TWI276774B - Alignment mark and measuring method by using alignment mark - Google Patents

Alignment mark and measuring method by using alignment mark Download PDF

Info

Publication number
TWI276774B
TWI276774B TW94133682A TW94133682A TWI276774B TW I276774 B TWI276774 B TW I276774B TW 94133682 A TW94133682 A TW 94133682A TW 94133682 A TW94133682 A TW 94133682A TW I276774 B TWI276774 B TW I276774B
Authority
TW
Taiwan
Prior art keywords
alignment mark
test
pattern
identification
mark
Prior art date
Application number
TW94133682A
Other languages
Chinese (zh)
Other versions
TW200712429A (en
Inventor
Jia-Rui Hu
Ru-Mei Chien
Original Assignee
Promos Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promos Technologies Inc filed Critical Promos Technologies Inc
Priority to TW94133682A priority Critical patent/TWI276774B/en
Application granted granted Critical
Publication of TWI276774B publication Critical patent/TWI276774B/en
Publication of TW200712429A publication Critical patent/TW200712429A/en

Links

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

An alignment mark includes a recognition pattern and a test-key pattern is described. The alignment mark is disposed on a semiconductor wafer, the semiconductor wafer has a device feature with a device dimension. The test-key pattern is disposed in the recognition pattern, and the recognition pattern and the test-key pattern are composed of the test features. The test features have a test dimension similar to the device dimension.

Description

•I276774twf.doc/g 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種對準標記,且特別是有關於一種 以原子力顯微鏡進行測量時所使用的對準標記。 【先前技術】• I276774twf.doc/g IX. Description of the Invention: [Technical Field] The present invention relates to an alignment mark, and more particularly to an alignment mark used when measuring with an atomic force microscope. [Prior Art]

