TWI285934B - Align mark - Google Patents

Align mark Download PDF

Info

Publication number
TWI285934B
TWI285934B TW94134524A TW94134524A TWI285934B TW I285934 B TWI285934 B TW I285934B TW 94134524 A TW94134524 A TW 94134524A TW 94134524 A TW94134524 A TW 94134524A TW I285934 B TWI285934 B TW I285934B
Authority
TW
Taiwan
Prior art keywords
metal
pattern
alignment
metal pattern
alignment mark
Prior art date
Application number
TW94134524A
Other languages
Chinese (zh)
Other versions
TW200715439A (en
Inventor
Hung-Sui Lin
Tzi-An Hung
Chan-Liang Wu
Original Assignee
Himax Tech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Himax Tech Ltd filed Critical Himax Tech Ltd
Priority to TW94134524A priority Critical patent/TWI285934B/en
Publication of TW200715439A publication Critical patent/TW200715439A/en
Application granted granted Critical
Publication of TWI285934B publication Critical patent/TWI285934B/en

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

An align mark includes a field region and a metal pattern. The field region is positioned on a substrate. The metal pattern is positioned in the field region and has a plurality of contours within the field region. The contours reduce the gray level of parts of the metal pattern.

Description

-Ϊ285934 九、發明說明: 【發明所屬之技術領域】 本發明是有關於-種對準標記,且特別是有關於一種 可增強對比度的對準標記。 【先前技術】 晶片-玻璃接合術(chip_on_glass; c〇G)是覆晶(fiip 技術的-種,其技術特徵在於將晶片直接對準玻璃基板上 的電路並藉由其它中間材料作導電,&目前積體電路 (崎gmed circuit ’· IC)構裝密度最高的—種技術。由於晶 片-玻璃接合術具有使液晶顯示器減少體積、重量等特點, 因此為未來主要發展的技術之一。 對於液晶顯示器的驅動晶片而言,如何將驅動晶片準 確地安裝在玻璃基板上的正確位置是一個重要的課題。若 無法將驅動晶片放置在玻璃基板上的正確位置,驅動晶片 即無法正確地驅動玻璃基板上的晝素電極,如此一來液晶 顯示器也就無法正確地顯示。 一般的作法是在晶片及玻璃基板上設置對準標記,接 著在對準製程中’將晶片及玻璃基板的對準標記對齊,以 準確地放置晶片於玻璃基板上的正確位置。由上述可知, 在對準製程中’是否能清楚地辨識出對準標記將攸關對 製程的成功與否。 〃傳統的對準標記係由對準區及金屬圖案所組成。對準 區係设置於基材上。金屬圖案則位於對準區中,且此金屬 •1285934 圖案係十字形,藉由分別位於晶片與玻璃基板上之十字形 的金屬圖案對齊與否,來判斷晶片與玻璃基板的相對位置 是否正確。 表 ·傳統對準標記之金屬圖案與對準區的灰階值及兩者 間之對比度的數據- Ϊ 285934 IX. Description of the Invention: [Technical Field] The present invention relates to an alignment mark, and more particularly to an alignment mark which can enhance contrast. [Prior Art] Wafer-to-glass bonding (chip_on_glass; c〇G) is a flip chip (fiip technology), which is characterized in that a wafer is directly aligned with a circuit on a glass substrate and electrically conductive by other intermediate materials, & The current technology of the integrated circuit (sugly gmed circuit '· IC) has the highest density of construction. Since wafer-glass bonding has the characteristics of reducing the size and weight of the liquid crystal display, it is one of the main development technologies for the future. In the case of a driving wafer for a liquid crystal display, how to accurately mount the driving wafer on the glass substrate is an important issue. If the driving wafer cannot be placed at the correct position on the glass substrate, the driving of the wafer cannot properly drive the glass. The halogen electrode on the substrate, so that the liquid crystal display can not be correctly displayed. The general method is to set the alignment mark on the wafer and the glass substrate, and then the alignment mark of the wafer and the glass substrate in the alignment process Align to accurately position the wafer on the glass substrate. As can be seen from the above, in the alignment process 'Whether it is clear that the alignment mark will be critical to the success of the process. 〃The traditional alignment mark consists of an alignment area and a metal pattern. The alignment area is placed on the substrate. The metal pattern is Located in the alignment area, and the pattern of the metal•1285934 is cross-shaped, whether the relative position of the wafer and the glass substrate is correct is determined by whether the metal pattern of the cross-shaped metal on the wafer and the glass substrate are respectively aligned. Data of the metal pattern of the alignment mark and the gray scale value of the alignment area and the contrast between the two

參照表一’其列出了傳統對準標記之金屬圖案與對準 區的灰階值及兩者間之對比度的數據。在表一中的實驗數 據藉由採樣同一片晶圓中不同區域之晶粒,並測量晶粒上 • 的對準標記之金屬圖案與對準區的灰階值及兩者間的對比 度而得。區域名稱係指出實驗晶粒位於晶圓上的位置,例 如中間偏右係表示實驗晶粒位於晶圓上之中間偏右的區 域。金屬圖案與對準區則分別表示金屬圖案與對準區的灰 階值。對比度係表示位於不同區域之對準標記所表現出的 對比度。平均對比度係指將位於不同區域之對準標記所表 現出的對比度加以平均後的對比度。最大誤差則為平均後 之對比度與個別區域的對準標記之對比度的最大誤差。 由於傳統的金屬圖案係位於基材之場氧化層㈣ 6 1285934Referring to Table 1, 'the data of the metal pattern of the conventional alignment mark and the gray scale value of the alignment area and the contrast between the two are listed. The experimental data in Table 1 is obtained by sampling the grains of different regions in the same wafer, and measuring the metal pattern of the alignment mark on the die and the gray scale value of the alignment region and the contrast between the two. . The area name indicates the location of the experimental die on the wafer. For example, the center-to-center mode indicates that the experimental die is located in the center-right zone on the wafer. The metal pattern and the alignment area respectively represent the gray scale values of the metal pattern and the alignment area. Contrast is the contrast exhibited by the alignment marks located in different areas. The average contrast is the contrast obtained by averaging the contrasts exhibited by the alignment marks located in different areas. The maximum error is the maximum error of the contrast between the averaged contrast and the alignment marks of the individual regions. Since the traditional metal pattern is located in the field oxide layer of the substrate (4) 6 1285934

