TW202318979A - 益生菌pta22、製備兔子食物的營養組合物及降解草酸的組合物 - Google Patents

益生菌pta22、製備兔子食物的營養組合物及降解草酸的組合物 Download PDF

Info

Publication number
TW202318979A
TW202318979A TW111132127A TW111132127A TW202318979A TW 202318979 A TW202318979 A TW 202318979A TW 111132127 A TW111132127 A TW 111132127A TW 111132127 A TW111132127 A TW 111132127A TW 202318979 A TW202318979 A TW 202318979A
Authority
TW
Taiwan
Prior art keywords
pta22
probiotic
vol
rabbits
composition
Prior art date
Application number
TW111132127A
Other languages
English (en)
Other versions
TWI853300B (zh
Inventor
徐志宏
姜禮毓
張育心
邱靖瑜
王蓓茹
Original Assignee
愛眾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 愛眾科技有限公司 filed Critical 愛眾科技有限公司
Publication of TW202318979A publication Critical patent/TW202318979A/zh
Application granted granted Critical
Publication of TWI853300B publication Critical patent/TWI853300B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/20Animal feeding-stuffs from material of animal origin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/50Feeding-stuffs specially adapted for particular animals for rodents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/04Drugs for disorders of the urinary system for urolithiasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/06Antigout agents, e.g. antihyperuricemic or uricosuric agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K2035/11Medicinal preparations comprising living procariotic cells
    • A61K2035/115Probiotics
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/25Lactobacillus plantarum

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Physiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)

Abstract

本發明提供一種來自兔子的PTA22益生菌、一種用於製備兔食物的營養組合物和一種用於使兔子降解草酸的組合物。透過本發明,使兔子食用含有PTA22的食物後,可以保證兔子的健康,並且兔子後對致病菌的抵抗力。此外,益生菌PTA22還可以幫助兔子降低高鈣尿症和結石的風險。