原子力顯微鏡(Atomic Force Microscopy,簡稱 AFM) 是目前表面成像技術中最重要的技術之一。原子力顯微鏡 的作用原理是利用將一支微小的懸臂緩慢地拖曳或輕敲過 物體表面,繫在懸臂末端的是一根銳利的探針,當懸臂的 探針直接接觸或非常接近地通過物體表面的凹凸時,電腦 可以將懸臂偏折的程度轉換成影像,在最佳情況下,可以 解析出所通過的每一個原子。 由於原子力顯微鏡具有非常高的橫向分辨率和縱向分 辨率(橫向分辨率可達到(U〜〇.2nm,縱向分辨率高達 O.Olnm),因此可用於測量半導體元件的深度及關鍵尺寸 (Critical Dimension,CD)。 π卞刀顯械鏡對具有週期結構的半導體元件 進Π量時、’測量的重複性很差,所以很難進行驗證及第 —一人 77 才/ί" 〇 1^7 ikit. !9ιΙί» — /-1 ι __- ; 、王仅丨土爪左,所从很難進行驗證及第 _人分斤°以記憶體元件為例’因為記憶體P㈣為週期姓 ΐ:二 =體陣列中所選定的溝渠深度侧 Λ 同的溝渠進行測量,是件很困難的事情。 卜,以原子力顯微鏡對半導體元件進行測量 於所使用的對準標記_、探針絲 鏡細件進行移動時所產生的對準誤差=:= 5 •1276774 6twf.doc/g 測量的重複性。 【發明内容】 有4a於此,本發明的目的就 對準=_具有唯-性,可以容易地= 法,可提供一種使用對準標記的測量方 性。 ,、子力頌微鏡進行測量時,具有測量的重複 丰導出—種對準標記,配置於半導體晶圓上,且 對準‘:二上有元件特徵,元件特徵具有一元件尺寸。 闽安下σ G 5线圖案及測試圖案(test-key pattern)。測試 =配置於辨識圖案中,由—測試特徵所組成; 具有一職尺寸’且職尺稍元件尺寸減。 依,本發明的一較佳實施例所述,在上述之對準 中’測試圖案配置於辨識圖案的中央位置。 ° 依照本發明的一較佳實施例所述,在上述之對準標記 中’對準標記g己置於半導體晶圓的晶方(die)或切 (scribe line)上。 " 依…、本發明的一較佳實施例所述,在上述之對 中,測试特徵包括溝渠。 ’' 依,、?、本發明的一較佳實施例所述,在上述之對 中’測試尺寸為深度或晴財。 ^ 旦本發明提出-種使用對準標記的測量方法,適用於測 量―半導體晶圓上的—测試特徵的之—測試尺寸導雜 晶圓置放於-載台上,且半導體晶圓上具有件特徵,- »6twf.doc/g =特徵具有-凡件尺寸。對準標記配置於半導體晶圓上 t含—辨:賴案及—測期案,測試目麵置於辨識圖 ㈣少^識圖案與測試圖案均由測試特徵所組成,測試 寸與元件特徵之元件尺寸相近。使用對準標 識二二Ϊ為Γ先以—光學顯微鏡對半導體晶圓進行辨 、對,㊉的區域中的測試_進行婦描。 桿記的測^^一車父佳實施例所述,在上述之使用對準 域;的測:圖案:行:二 對準標記的區域進行先以原子力顯微鏡對 圖案的區域。接著再以二=(c咖es—,以確認測試 行-精細掃描。 ’、力賴鏡對測試圖案的區域進 標記的測量方5,$=3所述’在上述之使用對準 進行第-粗略掃描之t:包括力 粗略掃描影像進行分析,一H粗略勒所得到的-:央,’計算測試圖案偏離:略:在=影像的 案位於原子力顯微鏡的探偏移量,以使測試圖 .對測試圖案的區域進行一 置P)以原子力顯微 像’並計算測試圖案偏離精^^得到一精細掃插影 偏移量。⑷使載台移動第二偏^影像的中心位置之第二 細掃描的區域之中央位置。里’以使測試圖案位於精 -12767¾ 6twf.doc/g 標言實施例所述,在上述之使用對準 中央位置時,更包括^圖案非位於精細掃描的區域之 位於精細婦描^^^^及步驟⑷’以使測試圖案 標記所述’在上述之使用對準 括⑴以光學顯微鏡對準標記; 到-粗略辨識影像,分析彳略辨識仔 計算辨識圖案偏離粗略辨識;辨並 使载台移動第三偏移量,以 ^二偏移罝。(2) ,位置。⑺以光學顯微鏡對準標記:;精細 、、、田辨識影像,分析光學顯料於 0于i精 識圖荦偏離+兄、精、、田辨識影像,並計算辨 移動第二τ:= 之第四偏移量。(4)使載台將 央=四偏移罝’以使辨識圖案位於精細辨識之影像的中 才”二照ί發明的一較佳實施例所述’在上述之使用對準 G位:ί方二二當測試圖案非位於精細辨識的區域之 位於精細辨識的區域之中央位置。 口系 =照^明的-較佳實施例所述,在上述之使用 I己的測1方法中,測試圖案配置於辨識圖案的中央 =照本發明的-較佳實施例所述,在上述之使 =的測量方法中,對準標記配置於半導體晶圓的一晶方 (dle)或一切割道(scribe line)上。 8 •1276774 6twf.doc/g “依照本發明的一較佳實施例所述,在上述之使用對準 標記的測量方法中,測試特徵包括溝渠。 依…、本發明的一較佳實施例所述,在 標記的測量方法中,測試尺寸為深度或關鍵^寸 清楚的對準標記的圖案具有唯一性,所以可以 直接在準具有測試圖案’原子力顯微鏡可以 轉徵進㈣量’因此可以減少载 二對準誤差離’猎此可以降個載台移動距離過長所產生 以可對同-測試圖案進行重複性的測量。、有収圖案’所 影像::分:以:子力顯微鏡進行粗略掃描所得到的掃插 測量時的誤差。°以1^低原子力顯微鏡在以精細掃描進行 為讓本么明之上述和其他目的 2下:文特舉較佳實施例,並配合所附圖; 【實施方式】 徵與晶方内的元件特 ㈣準^巾的測試特 在記憶體陣列中進行微影及後:^ 9 •1276774一g 測試尺寸及元件特徵的元件尺寸例如是深度或 例,π明太^下’以%件特徵為記憶體陣列中的溝渠為 例=月本發明的對準標記,但並不用以限制本發明。 圖。示為本發明—實施狀半導❹圓的上視 二L為本發明—實施例以光學顯微鏡對半導體 日日圓進行粗略掃描後的示意圖。Atomic Force Microscopy (AFM) is one of the most important technologies in surface imaging technology. The principle of atomic force microscopy is to slowly drag or tap a tiny cantilever over the surface of the object. At the end of the cantilever is a sharp probe that passes directly or closely through the surface of the object. In the case of bumps, the computer can convert the degree of deflection of the cantilever into an image, and in the best case, each atom that passes through can be resolved. Since the atomic force microscope has very high lateral resolution and longitudinal resolution (transverse resolution (U~〇.2nm, vertical resolution up to O.Olnm), it can be used to measure the depth and critical dimensions of semiconductor components (Critical Dimension) , CD). When the π 显 显 显 对 对 对 对 对 对 对 对 对 ' ' ' ' ' ' ' ' ' 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 显 显 显 显 显 显!9ιΙί» — /-1 ι __- ; , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , It is very difficult to measure the depth of the trench selected in the bulk array and the same trench. The measurement of the semiconductor component by the atomic force microscope is performed on the alignment mark used, and the probe wire mirror is moved. Alignment error produced when === 5 • 1276774 6twf.doc/g Repeatability of measurement. [Invention] There is 4a here, and the object of the present invention is that alignment = _ has a uniqueness, which can be easily = Method that provides an alignment The measurement square of the mark. When the sub-force micro-mirror is used for measurement, it has a repeating measurement of the measurement-type alignment mark, which is arranged on the semiconductor wafer, and has the component characteristics: the component features have One component size. 闽 下 σ G 5 line pattern and test pattern (test-key pattern). Test = is configured in the identification pattern, consisting of - test features; has a job size 'and a smaller size of the job size. According to a preferred embodiment of the present invention, in the alignment, the test pattern is disposed at a central position of the identification pattern. According to a preferred embodiment of the present invention, in the alignment mark described above. 