Oxide; FOX)上方,且場氧化層之灰階值與金屬圖案的灰階 值接近。因此當俯㈣準標料,灰階值接近的金屬圖案 與對準區之間將擁有較低的對比度。由表_可知,傳统對 準標記在最大誤差為8的誤差水準下,平料比度僅僅 28。如此低的對比度將使製造者在對㈣程中無法清楚地 辨識出對準標記,因而造成對準製程的成功率下降。 【發明内容】 因此本發明-方面就是在提供—種對準標記,藉由在 金屬圖案中形成複數個輪廓邊界以降低部份之金屬圖案的 灰階值,進而提高金屬圖案與對準區之對比度,使得製造 者在對準製程中擁有較高的成功率。 根據本發明之一較佳實施例,此對準標記包含對準區 以及金屬圖案。對準區係設置於基材上。金屬圖案則位於 $準區中,且金屬圖案在對準區中形成複數個輪廓邊界, 藉由這些輪廓邊界以降低部分之金屬圖案的灰階值。 本發明另一方面是在提供一種對準標記,藉由金屬圖 案中的狹縫以降低部份之金屬圖案的灰階值,進而提高金 屬圖案與對準區之對比度,使得製造者在對準製程中擁有 較高的成功率。 根據本發明之另一較佳實施例,此對準標記包含對準 區以及金屬圖案。對準區係設置於基材上。金屬圖案則位 於對準區中,且此金屬圖案具有複數個金屬圖形。其中每 兩相鄰之金屬圖形間具有狹縫,藉由此狹缝以降低部分之 ^ 1285934 5亥金屬圖案的灰階值。 統對二提供-種對準標記,藉由省略傳 几耵+ ^圮中夾置於金屬圖幸盥 降低對準區之灰階值,進而提的場氧化層,以 度^製造者在對準製程中擁有較高的成功率。 ::本發明之又一較佳實施例,此對準標記包含對準 =準=圖案。《區録料基材上。金屬圖案則位於 ::π,且金屬圖案㈣基材於垂直方向不夹置有場氧 曰使侍對準區之灰階值較金屬圖案之灰階值低。 ,據本發明之上述實施例所提供之對準標記,其金屬 圖案料準區㈣*度較傳_對準標記高。因此,製造 ^可藉由本發明之上述實施例所提供之對準標記獲得更清 处的金屬圖案,進而提升對準製程的成功率。 【實施方式】 、為了確保製造者能清楚地辨識金屬圖案,金屬圖案與 對準區而擁有較南的對比度。由於傳統的金屬圖案與對準 區擁有相近的灰階值,故金屬圖案與對準區的對比度也就 偏低,造成對準製程的成功率下降。 雖然傳統的金屬圖案與對準區的對比度偏低,但由於 圖案的輪廓邊界擁有較低的灰階值,且輪廓邊界的周圍區 域如金屬圖案或對準區擁有較高的灰階值,故金屬圖案的 輪廓邊界仍與周圍區域擁有較高的對比度。因此,本發明 之一較佳實施例即利用在金屬圖案中形成複數個輪廓邊界 8 1285934 以降低部份之金屬圖案的灰階值,進而提高金屬圖案與對 準區之對比度。 參照第1A圖,其繪示本發明之一較佳實施例的對準標 記的俯視圖。此對準標記包含對準區丨1()以及金屬圖案 120。對準區ι10係設置於基材上。金屬圖案12〇則位於對 準區110中,且金屬圖案120在對準區110中形成複數個 輪廓邊界129’藉由這些輪廓邊界129以降低部分之金屬圖 案120的灰階值。 從另一方面來看,本發明之一較佳實施例的金屬圖案 120亦可視為具有複數個金屬圖形122。其中每兩相鄰之全 屬圖形122間具有狹、縫124,藉由這些狹縫124轉低部分 之金屬圖案120的灰階值。 一而且,對準區UG的灰階值可較金屬圖案12G的灰階 值局。由於本發明之—較佳實施例係降低部分之金屬圖案 120的灰階值,故擁有較高灰階值的對準區iiq將使得金屬 圖案120與對準區UG的對比度增加,進而讓金屬圖案㈣ 更佳地清晰。 述之金屬圖形可非交錯排列或平行排列於對 準參照帛1A圖’金屬圖形122與相鄰之金屬圖形係 平行排列,且彼此間隔—狹縫m。此外 圖形間並未交錯’以最大化輪廓邊界129的數量。 ㈣=地:參照第1B圖及第1C圖。第1B圖係緣示本 月:另較佳實施例的對準標記的俯視圖,而第W圖係 繪不本發明之再-較佳實_的料標記㈣視 1285934 1B圖及第ic圖中的金屬圖形122與相鄰之金屬圖形亦為 平行排列’且彼此間隔一狹縫124。而金屬圖形與金屬圖形 間同樣地也沒有交錯,以最大化輪廓邊界丨29的數量。 考量到實際上的需求,上述之金屬圖形較佳為矩形所 組成。在對準製程中,藉由矩形所組成的金屬圖形對齊與 否’可得知晶粒與玻璃基板的相對位置,此相對位置包括Above Oxide; FOX), and the gray scale value of the field oxide layer is close to the gray scale value of the metal pattern. Therefore, when the (four) quasi-standard material, the metal pattern with the grayscale value close to the alignment area will have a lower contrast. It can be seen from Table _ that the conventional alignment mark has a flatness ratio of only 28 at a maximum error of 8. Such a low contrast will cause the manufacturer to be unable to clearly identify the alignment mark during the (four) pass, thus causing a decrease in the success rate of the alignment process. SUMMARY OF THE INVENTION Therefore, the present invention provides an alignment mark by forming a plurality of contour boundaries in a metal pattern to reduce the gray scale value of a portion of the metal pattern, thereby improving the metal pattern and the alignment region. Contrast allows the manufacturer to have a higher success rate in the alignment process. According to a preferred embodiment of the invention, the alignment mark comprises an alignment area and a metal pattern. The alignment zone is disposed on the substrate. The metal pattern is located in the quasi-region, and the metal pattern forms a plurality of contour boundaries in the alignment region, and the contour boundaries are used to lower the gray scale value of the portion of the metal pattern. Another aspect of the present invention is to provide an alignment mark by using a slit in a metal pattern to lower the gray scale value of a portion of the metal pattern, thereby increasing the contrast between the metal pattern and the alignment region, so that the manufacturer is aligned The process has a high success rate. According to another preferred embodiment of the invention, the alignment mark comprises an alignment area and a metal pattern. The alignment zone is disposed on the substrate. The metal pattern is in the alignment region and the metal pattern has a plurality of metal patterns. There is a slit between each two adjacent metal patterns, whereby the slit is used to lower the gray scale value of the portion of the metal pattern of 1285934. The two pairs of alignment marks are provided, and by omitting a few 耵 + ^ 夹 in the metal map, the gray level value of the alignment area is reduced, and then the field oxide layer is raised, and the manufacturer is in the There is a high success rate in the quasi-process. In another preferred embodiment of the invention, the alignment mark comprises an alignment = quasi = pattern. "District recording material on the substrate. The metal pattern is located at ::π, and the metal pattern (4) substrate is not interposed with field oxygen in the vertical direction so that the gray level value of the alignment area is lower than the gray level value of the metal pattern. According to the above-described embodiment of the present invention, the alignment mark of the metal pattern is higher than the pass mark. Therefore, it is possible to obtain a clearer metal pattern by the alignment marks provided by the above-described embodiments of the present invention, thereby improving the success rate of the alignment process. [Embodiment] In order to ensure that the metal pattern can be clearly recognized by the manufacturer, the metal pattern has a souther contrast with the alignment area. Since the conventional metal pattern has a similar gray scale value to the alignment area, the contrast between the metal pattern and the alignment area is also low, resulting in a decrease in the success rate of the alignment process. Although the contrast between the conventional metal pattern and the alignment area is low, since the contour boundary of the pattern has a lower gray scale value, and the surrounding area of the contour boundary such as the metal pattern or the alignment area has a higher gray scale value, The contour boundary of the metal pattern still has a high contrast with the surrounding area. Therefore, a preferred embodiment of the present invention utilizes a plurality of contour boundaries 8 1285934 in the metal pattern to reduce the gray scale value of a portion of the metal pattern, thereby increasing the contrast between the metal pattern and the alignment region. Referring to Figure 1A, there is shown a top plan view of an alignment mark in accordance with a preferred embodiment of the present invention. This alignment mark includes an alignment area 丨1() and a metal pattern 120. The alignment area ι10 is disposed on the substrate. The metal pattern 12 is located in the alignment region 110, and the metal pattern 120 forms a plurality of contour boundaries 129' in the alignment region 110 by the contour boundaries 129 to lower the grayscale value of the portion of the metal pattern 120. Viewed from another aspect, the metal pattern 120 of one preferred embodiment of the present invention can also be considered to have a plurality of metal patterns 122. Each of the two adjacent patterns 122 has a narrow slit 124, and the slits 124 are rotated to lower the gray scale value of the metal pattern 120. Moreover, the gray scale value of the alignment area UG can be compared with the gray scale value of the metal pattern 12G. Since the preferred embodiment of the present invention reduces the gray scale value of a portion of the metal pattern 120, the alignment region iiq having a higher gray scale value will increase the contrast between the metal pattern 120 and the alignment region UG, thereby allowing the metal to The pattern (4) is better and clearer. The metal patterns may be non-staggered or arranged in parallel in the alignment reference 帛1A. The metal pattern 122 is arranged in parallel with the adjacent metal pattern and spaced apart from each other by the slit m. In addition, the graphics are not interlaced to maximize the number of contour boundaries 129. (4) = Ground: Refer to Figure 1B and Figure 1C. Figure 1B shows the top view of the month of the preferred embodiment, and the figure W shows the material mark of the re-better of the present invention (4). Figure 1285934 1B and the ic diagram The metal pattern 122 and the adjacent metal patterns are also arranged in parallel 'and spaced apart from each other by a slit 124. Similarly, the metal pattern and the metal pattern are not interlaced to maximize the number of contour boundaries 丨29. Considering the actual demand, the above metal pattern is preferably composed of a rectangle. In the alignment process, the relative position of the die and the glass substrate can be known by the alignment of the metal pattern formed by the rectangle, and the relative position includes