Description

益生菌PTA22、製備兔子食物的營養組合物及降解草酸的組合物
本發明關於一種益生菌,尤其涉及一種來自兔子的益生菌及含有該益生菌的兔用食品。
兔子是後腸 (盲腸) 發酵的草食性動物,盲腸含有大量微生物和益生菌,有助於分解植物厚厚的細胞壁,並且,未完全消化的食糜會在盲腸中被發酵並轉化為可以被吸收的營養物質。一般而言,粗纖維含量低的食物中,碳水化合物含量較高,不僅容易發酵而引起兔子的腹脹氣,還會促進某些細菌的異常生長,如大腸桿菌 ( Escherichia coli,縮寫為E.coli) 和梭狀芽孢桿菌屬等。另外,細菌生長異常可能導致腹瀉、腸毒血症、腸梗阻、慢性間歇性腹瀉等腸道症狀。
因此,為了使兔子能夠更好地消化各種食物,並保證兔子胃腸道的健康,本發明提供了一種含有益生菌的兔用食品,以使兔子進食時,便可以攝取適當的益生菌,以預防腸胃紊亂等疾病。
有鑑於前述的先前技術,本發明提供從兔子糞便中分離的新穎的益生菌,並且,所述新穎的益生菌在兔子胃腸道中的存活機會更高,而其中一種的植物乳桿菌 ( Lactiplantibacillus Plantarum) 的新穎的益生菌 (以下稱為益生菌PTA22 ) 的酸耐受性、胃腸道定殖等能力更為顯著。益生菌PTA22的16S rRNA基因序列為SEQ ID No:3,且益生菌PTA22寄存於在NITE (National Institute of Technology and Evaluation) 專利微生物寄存中心 (NITE Patent Microorganisms Depositary,縮寫為NPMD),寄存號為BP-03477。其中益生菌PTA22具有草酸降解活性。另外,益生菌PTA22具有草酸降解活性、羧甲基纖維素的消化活性、果膠酶的消化活性、木聚醣酶的消化活性和蛋白酶的消化活性,其中益生菌PTA22可以抑制包含至少一種致病菌的生長,且所述至少一種致病菌為蠟狀芽孢桿菌 ( Bacillus Cereus)、金黃色葡萄球菌 ( Staphylococcus Aureus)、肺炎克雷伯菌 ( Klebsiella Pneumoniae)、腸沙門氏菌 ( Salmonella Enterica)、松內志賀氏菌 ( Shigella Sonnei)、肺炎鏈球菌 ( Streptococcus Pneumoniae)、銅綠假單胞菌 ( Pseudomonas Aeruginosa)和產毒性大腸桿菌 (Enterotoxigenic Escherichia coli E. coli(ETEC))。益生菌PTA22對包含氨基糖苷類抗生素 (Aminoglycosides antibiotics)、磺胺類抗生素 (Sulfonamide antibiotics)、喹諾酮類抗生素 (Quinolone antibiotics)及其衍生物中的至少一種的抗生素具有抗性。
基於本發明的其中一個目的,本發明的一個實施例提供一種用於製備兔子食物的營養組合物,且所述製備兔子食物的營養組合物包括益生菌混合物、具高生物價值蛋白質的生物材料、寡糖和賦形劑,其中所述益生菌混合物包括益生菌PTA22、益生菌PTA22後生元或其組合。
基於本發明的另一個目的,本發明的一個實施例還提供一種用於降解兔子飲食中草酸的組合物,且所述用於降解兔子飲食中草酸的組合物包括有效量的益生菌PTA22、具生物價值蛋白質的生物材料、寡糖和賦形劑。
簡而言之,本發明的實施例可以在兔子進食的同時,為兔子提供益生菌PTA22,如此一來,可以保證兔子的健康,並提高兔子對致病菌的抵抗力。此外,益生菌 PTA22還可以幫助兔子降低高鈣尿症和結石的風險。
為使本發明的目的、技術方案和優點更加地清楚,以下將結合附圖對本發明實施例中的技術方案進行清楚、完整地描述。顯而易見地,所描述的實施例是本發明實施例的一部分,而不是全部。基於本發明中的實施例,所述領域的通常知識者在根據通常知識而獲得的所有其他實施例,都屬於本發明所保護的範圍。除非另有定義,本文所使用的技術或科學術語應具有與本發明相關的本領域技術人員所理解的通常含義,例如,本文所用「包括」和其他類似用語指出現在該用語之前的元素或對象包括在該術語之後列出的元件或對象及其均等,而不排除其他元件或對象。 [ 細菌的篩選及溶血測試 ]
為了確保篩選出的細菌沒有引起疾病的可能性,對篩選出的細菌進行溶血測試以確認它們是否會引起疾病。如果菌落小、呈灰白色,且菌落周圍沒有溶血環,說明該細菌無致病性。
益生菌的菌株透過以下的方法培養。首先,每隻兔子取 0.1 g 的糞便顆粒,然後分別溶解在 MRS (de Man, Rogosa and Sharpe) 培養液和苛養厭氧菌培養液 (Fastidious Anaerobe Broth,縮寫為FAB) 中,如此一來,每隻兔子的糞便顆粒便形成兩種樣品溶液。MRS培養液用於培養好氧菌 (如乳酸桿菌),FAB用於培養厭氧菌。接下來,將每隻兔子的糞便顆粒的兩種樣品溶液分別以 500 rpm 的速度離心後,各取 100 µL 的上清液序列稀釋,以形成相對於原來的菌液濃度為 10 -7、10 -8和 10 -9的菌液。另外,兔子的盲腸糞便也進行了類似處理,但菌液的系列稀釋濃度相對於原來的菌液濃度分別為10 -8、10 -9和10 -10的菌液。
接著,將從MRS培養液和FAB中獲得的不同濃度的菌液,且將這些不同濃度的菌液分別地均勻塗盤於MRS瓊脂培養基 (MRS agar) 或苛養厭氧菌瓊脂培養基 (Fastidious Anaerobe Agar,縮寫為FAA)上,以確認這些細菌的溶血特性。MRS瓊脂培養基於好氧條件下,以37 °C培養好氧菌,例如,乳酸桿菌培養12小時。FAA培養基各別地於好氧條件和厭氧條件下,於37 °C中培養厭氧菌12 小時。
然後,於血液瓊脂培養基上塗盤,以確認單個菌落的溶血特性,且給予每個菌落編號。圖1係顯示菌落LP1、LP5、LP19、PTA22、PAL44和SL45在血液瓊脂培養基的檢測結果。菌落LP1和LP2 (圖1未示) 是市售的人腸道益生菌,分別用作其他菌株的陽性對照組1和陽性對照組2,且在隨後的實驗中也是如此,且從兔子獲得的菌落LP5、LP19、PTA22、PAL44和SL45。在圖1中,菌落LP1、LP5、LP19、PTA22、PAL44和SL45是非溶血性的。
接著,來自血液瓊脂培養基的非溶血的菌落培養於3Ml的MRS培養液或FAB中。於培養後,將培養基 (MRS培養液或FAB) 分別分裝於1 mL的微量離心管中,且分別有三管。並且,將250 µL甘油添加到三個微量離心管中的其中兩個,以做成冷凍管用於儲存,剩餘的一管微量離心管用於抽取去氧核醣核酸 (Deoxyribonucleic acid,縮寫為DNA) 和DNA 定序。
進一步地,菌落LP5、LP19、PTA22、PAL44和SL45的細菌透過16S rRNA基因進行基因定序,基因定序的過程如下:
1. 提取 DNA (DNA extraction):使用十六烷基三甲基溴化銨 (cetyl trimethylammonium bromide,縮寫為CTAB) 液氮冷凍法提取DNA,接著,以24:1的氯仿/異戊醇分離DNA和蛋白質。然後,加入酒精 (EtOH) 以沉澱DNA,再用洗提緩衝液 (elution buffer) 重新溶解。最後,透過1 % 瓊脂糖凝膠電泳檢查DNA的正確性。
2. 聚合酶連鎖反應 & 凝膠純化 (Gel purification):透過聚合酶連鎖反應(Polymerase chain reaction,縮寫為PCR) 擴增細菌的16S rRNA基因,其中細菌的 16S rRNA基因利用DNA聚合酶和16S引子 (primer) (正向/反向) 擴增。接著,透過1% 瓊脂糖凝膠電泳對細菌的16S rRNA 基因的鹼基對 (base pair) 的長短進行驗證。然後,利用Favorgen FavorPrep TMGEL/PCR純化試劑盒,來純化細菌的目標16S rRNA基因。
3. 接合 (Ligation) & 轉形 (Transformation) 透過T4 DNA連接酶,將含有Amp r基因的T&A TM載體 (vector) 和16S rRNA基因接合 (ligate)。接著,將接合的載體轉形 (transform) 到大腸桿菌的DH5α細胞中。然後,將轉化後的大腸桿菌接種在含有氨芐青黴素 (Ampicillin) 的溶菌瓊脂培養基 (Lysogeny broth agar,縮寫為LB agar)上,用於選擇經T&A TM載體成功轉形的DH5α細胞。經過夜培養後,選擇存活於LB瓊脂培養基上的菌落進行下一步的擴增。
4. 質體提取 & 酶解:通過Favorgen FavorPrep TM質體提取試劑盒提取選定的透過DH5α細胞轉化的菌落的質體。然後,將提取的質體用EcoRI或HindIII的限制性內切酶進行切割,以確認16S rRNA基因是否正確接合。接下來,透過1 % 瓊脂糖凝膠電泳檢查上述限制性內切酶的產物的鹼基對之大小,與PCR結果進行比較,以檢查16S rRNA基因是否已成功插入T&A TM載體。
5. 定序:對透過限制性內切酶的切割位點鑑定的質體進行定序,且分析定序結果。菌落LP5、LP19、PTA22、PAL44和SL45的序列請參考序列表。 [ 酸耐受 性測試 ]
由於兔子胃酸的pH值約為1.5-1.0,因此,必須測試細菌的酸耐受性 (acid tolerance)。進行酸耐受性測試以測試菌落LP5、LP19、PTA22、PAL44和SL45的細菌在胃酸環境中的存活時間。
首先,用HCl將MRS培養液的pH值調整到1.0、1.5、2.0、2.5或3.0。接著,分別各取100 µL的細菌LP5、LP19、PTA22、PAL44和 SL45的菌液,且分別加入到以下的MRS培養液中:陰性對照 (僅 MRS培養液)、pH = 1.0、pH = 1.5、pH = 2.0、pH = 2.5 和pH = 3.0。然後,將菌液在37 ℃ 下培養4小時,於每小時測量菌液的OD 600
圖2A-2E係分別顯示菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45在pH = 3.0、2.5、2.0、1.5和1.0下的酸耐受性測試測試結果。在這項酸耐受性測試中,測試時間為0-6小時,0-6小時係根據先前研究中所述 [Susan M. Smith (2012).,Gastrointestinal Physiology and Nutrition of Rabbits. WB Saunders (第162-173頁)]。如圖2A-2E所示,菌落LP5、LP19和PTA22的存活率表明,從兔子身上發現的植物乳桿菌 ( Lactiplantibacillus plantarum) 可以在酸性環境中耐受一段時間,甚至能夠持續生長。此外,在1-2小時內,菌落PTA22的酸耐受性存活率最好。 [ 膽鹽耐受 性測試 ]
與酸耐受性測試相似,進行膽鹽耐量測試測試 (bile-salt tolerance test) 以分別測試菌落LP5、LP19、PTA22、PAL44和SL45在腸道環境中的細菌活性。
首先,製備含有重量百分比為0.5 % (即 0.5 wt %) 和1.0 wt % 膽鹽 (bile-salt) 的MRS培養液。接著,取各100 µL的菌落LP5、LP19、PTA22、PAL44、SL45的菌液,分別加到以下MRS培養液中:陰性對照 (僅MRS培養液)、0.5 wt % 的膽鹽,以及1.0 wt % 的膽鹽。然後,將菌液於37 ℃ 下培養8小時,且每小時測定這些菌液的OD 600
圖3A-3B係分別顯示菌落LP1 (陽性對照組1)、LP2 (陽性對照組2)、LP5、LP19、PTA22、PAL44和SL45的膽鹽耐受性測試結果。由圖3A-3B可知,菌落PAL44和SL45具有較好的活性,可以在腸道內穩定生長。植物乳桿菌的菌落LP5、LP19和PTA 22並無明顯差異。根據 [Susan M. Smith (2012).,Gastrointestinal Physiology and Nutrition of Rabbits. WB Saunders (第162-173頁)],食物通過十二指腸和迴腸的時間分別為10-20分鐘和30-60分鐘。如圖3A-3B所示,菌落LP5、LP19、PTA22、PAL44和SL45在為0.5 wt % 或1 wt % 的膽鹽環境中,存活率會隨著時間下降。因此,在產品開發中,保護劑 (protective agent) 對於細菌的存活量非常重要。 [ 分解酶活性分析 ]
為了探索菌落LP5、LP19、PTA22、PAL44和SL45分解纖維素的能力,進行了分解酶活性分析。所述分解酶包括羧甲基纖維素酶 (carboxymethyl cellulase,縮寫為CMCase)、木聚醣酶 (xylanase)、澱粉酶 (amylase)、果膠酶 (pectinase) 和蛋白酶 (protease)。
在進入分解酶的活性測試之前,本實驗所使用的試劑為剛果紅 (Congo red) 和碘試劑。對於羧甲基纖維素酶、木聚醣酶和果膠酶的活性測試,使用剛果紅進行測試,剛果紅能與纖維素合成紅色複合物,但不與纖維素水解後的產物發生反應。因此,如果細菌可以分解纖維素,當加入剛果紅時,菌落周圍會出現一個透明的環,即表示細菌已分解纖維素,使纖維素不能與剛果紅合成紅色複合物。而在澱粉酶活性測試中,澱粉與碘試劑反應後會生成紫色複合物,當澱粉發生分解時,則菌落周圍會出現一個透明環。