'The alignment mark g has been placed on the die or scribe line of the semiconductor wafer. " According to a preferred embodiment of the present invention, in the above pair, the test features Including a ditch. '', according to a preferred embodiment of the present invention, in the above-mentioned pair, the test size is depth or clear. ^ The present invention proposes a measurement method using an alignment mark, Suitable for measurement - on semiconductor wafers The feature-test size wafer is placed on the stage and has features on the semiconductor wafer, - »6twf.doc/g = feature has - part size. Alignment mark is placed on the semiconductor wafer On t--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- The second and second Ϊ Ϊ — — — — — — — — — — — — — — — 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体 半导体Quasi-domain; measurement: pattern: line: the area of the alignment mark is the area where the pattern is first taken with an atomic force microscope. Then use two = (c coffee es - to confirm the test line - fine scan. ', the force of the mirror on the area of the test pattern into the measurement of the mark 5, $ = 3 said 'in the above use alignment - Rough scan of t: including the force of the rough scan image for analysis, a H rougher obtained -: YANG, 'calculated test pattern deviation: slightly: in the = image case located in the atomic force microscope probe offset to make the test Figure. Perform a P-position on the area of the test pattern with an atomic force microscopy image and calculate the deviation of the test pattern from the fine-grained image. (4) The stage is moved to the center of the second finely scanned area of the center position of the second partial image. In order to make the test pattern in the fine-127673⁄4 6twf.doc/g statement embodiment, when the above-mentioned alignment center position is used, it is further included in the area where the fine pattern is not located in the fine scanning area ^^^ ^ and step (4) 'to make the test pattern mark the 'in the above-mentioned use alignment (1) to align the mark with the optical microscope; to - roughly identify the image, analyze the identification of the identification pattern to deviate from the rough identification; The station moves the third offset to offset by two. (2), location. (7) Align the mark with the optical microscope:; fine, and the field to identify the image, analyze the optical material in the 0 ei, and deviate from the image of the brother, the fine, the field, and calculate the second τ:= The fourth offset. (4) Aligning the stage with the center = four to make the identification pattern in the image of the finely-recognized image, as described in a preferred embodiment of the invention. When the test pattern is not located in the center of the finely identified area of the finely identified area, the mouth system is as described in the preferred embodiment, and in the above-described method using the test 1, the test is performed. The pattern is disposed at the center of the identification pattern. According to the preferred embodiment of the present invention, in the above measurement method, the alignment mark is disposed on a dle or a scribe line of the semiconductor wafer ( [ scribe line). 8 • 1276774 6 twf.doc / g "In accordance with a preferred embodiment of the invention, in the above-described measurement method using alignment marks, the test features include trenches. According to a preferred embodiment of the present invention, in the measurement method of the mark, the pattern of the alignment mark whose depth is the depth or the key is unique, so that the test pattern 'atomic force can be directly The microscope can be converted into a (four) quantity 'so it can reduce the load-alignment error of the load. This can reduce the moving distance of the stage too long to make repeatable measurements of the same-test pattern. , Received pattern' Image:: Minute: Error in sweeping measurement obtained by rough scanning with a force microscope. The above and other objects of the present invention are carried out in a fine-scanning microscope with a low atomic force microscope. The preferred embodiment is described in conjunction with the accompanying drawings. [Embodiment] (4) The test of the standard wipes is carried out in the memory array by lithography and after: ^ 9 • 1276774-g The size of the test and the component size of the component are, for example, the depth or the example, and the π is too low. Ditches in the array are examples of the alignment marks of the present invention, but are not intended to limit the invention. Figure. The present invention is shown as a top view of the semi-conducting circle of the embodiment. The second embodiment of the present invention is a schematic view of a semiconductor wafer having a rough scan of an optical microscope.