相對座標以及相對角度,進而準確地放置晶粒於玻璃基板 上的正確位置。 為了確保金屬圖案與對準區間擁有較佳的對比度,金 屬圖案中的輪廓邊界必須足夠,或者說是位於金屬圖形間 的狹縫數里必須足夠,方能使部分之金屬圖案的灰階值降 得更低,使得金屬圖案與灰階值較高的對準區間呈現更高 的對比度考慮在單位面積的金屬圖案中,金屬圖形的寬 度越小,則在金屬圖案中的輪廓邊界越多,或者位於金屬 圖形間的狹縫數量越多。因此,在本發明之—較佳實施例 中金屬圖形的較佳寬度係小於約1微米。 多…、弟2圖,其緣示本發明之一較佳實施例的對準標 、〗面圖在本發明之一較佳實施例中,對準圖案更可 -、有至屬_人圖案,此金屬次圖案係與金屬圖案分佈於基 材的不同層中。例如在第2圖中,金屬圖帛27G係位於第 7金屬介電層250中,而金屬次圖案·係位於第二内 玉^電層24〇中。此外,此較佳實施例中之金屬次圖案 270的形狀不同。因此,當俯視對 、玉屬乂圖案280即疊加至金屬圖案270中,以 1285934 達成不同的視覺效果。 然而,在簡化設計與製程的考量下,金屬次圖案與金 屬圖案亦可擁有相同的形狀。也就是說,耗金屬次圖案 與金屬圖案分佈於基材的不同層中,㈣金屬次圖案的形 狀與金屬圖案相同。nut,當俯視對準標記時,將只有金 屬圖案會被觀察到,金屬次圖案將被金屬圖案所遮蔽。 在本發明之一較佳實施例中,對準圖案更可具有一金 屬對準十字,位於金屬圖案之對準中心、,以清楚地標示金 屬圖案之對準中心的位置。例如在第1A圖中,金屬對準十 字126的中心係位於金屬圖案12〇之對準中心128,使得金 屬圖案之對準中心128的位置更佳地清晰可見。 參照第3 ®,其繪示本發明之又一較佳實施例的對準 標記的俯視圖。在第3圖中,金屬圖案31〇係分佈於金屬 對準十字320周圍。此金屬圖案31〇具有複數個金屬圖形 311,藉由金屬圖形311所形成之輪廓邊界319,或者藉由 母兩相鄰之金屬圖形間的狹縫3 U以降低部分之金屬圖案 31〇之灰階值。一般而言,金屬對準十字32〇與金屬圖形 311係由相同的材料所形成,故擁有相同之灰階值。因此, 若降低部分之金屬圖案310的灰階值,則金屬對準十字32〇 與金屬圖案310間的對比度將會增加,使得製造者於對準 製程中可清楚地辨識出金屬對準十字320。 在第3圖中’金屬圖形311與相鄰之金屬圖形可平行 排列,且彼此間隔一狹縫312。此外,在第3圖中,金屬圖 形與金屬圖形間並未交錯,以最大化輪廓邊界319的數量。 11 •1285934 為了確保金屬對準十字32〇與金屬圖案31〇間擁有較 佳的對比度,金屬圖案中的輪廓邊界必須足夠,或者說是 位於金屬圖形間的狹縫數量必須足夠,方能使部分之金屬 圖案的灰階值降得更低,使得金屬圖案與灰階值較高的金 屬對準十字間呈現更高的對比度。考慮在單位面積的金屬 圖案310中,金屬圖形311的寬度越小,則在金屬圖案 中的輪廓邊界319越多,或者位於金屬圖形3丨丨間的狹縫 312數量越多。因此,在本發明之又一較佳實施例中金屬圖 形3 11的較佳寬度係小於約1微米。 另外’金屬圖案310可與金屬對準十字32〇分佈於基 材的不同層中。例如,金屬圖案310可位於基材之第一内 金屬介電層中,而金屬對準十字32〇可為於基材之第二内 金屬介電層中。其中,第一内金屬介電層係位於第二内金 屬介電層上方。然而,習知技藝者當可理解,若可符合本 發明精神與保護範圍,第二内金屬介電層亦可位於第一内 金屬介電層上方。因此,當俯視對準標記時,金屬對準十 字320即疊加至金屬圖案310中。 但在簡化設計與製程的考量下,金屬圖案3丨〇亦可與 金屬對準十子320分佈於基材的相同層中。例如,金屬圖 案310與金屬對準十字32〇係可分佈於基材之同一内金屬 介電層中。 參照第2圖,金屬圖案270係可位於基材之場氧化層 220上方。下表將詳細地說明將金屬圖案設置於基材之場氧 化層上方時金屬圖案與對準區的灰階值及兩者間之對 12 1285934 的數據: 表二··第1C圖所繪示之金屬圖案位於基材之場氧化層上方 時金屬圖案與對準區的灰階值及兩者間之對比度的曰數據 區域名稱 灰階值 對比度 平均 對比度 最大誤差 金屬圖案 對準區 中間偏左 85 210 125 中間偏右 90 210 120 邊緣偏左 100 210 110 111 21 邊緣偏右 100 190 90 參妝表一,其表示當第1 c圖所繪示之金屬圖案位於基 材之場氧化層上方時金屬圖案與對準區的灰階值及兩者間 之對比度的數據。在表二中的實驗數據藉由採樣同一片晶 圓中不同區域之晶粒,並測量晶粒上的對準標記之金屬圖 案與對準區的灰階值及兩者間的對比度而得。區域名稱係 才曰出實驗晶粒位於晶圓上的位置,例如中間偏左係表示實 驗晶粒位於晶圓上之中間偏左的區域。金屬圖案與對準區 則分別表示金屬圖案與對準區的灰階值。對比度係表示位 於不同區域之對準標記所表現出的對比度。平均對比度係 指將位於不同區域之對準標記所表現出的對比度加以平均 後的對比度。最大誤差則為平均後之對比度與個別區域的 對準標記之對比度的最大誤差。 13 1285934 由表二可知,當第1C圖所繪示之金屬圖案位於基材之 場氧化層上方時,在最大誤差為21的誤差水準下之平均對 比度高達⑴。更具體地說,應用第lc圖所繪示之金屬圖 案’即使如同傳統作法一般地位於基材之場氧化層上方, 其展現出來的平均對比度仍遠高於傳統的對準標記之 對比度(參照表一)。 、° 1 表三:第1c圖所繪示之金屬圖案位於基材之場氧化層上方 時金屬圖案與對準區的灰階值及兩者間之對比度的s數據Relative coordinates and relative angles, and thus accurately position the die on the glass substrate. In order to ensure a better contrast between the metal pattern and the alignment section, the contour boundary in the metal pattern must be sufficient, or the number of slits between the metal patterns must be sufficient, so that the gray scale value of the partial metal pattern can be lowered. Lower, so that the metal pattern and the gray-scale value of the alignment interval exhibit a higher contrast ratio. In the metal pattern per unit area, the smaller the width of the metal pattern, the more the contour boundary in the metal pattern, or The greater the number of slits located between the metal patterns. Accordingly, in the preferred embodiment of the invention, the preferred width of the metal pattern is less than about 1 micron. In the preferred embodiment of the present invention, the alignment pattern is more versatile, and the aligning pattern is more The metal sub-pattern and the metal pattern are distributed in different layers of the substrate. For example, in Fig. 2, the metal pattern G 27G is located in the seventh metal dielectric layer 250, and the metal sub-pattern is located in the second inner dielectric layer 24 。. Further, the metal sub-pattern 270 in this preferred embodiment has a different shape. Therefore, when the top view, the jade enamel pattern 280 is superimposed on the metal pattern 270, different visual effects are achieved with 1285934. However, the metal sub-pattern and the metal pattern may have the same shape in consideration of simplification of design and process. That is, the metal-consuming secondary pattern and the metal pattern are distributed in different layers of the substrate, and the (4) metal secondary pattern has the same shape as the metal pattern. Nut, when looking at the alignment mark, only the metal pattern will be observed, and the metal secondary pattern will be obscured by the metal pattern. In a preferred embodiment of the invention, the alignment pattern may further have a metal alignment cross located at the center of alignment of the metal pattern to clearly indicate the position of the alignment center of the metal pattern. For example, in Figure 1A, the center of the metal alignment 126 is located at the alignment center 128 of the metal pattern 12, such that the alignment center 128 of the metal pattern is more clearly visible. Referring to Fig. 3, there is shown a plan view of an alignment mark of still another preferred embodiment of the present invention. In Fig. 3, the metal pattern 31 is distributed around the metal alignment cross 320. The metal pattern 31 has a plurality of metal patterns 311, a contour boundary 319 formed by the metal pattern 311, or a slit 3 U between two adjacent metal patterns to reduce a portion of the metal pattern 31. Order value. In general, the metal alignment cross 32 〇 and the metal pattern 311 are formed of the same material and therefore have the same gray scale value. Therefore, if the gray scale value of the portion of the metal pattern 310 is lowered, the contrast between the metal alignment cross 32 〇 and the metal pattern 310 will increase, so that the manufacturer can clearly recognize the metal alignment cross 320 in the alignment process. . In Fig. 3, the metal pattern 311 and the adjacent metal patterns are arranged in parallel and spaced apart from each other by a slit 312. Further, in Fig. 3, the metal pattern and the metal pattern are not interlaced to maximize the number of contour boundaries 319. 11 •1285934 In order to ensure a better contrast between the metal alignment cross 32〇 and the metal pattern 31〇, the contour boundary in the metal pattern must be sufficient, or the number of slits between the metal patterns must be sufficient to enable the portion. The grayscale value of the metal pattern is lowered lower, so that the metal pattern exhibits a higher contrast ratio with respect to the metal with a higher grayscale value. It is considered that in the metal pattern 310 per unit area, the smaller the width of the metal pattern 311, the more the contour boundary 319 in the metal pattern or the larger the number of slits 312 located between the metal patterns 3. Accordingly, in another preferred embodiment of the invention, the preferred width of the metal pattern 3 11 is less than about 1 micron. Further, the metal pattern 310 may be distributed in a different layer of the substrate with the metal alignment cross 32〇. For example, the metal pattern 310 can be in the first inner metal dielectric layer of the substrate, and the metal alignment cross 32 can be in the second inner metal dielectric layer of the substrate. Wherein the first inner metal dielectric layer is above the second inner metal dielectric layer. However, it will be understood by those skilled in the art that the second inner metal dielectric layer may be located above the first inner metal dielectric layer if it is within the spirit and scope of the present invention. Therefore, when the alignment mark is viewed from the top, the metal alignment numeral 320 is superimposed into the metal pattern 310. However, in the simplification of design and process considerations, the metal pattern 3 can also be aligned with the metal in the same layer of the substrate. For example, the metal pattern 310 and the metal alignment cross 32 can be distributed in the same inner metal dielectric layer of the substrate. Referring to Figure 2, the metal pattern 270 can be positioned over the field oxide layer 220 of the substrate. The following table will explain in detail the gray scale value of the metal pattern and the alignment area when the metal pattern is placed over the field oxide layer of the substrate and the data between the two 12 1285934: Table 2 · Figure 1C The metal pattern is located above the field oxide layer of the substrate. The gray pattern value of the metal pattern and the alignment area and the contrast between the two are the data area name gray scale value contrast average contrast maximum error metal pattern alignment area center left 85 210 125 Center right 90 210 120 Edge to the left 100 210 110 111 21 Edge to the right 100 190 90 The makeup table 1 shows the metal when the metal pattern shown in Figure 1 c is above the field oxide layer of the substrate. The gray scale value of the pattern and the alignment area and the contrast between the two. The experimental data in Table 2 is obtained by sampling the grains of different regions in the same wafer and measuring the metal pattern of the alignment marks on the grains and the gray scale value of the alignment region and the contrast between the two. The area name is the location where the experimental die is located on the wafer. For example, the center-left system indicates that the experimental die is located in the center-left region of the wafer. The metal pattern and the alignment area respectively represent the gray scale values of the metal pattern and the alignment area. Contrast is the contrast exhibited by the alignment marks located in different areas. The average contrast is the contrast obtained by averaging the contrast exhibited by the alignment marks located in different areas. The maximum error is the maximum error of the contrast between the averaged contrast and the alignment marks of the individual areas. 13 1285934 It can be seen from Table 2 that when the metal pattern shown in Fig. 1C is located above the field oxide layer of the substrate, the average contrast is as high as (1) at the error level of the maximum error of 21. More specifically, the application of the metal pattern depicted in Figure lc is even above the field oxide layer of the substrate as is conventional, and the average contrast exhibited is much higher than that of conventional alignment marks (see Table I). , ° 1 Table 3: The metal pattern of Figure 1c is located above the field oxide layer of the substrate. The gray pattern of the metal pattern and the alignment area and the contrast between the two are the s data.