在羧甲基纖維素酶、木聚醣酶和果膠酶的活性測試中,上述MRS瓊脂培養基用重量百分比為0.1 % 的剛果紅水溶液進行染色30分鐘,在用1 M的NaCl水溶液進行脫色。在澱粉酶的活性測試中,於含有重量百分比為0.02 % 澱粉的MRS瓊脂培養基中加入重量百分比為1 % 的碘試劑,並染色1分鐘,再用去離子水 (ddH 2O) 進行脫色。另外,於蛋白酶的活性測試中,沒有使用染色劑,而是肉眼觀察的,且蛋白酶活性測試的實驗結果也是透過菌落周圍是否出現透明環來辨識的。
分解酶活性的分析可以分為定性和定量。在分解酶活性的定性分析中,透過4區劃線法,將細菌塗盤於MRS瓊脂培養基上,於37 ℃ 下培養2天。接著,在4區劃線法的MRS瓊脂培養基上取單個菌落,將該單個菌落點在含有重量百分比為1 % 羧甲基纖維素、0.05 % 木聚醣、1 % 果膠、0.02 % 澱粉或 1 % 脫脂牛奶的MRS瓊脂培養基上,並且培養1天。
如下表1所示,表1為定性分析的測試結果,從表1的測試結果可知,菌落LP1、LP2、LP5、LP19及PTA 44均具有羧甲基纖維素酶、木聚醣酶、果膠酶、蛋白酶的活性,因為它們都屬於植物乳桿菌屬 ( Lactiplantibacillus Plantarum) 的同一屬。
表1:羧甲基纖維素酶、木聚醣酶、澱粉酶、果膠酶和蛋白酶定性分析的測試結果
菌落 羧甲基 纖維素酶   木聚醣酶 果膠酶 澱粉酶 蛋白酶
LP1 + + + - +
LP2 + + + - +
LP5 + + + - +
LP19 + + + - +
PTA22 + + + - +
PAL44 - - - + -
SL45 - - - + -
在分解酶活性的定量分析中,取菌液濃度為OD 600= 1.0的菌液進行分析。利用牛津杯以限制位於MRS瓊脂培養基上的細菌的生長區域,並將MRS瓊脂培養基於37 ℃ 中培養2天後,以染色法觀察分解酶的活性。其中,蛋白酶活性測試,結果可以直接用肉眼觀察,不需要染色。分解酶活性的定量分析結果列於下表2中。
表2:在羧甲基纖維素酶、木聚醣酶、澱粉酶、果膠酶和蛋白酶的活性定量分析,及其所使用的基質 (Substrate) 和染劑。
分解酶 基質於MRS瓊脂培養基中(重量百分比 (wt %)) 染劑 (重量百分比 (wt %))
羧甲基纖維素酶 1 % 羧甲基纖維素 0.1 % 剛果紅 (aq)
木聚醣酶 0.05 % 木聚醣 0.1 %剛果紅 (aq)
果膠酶 1 % 果膠 0.1 %剛果紅 (aq)
澱粉酶 0.02 % 澱粉 1 % 碘液 (aq)
蛋白酶 1 % 脫脂牛奶 無染劑
分解酶活性的定量分析結果總結於下表3中。由表3可知,兔子的菌落LP5、LP19和PTA22的木聚醣酶和果膠酶活性優於菌落LP1和LP2。此外,菌落LP5、LP19和PTA22的羧甲基纖維素酶和蛋白酶的活性與菌落LP1和LP2差不多。
表3:菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的微生物分解區的直徑 (mm)。
菌落 羧甲基纖維素酶 木聚醣酶 果膠酶 澱粉酶 蛋白酶
LP1 (陽性對照組1) 13 11 12 - 8
LP2 (陽性對照組2) 13 12 13 - 9
LP5 11 21 16 - 8
LP19 14 21 18 - 9
PTA22 11 20 19 - 9
PAL44 - - - 11 -
SL45 - - - 13 -
[ 抗菌活性分析 - 瓊脂擴散法 ]
腸道菌群失調 (Dysbiosis of intestinal flora) 可能導致各種疾病。家兔攝取益生菌對於抑制致病菌的增殖、調節菌群平衡及提高免疫力非常重要。因此,使用菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45來測試對部分致病菌的抑制活性,例如腸沙門氏菌 ( Salmonella Enterica)、松內志賀氏菌 ( Shigella Sonnei)、肺炎克雷伯菌 ( Klebsiella Pneumoniae)、肺炎鏈球菌 ( St` reptococcus Pneumoniae)、蠟狀芽孢桿菌 ( Bacillus Cereus)、葡萄球菌 金黃色葡萄球菌 ( Staphylococcus Aureus) 和銅綠假單胞菌 ( Pseudomonas Aeruginosa)。瓊脂擴散法的實驗細節如下所述。
瓊脂擴散法 - 1 :使用本案的細菌進行測試
為了測試本案的細菌對致病菌生長的抑制情況,實驗設計如下。將本案的細菌置於MRS培養液或FAB培養液中,以37 °C 培養12小時後,將100 µL的菌液均勻地塗盤於MRS瓊脂培養基或FAA培養基上,然後,分別乾燥10分鐘。接著,使用微量吸管 (tips) 在MRS瓊脂培養基或FAA培養基點出幾個孔。隨後,將100 µL的上述致病菌的菌液分別地加入孔中,然後,在37 °C 下培養12小時。菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的菌液塗盤的FAA培養基之致病菌生長區的直徑 (mm) 列於下表4中,其中包括陰性對照組 (無菌液)。
本實驗的目的在於測試FAA培養基上的菌落是否能夠有效地抑制加入孔中的致病菌生長。因此,生長區的直徑越小則表示菌落對致病菌的抑制生長效果越好。為了使生長區直徑的差異更為明確,實驗組與對照組的生長區直徑的差異值列於下表5,且從表5可以明顯地得知,菌落LP5、LP19、PTA22、PAL44和SL45對致病菌具有抑制生長的作用,尤其是針對蠟狀芽孢桿菌、金黃色葡萄球菌、肺炎克雷伯菌和腸沙門氏菌的抑制生長效果尤佳。
表4:FAA培養基上的致病菌生長區的直徑 (mm),由菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45,包括陰性對照組。
FAA培養基的 致病菌生長區 (mm) *FAA (陰性 對照組) LP1 (陽性 對照組1) LP2 (陽性 對照組2) LP5 LP19 PTA 22 PAL 44 SL45
腸沙門氏菌 13 9.5 9.5 9.5 11 10 10 9
松內志賀氏菌 11.5 9.5 9.5 9.5 11 10 9 9.5
肺炎克雷伯菌 15 11 11 11 12 13 10 10
肺炎鏈球菌 11.5 9.5 9.5 9.5 9.5 9 9 9
蠟狀芽孢桿菌 22 12 13 12 18 16 11 11
金黃色葡萄球菌 13 10 9 9 10 9 10 9.5
銅綠假單胞菌 12 11 11.5 11 11.5 11.5 10 10
* FAA陰性對照組:陰性對照組僅包括致病菌,菌落LP1、LP2、LP5、LP19、PTA22、PAL44 和 SL45 均未塗盤於FAA培養基上。
表5:實驗組和陰性對照組之間生長區直徑的差異值。
直徑的差異值 (mm) LP1 (陽性 對照組1) LP2 (陽性 對照組2) LP5 LP19 PTA22 PAL44 SL45
腸沙門氏菌 -3.5 -3.5 -3.5 -2 -3 -3.5 -4
松內志賀氏菌 -2 -2 -2 -0.5 -1.5 -2.5 -2
肺炎克雷伯菌 -4 -4 -4 -3 -2 -5 -5
肺炎鏈球菌 -2 -2 -2 -2 -2.5 -2.5 -2.5
蠟狀芽孢桿菌 -10 -9 -10 -4 -6 -11 -11
金黃色葡萄球菌 -3 -4 -4 -3 -4 -3 -3.5
銅綠假單胞菌 -1 -0.5 -1 -0.5 -0.5 -2 -2
瓊脂擴散法 -2 :使用無細胞溶液進行測試
首先,製備無細胞溶液 (Cell-Free Solution,縮寫為CFS) (含有細菌之代謝物)。此外,當益生菌分解纖維並將纖維轉化為代謝物時,該代謝物就是後生元 (Postbiotics)。讓菌落LP1 (陽性對照組1)、LP2 (陽性對照組2)、LP5、LP19、PTA22、PAL44和SL45在MRS培養液或FAB培養液中,於37°C下培養48小時,並以5000 rpm離心後,分別收集菌落的上清液。
接著,上述的致病菌也分別在37°C下培養,直至致病菌的濃度分別達到1 ×10 8CFU/mL後,將100 μL的上述致病菌的菌液均勻地鋪盤在胰蛋白酶大豆瓊脂 (Tryptone Soy Agar; TSA) 培養基上,靜置10分鐘。然後,使用微量吸管 (tips) 在胰蛋白酶大豆瓊脂培養基點出幾個孔,然後,再將100 mL的上述菌落的菌液加入孔中,且在37°C下培養12小時。
菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45,及其對照組包括在內的無細胞溶液的抑制區 (inhibitory zones) 的測量直徑,列於下表6中。本實驗的目的在於測試孔中的無細胞溶液 (CFS) 抑制培養基上的致病菌生長的能力,因此,抑制區 (inhibitory zones) 的測量直徑越大表示無細胞溶液 (CFS) 的抗菌效果越好。在表6中,菌落LP1、LP2、LP5、LP19和PTA22的無細胞溶液 (CFS) 表現出顯著的抑制活性。
表6:菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的無細胞溶液 (CFS) 的抑制區的測量直徑,其中包括其陰性對照組。
抑制區的 測量直徑 (mm) *ddH 2O *AP *KM LP1 LP2 LP5 LP19 PTA22 PAL44 SL45
腸沙門氏菌 8 8 16 17 16 15 15 17 8 8
松內志賀氏菌 8 12 20 17 16 15 15 17 8 8
肺炎克雷伯菌 8 8 20 17 18 17 19 19 8 8
肺炎鏈球菌 8 8 20 18 18 17 17 17 8 8
蠟狀芽孢桿菌 8 8 20 16 14 14 15 16 8 8
金黃色葡萄球菌 8 19 23 23 18 12 23 24 8 8
銅綠假單胞菌 8 8 20 15 15 15 16 15 8 8
大腸桿菌 (ETEC) 8 8 17 14 15 15 14 15 8 8
* ddH 2O:陰性對照組,僅包含ddH 2O,孔中未添加菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45。 * AP:氨芐青黴素 * KM:卡那黴素
抗菌活性分析 - 最低抑 菌濃度和最小細菌濃度
最低抑菌濃度 (Minimum inhibitory concentration,縮寫為MIC) 是指細菌在培養後,可以阻斷致病菌的生長且可以觀察到抗菌效果的最低濃度。最低抑菌濃度 (MIC) 越低表示對致病菌的抑制效果越好。
首先,分別製備菌落LP1、LP2、LP5、LP19和PTA22的無細胞溶液 (CFS)。在營養培養液中培養菌落,並且在37 ℃ 下振盪48小時後,以5000 rpm離心後,收集經培養的菌落的上清液,即為無細胞溶液 (CFS)。接著,在具有營養培養液的96孔盤上,將每種無細胞溶液 (CFS) 序列稀釋為256、128、64、32、16、8、4、2、1、0.5、0.25、0.125 μL/mL 的濃度。此外,96孔盤的營養培養液中還包括256、128、64、32、16、8、4、2、1、0.5、0.25、0.125μg/mL氨芐青黴素或卡那黴素的營養培養液,作為陽性對照組。
接著,將100 µL的無細胞溶液 (CFS) 和100 µL的致病菌菌液分別添加到96孔盤的每個孔中。因此,96孔盤的每個孔的總體積為200 µL。其中,用於本實驗的致病菌包括腸沙門氏菌、松內志賀氏菌、肺炎克雷伯菌、肺炎鏈球菌、蠟狀芽孢桿菌、金黃色葡萄球菌、銅綠假單胞菌和大腸桿菌。
類似地,將100 µL含有氨芐青黴素或卡那黴素的營養培養液,以及100 µL的致病菌菌液分別加入到96孔盤的每個孔中。因此,96孔盤的每個孔的總體積為200 µL。
然後,記錄每個孔中OD 600的初始值。隨後,將96孔盤在37 ℃下培養24小時,並重新記錄OD 600值,以確定上述每個菌落的最低抑菌濃度 (MIC)。
最後,將低於MIC之接下來三個濃度的無細胞溶液 (CFS) 取100 µL,並塗盤於營養瓊脂培養基上,接著,將營養瓊脂培養基於37° C下培養48-72小時,其中,在營養瓊脂培養基上沒有菌落生長的無細胞溶液的濃度即被確定為最小細菌濃度 (minimum bacterial concentration,縮寫為MBC)。
測定的上述菌落的最低抑菌濃度 (MIC) 和最小細菌濃度 (MBC) 分別列於下表7和8中。在表7和表8中,菌落PTA22對蠟狀芽孢桿菌和金黃色葡萄球菌具有較好的抑制活性。
表7:菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的最低抑菌濃度 (MIC)。
致病菌 恩諾 沙星 氨芐 青黴素 卡那 黴素 LP1 LP2 LP5 LP19 PTA22
濃度 (µg/mL) 濃度 (µL/mL)
腸沙門氏菌 <0.125 N 64 32 32 32 32 32
松內志賀氏菌 <0.125 8 16 32 32 32 32 32
肺炎克雷伯菌 32 N 32 32 32 32 32 32