ϊΐ照圖卜在半導體晶圓100被放置於一載台上, 半導體晶圓1GG上具有蝴道⑽及晶方刚,而對準桿 記106配置於半導體晶圓刚上。對準標記1〇6配置的位 置例如是在晶方刚或是切割道搬上。對準標記1〇6配 置的位置及數量於此技觸域具有通常知識者可依照製程 上的需求進行調整。 請茶照® 2 ’對準標記106包括辨識圖案114及測試 圖案116。辨識圖案114及測試_ 116例如是由具有斑 元件特徵相近的測試特徵118所組成。在本實施例中,測 試特徵例如是一測試溝渠。測試溝渠的測試尺寸例如是深 度。 辨識圖案114包括方框1〇8、方框11〇及矩形112。矩 形112配置於半導體晶圓100上,形成一個十字型的區域。 方框no環繞於矩形112的外圍。方框108環繞於方框11〇 的外圍。在本實施例中,雖然本發明的辨識圖案114例如 疋上述之圖案’但並不用以限制本發明。只要辨識圖案114 於半導體晶圓100中具有唯一性,即可作為本發明的辨識 圖案114,於此技術領域具有通常知識者可自行設計。 *12767^46twf.d〇c/g 測試圖案116配置於辨識圖案114中,例如是配置於 辨識圖案114的中央位置,如矩形112所形成的十字型區 域的中央位置。測試圖案116中測試特徵118的組2型= 例如是以陣列方式排列,但並不用以限制本發明。只要二 試圖案116於辨識圖案114中具有唯一性,即可作/為本發 明的測試圖案116。組成測試圖案116的個數較佳的是在^ 個以上25個以下,更佳的是9個。在本實施例中,=然測 試圖案116是由9個具有測試尺寸的測試特徵118所组成 的陣列圖帛,但並不用以限制本發明,於此技術領域且有 通常知識者可自行設計。 、 上述對準標記106的圖案具有唯一性,所以可以清楚 地進行辨識對準標記106所在的位置。此外,由於對準標 記l〇j中的測試圖案116中的測試特徵118具有與作為元 件,敛之溝渠相近的測試深度,原子力顯微鏡可以直接在 測忒圖案116中對測試特徵us進行測量,因此可以減少 載口移動的距離,因此可以降低因载台移動距離過長所產 生的對準誤差。 以下,將詳述本發明之使用對準標記的測量方法,適 用於測I半導體晶圓100上之待测特徵的測試尺寸。半導 體晶圓100置放於一載台上,且半導體晶圓100上具有一 元件特徵(未繪示),元件特徵具有—元件尺寸。對準標記 106配置於半導體晶圓100上且包含辨識圖案114及測試 圖案116。測試圖案114例如是配置於辨識圖案114的中 央位置。辨識圖案114及測試圖案116例如是由具有與元 oc/g 1276774^, ,特徵相同的測試特徵118所組成,且測試特徵118之夠 试尺寸與元件特徵之元件尺寸相近。測試圖案丨16配置於 辨識圖案114中。測試特徵例如是一待測溝渠,測試尺寸 例如是深度。關於對準標記觸,在前文中已詳細說明, 於此不再贅述。 囷所、’力示為圖2中矩形虛線區域的局部放大圖。 4所緣不為圖3中矩形虛線區域的局部放大圖。圖5所给 示為圖4中矩形虛線區域的局部放大圖。 1 請同時參關i、圖2及圖3,首先以光學顯微鏡對半 導體晶® 100進行辨識,以確認對準標記106在半導體晶 圓上所配置的區域。以光學顯微鏡對半導體晶圓刚曰: 辨識的步驟,例如是先以絲顯魏對半導體晶圓100 ^ 订粗略辨識,將圖i中矩形虛線區域局部 ^認二半導體晶圓⑽中所選定之對準標記為=: 域。接者’以光學顯微鏡對對準標記刚的 辨識’將® 2巾矩形虛線區域局部放大相h 丁^ 步縮小對準標記1〇6所在的區域,有助 顯微鏡所進行的測量。 貝·原子力 值得一提的是,以光學顯微鏡對半導 辨識的步驟更包括:⑴以光學顯微鏡對tj/0進行 辨識得到—粗略辨識影像,分析光學顯微二fl丁一粗略 像’並計算辨_案偏雜略辨識影像中辨識影 量。⑺使載台移動第三偏移量,以使對準=—弟三偏移 微鏡光軸位置。(3)以光學顯微鏡對準掉^己^於光學顯 知记進仃精細辨識得 12 J276774twf.d〇c/g 到:精細辨識影像,分析光學顯微鏡的精細辨識影像,並 計算辨識圖案偏離精細辨識影像中心之第四偏移量。(4) ,載台將移動第四偏移量,以使辨翻案位於精細辨識之 〜像的中央位置。當測试圖案仍非位於精細辨識的區域之 中央位置時’更包括重複步驟⑶及步驟⑷,以使測試圖案 位於精細辨識的區域之中央位置。如此一來,可以降低光 學顯微鏡在以精細辨識進行辨識時的誤差。 圖案116的區域。接著, 的區域進行精細掃描, 騎同時參照圖3、圖4及圖5以原子力顯微鏡 士;^對準標,己1〇6的區域中的測試圖案出進行掃描, 2置出測觸徵118的深度。以肝力顯微鏡對位於對 ftl己106的區域中的測試圖案116進行掃描的步驟,例 二力顯微鏡對對準標記106的區域進行粗略掃 圖形虛線區域局部放大為圖4,以相測試The semiconductor wafer 100 is placed on a stage, the semiconductor wafer 1GG has a butterfly track (10) and a crystal square, and the alignment mark 106 is disposed on the semiconductor wafer. The position of the alignment mark 1〇6 is placed, for example, on the square or the cutting path. The position and number of alignment marks 1〇6 configuration can be adjusted according to the requirements of the process. The tea photo® 2' alignment mark 106 includes an identification pattern 114 and a test pattern 116. The identification pattern 114 and the test pattern 116 are, for example, composed of test features 118 having similar features of the spot elements. In this embodiment, the test feature is, for example, a test trench. The test size of the test trench is, for example, the depth. The identification pattern 114 includes a block 1〇8, a block 11〇, and a rectangle 112. The rectangle 112 is disposed on the semiconductor wafer 100 to form a cross-shaped region. The box no surrounds the periphery of the rectangle 112. Block 108 surrounds the periphery of block 11A. In the present embodiment, although the identification pattern 114 of the present invention is, for example, the above-described pattern ', it is not intended to limit the present invention. As long as the identification pattern 114 is unique in the semiconductor wafer 100, it can be used as the identification pattern 114 of the present invention, which can be designed by those skilled in the art. *12767^46twf.d〇c/g The test pattern 116 is disposed in the identification pattern 114, for example, at a central position of the identification pattern 114, such as a central position of a cross-shaped area formed by the rectangle 112. Group 2 of test features 118 in test pattern 116 = for example, arranged in an array, but is not intended to limit the invention. As long as the test pattern 116 is unique in the identification pattern 114, the test pattern 116 of the present invention can be made. The number of constituent test patterns 116 is preferably at least 25 or less, more preferably nine. In the present embodiment, the = test pattern 116 is an array of nine test features 118 having test dimensions, but is not intended to limit the invention, and can be designed by one of ordinary skill in the art. The pattern of the alignment mark 106 described above is