14 .1285934 表四:第1B®所繪示之金屬圖案位於基材之場氧化層上方 時金屬圖案與對準區的灰階值及兩者間之對比度的數據 ------- --~~——__ 灰階值 平均 對比度 --- 中間偏左 金屬圖案_ 85 1 區 185 對比度 100 最大誤差 中間偏右 85 185 100 邊緣偏左 190 100 90 111 21 邊緣 90 _T7Q 80 s參照表四,其表示第⑺圖所繪示之金屬圖案位於基材 之場氧化層上方時金屬圖案與對準區的灰階值及兩者間之 對比度的數據。由表四可知,#第1B圖料示之金屬圖案 位於基材之場氧化層上方時,在最大誤差為2ι的誤差水準 下之平均對比度高達111。也就是說,應用第1B圖所繪示 之金屬圖案,且如同傳統作法一般地位於基材之場氧化層 上方,其平均對比度將較傳統的對準標記之平均對比度足 足高約4倍(參照表一)。 本發明之一實施例所提供的金屬圖案除了可位於基材 之場氧化層上方外,亦可視製程及設計需要位於基材之多 晶矽層上方。下表將詳細地說明將金屬圖案設置於基材之 多晶石夕層上方時金屬圖案與對準區的灰階值及兩者間之對 比度的數據: 15 •1285934 表五:第1A圖所繪示之金屬圖案位於基材之多晶矽層上方 夺至屬圖案與對準區的灰階值及兩者間之對比度的數據14 .1285934 Table 4: Data of the gray pattern of the metal pattern and the alignment area and the contrast between the metal pattern of the 1B® when the metal pattern is above the field oxide layer of the substrate ------- -~~——__ Grayscale value average contrast--- Center-left metal pattern_ 85 1 Zone 185 Contrast 100 Maximum error Center-right 85 185 100 Edge to the left 190 100 90 111 21 Edge 90 _T7Q 80 s Reference Table 4 It indicates data indicating the gray scale value of the metal pattern and the alignment region and the contrast between the metal pattern of the substrate (0) when it is located above the field oxide layer of the substrate. As can be seen from Table 4, the metal pattern shown in #1B is located above the field oxide layer of the substrate, and the average contrast is as high as 111 at the error level of the maximum error of 2 ι. That is, the metal pattern depicted in FIG. 1B is applied and, as is conventionally placed over the field oxide layer of the substrate, the average contrast ratio is about 4 times higher than the average contrast of conventional alignment marks ( Refer to Table 1). The metal pattern provided by one embodiment of the present invention may be located above the polycrystalline germanium layer of the substrate, except that it may be located above the field oxide layer of the substrate. The following table will detail the grayscale values of the metal pattern and the alignment area and the contrast between the two when the metal pattern is placed over the polycrystalline layer of the substrate: 15 • 1285934 Table 5: Figure 1A The metal pattern is shown above the polysilicon layer of the substrate to capture the gray scale value of the pattern and the alignment area and the contrast between the two