肺炎鏈球菌 0.25 N 8 32 32 32 32 32
蠟狀芽孢桿菌 8 N 256 32 32 32 32 16
金黃色葡萄球菌 1 0.5 4 16 16 32 32 16
銅綠假單胞菌 16 N 8 32 32 32 32 32
大腸桿菌 4 N 64 32 32 32 32 32
表8:菌落 LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的最小細菌濃度 (MBC)。
致病菌 恩諾 沙星 氨芐 青黴素 卡那 黴素 LP1 LP2 LP5 LP19 PTA22
濃度 (µg/mL) 濃度 (µL/mL)
腸沙門氏菌 <0.125 N 128 32 32 32 32 32
松內志賀氏菌 <0.125 16 64 32 32 64 32 32
肺炎克雷伯菌 32 N 64 32 32 64 32 64
肺炎鏈球菌 0.5 N 16 32 32 32 32 32
蠟狀芽孢桿菌 8 N >256 32 64 64 16 32
金黃色葡萄球菌 1 1 8 32 32 32 32 16
銅綠假單胞菌 16 N 16 64 32 64 64 64
大腸桿菌 8 N 128 64 32 32 64 64
[ 抗菌活性分析 - 抗生素敏感性測試 ]
為了測試細菌對抗生素的敏感性,實驗方案如下,其中抗生素例如為氨基糖苷類抗生素 (Aminoglycosides antibiotics)、磺胺類抗生素 (Sulfonamide antibiotics)、喹諾酮類抗生素 (Quinolone antibiotics)、氨芐青黴素 (Ampicillin)、頭孢噻肟 (Cefotaxime)、氯黴素 (Chloramphenicol)、紅黴素 (Erythromycin)、立放黴素 (Rifampicin) 和四環黴素 (Tetracycline)。進一步地,喹諾酮類抗生素包括環丙沙星 (Ciprofloxacin),氨基糖苷類抗生素包括卡那黴素和萬古黴素 (Vancomycin),磺胺類抗生素包括磺胺甲噁唑 (Sulfamethoxazole)。利用營養培養液將上述抗生素序列稀釋為256、128、64、32、16、8、4、2、1、0.5、0.25、0.125 μg/mL,並分別加入96孔盤中,且96孔盤的每孔中的抗生素溶液的體積為100 μL。接著,將100 μL的待測菌落LP1、LP5、LP19、PTA22、PAL44和SL45的菌液分別加入96孔盤的每個孔中,如此一來,96孔盤的每個孔內的溶液的總體積為200 μL。並且,記錄每個孔在600 nm (OD 600) 的初始吸光度。然後,將96孔盤置於37 ℃ 下,培養24小時。接著,再次測量每個孔的OD 600以確定最小抑制濃度。抗生素敏感性測試結果如下表9所示,在表9中,申請人還列出了來其他已發表文獻的其他植物乳桿菌 (L.pl 24-2L、L.pl 24-2L、L. plantarum 299 和 L. plantarum 299v) 的數據。
如表9所示,卡那黴素、磺胺甲噁唑和萬古黴素對菌落LP1、LP2、LP5、LP19和PTA22的最低抑制濃度相當地高 (> 256 μg/mL)。環丙沙星對菌落 LP1、LP2、LP5、LP19 和 PTA22 的最低抑制濃度次高 (> 128 μg/ mL)。這些結果顯示,菌落LP1、LP2、LP5、LP19和PTA22對環丙沙星、卡那黴素、磺胺甲噁唑和萬古黴素具有抗性。並且,與歐洲食品安全局 (European Food Safety Authority,縮寫為EFSA) 的MIC突破種 (breakpoints species) L. plantarum (列在表9的最後一列) 相比,菌落PTA22對氯黴素、卡那黴素和四環素具有更高的耐受性,但對氨芐青黴素具有更高的敏感性。
表9:菌落LP1、LP2、LP5、LP19和PTA22的最低抑制濃度 (µg/mL),以及其他已發表文獻的其他植物乳桿菌 (L. pl 24-2L、L. pl 24-2L、L. plantarum 299和 L. plantarum 299v) 的數據
抗生素 LP1 LP2 LP5 LP19 PTA22 L. pl 24-2L L. pl 24-5D L. plantarum 299 L. plantarum 299v EFSA MIC 突破種 L. plantarum
氨芐青黴素 0.125 0.25 0.25 0.25 0.5 0.38 1 0.094 0.094 4
頭孢噻肟 < 0.125 < 0.125 < 0.125 < 0.125 < 0.125 N N 0.094 0.094 N
氯黴素 8 8 16 16 32 4 6 2 2 8
環丙沙星 256 128 128 256 256 N N N N N
紅黴素 1 2 2 2 4 0.75 0.75 0.75 1 4
恩諾沙星 64 64 64 64 64 N N N N N
卡那黴素 >256 >256 >256 >256 >256 32 48 >256 >256 64
立放黴素 1 1 1 2 2 N N N N N
磺胺甲噁唑 >256 >256 >256 >256 >256 N N N N N
四環黴素 32 32 32 32 64 N N N N 32
萬古黴素 >256 >256 >256 >256 >256 >256 >256 >256 >256 Not required
1. LP和PTA22: Lactiplantibacillus Plantarum2. L. pl 24-2 and LL. pl 24-5D ( Lactiplantibacillus Plantarum) :參考自 Georgieva et al.,2015. (Georgieva, R., Yocheva, L., Tserovska, L., Zhelezova, G., Stefanova, N., Atanasova, A., & Karaivanova, E. (2015). Antimicrobial activity and antibiotic susceptibility of Lactobacillus and Bifidobacterium spp. intended for use as starter and probiotic cultures. Biotechnology & Biotechnological Equipment, 29(1), 84-91.) 3. L. plantarum299 and L. plantarum299v ( Lactiplantibacillus Plantarum) :參考自 Klarin et al.,2019. (Klarin, B., Larsson, A., Molin, G., & Jeppsson, B. (2019). Susceptibility to antibiotics in isolates of Lactobacillus plantarum RAPD‐type Lp299v, harvested from antibiotic treated, critically ill patients after administration of probiotics. MicrobiologyOpen, 8(2), e00642. 4. N:Not specified/tested 5. EFSA:歐洲食品安全局 (European Food Safety Authority) (EFSA (2005). Opinion of the scientific panel on additives and products or substances used in animal feed on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance. The EFSA Journal, 223, 1–12.) [ 附著力測試 - 疏水性 (Hydrophobicity)]
在益生菌在胃腸道中定殖 (colonization) 時,第一步便是將細菌附著到宿主的細胞組織上,其中,疏水性決定了細菌的粘附能力,益生菌的附著能力係決定益生菌能否在兔子的胃腸道中茁壯成長的關鍵。因此,附著力測試中的疏水性實驗設計如下。
將菌落LP1、LP2、LP5、LP19和PTA22的細菌經過夜培養後,再將這些菌液以5000 g的轉速離心15分鐘。接著,使用4 °C (低溫) 的無菌磷酸鹽緩衝生理鹽水 (Phosphate buffered saline,縮寫為PBS) 溶液來清洗離心後的菌塊 (pellets),並且,再次重複離心步驟和清洗步驟。然後,使用PBS溶液懸浮 (suspend) 菌塊 (pellets),並且形成OD 600= 1.0的初始菌液 (標示為 H1)。
將0.6 mL的有機溶劑加入至3 mL的初始菌液中,並震盪 (vortex) 2分鐘以形成混合菌液,並將混合菌液置於室溫下反應。接著,小心地除去下層的水相層液體後,測量上層有機層的OD 600值 (標示為H2)。上述的有機溶劑為正十六烷 (n-hexadecane)、二甲苯 (Xylene) 或甲苯 (Toluene)。另外,疏水性的百分比 (Hydrophobicity %) 可以利用下列的公式 (1)計算。
Figure 02_image001
(1)
圖4和表10呈現了疏水性的測試結果。一般來說,細菌的疏水性與細菌對腸壁的親和性 (affinity) 有關,因此疏水性高的細菌可以很好地附著在腸壁上。如圖4所示,在菌落LP5、LP19和PTA22中,只有菌落LP19的疏水性高於10%,因此,疏水性的測試結果顯示菌落LP5、LP19和PTA22在兔子腸壁的附著力相對不足。
表10:疏水性的測試結果
有機溶劑 LP1 LP2 LP5 LP19 PTA22
正十六烷 (%) 8.72 16.89 4.20 9.80 6.54
二甲苯 (%) 7.45 13.74 6.61 11.36 8.55
甲苯 (%) 9.26 10.90 6.14 10.99 7.70
[ 附著力測試 自聚集 (Auto-Aggregation)]
除了疏水性外,細菌的自聚集 (auto-aggregation) 能力對細菌與腸細胞的附著也具有重要的影響。因此,下一步即是測試菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的自聚集能力。
製備10 mM的PBS溶液。將PBS溶液的pH值調至pH = 7.4,然後將PBS溶液滅菌備用。分別取MRS瓊脂培養基的單個菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45,置入3 mL的MRS培養液中,於37 °C下振盪培養16小時。接著,將菌液以6000 rpm離心10分鐘,除去上清液後,用前述的PBS溶液清洗菌塊 (pellets),並且使用PBS溶液懸浮菌塊 (pellets),以形成 OD 600= 0.600  的初始菌液 (標示為 A1)。
初始菌液在37 ℃下培養,並且於培養1、3、6、24小時後測量其OD 600值 (分別標示為A2)。因此,可以通過下列的公式 (2) 計算自聚集率 (Auto-aggregation %)。
Auto-aggregation
Figure 02_image003
(2)
圖5係分別顯示菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的自聚集的測試結果。如圖5所示,菌落PAL44和SL45的自自聚集率明顯地高於較其他菌落,且在大約3小時的時候,菌落PAL44和SL45的自聚集率已達到90 %,而其他的菌落PL1、PL2、PL5、PL19和PTA22的自聚集率在24小時的時候,才達到90 %,據此,這些菌落PL1、PL2、PL5、PL19和PTA22的自聚集率並沒有表現顯著的差異。根據論文(AIMS Microbiol. 2018; 4(1): 140-164.) 的作者Jack C. Leo 等人的說法,自聚集是生物膜形成的條件之一,也是腸壁附著能力的評價指標之一。如圖5所示,菌落PTA22在24小時的自聚集率約為90 %,因此,菌落PTA22通過胃 (3-6小時)、十二指腸和迴腸 (約1小時) 後,菌落PTA22可以有效地在盲腸形成生物膜,並且在盲腸中定殖 (colonization)。 [ 附著力測試 - 共聚集 (Co-Aggregation)]
共聚集 (Co-aggregation) 會防止致病菌附著於宿主組織上,以避免致病菌定殖於胃腸道中。因此,接著,進行共聚集測試,以瞭解細菌 (即菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45) 的共聚集能力。
分別取MRS瓊脂培養基的單個菌落LP1、LP2、LP5、LP19和PTA22,且分別在3 mL的MRS培養液中在37°C下,振盪培養16小時。將上述菌液與等量的致病菌混合,然後震盪 (vortex) 30秒,形成混合菌液。然後,將混合菌液在37 ℃下培養1、3、6、24小時後,測量其OD 600值 (標記為Am)。共聚集可以透過下列公式 (3) 計算共聚集率。於公式 (3) 中,除上述Am外,A1為上述菌液的OD 600值,A2為致病菌的OD 600值。
共聚集 =
Figure 02_image005
(3)
圖6A-6E係分別顯示菌落LP1、LP2、LP5、LP19和PTA22的共聚集的測試結果,且在圖6A-6E中,致病菌的簡稱請見下表11。由測試結果可知,植物乳桿菌LP1、LP2、LP5、LP19、PTA22與金黃色葡萄球菌、肺炎鏈球菌、蠟狀芽孢桿菌和大腸桿菌的共聚集率較高,而其中以菌落PTA22的共聚集率最高。另外,菌落LP1、LP2、LP5、LP19和PTA22皆可以有效地抑制金黃色葡萄球菌、肺炎鏈球菌、蠟狀芽孢桿菌和大腸桿菌的生長。
表11:致病菌的縮寫
致病菌 縮寫 革蘭氏染色
Staphylococcus aureus(金黃色葡萄球菌) S.a +
Salmonella enterica(腸沙門氏菌) Sal -
Shigella sonnei(志賀氏菌) Shi -
Streptococcus pneumoniae(肺炎鏈球菌) S.p +
Klebsiella pneumoniae(肺炎克雷伯菌) K.p -
Bacillus cereus(蠟狀芽孢桿菌) B.c +
Escherichia coli (ETEC)(大腸桿菌) E.c -
Pseudomonas aeruginosa(銅綠假單胞菌) P.a -
綜合以上所述,菌落PTA22的細菌具有以下特徵:首先,菌落PTA22 對酸的耐受性較強,但對膽鹽的耐受性較低。在降解酶活性分析中,菌落PTA22的在羧甲基纖維素酶、木聚醣酶、果膠酶和蛋白酶具有較好的性能,即植物乳桿菌的菌落PTA22可以在含有果膠和短鏈脂肪酸的培養基中生長,因此,可以將果膠和短鏈脂肪酸添加到兔子的飼料中。而在上述附著力測試中,疏水性 (%) 和自聚集率 (%) 並不高,如此一來,菌落PTA22可與食糜一起被傳送至盲腸中,並在盲腸或大腸中時,菌落PTA22發揮在羧甲基纖維素酶和木聚醣酶的活性。在抗菌活性分析中,菌落PTA22的無細胞溶液 (CFS) 對多種致病菌表現出抗菌活性,其中,與氨芐西林相比,PTA22不受β-內醯胺酶 (β-lactamase) 的限制,具有更廣泛的抗菌活性;而與卡那黴素相比,PTA22對腸沙門氏菌、松內志賀氏菌、蠟狀芽孢桿菌、大腸桿菌具有更明顯的抗菌活性。因此,PTA22可用作成年兔子的益生菌。
此外,菌落PTA22已於2021年5月24日,在NITE專利微生物寄存中心 (NPMD) 寄存,寄存編號為BP-03477。 [PTA22 的草酸降解活性 ]
兔子吃的飼料中鈣含量過高會導致兔子攝入過多的鈣,而身體會將攝取的多餘的鈣透過尿液排出體外,即尿鈣 (calciuria)。然而,長期尿鈣會對兔子的腎臟造成負擔,嚴重時可能會引起結石 (calculus),甚至導致腎功能衰竭。因此,對於兔子來說,益生菌是否具有降解草酸的能力相當地重要。以下實驗便是測試PTA22是否具有降解草酸的能力。
實驗分為兩組,第一組:PTA22在MRSOx中培養,MRS培養液含有10 mM/L草酸鈉,第二組:MRSOx與Mn 2+,MRS培養液含有10 mM/L草酸鈉和5 mM/L的MnCl 2。草酸鹽的濃度使用草酸鹽測量試劑 (Abcam,UK),未用來培養的MRSOx作為陰性對照組。此外,本實驗是以文獻 (intestinal lactic acid bacteria in dogs and cats (J.S. Weese et al., 2004)) 作為參考。
請參閱圖7,圖7係顯示PTA22在沒有Mn 2+和有Mn 2+的情況下的草酸降解活性。在沒有Mn 2+的情況下,48小時草酸降解率達到9.33 %,PTA22具有降解草酸的活性。由於Mn 2+會催化草酸降解反應,添加Mn 2+後,草酸的降解率在每個時間點都有所提升,尤其是在48小時的時候,達到28.66 %。
根據文獻,Oxalate degradation by intestinal lactic acid bacteria in dogs and cats (J.S. Weese et al., 2004),PTA22的草酸降解活性顯著高於野生型 (wild type) 的草酸降解活性。因此,PTA22具有草酸降解活性。 [PTA22 的抗壓能力 - 酸耐受 性和膽鹽耐受性 ]
請參閱圖8A-8B,圖8A係分別為PTA22在pH 3.0、2.0、1.0、0.5 % 膽鹽和1.0 % 膽鹽的壓力耐受性測試結果;圖8B為在不同pH值下,分別在1、10、20、30、60、180和360分鐘的PTA22的活菌數。圖8A顯示,PTA22在pH值 = 3.0、2.0及1.0時,沒有抗酸性活性,並且活菌數隨時間減少。此外,PTA22 也不耐受於1.0 % 的膽鹽環境中。圖8B顯示,PTA22在pH = 6.0、5.0及4.0的環境中仍能持續生長。然而,PTA22從pH = 3.0開始沒有酸耐受性活性,且活菌數從pH = 3.0開始下降。
由於兔子的胃酸環境可以達到pH = 1.0,且兔子屬於後腸發酵,因此,益生菌存在於兔子消化道中的環境非常關鍵。但是,PTA22的酸耐受性及膽鹽耐受性稍有不足,因此,在製造過程中,將PTA22製成兔子可以食用的形式相當的重要。
為了能夠提供更好的抗菌性,以幫助成年兔子在進食時分解纖維,PTA22可以被製成任何可以被兔子食用的形式。此外,為了解決PTA22的酸耐受性和膽鹽耐受性的問題,將PTA22與其他賦形劑 (excipients) 混合作為凍乾保護劑 (lyoprotectants)。以下為對作為凍乾保護劑之各種材料進行測試實驗。 [ 單一材料 - PTA22 的凍乾粉的製備 ]
由於兔子日常飲食中所需的主要營養素為纖維素、蛋白質、碳水化合物、維生素及礦物質,因此,本發明針對某些材料進行實驗,以評估這些材料是否可以作為凍乾保護劑 (lyoprotectants)。
首先,介紹材料。可以與PTA22混合而製成兔子可食用的食物的材料大致可分為4類:蛋白質、碳水化合物、具高生物價蛋白質的生物材料 (biological materials with high biological value protein) 和醣醇。
所述的蛋白質包括脫脂牛奶 (skim milk)、乳清蛋白 (whey protein)、大豆蛋白 (soybean protein) 和豌豆蛋白 (pea protein)。碳水化合物包括單醣 (monosaccharides)、雙醣 (disaccharides)、多醣 (polysaccharides) 和寡醣 (oligosaccharides)。單醣包括甘露醣 (mannose) 和鼠李醣 (rhamnose)。雙醣包括蔗糖 (Sucrose) 和海藻醣 (Trehalose)。寡醣包括菊粉 (inulin)、木寡醣 (xylo-oligosaccharides)和果寡醣 (fructo-oligosaccharides)。
具高生物價蛋白質的生物材料是指生物體所食用的能夠保留在生物體內以滿足生長和/或維持所需,以降低飼料轉化率 (feed conversion rate,縮寫為FCR) 的生物材料。具有高生物價值蛋白質的生物材料包括辣木葉 (Moringa oleifera) 及小球藻 (Chlorella pyrenoidosa),辣木葉及小球藻提供高生物價蛋白質和維生素。此外,將生物材料製成粉末,在實驗或製備過程中可以更容易地稱重。
此外,重量/體積百分比為2.5 % (wt/vol %) 的麩胺酸鈉 (sodium glutamate)、1 wt/vol %的黃原膠 (Xanthan gum) 和1 wt/vol % 的阿拉伯膠 (gum Arabic) 也是在測試中使用的測試單一材料。此外,使用10 wt/vol % PBS溶液作為陰性對照組。
接著,每種材料的製備濃度如下所示。實際上,實驗中使用了5-15 wt/vol % 的蛋白質,因為超過15 wt/vol % 的蛋白質存在過飽和的問題。實驗中使用了5-20 wt/vol % 的碳水化合物,因為超過20 wt/vol %的碳水化合物存在過飽和的問題。
此外,具高生物價蛋白質的生物材料在製備兔子食物時,具有賦形劑的功能。其中,根據實驗結果,5-10 wt/vol %的具高生物價蛋白質的生物材料的賦形效果較佳。
接著,將1 mL的上述的單一材料與PTA22的菌塊 (pellets) 混合。透過將PTA22菌塊 (pellets) 懸浮於10 mM PBS溶液中,然後,PTA22的濃度測量是以測量PTA22菌液的OD 600來估計的。當OD 600= 1.00 ± 0.02時,便可以對PTA22菌液進行凍乾測試。將冷凍乾燥機在 -40 ℃、12 Pa下,預冷30分鐘後,將PTA22菌液與單一材料混合的液體在-40 ℃ 下冷凍,且冷凍乾燥10小時,以製成凍乾菌粉 (freeze-dried bacterial powder)。然後,將PTA22菌液與單一材料混合的凍乾菌粉保存於4 °C,直至下一步的測試。 [ 單一材料 - 凍乾存活率 測試 ]
將凍乾菌粉 (freeze-dried bacterial powder) 重新溶解在PBS溶液中,且定量至1 mL以製成菌液。用PBS溶液序列稀釋100 µL的菌液,然後塗盤於培養基上,並於37 ℃下進行培養。培養後,菌液的CFU/mL (標示為N1)以下列的公式 (4) 計算。公式 (4) 中,N0表示凍乾前菌液的CFU/mL,N1表示凍乾後菌液的CFU/mL。
凍乾存活率 (Freeze-dried Survival rate (%)) =
Figure 02_image007
(4)
如圖9所示,與醣類或蛋白質混合的PTA22具有更好的抗凍乾能力,其中,特別是PTA22與10 wt/vol %的海藻糖、10 wt/vol % 的脫脂牛奶或10 wt/vol % 的山梨糖醇混合後,其凍乾存活率高達70 % 以上,其次,將PTA22與10 wt/vol % 蔗糖、10 wt/vol % 鼠李糖或 10 wt/vol % 甘露糖混合後,其凍乾存活率可達 60 % 以上。 [ 單一材料測試 - 凍乾菌粉的酸耐 受性 ]
將上述的凍乾菌粉分別加入3 mL的MRS培養液中,且各條件如下:(1) pH=3.0的MRS培養液;(2) pH=2.0的MRS培養液;(3) pH=1.0的MRS培養液。接著,分別在1、30、60、180和360分鐘時,取培養後的100 µL的菌液,且將菌液以8000 rpm 離心30秒後,去除上清液。然後,用100 µL的10 mM PBS溶液清洗菌塊 (pellets),再將懸浮溶液以8000 rpm離心30秒後,去除上清液。加入100 µL的10 mM PBS溶液以懸浮菌塊 (pellets),並用10 mM PBS溶液序列稀釋菌液,接著,將稀釋後的菌液塗盤於MRS瓊脂培養基上,以37 ℃培養3天。最後,計算酸耐受性測試的CFU/mL。
此外,本實驗更包括酸耐受性測試的對照組。將0.1 g凍乾菌粉定量至1 mL,以10 mM PBS溶液作為菌液,再取100 µL菌液進行序列稀釋,並塗盤於MRS瓊脂培養基上,以37 ℃培養後,計算酸耐受性測試對照組的CFU/mL。
圖10A-10C分別顯示了凍乾菌粉在pH 3.0、2.0和1.0下的酸耐受性測試結果。如圖10A-10C所示,單一材料 (例如10 wt/vol % 果寡糖、10 wt/vol % 果寡糖、10 wt/vol % 寡醣、2.5 wt/vol % 麩胺酸鈉、10 wt/vol % 脫脂牛奶、10 wt/vol % 乳清蛋白和 5 wt/vol % 辣木葉 ) 可以幫助 PTA22 在酸性環境 (pH 3) 中生長。並且,20 wt/vol % 的麥芽糊精和 10 wt/vol % 的木寡糖,可以幫助 PTA22 在酸性環境 (pH=1.0) 中仍然維持一定的活菌量。
由於,兔子胃酸為pH = 1.0至1.5,並且,食物在兔子攝入後約360分鐘才會通過胃,因此,於本實驗中,pH為1.0及360分鐘的數據最接近兔子的攝食情況,因此,對於兔子產品的後續開發而言,10 wt/vol % 的果寡糖和 5 wt/vol % 的辣木葉相當地重要。 [ 單一材料 - 凍乾菌粉 的膽鹽耐受性 ]
將上述凍乾菌粉分別加入3 mL的MRS培養液中,且各條件如下:(1)含有0.1 % 膽鹽的MRS培養液;(2) 含有0.05 % 膽鹽的MRS培養液。接著,分別在1、30、60、180和360分鐘時,取100 µL的菌液。將菌液以8000 rpm離心30秒後,去除上清液,再用100 µL的10 mM PBS溶液清洗菌塊 (pellets)。然後,將懸浮溶液以8000 rpm 離心30 秒,去除上清液後,加入 100 µL的10 mM PBS溶液以懸浮菌塊 (pellets),並用10 mM PBS溶液系列稀釋菌液。將稀釋後的菌液塗盤於MRS瓊脂培養基上,以37 ℃ 培養3天。最後,計算膽鹽耐受性測試的CFU/mL。
此外,本實驗更包括膽鹽耐受性測試的對照組。將0.1 g凍乾菌粉定量至1 mL,以10 mM PBS溶液作為菌液,取100 µL菌液進行系列稀釋,並塗盤於MRS瓊脂培養基上,以37 ℃培養後,計算膽鹽耐受性測試對照組的CFU/mL。