unique, so that the position where the alignment mark 106 is located can be clearly recognized. In addition, since the test feature 118 in the test pattern 116 in the alignment mark lj has a test depth similar to that of the diverging trench as an element, the atomic force microscope can directly measure the test feature us in the test pattern 116, thus The distance by which the carrier moves can be reduced, so that the alignment error caused by the excessive movement distance of the stage can be reduced. Hereinafter, the measurement method using the alignment mark of the present invention, which is suitable for measuring the test size of the feature to be tested on the semiconductor wafer 100, will be described in detail. The semiconductor wafer 100 is placed on a stage, and the semiconductor wafer 100 has a component feature (not shown), and the component features have a component size. The alignment mark 106 is disposed on the semiconductor wafer 100 and includes the identification pattern 114 and the test pattern 116. The test pattern 114 is, for example, disposed at a central position of the identification pattern 114. The identification pattern 114 and the test pattern 116 are, for example, composed of test features 118 having the same features as the element oc/g 1276774^, and the test feature 118 has a test size that is similar to the component size of the component features. The test pattern 丨16 is disposed in the identification pattern 114. The test feature is, for example, a ditch to be tested, and the test size is, for example, depth. Regarding the alignment mark touch, it has been described in detail in the foregoing, and will not be described again here. Here, the force is shown as a partial enlarged view of the rectangular dotted line area in Fig. 2. 4 is not a partial enlarged view of the rectangular dotted line area in FIG. Fig. 5 is a partial enlarged view of a rectangular dotted line area in Fig. 4. 1 Please refer to i, Fig. 2 and Fig. 3 at the same time. First, the semiconductor wafer 100 is identified by an optical microscope to confirm the area where the alignment mark 106 is disposed on the semiconductor wafer. The step of identifying the semiconductor wafer by optical microscopy: for example, the rough identification of the semiconductor wafer is first performed by using the silk display, and the rectangular dotted line area in the figure i is selected from the semiconductor wafer (10). The alignment mark is =: domain. The receiver 'identifies the alignment mark with an optical microscope'. The area of the rectangular line of the 2 towel is partially enlarged to reduce the area where the alignment mark 1〇6 is located, which is useful for the measurement performed by the microscope. It is worth mentioning that the steps of identifying the semiconductor with an optical microscope include: (1) Identifying tj/0 with an optical microscope - rough identification of the image, analysis of the optical microscopy, and the calculation of the image Identifying the case and identifying the amount of shadow in the image. (7) The stage is moved by a third offset so that the alignment = - the third is offset by the micro-mirror optical axis position. (3) Align with the optical microscope ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Identify the fourth offset of the image center. (4) The stage will move the fourth offset so that the discriminating case is located at the center of the finely identified image. When the test pattern is still not at the center of the finely identified area, the step (3) and the step (4) are repeated so that the test pattern is located at the center of the finely identified area. In this way, the error of the optical microscope when it is identified by fine identification can be reduced. The area of the pattern 116. Then, the area is subjected to fine scanning, and the ride is simultaneously scanned with reference to FIG. 3, FIG. 4 and FIG. 5 by atomic force microscopy; ^ alignment mark, the test pattern in the area of 1 〇 6 is scanned, and 2 the test sign 118 is set. depth. The step of scanning the test pattern 116 in the region of the ftl 106 is performed by a liver force microscope. For example, the area of the alignment mark 106 is roughly scanned by the two-force microscope. The dotted line area is partially enlarged to FIG. 4 to test the phase.

進行7刀析,當測試圖案不在 汁异測试圖案偏離粗略掃描 13 -12767¾ twf.doc/g 影像的中心位置之一第一 量,以使測試圖案位於料^。(2)使載台移動第—偏移 (⑽原子力針之料位置。 到-精細掃描影像,並斗曾::的區域進仃—精細掃描得 中心位置之第二偏移旦:=試圖案偏離精細掃描影像的 測試圖案位於精細掃二區::中台::二二,量’以使 掃描的區域之中央位置時,更 置。如此-來,掃描的區域之中央位 測量時的縣。 … 11錢在補細掃描進行 案:上所以可對同-測試特徵的^ 綜上所述,本發明至少具有下列優點:則里 1·本發明的對準標記的圖案具有唯—性 楚地辨識出對準標記的位置。 口此可以、;月 2.在本發明的對準標記巾具有測試圖案 顯微鏡可以直接在對準標記中對元件尺寸進行、、則旦\力 低因載台移動距離過長所產生的對準誤差。’、里’此降 性的明之使㈣準標記_量方法是使用具有唯-f生的對準軚§己,且對準標記中具有測試圖 趣的測量’有助於進行尺寸的驗』 4.在本發明之使用對準標記的測量方法中,可對以原 14 12767¾ 6twf.doc/g 時進行· 以 護 雖然本發明已以較佳實施例揭露如上,狄复 限j本發明,任何熟習此技藝者,在不脫離本i明之二、φ :乾圍内,當可作些許之更動與潤飾,因此本發明之:子 範圍當視後附之申請專利範圍所界定者為準。’、 【圖式簡單說明】 圖 圖1所繪示為本發明一實施例之半導體晶圓的上視 曰曰 圖2所繪示為本發明一實施例以光學顯微鏡對 圓進行粗略掃描後的示意圖。 一 圖3所%示為圖2中矩形虚線區域的局部放大圖。 圖4所緣示為圖3中矩形虛線區域的局部放大圖。 圖5所綠示為圖4中矩形虛線區域的局部放大圖。 100 : 半導體晶圓 102 : 切割道 104 : 晶方 106 : 對準標記 108、 110 :方框 112 : 矩形 114 : 辨識圖案 116 : 測試圖案 118 : 測試特徵 15Perform a 7-knife analysis when the test pattern is not in the juice test pattern deviating from the rough scan 13 -127673⁄4 twf.doc/g one of the center positions of the image so that the test pattern is located at the material ^. (2) Move the stage to the first offset ((10) atomic force needle position. To - fine scan image, and bucket:: area into the 仃 - fine scan to the center of the second offset denier: = try pattern The test pattern deviating from the fine scan image is located in the fine sweep area:: middle table:: 22, the quantity 'to make the center position of the scanned area, even more. So - come, the center of the scanned area is measured at the county level ... 11 money in the fine scan case: the above can be the same - test features ^ In summary, the present invention at least has the following advantages: then 1 · the alignment mark pattern of the present invention has a unique The position of the alignment mark is recognized. The mouth can be used; the month 2. The alignment mark towel of the present invention has a test pattern microscope, and the size of the element can be directly performed in the alignment mark, and then the force is low due to the stage. The alignment error caused by the long moving distance. ', 里' is the result of this degradation. (4) The quasi-marker _ quantity method is to use the alignment with 唯-f raw, and the alignment mark has the test pattern. Measurement 'contributes to the inspection of the dimensions』 4. In the present invention In the measurement method using the alignment mark, it can be performed on the original 14 127 673⁄4 6 twf.doc/g. Although the present invention has been disclosed in the preferred embodiment as above, the present invention is known to those skilled in the art. Without departing from the scope of the present invention, φ: dry circumference, when a few changes and refinements can be made, the scope of the present invention is defined by the scope of the appended patent application. ', [Simple diagram 1 is a top view of a semiconductor wafer according to an embodiment of the invention. FIG. 2 is a schematic view showing a circular scan of a circle by an optical microscope according to an embodiment of the present invention. % is shown as a partial enlarged view of a rectangular dotted line area in Fig. 2. Fig. 4 is a partial enlarged view of a rectangular dotted line area in Fig. 3. Fig. 5 is a green enlarged view of a portion of a rectangular dotted line in Fig. 4. : Semiconductor Wafer 102 : Cut Path 104 : Crystal Square 106 : Alignment Marks 108 , 110 : Block 112 : Rectangular 114 : Identification Pattern 116 : Test Pattern 118 : Test Feature 15

Claims (1)

12767,¾ twf.doc/g 、申請專利範圍: 1· 一種對準標記,g 該半導體 元件尺寸,該 元件特徵’該元件特徵具有- L曰士 一 配置於一半導體晶圓上, 一辨識圖案, ·以及 測忒圖案,配置於該辨識圖 組成’該測試特徵具有 二=特徵所 件尺寸相近。 η〜了 m认寸與該元 試圖對準標記,其一 準標記配置於該H述之對準標記’其中該對 (scribe lin壯。 體曰曰圓的一晶方㈣或—切割道^ 4·如申凊專利範圍第 試特徵包括溝渠。 、返之對準標記,其中該測 5·如申請專利範圍第1 、 試尺寸為深度或關 鍵尺弟寸:項所述之對準標記’其中該剛 i種使用對準標記的測 :晶圓上的一測試測試尺寸,該半量―半導 π件尺寸’該對準標記配置 t 4件特徵具有 中,且該辨識_=職==配置於該辨識圖案 該测試特徵之尺寸與該由麵簡徵所組成, ' 件特徵之該元件尺寸相 12767¾ 近’使用該對準標記的測量方法包括: 以一光學顯微鏡對該半導體晶圓進行辨識,以確認該 對準標記的區域;以及 以一原子力顯微鏡對位於該對準標記的區域中的該測 試圖案進行掃描。 7·如申請專利範圍第6項所述之使用對準標記的測量 方法’以該原子力顯微鏡對位於該對準標記的區域中的該 測試圖案進行掃描的步驟包括: X X»亥原子力顯彳政鏡對该對準標記的區域進行一粗略掃 描(coarse scan),以確認該測試圖案的區域;以及 • 析, 描(fine scan)。 R 'ifn 由*杏蜜《ί·ΐί 么今 I3EI »12767, 3⁄4 twf.doc / g, the scope of patent application: 1 · an alignment mark, g the size of the semiconductor component, the component feature 'the component features have - L gentleman is disposed on a semiconductor wafer, an identification pattern , and the test pattern is configured to be composed of the identification map. The test feature has two features that are similar in size. η~m ize the inch and the element tries to align the mark, and a quasi mark is placed in the H mark aligning mark 'where the pair (scribe lin strong. body circle round one square (four) or - cut road ^ 4. The first test feature of the application scope includes the ditch. The back alignment mark, wherein the test is as follows: 1. If the patent application scope is 1, the test size is the depth or the key dimension: the alignment mark mentioned in the item Wherein the measurement of the alignment mark is used: a test test size on the wafer, the half quantity - the semi-conductive π piece size 'the alignment mark configuration t 4 pieces have the middle, and the identification _= job == The size of the test feature disposed on the identification pattern is composed of the surface characterization, and the component size of the feature is 127673⁄4. The measurement method using the alignment mark includes: using the optical microscope to the semiconductor wafer Identification is performed to confirm the area of the alignment mark; and the test pattern located in the area of the alignment mark is scanned by an atomic force microscope. 7. The alignment mark is used as described in claim 6 Measurement methods' The step of scanning the test pattern in the region of the alignment mark by the atomic force microscope comprises: performing a coarse scan of the area of the alignment mark by the XX»Hear atomic force mirror to confirm the Test the area of the pattern; and • Fine scan. R 'ifn by *Apricot honey "ί·ΐί 今今 I3EI » •以該原子力顯微鏡對該測試圖案的區域進行一精細掃• Perform a fine sweep of the area of the test pattern with the atomic force microscope 二偏移量;以及 17 Ι27671_ 使載台移動該第二偏移 精細掃描的區域之中央位置 以使該測試圖索位於該 9·如申請專利範圍第8項所 知’更包括重複步驟(3)及步驟(4),以使該=央位置 精細掃描的區域之中央位置。 、^圖案位於該 6項所述之使用對準標記的測 鏡對該半導體晶圓進行掃描的 J〇·如申請專利範圍第 量方法,其中以該光學顯微 步驟包括: ⑴以該光學顯微鏡該對準標記進行—粗略 :粗,識影像,分析該光學顯微鏡的該粗略S到 曰’计异該辨識圖案偏離該粗略辨識影像中心之一^ =偏移 標記位於 (2)使3亥載台移動該第三偏移量,以使該對準 光學顯微鏡光軸位置; (3)以光學顯微鏡對該準標記進行精細辨識得到一 =辨識影像,分析該光學顯微鏡的該精細辨識影像,並= #"亥辨識圖案偏離該精細辨識影像中心之第四偏移量以 及 , (4)使a亥載台將移動該第四偏移量,以使辨識圖案位於 該精細辨識之影像的中央位置。 〃、 曰Η·如申請專利範圍第10項所述之使用對準標記的測 量方法,當該測試圖案非位於該精細辨識的區域之中央位 置時,更包括重複步驟(3)及步驟(4),以使該測試圖案位於 1276现 丨 twf.doc/g 該精細辨識的區域之中央位置。 12. 如申請專利範圍第6項所述之使用對準標記的測 量方法,其中該測試圖案配置於該辨識圖案的中央位置。 13. 如申請專利範圍第6項所述之使用對準標記的測 量方法,其中該對準標記配置於該半導體晶圓的一晶方 (die)或一切割道(scribe line)上。 14. 如申請專利範圍第6項所述之使用對準標記的測 量方法,其中該測試特徵包括溝渠。 15. 如申請專利範圍第6項所述之使用對準標記的測 量方法,其中該測試尺寸為深度或關鍵尺寸。 19a second offset; and 17 Ι 27671_ to move the stage to a central position of the second offset finely scanned region such that the test map is located in the 9th item as described in claim 8 and further includes a repeating step (3) And step (4), so that the central position of the area where the central position is finely scanned. The pattern of the semiconductor wafer is scanned by the mirror of the alignment mark as described in the above-mentioned item 6. The method of the optical microscopy includes the following steps: (1) using the optical microscope The alignment mark is performed - rough: coarse, and the image is analyzed, and the rough S to 曰' of the optical microscope is analyzed. The identification pattern deviates from one of the centers of the rough identification image. ^ = offset mark is located at (2) The stage moves the third offset to align the optical axis position of the optical microscope; (3) finely discriminating the quasi-mark with an optical microscope to obtain a = identification image, analyzing the fine identification image of the optical microscope, and = #" The fourth identification pattern deviates from the fourth offset of the fine identification image center and (4) causes the a-hai stage to move the fourth offset so that the identification pattern is located in the center of the finely-recognized image position. 〃, 曰Η · The measuring method using the alignment mark according to claim 10, when the test pattern is not located at the center of the finely identified area, further comprising repeating steps (3) and (4) ) so that the test pattern is located at the center of the region of the finely identified region of 1276 now twf.doc/g. 12. The method of measuring an alignment mark according to claim 6, wherein the test pattern is disposed at a central position of the identification pattern. 13. The method of measuring an alignment mark according to claim 6, wherein the alignment mark is disposed on a die or a scribe line of the semiconductor wafer. 14. The method of measuring an alignment mark as described in claim 6, wherein the test feature comprises a trench. 15. The method of measuring an alignment mark as described in claim 6, wherein the test size is a depth or a critical dimension. 19
TW94133682A 2005-09-28 2005-09-28 Alignment mark and measuring method by using alignment mark TWI276774B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW94133682A TWI276774B (en) 2005-09-28 2005-09-28 Alignment mark and measuring method by using alignment mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW94133682A TWI276774B (en) 2005-09-28 2005-09-28 Alignment mark and measuring method by using alignment mark

Publications (2)

Publication Number Publication Date
TWI276774B true TWI276774B (en) 2007-03-21
TW200712429A TW200712429A (en) 2007-04-01

Family

ID=38646349

Family Applications (1)

Application Number Title Priority Date Filing Date
TW94133682A TWI276774B (en) 2005-09-28 2005-09-28 Alignment mark and measuring method by using alignment mark

Country Status (1)

Country Link
TW (1) TWI276774B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115628685A (en) * 2022-08-15 2023-01-20 魅杰光电科技(上海)有限公司 Method and equipment for measuring critical dimension and method for positioning critical dimension in grading manner

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113611650B (en) * 2021-03-19 2024-02-27 联芯集成电路制造(厦门)有限公司 Method for aligning wafer pattern
TWI809830B (en) * 2022-02-16 2023-07-21 南亞科技股份有限公司 Method of determining overlay error during semiconductor fabrication

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115628685A (en) * 2022-08-15 2023-01-20 魅杰光电科技(上海)有限公司 Method and equipment for measuring critical dimension and method for positioning critical dimension in grading manner
CN115628685B (en) * 2022-08-15 2024-03-26 魅杰光电科技(上海)有限公司 Method and equipment for measuring critical dimension and method for classifying and positioning critical dimension

Also Published As

Publication number Publication date
TW200712429A (en) 2007-04-01

Similar Documents

Publication Publication Date Title
US7576317B1 (en) Calibration standard for a dual beam (FIB/SEM) machine
US20140218503A1 (en) Apparatus and method for optical inspection, magnetic field and height mapping
Volk et al. Linear standard for SEM–AFM microelectronics dimensional metrology in the range 0.01–100 μm
TWI276774B (en) Alignment mark and measuring method by using alignment mark
US9865425B2 (en) Sample holder and sample holder set
Tortonese et al. Sub-50-nm isolated line and trench width artifacts for CD metrology
Martin et al. Toward accurate metrology with scanning force microscopes
US8952329B1 (en) 3D image profiling techniques for lithography
US20080073519A1 (en) Scanning probe microscope for measuring angle and method of measuring a sample using the same
CN107978536A (en) The CDSEM scan methods of pattern in a kind of wafer domain
Bunday et al. The coming of age of tilt CD-SEM
Müller et al. Techniques for analysing nanotopography on polished silicon wafers
US6172757B1 (en) Lever sensor for stepper field-by-field focus and leveling system
US7797991B2 (en) Rocking Y-shaped probe for critical dimension atomic force microscopy
JPH07134137A (en) Probe microscope device, and method for measuring probe-to-probe distance
Hua et al. High-throughput and non-destructive sidewall roughness measurement using 3-dimensional atomic force microscopy
US7895879B2 (en) Sample holder for holding samples at pre-determined angles
TW200949190A (en) Overlay measurement target and method for measuring overlay error
Heider et al. AFM surface roughness and depth measurement of trenches with high aspect ratio
Orji et al. Toward accurate feature shape metrology
Attota et al. Through-focus scanning and scatterfield optical methods for advanced overlay target analysis
RU2325619C2 (en) Test object for calibration of raster electron and scanning probe microscopes
JPS63308508A (en) Quantitative determination of pattern geometry for layer formed substrate
CN104576611B (en) Compensate the inclined method of critical size SEM detection pattern
US9347897B2 (en) Characterizing dimensions of structures via scanning probe microscopy

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees