可包括不同摻雜成分,其取決於所屬技術領域中所熟知的設計需求。晶圓140亦可包括其他元素半導體,例如鍺。替代地,晶圓140可包括化合物半導體及/或合金半導體。FIG. 9 is a schematic flowchart illustrating a method 300 for determining overlay errors during a semiconductor manufacturing process according to some embodiments of the present disclosure. FIG. 10 is a schematic cross-sectional view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. Referring to FIGS. 9 and 10 , the method 300 for determining overlay errors during a semiconductor process may begin with step S301 , which is depositing a first layer 150 on a wafer 140 . Wafer 140 may typically be a silicon wafer. Wafer 140 may include different doping compositions, depending on design requirements well known in the art. Wafer 140 may also include other elemental semiconductors, such as germanium. Alternatively, wafer 140 may include compound semiconductors and/or alloy semiconductors.

在第一層150沉積之後,藉由一旋轉塗佈製程將一光阻層180塗敷在整個晶圓140上,然後使用一軟烘烤製程使其乾燥。然後,曝光並顯影包括感光材料的光阻層180,以形成如圖11所示的一特徵圖案182,進而暴露第一層150的一些部分。接著,然後方法300進行一步驟S302,執行一圖案化製程以經由特徵圖案182而蝕刻第一層150,因此形成包括一目標特徵214(如圖12及圖13所示)的一第一結構層151。在使用例如一灰化製程或一濕蝕刻製程而產生目標特徵214之後,移除特徵圖案182。After the first layer 150 is deposited, a photoresist layer 180 is coated on the entire wafer 140 through a spin coating process and then dried using a soft bake process. Then, the photoresist layer 180 including the photosensitive material is exposed and developed to form a characteristic pattern 182 as shown in FIG. 11 , thereby exposing some portions of the first layer 150 . Next, the method 300 then proceeds to step S302 to perform a patterning process to etch the first layer 150 through the feature pattern 182, thereby forming a first structural layer including a target feature 214 (as shown in FIGS. 12 and 13 ). 151. After the target features 214 are created using, for example, an ashing process or a wet etching process, the feature pattern 182 is removed.

請參考圖12,晶圓140包括複數個晶粒區110,而該等晶粒區110被多個第一切割線120以及多個第二切割線130所分隔。包括電晶體、二極體、電容器、電阻器、熔絲或類似物的不同元件分別形成在該等晶粒區110中。用於形成該等元件的第一結構層151包括在一陣列區112中的多個第一圖案化結構152以及在該等切割線120、130中的目標特徵214。目標特徵214使用與用於形成該等第一圖案化結構152在陣列區112中相同的製程而形成在該等第一切割線120與該等第二切割線130中。換言之,目標特徵214形成為用於製造第一圖案化結構152之該製程的一部分,允許在不污染或干擾該等圖案化結構152的生產的情況下對該製程進行測試和驗證。在一些實施例中,第一結構層150可在前段(front-end-of-line,FEOL))製程期間所形成。Referring to FIG. 12 , the wafer 140 includes a plurality of die areas 110 , and the die areas 110 are separated by a plurality of first cutting lines 120 and a plurality of second cutting lines 130 . Different components including transistors, diodes, capacitors, resistors, fuses or the like are respectively formed in the die regions 110 . The first structural layer 151 used to form the elements includes a plurality of first patterned structures 152 in an array region 112 and target features 214 in the cutting lines 120, 130. Target features 214 are formed in the first scribe lines 120 and the second scribe lines 130 using the same process used to form the first patterned structures 152 in the array region 112 . In other words, target features 214 are formed as part of the process for fabricating first patterned structures 152 , allowing the process to be tested and verified without contaminating or interfering with the production of patterned structures 152 . In some embodiments, the first structural layer 150 may be formed during a front-end-of-line (FEOL) process.

請參考圖9及圖14,然後方法300進行一步驟S303,其為一第二層160沉積在第一結構層151上。在一些實施例中,在第二層160沉積之前,一第三層170選擇地沉積在第一結構層151上。第二層160可包括光阻材料。接下來,暴露第二層160的一些部分到輻射(圖未示),然後顯影而藉此形成一第二結構層162,如圖15及圖16所示,第二結構層162包括一第一軸210、一第二軸212以及位在該等第一及第二切割線120、130中的一對對準特徵216。換言之,第二結構層162使用一微影製程所形成。在一些實施例中,第二結構層160可為一圖案,其將在蝕刻期間用於保護第三層170的一部分。Please refer to FIG. 9 and FIG. 14, and then the method 300 proceeds to step S303, which is to deposit a second layer 160 on the first structural layer 151. In some embodiments, a third layer 170 is selectively deposited on the first structural layer 151 before the second layer 160 is deposited. The second layer 160 may include photoresist material. Next, some portions of the second layer 160 are exposed to radiation (not shown) and then developed to form a second structural layer 162. As shown in Figures 15 and 16, the second structural layer 162 includes a first Shaft 210, a second shaft 212, and a pair of alignment features 216 located in the first and second cutting lines 120, 130. In other words, the second structural layer 162 is formed using a photolithography process. In some embodiments, the second structural layer 160 may be a pattern that will be used to protect a portion of the third layer 170 during etching.

如圖15所描述,第一軸210與第二軸212交叉,該對對準特徵216設置在第一軸210與第二軸212處。詳而言之,第一軸210沿著一第一方向D1而延伸,第二軸212沿著一第二方向D2而延伸,而第二方向D2大致垂直於第一方向D1。此外,第一軸210與第二軸212交叉成一直角。再者,其中一個對準特徵216設置在第一軸210處,且另一個對準特徵216設置在第二軸212處。As depicted in FIG. 15 , the first axis 210 intersects the second axis 212 , and the pair of alignment features 216 are provided at the first axis 210 and the second axis 212 . In detail, the first axis 210 extends along a first direction D1, the second axis 212 extends along a second direction D2, and the second direction D2 is substantially perpendicular to the first direction D1. Furthermore, the first axis 210 and the second axis 212 intersect at a right angle. Again, one of the alignment features 216 is disposed at the first axis 210 and the other alignment feature 216 is disposed at the second axis 212 .

第一軸210將設置在其上的其中一個對準特徵216平分,且第二軸212將設置在其上的另一個對準特徵216平分。換言之,第一軸210與第二軸212用作重疊測量的多個參考線。The first axis 210 bisects one of the alignment features 216 disposed thereon, and the second axis 212 bisects the other alignment feature 216 disposed thereon. In other words, the first axis 210 and the second axis 212 serve as multiple reference lines for overlapping measurements.

在形成包括第一軸210、第二軸212、目標特徵214以及該對對準特徵216的一疊對量測標記之後,提供一量測工具(圖未示)以記錄第一軸210、第二軸212、目標特徵214以及該等對準特徵216的一影像(步驟S306)。值得注意的是,若是第一結構層151與第二結構層162使用該量測工具確定一相對位移的話,則該等第二結構層162與第三層170選擇地穿透且允許光穿過而沒有明顯的光散射。After forming a stack of measurement marks including the first axis 210 , the second axis 212 , the target feature 214 and the pair of alignment features 216 , a measurement tool (not shown) is provided to record the first axis 210 , the target feature 214 and the pair of alignment features 216 . An image of the two axes 212, the target feature 214 and the alignment features 216 (step S306). It is worth noting that if the first structural layer 151 and the second structural layer 162 use the measurement tool to determine a relative displacement, the second structural layer 162 and the third layer 170 selectively penetrate and allow light to pass through. without significant light scattering.

然後,方法300進行一步驟S308,其為第一結構層151與第二結構層162的一相對位移可使用對準特徵216相對於目標特徵214的一位置進行確定。在一些實施例中,在對包括光阻材料的第二結構層162進行顯影之後,即立刻執行重疊測量,意即,光阻在暴露於光的該區域中被顯影掉,因此在光阻中留下該重疊圖案。Then, the method 300 proceeds to step S308 , in which a relative displacement of the first structural layer 151 and the second structural layer 162 may be determined using a position of the alignment feature 216 relative to the target feature 214 . In some embodiments, the overlay measurement is performed immediately after developing the second structural layer 162 including the photoresist material, meaning that the photoresist is developed away in the area exposed to light, so that in the photoresist Leave that overlapping pattern.

在本揭露中,第一軸210與第二軸212相對於該等對準特徵216而定向。因此,可藉由比較第一軸210相對於目標特徵214的一位置以及比較第二軸212相對於目標特徵214的一位置來實現確定如何精確地對準第一結構層150與第二結構層160。替代地,可藉由比較第一及第二軸210、212的一交叉點相對於目標特徵214來實現確定如何精確地對準第一結構層150與第二結構層160。In the present disclosure, the first axis 210 and the second axis 212 are oriented relative to the alignment features 216 . Therefore, determining how to accurately align the first structural layer 150 with the second structural layer can be accomplished by comparing a position of the first axis 210 relative to the target feature 214 and comparing a position of the second axis 212 relative to the target feature 214 160. Alternatively, determining how to accurately align the first structural layer 150 and the second structural layer 160 may be accomplished by comparing an intersection of the first and second axes 210 , 212 relative to the target feature 214 .

請參考圖15及圖16,在一些實施例中,一旦第一軸210與第二軸212延伸經過目標結構214,則正確地對準第一結構層151與第二結構層162。替代地,其確定當第一軸210與第二軸212的一交叉點與目標特徵216重疊時,則正確地對準第一結構層151與第二結構層162。Referring to FIGS. 15 and 16 , in some embodiments, once the first axis 210 and the second axis 212 extend through the target structure 214 , the first structural layer 151 and the second structural layer 162 are correctly aligned. Alternatively, it is determined that when an intersection of the first axis 210 and the second axis 212 overlaps the target feature 216, the first structural layer 151 and the second structural layer 162 are correctly aligned.

請參考圖17及圖18,由於一位移x存在第二軸212與目標特徵214之間,所以第二結構層162並未正確地與第一結構層151對準。請參考圖19及圖20,由於一位移y存在第二軸212與目標特徵214之間,所以第二結構層162並未正確地對準第一結構層151。換言之,重疊誤差存在第一結構層151與第二結構層162中。Referring to FIGS. 17 and 18 , since a displacement x exists between the second axis 212 and the target feature 214 , the second structural layer 162 is not correctly aligned with the first structural layer 151 . Referring to FIGS. 19 and 20 , since a displacement y exists between the second axis 212 and the target feature 214 , the second structural layer 162 is not correctly aligned with the first structural layer 151 . In other words, overlay errors exist in the first structural layer 151 and the second structural layer 162 .

一般而言,一較大的重疊誤差導致第一結構層151與第二結構層162之一較大的未對準(misalignment)。若是重疊誤差太大的話,可能危及到一已製造之積體電路的效能;因此,具有不可接受之重疊誤差的基底10可藉由移除以及再沉積一再曝光與再顯影光阻而進行重工(reworked)。重工通常是不期望的,但它比完全報廢晶圓140要更好。Generally speaking, a larger overlay error results in a larger misalignment of one of the first structural layer 151 and the second structural layer 162 . If the overlay error is too large, it may jeopardize the performance of a manufactured integrated circuit; therefore, a substrate 10 with an unacceptable overlay error can be reworked by removing and redepositing a re-exposed and re-developed photoresist ( reworked). Rework is generally undesirable, but it is better than scrapping the wafer 140 entirely.

總之,由於包括延伸經過對準特徵216之各中心的第一軸210與第二軸212的疊對量測標記200的配置,所以為了將重疊誤差保持在期望範圍內,用於校正製程的重疊測量可有效地且快速地完成。In summary, due to the configuration of the overlay measurement marks 200 including the first axis 210 and the second axis 212 extending through the centers of the alignment features 216 , the overlay of the correction process is used to maintain the overlay error within a desired range. Measurements can be done efficiently and quickly.

本揭露之一實施例提供一種疊對量測標記。該疊對量測標記包括一第一軸、一第二軸、一目標特徵、一第一對準特徵以及一第二對準特徵。該第二軸與該第一軸交叉。該目標特徵設置在該第一軸與該第二軸的一交叉處。該第一對準特徵設置在該第一軸上,該第二對準特徵設置在該第二軸上,且該第一對準特徵與該第二對準特徵是成對設置。An embodiment of the present disclosure provides an overlay measurement mark. The overlay measurement mark includes a first axis, a second axis, a target feature, a first alignment feature and a second alignment feature. The second axis intersects the first axis. The target feature is set at an intersection of the first axis and the second axis. The first alignment feature is disposed on the first axis, the second alignment feature is disposed on the second axis, and the first alignment feature and the second alignment feature are disposed in pairs.

本揭露之一實施例提供一種確認一基底的複數個連續圖案化層之多個相對位置的疊對量測標記。該疊對量測標記包括一第一軸、一第二軸、一目標特徵以及複數個對準特徵。該第二軸與該第一軸正交且交叉。該目標特徵設置在該第一軸與該第二軸的一交叉處。該複數個對準特徵沿著該第一軸與該第二軸設置。One embodiment of the present disclosure provides an overlay measurement mark for confirming multiple relative positions of a plurality of consecutive patterned layers of a substrate. The overlay measurement mark includes a first axis, a second axis, a target feature and a plurality of alignment features. The second axis is orthogonal and crosses the first axis. The target feature is set at an intersection of the first axis and the second axis. The plurality of alignment features are disposed along the first axis and the second axis.

本揭露之一實施例提供一種確認在一半導體製造期間的一疊對誤差的方法。該方法包括形成一第一結構層在一晶圓上,該第一結構層包括一目標特徵;形成一第二結構層在該第一結構層上,該第二結構層包括一第一軸、一第二軸以及一對對準特徵,其中該對對準特徵設置在該第一軸與該第二軸處;以及使用該第一軸相對於該目標特徵的一位置以及該第二軸相對於該目標特徵的一位置來確定該第一結構層與該第二結構層的一相對位移。One embodiment of the present disclosure provides a method of identifying a stack alignment error during a semiconductor manufacturing process. The method includes forming a first structural layer on a wafer, the first structural layer including a target feature; forming a second structural layer on the first structural layer, the second structural layer including a first axis, a second axis and a pair of alignment features, wherein the pair of alignment features are disposed at the first axis and the second axis; and using a position of the first axis relative to the target feature and the second axis relative to A relative displacement of the first structural layer and the second structural layer is determined at a position of the target feature.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the disclosure as defined by the claimed claims. For example, many of the processes described above may be implemented in different ways and replaced with other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machinery, manufacture, material compositions, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, etc. that have the same functions or achieve substantially the same results as the corresponding embodiments described herein can be used according to the present disclosure. A material composition, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patentable scope of this application.

10:基底 110:晶粒區 112:陣列區 1124:記憶體胞 114:周圍區 1142:位址緩衝器 1144:列解碼器 1146:感測放大器 1148:行解碼器 1150:輸入/輸出緩衝器 1152:時脈產生器 120:第一切割線 130:第二切割線 140:晶圓 150:第一層 151:第一結構層 160:第二層 162:第二結構層 170:第三層 180:光阻層 182:特徵圖案 200:疊對量測標記 210:第一軸 212:第二軸 214:目標特徵 2142:線段 2144:線段 215a:第一對準特徵 215b:第二對準特徵 216:對準特徵 2162:空缺區 2164:正方形微結構 220:第一對準組 222a:對準特徵 222b:對準特徵. 222c:對準特徵 222d:對準特徵 230:第二對準組 232a:對準特徵 232b:對準特徵 232c:對準特徵 232d:對準特徵 300:方法 BL:位元線 d:最短距離 D1:第一方向 D2:第二方向 L:長度 S301:步驟 S302:步驟 S303:步驟 S304:步驟 S306:步驟 S308:步驟 W1:第一寬度 W2:第二寬度 WL:字元線 x:位移 y:位移 10: Base 110: Grain area 112:Array area 1124:Memory cell 114: Surrounding area 1142:Address buffer 1144: Column decoder 1146: Sense amplifier 1148: Line decoder 1150: Input/output buffer 1152: Clock generator 120: First cutting line 130: Second cutting line 140:wafer 150:First floor 151: First structural layer 160:Second floor 162:Second structural layer 170:Third floor 180: Photoresist layer 182:Characteristic pattern 200: Overlay measurement mark 210:First axis 212:Second axis 214:Target features 2142:Line segment 2144:Line segment 215a: First alignment feature 215b: Second alignment feature 216: Alignment features 2162: Vacancy area 2164: Square microstructure 220: First alignment group 222a: Alignment features 222b: Alignment features. 222c: Alignment features 222d: Alignment features 230: Second alignment group 232a: Alignment features 232b: Alignment features 232c: Alignment features 232d: Alignment features 300:Method BL: bit line d: shortest distance D1: first direction D2: second direction L: length S301: Step S302: Step S303: Step S304: Step S306: Step S308: Step W1: first width W2: second width WL: word line x: displacement y: displacement

參閱實施方式與申請專利範圍合併考量圖式時,可得以更全面了解本申請案之揭示內容,圖式中相同的元件符號係指相同的元件。 圖1是頂視示意圖,例示本揭露一些實施例的基底。 圖2是放大示意圖,例示圖1中的區域A。 圖3是方塊示意圖,例示本揭露一些實施例的動態隨機存取記憶體。 圖4是頂視示意圖,例示本揭露一些實施例的第一軸、第二軸、第一對準特徵以及第二對準特徵。 圖5是頂視示意圖,例示本揭露一些實施例的對準特徵。 圖6是頂視示意圖,例示本揭露一些實施例用於對準在晶圓上之不同層的疊對量測標記。 圖7是頂視示意圖,例示本揭露一些實施例用於測量疊對誤差的疊對量測標記。 圖8是頂視示意圖,例示包括多個晶粒區域以及一疊對量測標記之基底的一部分。 圖9是流程示意圖,例示本揭露一些實施例在半導體製程期間確定疊對誤差的方法。 圖10是剖視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖11是剖視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖12是頂視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖13是剖視示意圖,例示沿圖12之剖線A-A'的剖面。 圖14是剖視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖15是頂視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖16是剖視示意圖,例示沿圖15之剖線B-B'的剖面。 圖17是頂視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖18是剖視示意圖,例示沿圖17之剖線C-C'的剖面。 圖19是頂視示意圖,例示本揭露一些實施例在形成疊對量測標記中的中間階段。 圖20是剖視示意圖,例示沿圖19之剖線D-D'的剖面。 The disclosure content of this application can be more fully understood by referring to the embodiments and the patent scope combined with the drawings. The same element symbols in the drawings refer to the same elements. Figure 1 is a schematic top view illustrating a substrate according to some embodiments of the present disclosure. FIG. 2 is an enlarged schematic diagram illustrating area A in FIG. 1 . FIG. 3 is a block diagram illustrating a dynamic random access memory according to some embodiments of the present disclosure. 4 is a top schematic diagram illustrating a first axis, a second axis, a first alignment feature, and a second alignment feature according to some embodiments of the present disclosure. Figure 5 is a schematic top view illustrating alignment features of some embodiments of the present disclosure. 6 is a schematic top view illustrating some embodiments of the present disclosure for aligning overlay measurement marks on different layers on a wafer. FIG. 7 is a schematic top view illustrating overlay measurement marks used to measure overlay errors according to some embodiments of the present disclosure. 8 is a schematic top view illustrating a portion of a substrate including a plurality of die regions and a stack of measurement marks. FIG. 9 is a schematic flowchart illustrating a method for determining overlay errors during a semiconductor manufacturing process according to some embodiments of the present disclosure. FIG. 10 is a schematic cross-sectional view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. FIG. 11 is a schematic cross-sectional view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. 12 is a schematic top view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. FIG. 13 is a schematic cross-sectional view, illustrating a cross-section along line AA′ of FIG. 12 . 14 is a schematic cross-sectional view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. 15 is a schematic top view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. FIG. 16 is a schematic cross-sectional view, illustrating a cross-section along the cross-section line BB′ of FIG. 15 . 17 is a schematic top view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. FIG. 18 is a schematic cross-sectional view, illustrating a cross-section along line CC′ of FIG. 17 . 19 is a schematic top view illustrating an intermediate stage in forming overlay measurement marks according to some embodiments of the present disclosure. FIG. 20 is a schematic cross-sectional view, illustrating a cross-section along the cross-section line DD′ of FIG. 19 .

110:晶粒區 110: Grain area

112:陣列區 112:Array area

114:周圍區 114: Surrounding area

116:密封環 116:Sealing ring

120:第一切割線 120: First cutting line

130:第二切割線 130: Second cutting line

200:疊對量測標記 200: Overlay measurement mark

210:第一軸 210:First axis

212:第二軸 212:Second axis

214:目標特徵 214:Target features

215a:第一對準特徵 215a: First alignment feature

215b:第二對準特徵 215b: Second alignment feature

D1:第一方向 D1: first direction

D2:第二方向 D2: second direction

Claims (20)

一種疊對量測標記,包括: 一第一軸; 一第二軸,與該第一軸交叉; 一目標特徵,設置在該第一軸與該第二軸的一交叉處; 一第一對準特徵,設置在該第一軸上;以及 一第二對準特徵,設置在該第二軸上; 其中該第一對準特徵與該第二對準特徵是成對設置。 An overlay measurement mark, including: a first axis; a second axis intersecting the first axis; A target feature is set at an intersection of the first axis and the second axis; a first alignment feature disposed on the first axis; and a second alignment feature disposed on the second axis; The first alignment feature and the second alignment feature are arranged in pairs. 如請求項1所述之疊對量測標記,其中該第一軸、該第二軸、該目標特徵、該第一對準特徵以及該第二對準特徵設置在該基底的至少一切割線中。The overlay measurement mark of claim 1, wherein the first axis, the second axis, the target feature, the first alignment feature and the second alignment feature are disposed on at least one cutting line of the substrate middle. 如請求項1所述之疊對量測標記,其中該第一軸與該第二對準特徵之間的一最短距離等於該第二軸與該第一對準特徵之間的一最短距離。The overlay measurement mark of claim 1, wherein a shortest distance between the first axis and the second alignment feature is equal to a shortest distance between the second axis and the first alignment feature. 如請求項1所述之疊對量測標記,其中該目標特徵設置在該基底的一第一結構層上,而該第一軸、該第二軸、該第一對準特徵以及該第二對準特徵設置在該第一層上方或下方的一第二結構層上。The overlay measurement mark of claim 1, wherein the target feature is disposed on a first structural layer of the substrate, and the first axis, the second axis, the first alignment feature and the second Alignment features are provided on a second structural layer above or below the first layer. 如請求項4所述之疊對量測標記,其中該目標特徵包括二線區段,而當該第一層與該第二層正確對準時,則該第一軸與該第二軸分別與該等線區段重疊。The overlay measurement mark of claim 4, wherein the target feature includes a two-line segment, and when the first layer and the second layer are correctly aligned, the first axis and the second axis are respectively aligned with The line segments overlap. 如請求項1所述之疊對量測標記,其中該第一軸與該第二軸正交。The overlay measurement mark of claim 1, wherein the first axis is orthogonal to the second axis. 如請求項6所述之疊對量測標記,其中該目標特徵具有一十字形狀。The overlay measurement mark of claim 6, wherein the target feature has a cross shape. 如請求項1所述之疊對量測標記,其中該第一對準特徵與該第二對準特徵分別由多個重複的微結構所構成。The overlay measurement mark of claim 1, wherein the first alignment feature and the second alignment feature are each composed of a plurality of repeated microstructures. 如請求項1所述之疊對量測標記,其中該第一對準特徵與該第二對準特徵分別具有一正方形輪廓,並由複數個正方形微結構所構成,而該等微結構經由一對空缺區而相互分隔開。The overlay measurement mark of claim 1, wherein the first alignment feature and the second alignment feature respectively have a square outline and are composed of a plurality of square microstructures, and the microstructures are formed through a separated from each other by vacant areas. 如請求項9所述之疊對量測標記,其中該等空缺區具有一第一寬度,而該等微結構具有一第二寬度,該第二寬度大於該第一寬度。The overlay measurement mark of claim 9, wherein the vacant areas have a first width, and the microstructures have a second width, and the second width is greater than the first width. 如請求項9所述之疊對量測標記,其中該對空缺區包括一水平空缺區以及一縱向空缺區,該第一軸延伸經過位在該第一軸處之該第一對準特徵的該水平空缺區,而該第二軸延伸經過位在該第二軸處之該第二對準特徵的該縱向空缺區。The overlay measurement mark of claim 9, wherein the pair of vacancy areas includes a horizontal vacancy area and a longitudinal vacancy area, and the first axis extends through the first alignment feature located at the first axis. the horizontal void area, and the second axis extending through the longitudinal void area of the second alignment feature located at the second axis. 一種疊對量測標記,包括: 一第一軸; 一第二軸,與該第一軸正交且交叉; 一目標特徵,設置在該第一軸與該第二軸的一交叉處;以及 複數個對準特徵,沿著該第一軸與該第二軸設置。 An overlay measurement mark, including: a first axis; a second axis orthogonal to and crossing the first axis; A target feature is located at an intersection of the first axis and the second axis; and A plurality of alignment features are disposed along the first axis and the second axis. 如請求項12所述之疊對量測標記,其中相鄰對的對準特徵之間的一距離是固定的,且該第一軸與該第二軸具有大約15奈米的一長度。The overlay measurement mark of claim 12, wherein a distance between adjacent pairs of alignment features is fixed, and the first axis and the second axis have a length of approximately 15 nanometers. 如請求項13所述之疊對量測標記,其中該相鄰對的對準特徵藉由一相等距離而與該第一軸及該第二軸的該交叉處分隔開,且該相鄰對的對準特徵經配置以確定該複數個複數個連續圖案化層的該等相對位置。The overlay measurement mark of claim 13, wherein the adjacent pairs of alignment features are separated from the intersection of the first axis and the second axis by an equal distance, and the adjacent pairs The alignment features are configured to determine the relative positions of the plurality of consecutive patterned layers. 如請求項12所述之疊對量測標記,其中該第一軸將該第二軸分隔成一上區段以及一下區段;該第二軸將該第一軸分隔成一左區段以及一右區段;提供設置在該上區段與該下區段處的該複數個對準特徵以確定在該基底之一陣列區中的該複數個複數個連續圖案化層的該等相對位置;且提供設置在該下區段與該上區段處的該複數個對準特徵以確定在鄰近該陣列區之一周圍區中的該複數個複數個連續圖案化層的該等相對位置。The overlay measurement mark of claim 12, wherein the first axis separates the second axis into an upper section and a lower section; the second axis separates the first axis into a left section and a right section. section; providing the plurality of alignment features disposed at the upper section and the lower section to determine the relative positions of the plurality of consecutive patterned layers in an array region of the substrate; and Alignment features disposed at the lower section and the upper section are provided to determine the relative positions of the plurality of consecutive patterned layers in a surrounding region adjacent to one of the array regions. 如請求項12所述之疊對量測標記,其中在製造該複數個對準特徵靠近該目標特徵的其中一個是在製造遠離該目標特徵設置之該複數個對準特徵中的另一個之前進行製造。The overlay measurement mark of claim 12, wherein manufacturing one of the plurality of alignment features close to the target feature is performed before manufacturing another of the plurality of alignment features disposed away from the target feature. manufacturing. 如請求項12所述之疊對量測標記,其中該第一軸、該第二軸、該目標特徵以及該複數個對準特徵設置在該基底的多個切割線中。The overlay measurement mark of claim 12, wherein the first axis, the second axis, the target feature and the plurality of alignment features are disposed in a plurality of cutting lines of the substrate. 如請求項12所述之疊對量測標記,其中該目標特徵設置在該基底的一第一結構層上,且該第一軸、該第二軸以及該複數個對準特徵設置在位在該第一結構層上方或下方的一第二結構層上。The overlay measurement mark of claim 12, wherein the target feature is disposed on a first structural layer of the substrate, and the first axis, the second axis and the plurality of alignment features are disposed at on a second structural layer above or below the first structural layer. 如請求項12所述之疊對量測標記,其中該複數個對準特徵經由一對空缺區而分割成四等分,且該第一軸或該第二軸延伸經過其中一個空缺區。The overlay measurement mark of claim 12, wherein the plurality of alignment features are divided into four equal parts through a pair of vacant areas, and the first axis or the second axis extends through one of the vacant areas. 如請求項12所述之疊對量測標記,其中該疊對量測標記具有一反射對稱或是旋轉對稱。The overlay measurement mark as claimed in claim 12, wherein the overlay measurement mark has a reflection symmetry or rotational symmetry.
TW111115027A 2022-02-16 2022-04-20 Overlay metrology mark TWI809828B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/672,862 2022-02-16
US17/672,862 US20230260924A1 (en) 2022-02-16 2022-02-16 Overlay metrology mark
US17/673,155 US20230259039A1 (en) 2022-02-16 2022-02-16 Method of determining overlay error during semiconductor fabrication
US17/673,155 2022-02-16

Publications (2)

Publication Number Publication Date
TWI809828B TWI809828B (en) 2023-07-21
TW202335232A true TW202335232A (en) 2023-09-01

Family

ID=88149608

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111115034A TWI809830B (en) 2022-02-16 2022-04-20 Method of determining overlay error during semiconductor fabrication
TW111115027A TWI809828B (en) 2022-02-16 2022-04-20 Overlay metrology mark

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111115034A TWI809830B (en) 2022-02-16 2022-04-20 Method of determining overlay error during semiconductor fabrication

Country Status (1)

Country Link
TW (2) TWI809830B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970010666B1 (en) * 1993-12-27 1997-06-30 현대전자산업 주식회사 Measurement of attern overlay of semiconductor device
TWI276774B (en) * 2005-09-28 2007-03-21 Promos Technologies Inc Alignment mark and measuring method by using alignment mark
TWI285934B (en) * 2005-10-03 2007-08-21 Himax Tech Ltd Align mark
TWI286196B (en) * 2006-02-22 2007-09-01 Ind Tech Res Inst Methods and systems for determining overlay error based on target image symmetry
US8143731B2 (en) * 2009-07-14 2012-03-27 Nanya Technology Corp. Integrated alignment and overlay mark
CN104078446B (en) * 2013-03-27 2016-12-07 中芯国际集成电路制造(上海)有限公司 Bonding alignment mark and the method calculating side-play amount
US9136223B2 (en) * 2013-07-26 2015-09-15 Globalfoundries Inc. Forming alignment mark and resulting mark
CN104795383B (en) * 2014-01-20 2017-11-03 中芯国际集成电路制造(上海)有限公司 Alignment mark, the detection method of alignment mark and alignment mark detection device
US9659873B2 (en) * 2015-08-26 2017-05-23 United Microelectronics Corp. Semiconductor structure with aligning mark and method of forming the same

Also Published As

Publication number Publication date
TWI809828B (en) 2023-07-21
TW202335044A (en) 2023-09-01
TWI809830B (en) 2023-07-21

Similar Documents

Publication Publication Date Title
US7829168B2 (en) Methods for inspecting and optionally reworking summed photolithography patterns resulting from plurally-overlaid patterning steps during mass production of semiconductor devices
US8330248B2 (en) Semiconductor device, mask for fabrication of semiconductor device, and optical proximity correction method
JP2754609B2 (en) Method for manufacturing semiconductor device
US5721619A (en) Misregistration detecting marks for pattern formed on semiconductor substrate
US7008731B2 (en) Method of manufacturing a photomask and method of manufacturing a semiconductor device using the photomask
US20120049186A1 (en) Semiconductor structures
US20090127723A1 (en) AIM-Compatible Targets for Use with Methods of Inspecting and Optionally Reworking Summed Photolithography Patterns Resulting from Plurally-Overlaid Patterning Steps During Mass Production of Semiconductor Devices
JP2859855B2 (en) Fine pattern alignment method for semiconductor device
US6562525B2 (en) Photo mask to be used for photolithography, method of inspecting pattern defect, and method of manufacturing semiconductor device through use of the mask
US7998640B2 (en) Mask reuse in semiconductor processing
TWI809828B (en) Overlay metrology mark
JP2006332177A (en) Semiconductor wafer, manufacturing method thereof and mask
JP3344485B2 (en) Method for manufacturing semiconductor device
US7830028B2 (en) Semiconductor test structures
US20230260924A1 (en) Overlay metrology mark
US20230259039A1 (en) Method of determining overlay error during semiconductor fabrication
JPH11145302A (en) Manufacture of semiconductor device chip
US7136520B2 (en) Method of checking alignment accuracy of patterns on stacked semiconductor layers
US7932157B2 (en) Test structure formation in semiconductor processing
US7693682B2 (en) Method for measuring critical dimensions of a pattern using an overlay measuring apparatus
JPH0669345A (en) Manufacture of integrated circuit
JP2006134940A (en) Manufacturing method of semiconductor device
JP2002134397A (en) Photomask, semiconductor device, method for exposing semiconductor chip pattern and chip alignment accuracy inspecting device
US6972853B1 (en) Methods of calibrating and controlling stepper exposure processes and tools, and system for accomplishing same
JPH0917714A (en) Alignment method and alignment error inspection method