圖11A-11B係分別顯示凍乾菌粉於0.5 % 膽鹽和1.0 % 膽鹽的膽鹽耐受性的測試結果。如圖11A-11B所示,大豆蛋白和豌豆蛋白等蛋白質,果寡糖和木寡糖等寡醣,以及辣木葉和小球藻等具高生物價蛋白質的生物材料,幫助了PTA22提升了膽鹽耐受性。值得一提的是,20 wt/vol % 的麥芽糊精還可以保護PTA22免受膽鹽耐受性的影響。 [ 組合物 用於製備 PTA22 凍乾粉的凍乾保護劑 ]
根據上述凍乾、酸耐受性和膽鹽耐受性的實驗數據,部分的單一材料,例如大豆蛋白、豌豆蛋白、果寡糖、木寡糖及辣木葉,可以幫助PTA22在酸的環境下存活。此外,蛋白質、寡醣和高生物價蛋白質的生物材料幫助PTA22在膽鹽耐受性測試中有良好的表現。因此,進一步,進行組合上述材料的各種組合物的實驗。各種組合物列於下表12中。
表12:PTA22的各種組合物
蛋白質 (wt/vol%) 生物材料 (wt/vol%) 寡醣 (wt/vol%) 縮寫
5-10 % 大豆蛋白 5-10 % 辣木葉 10-20 % 木寡糖 5% BMX 或 10%
10-20 % 果寡糖 5% 或 10% BMF
5-10 % 小球藻 10-20 % 木寡糖 5% 或 10% BCX
10-20% 果寡糖 5% 或 10% BCF
10 % 脫脂牛奶 5 % 辣木葉 10% 木寡糖 SMX
10% 果寡糖 SMF
10 % 小球藻 10 % 木寡糖 SCX
10 % 果寡糖 SCF
10 % 乳清蛋白 5 % 辣木葉 10 % 木寡糖 WMX
10 % 果寡糖 WMF
10 % 小球藻 10 % 木寡糖 WCX
10 % 果寡糖 WCF
5 -10 % 豌豆蛋白 5 % 辣木葉 10 % 木寡糖 5 % 或 10 % PMX
10 % 果寡糖 5 % 或 10 % PMF
10 % 小球藻 10 % 木寡糖 5 % 或 10 % PCX
10 % 果寡糖 5 % 或 10 % PCF
10 % 脫脂牛奶 10 % 乳清蛋白 10 % 小球藻 10 % 果寡糖 10 % 木寡糖 10 % SWCFX
5 % 脫脂牛奶 10 % 乳清蛋白 10 % 小球藻 10 % 果寡糖 10 % 木寡糖 5 % SWCFX
組合物和PTA22的配方描述如下:以SMF為例,取10 g脫脂牛奶、10 g辣木葉和10 g果寡糖,加入ddH 2O至100 mL。最後,將1 mL的SMF 與定量的PTA22混合後,進行冷凍乾燥。 [ 組合物 - 凍乾測試 ]
測試上述的組合物與PTA22混合後的凍乾耐受性。凍乾耐受性測試的實驗方案在前面的內容中已描述,在此不再贅述。如圖12所示,與單一的凍乾保護劑相比,於凍乾耐受性測試中,含有PTA22的組合物具有大於60 % 的相對穩定的凍乾存活率。基於草食動物的食物配方,BMF、BMX、BCF、BCX、PMF、PMX、PCF和PCX是更好的選擇。 [ 組合物 - 酸耐受 性測試 ]
測試上述組合物與PTA22混合的酸耐受性性。酸耐受性測試的實驗方案在前面的內容中已描述,在此不再贅述。圖13A-13C分別顯示了含有PTA22的組合物在pH值為3.0、2.0和1.0下的酸耐受性測試結果。
如圖13A-13C所示,所有組合物與PTA22混合後,PTA22的酸耐受性性有顯著的改善。其中,將圖8A-8B與圖13A-13C比較,BMF在pH值為3.0、2.0和1.0的條件下,仍具有隨著時間持續增長的活菌數,特別是pH值為1.0且360分鐘的條件下,與其他組合物相比,BMF與PTA22混合的酸耐受性性效果最為顯著。因此,BMF對幫助PTA22在酸性環境中持續生長的效果最好。 [ 組合物 膽鹽耐受 性測試 ]
測試上述組合物與PTA22混合的膽鹽耐受性。膽鹽耐受性測試的實驗方案在前面的內容中已描述,在此不再贅述。圖14A-14B係分別顯示含有PTA22的組合物分別在和0.5 % 膽鹽和1.0 % 膽鹽環境的膽鹽耐受性的測試結果。
如圖14A-14B所示,在膽鹽耐受性測試中,與沒有任何保護劑的PTA22相比,所有組合物與PTA22混合皆使得PTA22的活菌數有顯著提升,並且,增強了PTA22在壓力下生長的能力。
比較圖8A和圖14A,PTA22無法在0.5 % 的膽鹽環境中持續生長,且PTA22只能維持某一程度的活菌數。然而,如圖8A,與組合物混合的PTA22可以在0.5 % 膽鹽環境中持續生長,並且活菌數高於原始的活菌數。
比較圖8A和圖14B,PTA22無法在1.0 % 膽鹽環境中存活,並且於1.0 % 膽鹽環境30分鐘後,便無法測量到PTA22的活菌數。然而,如圖14B所示,與組合物混合的PTA22可以在1.0 % 膽鹽環境中繼續生長,其中,5-10 % wt/vol BMF、10 wt/vol % BMX、10 wt/vol % BCF、5 % wt/vol PMF、5 wt/vol % PMX和10 wt/vol % PCX等組合物是較好的凍乾保護劑。
此外,除考慮凍乾保護劑是否具有增加PTA22的抗酸耐受性和抗膽鹽耐受性外,還需要考慮後續製備兔子食物的類型、溶解性和粘性。經測試,由5 % 蛋白質 (脫脂牛奶、乳清蛋白、大豆蛋白或豌豆蛋白)、生物材料 (10 % 小球藻或5 % 辣木葉) 和5 % 寡醣 (果寡糖或木寡糖) 組成的組合物具有可溶解性且流動性好等優點,但粘性較差,易崩解。因此,即使含有5 % 蛋白質和5 % 寡醣的組合物有助於PTA22具有良好的酸耐受性,但僅含有5 % 蛋白質和5 % 寡醣的組合物不適合製備兔子的食物。
10 wt/vol % 的蛋白質 (脫脂牛奶、乳清蛋白、大豆蛋白或豌豆蛋白)、生物材料 (10 wt/vol% 小球藻 或 wt/vol 5% 辣木葉) 和 10 wt/vol % 寡醣 (果寡糖或木寡糖) 具有可溶解性且流動性好等優點,並且粘性好,不易崩解。因此,含有10 % 蛋白質和10 % 寡醣的組合物適合用於製備兔子的食物。 [ 其他組合物 - 壓力耐受性測試 (Stress Tolerance Test)]
值得一提的是,如圖12-14B所示,單一材料中的麥芽糊精和大豆蛋白使PTA22在凍乾耐受性、酸耐受性和膽鹽耐受性的能力上有顯著的提升。因此,本發明進一步提供另外一種組合物,其包含20 % 的麥芽糊精、10 % 的大豆蛋白和PTA22。
接著,對包含 20% 麥芽糊精、10% 大豆蛋白和 PTA22 的組合物進行酸耐受性測試和膽鹽耐受性測試。酸耐受性測試方案和膽鹽耐受性測試方案與前述相同,在此不再贅述。
為了模擬益生菌製造過程的環境,以下進行耐熱性測試。耐熱存活率測試的條件如下:(1) 0.05 g的凍乾菌粉在60 ℃下測試30分鐘;(2) 將0.05 g的凍乾菌粉溶於200 µL的10 mM PBS溶液中,以60 ℃進行30分鐘的測試。然後,將不同條件下的凍乾細菌粉末用 10 mM PBS溶液定量至1 mL。每100 µL加熱後的菌液用MRS培養液序列稀釋,以計算CFU/mL (標示為N 4)。
類似地,對控制組的耐熱性進行測試,控制組的處理方式如下:將0.05 g凍乾菌粉定量至1 mL,用10 mM的PBS溶液作為菌液,取100 µL的菌液進行序列稀釋並塗盤於培養基上。培養基在37 ℃下培養後,計算原始菌數CFU/mL (標示為N 3)。
耐熱性存活率以公式(5)計算,其中在公式 (5) 中,N 3表示37℃ (即不加熱) 的菌液的CFU/mL,N 4表示60 ℃ 菌液的CFU/mL。
耐熱性存活率 (Heat-tolerance Survival rate %) =
Figure 02_image009
(5)
圖15A-15B係分別顯示PBS對照組和組合物的酸耐受性測試和膽鹽耐受性測試結果;圖15C顯示了PBS對照組和組合物的耐熱性測試結果。
如圖15A-15B所示,與PBS對照組相比,包含20 wt/vol % 麥芽糊精、10 % 大豆蛋白和PTA22的組合物具有更好的酸耐受性能力和膽鹽耐受性能力。此外,如圖15C所示,在60 ℃且作用30分鐘的條件下,0.05 g的凍乾菌粉的含水量決定了高溫環境下的存活率,並且,凍乾菌粉的存活率高於菌液。 [ 兔子食物的製備 ]
本發明的其中一個目的便是為兔子提供含有益生菌的食物,例如含有益生菌的草餅、片劑、餅乾或顆粒狀食物,以使兔子在進食時,便能夠獲得適當的益生菌進行消化。因此,下一步是將賦形劑與特定成分的組合物混合,以獲得可以適合生產及儲存的兔子食物。
首先,含有PTA22的食物的製備方案如下:PTA22與3 mL的MRS 培養液在37 ℃下培養12小時後,將100 µL的培養後菌液在50 mL的MRS培養液中以37 ℃ 進行繼代培養12小時,以擴增細菌。接著,將繼代培養後的菌液以5000 rpm離心5分鐘,除去上清液。用 10 mM PBS溶液懸浮菌塊 (pellets),並將懸浮的菌液透過OD 600以定量為OD 600= 1.00 ± 0.02。取 1 mL 定量後的菌液置於15 mL離心管中,將定量後的菌液以5000 rpm離心5分鐘,去除上清液。轉移和離心的步驟在同一個15 mL離心管中重複4次,以獲得4倍量的菌塊 (pellets),且分別用4 mL的組合物溶液懸浮菌塊 (pellets)。經測試,PTA22的菌塊 (pellets) 為 (1.00±0.02)×10 12CFU/mL。
然後,用模具稱取2 g賦形劑,所述的賦形劑例如為草粉、藥草粉、蔬菜粉、果粉、澱粉、豆渣、纖維粉或其任意組合,並添加4 mL的組合物溶液後,將具有PTA22的組合物溶液充分混合並壓製成草餅、片劑、餅乾或顆粒狀食物。接著,將草餅在 -20 ℃中冷凍過夜以使其成形,最後,將草餅、片劑、餅乾或顆粒狀食物用冷凍乾燥機在12 Pa、-40 ℃ 的條件下冷凍乾燥10小時,並將草餅、藥片、餅乾或顆粒狀食物放入袋子中,且置於乾燥箱中。
附加一提的是,本製備過程更製備了未添加PTA22的組合物的草餅、片劑、餅乾或顆粒狀食物作為對照組。
表12:每個草餅、片劑、餅乾或顆粒狀食物的各別含量
單位:克(g) 賦形劑 蛋白質 生物材料 寡醣
辣木葉 小球藻 木寡醣 果寡糖
SMF 2 0.02-0.04 0.01-0.02     0.02-0.04
SMX 2 0.02-0.04 0.01-0.02   0.02-0.04  
SCF 2 0.02-0.04   0.01-0.02   0.02-0.04
SCX 2 0.02-0.04   0.01-0.02 0.02-0.04  
WMF 2 0.02-0.04 0.01-0.02     0.02-0.04
WMX 2 0.02-0.04 0.01-0.02   0.02-0.04  
WCF 2 0.02-0.04   0.01-0.02   0.02-0.04
WCX 2 0.02-0.04   0.01-0.02 0.02-0.04  
如上表12所示,上述的營養組合物的蛋白質、生物材料、寡醣和賦形劑的重量比為2-4:1-2:2-4:100,該營養組合物含有 (1.00±0.02) ×10 12CFU/mL的PTA22。
圖16A-16B分別顯示不含PTA22的草餅和含有PTA22的草餅。如圖16A-16B所示,添加的營養組合物而未添加PTA22可以使食物的賦形能力更好,但通過冷凍乾燥製備後,仍容易受到黴菌污染;而含有PTA22的營養組合物不僅提升了兔子食物的賦形能力,並且,含有PTA22的草餅也降低在凍乾過程中受到外源黴菌污染的情況發生。
圖1係顯示菌落LP1、LP5、LP19、PTA22、PAL44和SL45在血瓊脂培養基上的檢測結果; 圖2A-2E係分別顯示菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45在pH=3.0、2.5、2.0、1.5和1.0下的酸耐受性測試結果; 圖3A-3B係分別顯示菌落LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的膽鹽耐受性測試結果; 圖4係分別顯示菌落LP5、LP19、PTA22、LP1和LP2的疏水性測試結果; 圖5係分別顯示菌落 LP1、LP2、LP5、LP19、PTA22、PAL44和SL45的自聚集的測試結果; 圖6A-6E係分別顯示菌落LP1、LP2、LP5、LP19和PTA22的共聚集測試結果; 圖7係顯示菌落PTA22在沒有Mn 2+及有Mn 2+的情況下的草酸降解活性; 圖8A係顯示菌落PTA22分別在pH=3.0、2.0、1.0、0.5 % 膽鹽和1.0 % 膽鹽下的酸耐受性試結果; 圖8B係 顯示菌落PTA22在不同的pH值下,且分別於1、10、20、30、60、180和360分鐘時的活菌數; 圖9係顯示菌落PTA22與各種凍乾保護劑混合後,PTA222的凍乾存活率的結果; 圖10A-10C係分別顯示凍乾菌粉在pH=3.0、2.0和1.0下的酸耐受性性測試結果; 圖11A-11B係分別顯示凍乾菌粉在0.5 % 膽鹽和1.0 % 膽鹽環境中的膽鹽耐受性測試結果; 圖12係顯示菌落PTA22與單一凍乾保護劑和各種組合物混合的比較圖; 圖13A-13C係分別顯示含有益生菌PTA22的組合物在pH=3.0、2.0和1.0下的酸耐受性測試結果; 圖14A-14B係分別顯示含有益生菌PTA22與0. 5% 膽鹽和1.0 % 膽鹽的組合物的膽鹽耐受性測試結果; 圖15C係顯示PBS對照組和組合物的耐熱性測試結果;以及 圖16A-16B係分別顯示不含益生菌PTA22的草餅和具有益生菌PTA22的草餅。
TW202318979A_111132127_SEQL.xml

Claims (14)

  1. 一種來自兔子的植物乳桿菌 ( Lactiplantibacillus Plantarum) 益生菌 (以下稱為益生菌 PTA22), 其中該益生菌PTA22的16S rRNA的基因序列為SEQ ID No: 3,在NITE專利微生物寄存中心 (NPMD)的寄存號為BP-03477; 其中該益生菌PTA22具有草酸降解活性、羧甲基纖維素的消化活性、果膠酶的消化活性、木聚醣酶的消化活性和蛋白酶的消化活性; 其中該益生菌PTA22可以抑制一致病菌的生長,該致病菌包括一蠟狀芽孢桿菌、一金黃色葡萄球菌、一肺炎克雷伯菌、一腸沙門氏菌、一松內志賀氏菌、一肺炎鏈球菌、一銅綠假單胞菌和一大腸桿菌中的至少一種;以及 其中該益生菌PTA22對包括一氨基糖苷類抗生素、一磺胺類抗生素、一喹諾酮類抗生素及其衍生物中的至少一種的抗生素具有抗性。
  2. 如請求項1所述的益生菌,其中該喹諾酮類抗生素包括一環丙沙星,該氨基糖苷類抗生素包括一卡那黴素和一萬古黴素,該磺胺類抗生素包括一磺胺甲噁唑。
  3. 一種用於製備兔子食物的營養組合物,包括: 一益生菌混合物,其包括如請求項1所述的益生菌PTA22、該益生菌PTA22的一後生元或其組合; 一具高生物價值蛋白質的生物材料的水性懸浮溶液; 一寡醣的水溶液;以及 一賦形劑。
  4. 如請求項3所述的用於製備兔子食物的營養組合物,更包含一蛋白質的水溶液。
  5. 如請求項4所述的用於製備兔子食物的營養組合物,其中該蛋白質、該具高生物價值蛋白質的生物材料、該寡醣和該賦形劑的重量比為2-4:1-2:2-4:100,其中該益生菌混合物包括 (1.00±0.02)×10 12CFU/mL的該益生菌PTA22。
  6. 如請求項3所述的用於製備兔子食物的營養組合物,其中該具高生物價值蛋白質的生物材料的水性懸浮溶液係選自5-10 wt/vol % 的辣木葉和5-10 wt/vol % 的小球藻。
  7. 如請求項3所述的用於製備兔子食物的營養組合物,其中該寡醣的水溶液係選自10-20 wt/vol %的木寡糖以及10-20 wt/vol % 的果寡糖所組成的群組之一。
  8. 如請求項4所述的用於製備兔子食物的營養組合物,其中該蛋白質的水溶液係選自5-10 wt/vol % 的脫脂牛奶以及5-10 wt/vol % 的乳清蛋白所組成的群組之一。
  9. 如請求項4所述的用於製備兔子食物的營養組合物,其中所述賦形劑為草粉、藥草粉、蔬菜粉、果粉、澱粉、豆渣、纖維粉或其任意組合。
  10. 如請求項9所述的用於製備兔子食物的營養組合物,其中所述食物的種類包括草餅、片劑、餅乾或顆粒狀食物。
  11. 一種用於降解兔子飲食中草酸的組合物,包括: 有效量之如請求項1所述的益生菌PTA22、該益生菌PTA22的一後生元或其組合; 一組合物,包括一具高生物價值蛋白質的生物材料; 一寡醣的水溶液;以及 一賦形劑。
  12. 如請求項11所述的降解兔子飲食中草酸的組合物,其中該具高生物價值蛋白質的生物材料係選自由5-10 wt/vol % 辣木葉和5-10 wt/vol %小球藻所組成的群組之一。
  13. 如請求項11所述的降解兔子飲食中草酸的組合物,其中該寡醣係選自由10-20 wt/vol % 的木寡糖和10-20 wt/vol % 的果寡糖所組成的群組之一。
  14. 如請求項11所述的降解兔子飲食中草酸的組合物,其中該賦形劑為草粉、藥草粉、蔬菜粉、果粉、澱粉、豆渣、纖維粉或其任意組合。
TW111132127A 2021-08-25 2022-08-25 益生菌pta22、製備兔子食物的營養組合物及降解草酸的組合物 TWI853300B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163237005P 2021-08-25 2021-08-25
US63/237,005 2021-08-25

Publications (2)

Publication Number Publication Date
TW202318979A true TW202318979A (zh) 2023-05-16
TWI853300B TWI853300B (zh) 2024-08-21

Family

ID=

Also Published As

Publication number Publication date
CN117625434A (zh) 2024-03-01
US20230083754A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US10117884B2 (en) Processing of natural polysaccharides by selected non-pathogenic microorganisms and methods of making and using the same
CA2580949C (en) Metabolically active micro organisms and methods for their production
KR100632718B1 (ko) 개선된 미생물 제제
EP2270133B1 (en) Method for obtaining a novel strain of bifidobacterium bifidum with activity against infection by helicobacter pylori
US11026983B2 (en) Bifidobacterium breve CBT BR3 strain for promotion of growth and nutraceutical composition for promotion of growth containing the same
CN116782771A (zh) 用于支持患有胃肠病症的伴侣动物的组合物和相关方法
CN117625434A (zh) 益生菌pta22、制备兔子食物的营养组合物及降解草酸的组合物
AU2016305391B2 (en) Novel Lactobacillus sp. microorganisms, and composition for animal feed comprising same
Goderska et al. Characterization of selected strains from Lactobacillus acidophilus and Bifidobacterium bifidum
KR100707102B1 (ko) 헬리코박터 파이로리 및 유해미생물의 증식을 억제하는 김치 유산균, 이를 이용한 김치의 제조방법 및 이의 용도
US12077749B2 (en) Bifidobacterium longum subsp. infantis with fimbriae and applications thereof
Wongputtisin et al. Prebiotic properties of crude oligosaccharide prepared from enzymatic hydrolysis of basil seed gum
KR100240687B1 (ko) 락토바실러스 애시도필러스 ky 2104 및 그 용도
KR101201338B1 (ko) 신규 락토바실러스 루테리 및 이를 포함하는 사료첨가제 조성물
TWI853300B (zh) 益生菌pta22、製備兔子食物的營養組合物及降解草酸的組合物
KR100868777B1 (ko) Rs3 유형의 저항 전분에 대해 분해능이 있는비피도박테리움 아도레스센티스를 유효성분으로 함유하는것을 특징으로 하는 식품 조성물
EP3833738A1 (en) Probiotic bacteria isolated from wolves and related compositions and methods
Asan-Ozusaglam et al. Investigation of a new Lactobacillus delbrueckii strain from human milk as a probiotic candidate.
KR20220004864A (ko) 프로바이오틱스 관련 효소 분비능, 혈전분해 활성, 항균 활성이 있고, 유해효소 및 유해물질을 생성하지 않는 락토바실러스 플란타룸 srcm101587 균주 및 이의 용도
EP3237600B1 (en) Thermo-stable strains, products and methods thereof
KR102292475B1 (ko) 비피도박테리움 애니멀리스 서브스페시스 락티스 hy8002를 유효성분으로 함유하는 니코틴 금단증상 개선용 식품조성물
JP7469332B2 (ja) フルクトフィリック乳酸産生細菌
KR100827318B1 (ko) 내산 내담즙성이 강하고 항암 활성이 있는 젖산균 및 이를함유한 발효유
CN118648700A (zh) 含有富硒乳杆菌和胚芽米的组合物及菌剂
Ferguson Dietary Polysaccharides Differentially Stimulate the Proliferation of Native Gastrointestinal Bacteria