參照表五,其表示第1Α圖所繪示之金屬圖案位於基材 之多晶矽層上方時金屬圖案與對準區的灰階值及兩者間之 對比度的數據。由表五可知,當第1Α圖所繪示之金屬圖案 位於基材之多晶矽層上方時,在最大誤差為10的誤差水準 下之平均對比度尚達100。雖然此平均對比度略低於將金屬 圖案設置於基材之場氧化層上方的平均對比度,但表五所 揭露的平均對比度仍遠高於傳統的對準標記之平均對比度 (參照表一)。Referring to Table 5, there is shown data of the gray scale value of the metal pattern and the alignment region and the contrast between the metal pattern of the first pattern as being located above the polysilicon layer of the substrate. It can be seen from Table 5 that when the metal pattern shown in Fig. 1 is located above the polysilicon layer of the substrate, the average contrast is as high as 100 at the error level of the maximum error of 10. Although the average contrast is slightly lower than the average contrast of the metal pattern above the field oxide layer of the substrate, the average contrast disclosed in Table 5 is still much higher than the average contrast of conventional alignment marks (see Table 1).

另外,本發明之一實施例所提供的金屬圖案亦可視製 程及設計需要位於基材之金屬層上。下表將詳細地說明將 金屬圖案設置於基材之金屬層上方時金屬圖案與對準區的 灰階值及兩者間之對比度的數據: 表六:第1Β圖所繪示之金屬圖案位於基材之金屬層上方時 金屬圖案與對準區的灰階值及兩者間之對比度的數據 16 1285934 區域名稱 --—----- 灰階值 —----- 對比度 —--—-—-— 60 平均 對比度^ —-—-- 最大誤差 . 金屬圖案 100 對準區 中間偏左 中間偏右 100 165 65 邊緣偏左 95 170 75 68 20 邊緣偏右 105 165 60 —— 參照表六’其表示第1B圖所繪示之金屬圖案位於 之金屬層上方時金屬圖案與對準區的灰階值及兩者間二 比度的數據。由表六可知,當第1B圖所繪示之金屬圖案位 於基材之金屬層上方時,在最大誤差為2()的誤差水準下之 :均對比度高it 68。雖然表六所揭示平均對比度低於表 -、表二、表四及表五所揭示的平均對比度,但表五所揭 露的平均對比度仍較傳統的對準標記之平均對比产古的 142%(參照表一)。 又阿、、、勺 參照第4A圖,其繪示本發明之再—較佳實施例的對準 標記的俯視圖。此對準標記係由對準區41〇及金屬圖案 所組成。對準區410係設置於矽基材上,而金屬圖案42〇 則位於對準區410中。 接著參照第4B圖,其繪示本發明之再—較佳實施例的 對準標記的剖面圖。與傳統的對準標記不同之處在於,金 屬圖案420與矽基材上之對準區41〇於垂直方向不夾置有 場氧化層。一併參照第4A圖,由於金屬圖案42〇的灰階值 較高,而矽基材的灰階值較低,故當俯視對準標記時,對 17 1285934 準區410的灰階值也就較金屬圖案420低。下表將詳細地 說明應用本實施例時金屬圖案與對準區的灰階值及兩者間 之對比度的數據: 表七:第4A圖所繪示之金屬圖案位於矽基材上方且中間不 夾置場氧化層時金屬圖案與對準區的灰階值及兩者間之對 比度的數據 區域名稱 灰階值 平均 金屬圖案 對準區 對比度 對比度 最大誤差 中間偏左 195 110 85 邊緣偏左 210 160 50 68 20 參照表七,其表示第4A圖所繪示之金屬圖案位於矽基 材上方且中間不夾置場氧化層時金屬圖案與對準區的灰階 φ 值及兩者間之對比度的數據。由表七可知,當第4A圖所繪 不之金屬圖案位於位於矽基材上方且中間不夾置場氧化層 時,在最大誤差為20的誤差水準下之平均對比度高達68曰。 雖然表七所揭示平均對比度低於表二、表三 '表四及表五 所揭不的平均對比度,但表七所揭露的平均對比度仍較傳 、、’先的對準標記之平均對比度高約142% (參照表—)。 表八\第1A圖所繪示之金屬圖案位於矽基材上方且中間不 夾置場氧化層時金屬圖案與對準區的灰階值及兩者間:對 18 1285934 比度的數據 區域名稱 灰階值 平均 對比度 金屬圖案 對準區 對比度 最大誤差 中間偏左 85 120 35 邊緣偏^ 100 130 33 3In addition, the metal pattern provided by one embodiment of the present invention may also be located on the metal layer of the substrate as the process and design are required. The following table will explain in detail the data of the gray pattern of the metal pattern and the alignment area and the contrast between the two when the metal pattern is placed over the metal layer of the substrate: Table 6: The metal pattern shown in the first figure is located Data of the gray pattern value of the metal pattern and the alignment area and the contrast between the two layers above the metal layer of the substrate 16 1285934 Area name ---------- Gray scale value ----- Contrast --- — — — — — 60 Average Contrast ^ — — — — — Maximum error. Metal pattern 100 Alignment area center to the left center right 100 165 65 Edge to the left 95 170 75 68 20 Edge to the right 105 165 60 —— Reference table Six' indicates the gray scale value of the metal pattern and the alignment area and the second ratio between the two when the metal pattern shown in FIG. 1B is located above the metal layer. It can be seen from Table 6 that when the metal pattern shown in Fig. 1B is located above the metal layer of the substrate, the error is at a maximum error of 2 (): the average contrast is high 68. Although the average contrast shown in Table 6 is lower than the average contrasts shown in Tables -, Table 2, Table 4, and Table 5, the average contrast disclosed in Table 5 is still 142% higher than the average contrast of the traditional alignment marks (refer to the table). One). Further, referring to Fig. 4A, there is shown a plan view of the alignment mark of the re-preferred embodiment of the present invention. This alignment mark is composed of an alignment area 41 and a metal pattern. The alignment area 410 is disposed on the germanium substrate while the metal pattern 42 is located in the alignment region 410. Referring next to Figure 4B, there is shown a cross-sectional view of an alignment mark of a preferred embodiment of the present invention. The difference from the conventional alignment mark is that the metal pattern 420 and the alignment region 41 on the germanium substrate do not sandwich the field oxide layer in the vertical direction. Referring to FIG. 4A together, since the gray pattern value of the metal pattern 42 is higher, and the gray scale value of the tantalum substrate is lower, when the alignment mark is viewed from the top, the gray scale value of the reference area of the 17 1285934 is also It is lower than the metal pattern 420. The following table will explain in detail the data of the gray pattern value of the metal pattern and the alignment area and the contrast between the two when applying this embodiment: Table 7: The metal pattern shown in FIG. 4A is located above the germanium substrate and is not in the middle. Data area name of the metal pattern and the alignment area when the field oxide layer is sandwiched, and the data area name of the alignment area. Gray scale value average metal pattern alignment area contrast contrast maximum error center left 195 110 85 edge left 210 160 50 68 20 Referring to Table 7, it is shown that the metal pattern shown in FIG. 4A is located above the tantalum substrate and the field oxide layer is not sandwiched between the metal pattern and the grayscale φ value of the alignment region and the contrast between the two. It can be seen from Table 7 that when the metal pattern depicted in Fig. 4A is located above the tantalum substrate with no field oxide layer interposed therebetween, the average contrast at an error level of 20 error is as high as 68 曰. Although the average contrast shown in Table 7 is lower than the average contrasts shown in Tables 2 and 3, Table 4 and Table 5, the average contrast disclosed in Table 7 is still higher than that of the first alignment marks. 142% (refer to the table -). Table 8 \ Figure 1A shows that the metal pattern is located above the tantalum substrate and the gray pattern of the metal pattern and the alignment area is not interposed between the tantalum substrate and the data area name of the 18 1285934 ratio Order value average contrast metal pattern alignment area contrast maximum error center left 85 120 35 edge offset ^ 100 130 33 3

參照表八,其表示第1A圖所繪示之金屬圖案位於矽基 材上方且中間不夾置場氧化層時金屬圖案與對準區的灰階 值及兩者間之對比度的數據。由表八可知,由於矽基材上 之對準區的灰階值較低(約12G〜13G),且具有複數個輪廊 邊界之金屬圖案亦具有偏低的灰階值(約85〜1〇〇),故表八 所揭露的平均對比度僅33,較表二、表三 、表四、表五、 表六、表七及表八所揭示的平均對比度為低。但表八所揭 露的平均對比度仍高於傳統的對準標記之平均對比度(參 照表一)。 上述之金屬圖案可為金屬對準十字。例如在第4A圖 中,金屬圖案420係為金屬對準十字。因此,於對準製程 時’藉由對齊晶粒上的金屬對準十字與玻璃基板上金屬對 準十子即可使晶粒放置於玻璃基板上的正確位置。 在本發明之一較佳實施例中,對準標記更可具有—八 屬次圖案,此金屬次圖案係與金屬圖案分佈於基材的不同 層中。例如在第4B圖中,金屬圖案420係位於第一内金屬 介電層450中,而金屬次圖案424係位於第二内金屬介電 19 •1285934 層440中。此外,金屬次圖案424的形狀係與金屬圖案42〇 的形狀不@。因此’當俯視對準標記時,金屬次圖案424 即疊加至金屬圖案420中,以達成不同的視覺效果。 然而,在簡化設計與製程的考量下,金屬:欠圖案與金 屬圖案亦擁有相同的形狀。也就是說’雖然金屬次圖案盥 金屬圖案分佈於基材的不同層中,但因金屬次圖案的形狀 與金屬圖案相同。因此,當俯視對準標記時,將只有金屬 圖案會被觀察到,金屬次圖案將被金屬圖案所遮蔽。 根據本發明之上述實施例所提供之對準標記,其金屬 圖案與對準區的對比度較傳統的對準標記高。因此,製造 者可稭由纟發明之上述實施例所提供之對準標記獲得更清 處的金屬圖案,進而提升對準製程的成功率。 雖然本發明已以一較佳實施例揭露如上,然其並非用 以限定本發明’任何熟習此技藝者,在不脫離本發明之精 神=範圍内,當可作各種之更動與潤倚,因此本發明之保 濩乾圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 ▲為讓本發明之上述和其他目的、特徵、優點與實施例 此更明顯易懂,所附圖式之詳細說明如下: 第1A圖係繪示本發明之一較佳實施例的對準標記的 圖。 第1B圖係繪示本發明之另一較佳實施例的對準標記 20 • 1285934 的俯視圖。 第1C圖係緣示本發明之再一較佳實施例 的俯視圖。 準禚記 第2圖係繪示本發明之一較佳實施例的對準標記 面圖。 第3圖係繪示本發明之又一較佳實施例的對準標記的 俯視圖。 第4A圖係繪示本發明之再一較佳實施例的對準標記 的俯視圖。 第4B圖係繪示本發明之再一較佳實施例的對準標記 的剖面圖。 【主要元件符號說明】 110 :對準區 120 :金屬圖案 122 :金屬圖形 124 :狹縫 126 :金屬對準十字 12 8 :對準中心 U9 :輪廓邊界 220 ·場氧化層 240 :第二内金屬介電層 25〇:第一内金屬介電層 270 :金屬圖案 280 :金屬次圖案 31〇 :金屬圖案 3 11 ·•金屬圖形 3 12 :狹縫 3 19 :輪廊邊界 320 :金屬對準十字 410 :對準區 42〇 :金屬圖案 424 :金屬次圖案 440 ·•第二内金屬介電層 450:第一内金屬介電層Referring to Table 8, it is shown that the metal pattern shown in Fig. 1A is located above the tantalum substrate and the gray scale value of the metal pattern and the alignment region and the contrast between the two are not interposed between the tantalum substrates. It can be seen from Table 8 that the gray pattern value of the alignment area on the germanium substrate is low (about 12G~13G), and the metal pattern having a plurality of round borders also has a low gray scale value (about 85~1). 〇〇), so the average contrast revealed in Table 8 is only 33, which is lower than the average contrast shown in Table 2, Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8. However, the average contrast revealed in Table 8 is still higher than the average contrast of conventional alignment marks (refer to Table 1). The metal pattern described above may be a metal alignment cross. For example, in Fig. 4A, the metal pattern 420 is a metal alignment cross. Therefore, the dies can be placed in the correct position on the glass substrate by aligning the metal alignment on the die with the metal alignment on the glass substrate during the alignment process. In a preferred embodiment of the invention, the alignment mark may further have an octal pattern, the metal sub-pattern and the metal pattern being distributed in different layers of the substrate. For example, in Figure 4B, the metal pattern 420 is in the first inner metal dielectric layer 450 and the metal sub-pattern 424 is in the second inner metal dielectric layer 19,1285934. Further, the shape of the metal sub-pattern 424 is not the shape of the metal pattern 42A. Thus, when the alignment marks are viewed from above, the metal sub-pattern 424 is superimposed into the metal pattern 420 to achieve different visual effects. However, in terms of simplifying design and process, metal: under-pattern and metal pattern also have the same shape. That is to say, although the metal sub-pattern 盥 metal pattern is distributed in different layers of the substrate, the shape of the metal sub-pattern is the same as that of the metal pattern. Therefore, when the alignment mark is viewed from above, only the metal pattern will be observed, and the metal sub-pattern will be obscured by the metal pattern. According to the above-described embodiment of the present invention, the alignment mark has a higher contrast between the metal pattern and the alignment region than the conventional alignment mark. Therefore, the manufacturer can obtain a clearer metal pattern by the alignment marks provided by the above-described embodiments of the invention, thereby improving the success rate of the alignment process. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the invention to those skilled in the art, and various changes and modifications may be made without departing from the spirit and scope of the invention. The warranty of the present invention is defined by the scope of the patent application attached to it. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. A diagram of an alignment mark of an embodiment. Fig. 1B is a plan view showing an alignment mark 20 • 1285934 of another preferred embodiment of the present invention. Fig. 1C is a plan view showing still another preferred embodiment of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS Figure 2 is a plan view showing an alignment mark of a preferred embodiment of the present invention. Figure 3 is a plan view showing an alignment mark of still another preferred embodiment of the present invention. Fig. 4A is a plan view showing an alignment mark of still another preferred embodiment of the present invention. Figure 4B is a cross-sectional view showing an alignment mark of still another preferred embodiment of the present invention. [Main component symbol description] 110 : Alignment area 120 : Metal pattern 122 : Metal pattern 124 : Slit 126 : Metal alignment cross 12 8 : Alignment center U9 : Contour boundary 220 · Field oxide layer 240 : Second inner metal Dielectric layer 25: first inner metal dielectric layer 270: metal pattern 280: metal sub-pattern 31 〇: metal pattern 3 11 · metal pattern 3 12: slit 3 19: porch border 320: metal alignment cross 410: alignment region 42〇: metal pattern 424: metal sub-pattern 440 • second inner metal dielectric layer 450: first inner metal dielectric layer

Claims (1)

1285934 十、申請專利範圍: 月修斤)正本 1. 一種對準標記,包含: 一對準區設置於一基材上;以及1285934 X. Patent application scope: Monthly repair) Original 1. An alignment mark comprising: an alignment area disposed on a substrate; 至少一金屬圖案位於該對準區中,且該金屬圖案在該 對準區中形成複數個輪廓邊界,藉由該些輪廓邊界以降低 部分之該金屬圖案的灰階值,其中該金屬圖案具有複數個 金屬圖形,而該些金屬圖形之寬度係小於約1微米。 2.如申請專利範圍第1項所述之對準標記,其中該對 準區之灰階值較該金屬圖案之灰階值高。 3·如申請專利範圍第1項所述之對準標記,其中該些 金屬圖形係非交錯排列或平行排列。 4·如申請專利範圍第3項所述之對準標記,其中該些 金屬圖形的形狀係矩形。 5·如申請專利範圍第1項所述之對準標記,更包含一 金屬次圖案,該金屬圖案與該金屬次圖案係分佈於該基材 之不同層,且該金屬圖案之形狀與該金屬次圖案之形狀不 同0 6·如申請專利範圍第1項所述之對準標記,更包含一 金屬次圖案,該金屬圖案與該金屬次圖案係分佈於該基材 22 1285934 之不同層,且該金屬圖案之形狀與該金屬次圖案之形狀相 同0 7 ·如申請專利範圍第1頊所述之對準標記,更包含金 .、 屬對準十字,位於該金屬圖案之對準中心。 8·如申請專利範圍第7項所述之對準標記,其中該些 φ 金屬圖形係分佈於該金屬對準十字的周圍。 9·如申請專利範圍第8項所述之對準標記,其中該些 金屬圖形係非交錯排列或平行排列。 10·如申請專利範圍第8項所述之對準標記,其中該 些金屬圖形與該金屬對準十字係分佈於該基材之不同層。 u·如申請專利範圍第8項所述之對準標記,其中該 些金屬圖形與該金屬對準十字係分佈於該基材之相同層。 12·如U利縫第1項所述之對準標記,其中該 金屬圖案係位於該基材之一場氧化層上方。 13·如申請專利範圍第 金屬圖案係位於該基材之一 1項所述之對準標記,其中該 多晶咬層上方。 23 1285934 . 14·如中請專利範圍第1項所述之對準標記,其中該 金屬圖案係位於該基材之一金屬層上方。 15 · —種對準標記,包含: V- 一對準區設置於一基材上;以及 :‘ 卜至少一金屬圖案位於該對準區中,且該金屬圖案具有 複數個金屬圖形,其中每兩相鄰之該些金屬圖形間具有一 • 狹縫,藉由該狹縫以降低部分之該金屬圖案的灰階值,該 Λ 些金屬圖形之寬度係小於約1微米。 16·如申請專利範圍第15項所述之對準標記,其中該 對準區之灰階值較該金屬圖案之灰階值高。 17.如申請專利範圍第15項所述之對準標記,其中該 些金屬圖形係非交錯排列或平行排列。 U·如申請專利範圍第15項所述之對準標記,其中該 些金屬圖形的形狀係矩形。 19·如申請專利範圍第15項所述之對準標記,更包含 一金屬次圖案,該金屬圖案與該金屬次圖案係分佈於該基 材之不同層,且該金屬圖案之形狀與該金屬次圖案之形狀 不同。 24 1285934 20·如申請專利範圍第15項所述之對準標記,更包含 〜金屬次圖案,該金屬圖案與該金屬次圖案係分佈於該基 材之不同層,且該金屬圖案之形狀與該金屬次圖案之形狀 相同。 、 1% Γ ‘ 21·如申請專利範圍第15項所述之對準標記,更包含 —金屬對準十字,位於該金屬圖案之對準中心。 m 22·如申請專利範圍第21項所述之對準標記,其中該 二金屬圖形係分佈於該金屬對準十字的周圍。 23·如申請專利範圍第22項所述之對準標記,其中該 些金屬圖形係非交錯排列或平行排列。 24·如申請專利範圍第22項所述之對準標記,其中該 • 些金屬圖形與該金屬對準十字係分佈於該基材之不同層。 25·如申睛專利範圍第22項所述之對準標記,其中該 些金屬圖形與該金屬對準十字係分佈於該基材之相同層。 26·如申請專利範圍第15項所述之對準標記,其中該 金屬圖案係位於該基材之一場氧化層上方。 27·如申請專利範圍第15項所述之對準標記,其中該 25 1285934 金屬圖案係位於該基材之一多晶矽層上方。 28.如申請專利範圍第15項所述之對準標記,其中該 金屬圖案係位於該基材之一金屬層上方。 29· —種對準標記,包含: 一對準區位於一矽基材上; 至> 一金屬圖案,位於該對準區中,且該金屬圖案與 口亥石夕基材於垂直方向不夾置有—場氧化層,其中該對準區 之灰階值較該金屬圖案之灰階值低;以及 一金屬次圖案,該金屬圖案與該金屬次圖案係分佈於 該基材之不同層。 30.如申請專利範圍第29項所述之對準標記,其中該 金屬圖案具有—金屬對準十字,位於該金屬圖案之對準中 心° 31·如申請專利範圍第29項所述之對準標記,盆中該 金屬圖案之形狀與該金屬次圖案之形狀不同。 32·如申請專利範圍第29 金屬圖案之形狀與該金屬次圖 項所述之對準標記,其中該 案之形狀相同。 26 r 1285934 七、指定代表圖: (一) 、本案指定代表圖為:第(1A)圖 (二) 、本案代表圖之元件符號簡單說明: 120 :金屬圖案 124 :狹缝 128 :對準中心 110 ··對準區 122 :金屬圖形 126 :金屬對準十字 129 :輪廓邊界At least one metal pattern is located in the alignment region, and the metal pattern forms a plurality of contour boundaries in the alignment region, wherein the contour boundaries are used to reduce a portion of the gray scale value of the metal pattern, wherein the metal pattern has A plurality of metal patterns, the width of the metal patterns being less than about 1 micron. 2. The alignment mark of claim 1, wherein the gray level value of the alignment area is higher than the gray level value of the metal pattern. 3. The alignment mark of claim 1, wherein the metal patterns are non-staggered or arranged in parallel. 4. The alignment mark of claim 3, wherein the metal patterns are rectangular in shape. 5. The alignment mark according to claim 1, further comprising a metal sub-pattern, the metal pattern and the metal sub-pattern are distributed on different layers of the substrate, and the shape of the metal pattern and the metal The shape of the sub-pattern is different. The alignment mark according to claim 1 further includes a metal sub-pattern, the metal pattern and the metal sub-pattern are distributed on different layers of the substrate 22 1285934, and The shape of the metal pattern is the same as the shape of the metal sub-pattern. The alignment mark according to the first aspect of the patent application includes a gold, a aligning cross, and is located at the center of alignment of the metal pattern. 8. The alignment mark of claim 7, wherein the φ metal patterns are distributed around the metal alignment cross. 9. The alignment mark of claim 8, wherein the metal patterns are non-staggered or arranged in parallel. 10. The alignment mark of claim 8, wherein the metal patterns are aligned with the metal in a different layer of the substrate. U. The alignment mark of claim 8, wherein the metal patterns are aligned with the metal and are distributed in the same layer of the substrate. 12. The alignment mark of item 1, wherein the metal pattern is located above a field oxide layer of the substrate. 13. The metal pattern according to the scope of the patent application is located in an alignment mark of one of the substrates, wherein the polycrystalline bite layer is above. The aligning mark of claim 1, wherein the metal pattern is located above one of the metal layers of the substrate. 15 - an alignment mark comprising: V- an alignment region disposed on a substrate; and: 'at least one metal pattern is located in the alignment region, and the metal pattern has a plurality of metal patterns, wherein each A gap is formed between the two adjacent metal patterns by the slit to reduce the gray scale value of the portion of the metal pattern, the width of the metal patterns being less than about 1 micron. The alignment mark of claim 15, wherein the gray level value of the alignment area is higher than the gray level value of the metal pattern. 17. The alignment mark of claim 15, wherein the metal patterns are non-staggered or arranged in parallel. U. The alignment mark of claim 15, wherein the metal patterns are rectangular in shape. 19. The alignment mark of claim 15, further comprising a metal sub-pattern, the metal pattern and the metal sub-pattern are distributed on different layers of the substrate, and the shape of the metal pattern and the metal The shape of the secondary pattern is different. 24 1285934 20, wherein the alignment mark according to claim 15 further comprises a metal sub-pattern, the metal pattern and the metal sub-pattern are distributed on different layers of the substrate, and the shape of the metal pattern is The metal sub-pattern has the same shape. 1% ‘ ‘ 21· Alignment mark as described in claim 15 of the patent application, further comprising — a metal alignment cross, located at the center of alignment of the metal pattern. The alignment mark of claim 21, wherein the two metal patterns are distributed around the metal alignment cross. 23. The alignment mark of claim 22, wherein the metal patterns are non-staggered or arranged in parallel. [24] The alignment mark of claim 22, wherein the metal pattern is aligned with the metal and the cross is distributed on different layers of the substrate. 25. The alignment mark of claim 22, wherein the metal patterns are aligned with the metal and are distributed in the same layer of the substrate. The alignment mark of claim 15, wherein the metal pattern is located above a field oxide layer of the substrate. 27. The alignment mark of claim 15, wherein the 25 1285934 metal pattern is over a polysilicon layer of the substrate. 28. The alignment mark of claim 15 wherein the metal pattern is over a metal layer of the substrate. 29. An alignment mark comprising: an alignment area on a substrate; to > a metal pattern in the alignment region, and the metal pattern is not perpendicular to the substrate a field oxide layer is disposed, wherein a gray scale value of the alignment region is lower than a gray scale value of the metal pattern; and a metal sub-pattern, the metal pattern and the metal sub-pattern are distributed on different layers of the substrate . 30. The alignment mark of claim 29, wherein the metal pattern has a metal alignment cross located at an alignment center of the metal pattern. 31. Alignment as described in claim 29 Marking, the shape of the metal pattern in the basin is different from the shape of the metal sub-pattern. 32. The shape of the 29th metal pattern as claimed in the patent application is the same as the alignment mark described in the metal sub-graph, wherein the shape of the case is the same. 26 r 1285934 VII. Designation of representative drawings: (1) The representative representative figure of this case is: (1A) (2), the symbol of the representative figure of this case is simple: 120: metal pattern 124: slit 128: alignment center 110 ··Alignment area 122: Metal pattern 126: Metal alignment cross 129: Contour boundary 八、本案若有化學式時,請揭示最能顯示發明 特徵的化學式:8. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW94134524A 2005-10-03 2005-10-03 Align mark TWI285934B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94134524A TWI285934B (en) 2005-10-03 2005-10-03 Align mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94134524A TWI285934B (en) 2005-10-03 2005-10-03 Align mark

Publications (2)

Publication Number Publication Date
TW200715439A TW200715439A (en) 2007-04-16
TWI285934B true TWI285934B (en) 2007-08-21

Family

ID=39457403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94134524A TWI285934B (en) 2005-10-03 2005-10-03 Align mark

Country Status (1)

Country Link
TW (1) TWI285934B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289251A (en) * 2019-05-30 2019-09-27 武汉华星光电半导体显示技术有限公司 Display panel and display device
TWI809830B (en) * 2022-02-16 2023-07-21 南亞科技股份有限公司 Method of determining overlay error during semiconductor fabrication

Also Published As

Publication number Publication date
TW200715439A (en) 2007-04-16

Similar Documents

Publication Publication Date Title
TWI303488B (en) Liquid crystal display device and its manufacturing method
TWI271870B (en) Thin film transistor, pixel structure and repairing method thereof
TW464927B (en) Metal bump with an insulating sidewall and method of fabricating thereof
JP5122301B2 (en) Color filter substrate and liquid crystal display device including the same
TWI662341B (en) Display apparatus
TWI358572B (en) Liquid crystal display apparatus
CN1667477A (en) In-plane switching mode liquid crystal display device and fabrication method thereof
TWI330274B (en) Multi-domain vertically alignment liquid crystal display panel
TW201035657A (en) Active array substrate, liquid crystal display panel and method for driving the same
TWI287659B (en) Multi-domain vertical alignment liquid crystal display panel, thin film transistor array, and methods of fabricating the same
CN111638607B (en) Narrow-frame display panel and preparation method thereof
EP2940518B1 (en) Liquid crystal display
TWI285934B (en) Align mark
KR20070002801A (en) Method of forming fine pattern, liquid crystal display using the same, and fabricating method thereof
TW201225231A (en) Bonding pad structure and integrated cicruit comprise a pluirality of bonding pad structures
TW480586B (en) Alignment mark set and method of measuring alignment accuracy
TWI458073B (en) Alignment mark, manufacturing method thereof
TW526365B (en) Multi-domain vertical alignment liquid crystal display
TWM410891U (en) Active device array substrate and liquid crystal display panel
TW201005402A (en) Liquid crystal display panel
TWM423257U (en) Pixel array substrate and display panel
KR20160010292A (en) Liquid-crystal display and element substrate thereof
TW501200B (en) Transfer mark structure for multi-layer interconnecting and method for the manufacture thereof
TWI358810B (en) Alignment device for a chip package structure
TW200907608A (en) Electronic device and alignment mark

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees