TW202312230A - Composite substrate and manufacture method - Google Patents

Composite substrate and manufacture method Download PDF

Info

Publication number
TW202312230A
TW202312230A TW110133642A TW110133642A TW202312230A TW 202312230 A TW202312230 A TW 202312230A TW 110133642 A TW110133642 A TW 110133642A TW 110133642 A TW110133642 A TW 110133642A TW 202312230 A TW202312230 A TW 202312230A
Authority
TW
Taiwan
Prior art keywords
layer
silicon
silicon carbide
substrate
silicon substrate
Prior art date
Application number
TW110133642A
Other languages
Chinese (zh)
Other versions
TWI780901B (en
Inventor
曾頎堯
李文中
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW110133642A priority Critical patent/TWI780901B/en
Application granted granted Critical
Publication of TWI780901B publication Critical patent/TWI780901B/en
Publication of TW202312230A publication Critical patent/TW202312230A/en

Links

Images

Abstract

A composite substrate is provided in some embodiments of the present disclosure, including a graphene layer, a silicon carbide layer, a first silicon substrate, an insulation layer and a second silicon substrate. The silicon carbide layer is disposed on the graphene layer. The first silicon substrate is disposed on the silicon carbide layer. The insulation layer is disposed on the first silicon substrate. The second silicon substrate is disposed on the insulation layer. A method of manufacturing a composite substrate is further provided in some embodiments of the present disclosure.

Description

複合基板及其製造方法Composite substrate and manufacturing method thereof

本揭示內容涉及複合基板及其製造方法。The present disclosure relates to composite substrates and methods of making the same.

近來,對於降低氮化鎵微波功率元件的尺寸,以及提升輸出功率的要求逐漸增加。然而,隨著功率元件(例如包含氮化鎵磊晶結構的高頻元件)密度的增加,元件的熱積累迅速增加,降低元件的性能表現,使得元件的可靠性和穩定性受到嚴重挑戰,限制了功率元件之功率的提升。Recently, there has been an increasing demand for downsizing GaN microwave power components and increasing output power. However, as the density of power components (such as high-frequency components containing gallium nitride epitaxial structures) increases, the heat accumulation of the components increases rapidly, reducing the performance of the components, making the reliability and stability of the components severely challenged, and limiting Improve the power of the power components.

因此,如何改善承載功率元件的複合基板的散熱效果,是所欲解決的問題。Therefore, how to improve the heat dissipation effect of the composite substrate carrying power components is a problem to be solved.

本揭示內容之一實施方式的目的在於,提供一種複合基板,包含:石墨烯層;碳化矽層,設置於石墨烯層上;第一矽基板,設置於碳化矽層上;絕緣層,設置於第一矽基板上;以及第二矽基板,設置於絕緣層上。The purpose of one embodiment of the present disclosure is to provide a composite substrate, comprising: a graphene layer; a silicon carbide layer disposed on the graphene layer; a first silicon substrate disposed on the silicon carbide layer; an insulating layer disposed on the on the first silicon substrate; and the second silicon substrate is arranged on the insulating layer.

在一些實施方式中,石墨烯層為多層石墨烯結構。In some embodiments, the graphene layer is a multilayer graphene structure.

在一些實施方式中,複合基板更包含氮化矽層設置於石墨烯層與碳化矽層之間。In some embodiments, the composite substrate further includes a silicon nitride layer disposed between the graphene layer and the silicon carbide layer.

在一些實施方式中,複合基板更包含磊晶多層,設置於第二矽基板上,包含有氮化鎵。In some embodiments, the composite substrate further includes an epitaxial multilayer disposed on the second silicon substrate, including gallium nitride.

本揭示內容之一實施方式的目的在於,提供一種製造複合基板的方法,包含:形成碳化矽層於第一矽基板的第一表面上;形成石墨烯層於碳化矽層上;形成絕緣層於第一矽基板中相對於第一表面的第二表面下;以及鍵合絕緣層與第二矽基板,以獲得複合基板。An object of an embodiment of the present disclosure is to provide a method for manufacturing a composite substrate, including: forming a silicon carbide layer on the first surface of the first silicon substrate; forming a graphene layer on the silicon carbide layer; forming an insulating layer on the under the second surface of the first silicon substrate opposite to the first surface; and bonding the insulating layer and the second silicon substrate to obtain a composite substrate.

在一些實施方式中,在形成石墨烯層於碳化矽層上的步驟之後,更包含步驟:減薄第一矽基板。In some embodiments, after the step of forming the graphene layer on the silicon carbide layer, a step of thinning the first silicon substrate is further included.

在一些實施方式中,形成碳化矽層於第一矽基板的第一表面上的步驟包含步驟:執行化學氣相沉積製程,形成碳化矽層;以及形成石墨烯層於碳化矽層上的步驟包含步驟:加熱碳化矽層,使碳化矽層表面的複數矽原子昇華,以形成石墨烯層。In some embodiments, the step of forming a silicon carbide layer on the first surface of the first silicon substrate includes the steps of: performing a chemical vapor deposition process to form a silicon carbide layer; and the step of forming a graphene layer on the silicon carbide layer includes Step: heating the silicon carbide layer to sublimate a plurality of silicon atoms on the surface of the silicon carbide layer to form a graphene layer.

在一些實施方式中,形成碳化矽層於第一矽基板的第一表面上的步驟包含步驟:執行滲碳爐製程,以形成碳化矽層;以及形成石墨烯層於碳化矽層上的步驟包含步驟:使用含氮氣體,對碳化矽層執行電漿輔助選擇性反應,分別形成氮化矽層於碳化矽層上以及石墨烯層於氮化矽層上。In some embodiments, the step of forming the silicon carbide layer on the first surface of the first silicon substrate includes the steps of: performing a carburizing furnace process to form the silicon carbide layer; and the step of forming the graphene layer on the silicon carbide layer includes Step: using nitrogen-containing gas to perform plasma-assisted selective reaction on the silicon carbide layer, respectively forming a silicon nitride layer on the silicon carbide layer and a graphene layer on the silicon nitride layer.

在一些實施方式中,對碳化矽層執行電漿輔助選擇性反應的步驟包含步驟:使用氮氣,對碳化矽層執行電漿佈植反應,以打斷碳化矽層中的複數碳矽鍵結;以及在含有氮氣以及氫氣的氣體環境中,對碳化矽層執行退火製程,形成氮化矽層於碳化矽層上以及石墨烯層於氮化矽層上。In some embodiments, the step of performing a plasma-assisted selective reaction on the silicon carbide layer includes the step of: performing a plasma implantation reaction on the silicon carbide layer using nitrogen gas to break a plurality of carbon-silicon bonds in the silicon carbide layer; and performing an annealing process on the silicon carbide layer in a gas environment containing nitrogen and hydrogen to form a silicon nitride layer on the silicon carbide layer and a graphene layer on the silicon nitride layer.

在一些實施方式中,在鍵合絕緣層與第二矽基板的步驟之前,包含步驟:形成包含氮化鎵的磊晶多層於第二矽基板的第一表面上;並且鍵合絕緣層與第二矽基板的步驟包含步驟:將絕緣層與第二矽基板中相對於第一表面的第二表面彼此貼合;以及加熱絕緣層與第二矽基板,以鍵合絕緣層與第二矽基板。In some embodiments, before the step of bonding the insulating layer to the second silicon substrate, the steps include: forming an epitaxial multilayer comprising gallium nitride on the first surface of the second silicon substrate; and bonding the insulating layer to the second silicon substrate. The step of the second silicon substrate includes the steps of: adhering the insulating layer and the second surface of the second silicon substrate opposite to the first surface to each other; and heating the insulating layer and the second silicon substrate to bond the insulating layer and the second silicon substrate .

可以理解的是,下述內容提供的不同實施方式或實施例可實施本揭露之標的不同特徵。特定構件與排列的實施例係用以簡化本揭露而非侷限本揭露。當然,這些僅是實施例,並且不旨在限制。舉例來說,以下所述之第一特徵形成於第二特徵上的敘述包含兩者直接接觸,或兩者之間隔有其他額外特徵而非直接接觸。此外,本揭露在複數個實施例中可重複參考數字及/或符號。這樣的重複是為了簡化和清楚,而並不代表所討論的各實施例及/或配置之間的關係。It can be understood that different implementations or examples provided in the following content can implement different features of the subject matter of the present disclosure. The examples of specific components and arrangements are used to simplify the present disclosure and not to limit the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, the description below that a first feature is formed on a second feature includes that the two are in direct contact, or that there are other additional features between the two instead of direct contact. In addition, the present disclosure may repeat reference numerals and/or symbols in several embodiments. Such repetition is for simplicity and clarity and does not imply a relationship between the various embodiments and/or configurations discussed.

本說明書中所用之術語一般在本領域以及所使用之上下文中具有通常性的意義。本說明書中所使用的實施例,包括本文中所討論的任何術語的例子僅是說明性的,而不限制本揭示內容或任何示例性術語的範圍和意義。同樣地,本揭示內容不限於本說明書中所提供的一些實施方式。The terms used in this specification generally have their ordinary meanings in the art and the context in which they are used. The examples used in this specification, including examples of any term discussed herein, are illustrative only and do not limit the scope and meaning of the disclosure or any exemplified term. Likewise, the disclosure is not limited to some of the embodiments provided in this specification.

另外,空間相對用語,如「下」、「上」等,是用以方便描述一元件或特徵與其他元件或特徵在圖式中的相對關係。這些空間相對用語旨在包含除了圖式中所示之方位以外,裝置在使用或操作時的不同方位。裝置可被另外定位(例如旋轉90度或其他方位),而本文所使用的空間相對敘述亦可相對應地進行解釋。In addition, relative terms in space, such as "below" and "upper", are used to conveniently describe the relative relationship between one element or feature and other elements or features in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings. The device may be otherwise positioned (eg, rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

於本文中,除非內文中對於冠詞有所特別限定,否則「一」與「該」可泛指單一個或多個。將進一步理解的是,本文中所使用之「包含」、「包括」、「具有」及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其它的特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。In this article, "a" and "the" can generally refer to one or more, unless the article is specifically limited in the context. It will be further understood that the terms "comprising", "comprising", "having" and similar words used herein indicate the features, regions, integers, steps, operations, elements and/or components described therein, but do not exclude Other features, regions, integers, steps, operations, elements, components, and/or groups thereof.

將理解的是,儘管本文可以使用術語第一、第二等來描述各種元件,但是這些元件不應受到這些術語的限制。這些術語用於區分一個元件和另一個元件。舉例來說,在不脫離本實施方式的範圍的情況下,第一元件可以被稱為第二元件,並且類似地,第二元件可以被稱為第一元件。It will be understood that, although the terms first, second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present embodiments.

於本文中,術語「和/或」包含一個或複數個相關聯的所列項目的任何和所有組合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

於本文中,所使用之「約」一般通常係指數值之誤差或範圍約百分之二十以內,較好地是約百分之十以內,而更佳地則是約百分之五以內。文中若無明確說明,其所提及的數值皆視作為近似值,即如「約」所表示的誤差或範圍。As used herein, "about" generally means within about 20 percent, preferably within about 10 percent, and more preferably within about 5 percent of the error or range of the value of the index . If there is no explicit statement in the text, the values mentioned are regarded as approximate values, that is, the error or range indicated by "approximately".

以下列舉數個實施方式以更詳盡闡述本發明之觸碰裝置,然其僅為例示說明之用,並非用以限定本發明,本發明之保護範圍當以後附之申請專利範圍所界定者為準。Several implementations are listed below to describe the touch device of the present invention in more detail, but they are only for illustrative purposes and are not intended to limit the present invention. The scope of protection of the present invention shall prevail as defined by the scope of the appended patent application .

第1A圖至第1G圖示例性地描述本揭示內容的一些實施方式中製造複合基板100的各製程階段的示意圖。1A to 1G illustrate schematic diagrams of various process stages of manufacturing a composite substrate 100 in some embodiments of the present disclosure.

首先,請見第1A圖,提供第一矽基板110。First, please refer to FIG. 1A , a first silicon substrate 110 is provided.

在一些實施方式中,第一矽基板110包含矽基板、絕緣層上覆矽(Silicon On Insulator;SOI)基板、碳化矽基板、或前述兩者或兩者以上的組合。在一些實施方式中,第一矽基板110的厚度範圍為500微米至1500微米,例如500微米、600微米、700微米、800微米、900微米、1000微米、1100微米、1200微米、1300微米、1400微米、1500微米、或前述任意區間的數值。在一些實施方式中,第一矽基板110的晶格定向包含<100>、<111>或兩者之組合,可視後續所欲生長的磊晶層種類,選擇具有較好晶格匹配性的晶格定向。在一些實施方式中,第一矽基板110的電阻率範圍可以為1x10 -5至1x10 6歐姆公分(Ωcm)。 In some embodiments, the first silicon substrate 110 includes a silicon substrate, a silicon-on-insulator (SOI) substrate, a silicon carbide substrate, or a combination of two or more of the foregoing. In some embodiments, the thickness of the first silicon substrate 110 ranges from 500 microns to 1500 microns, such as 500 microns, 600 microns, 700 microns, 800 microns, 900 microns, 1000 microns, 1100 microns, 1200 microns, 1300 microns, 1400 microns Microns, 1500 microns, or a value in any of the aforementioned intervals. In some embodiments, the lattice orientation of the first silicon substrate 110 includes <100>, <111> or a combination of both, and the crystal with better lattice matching can be selected depending on the type of epitaxial layer to be grown subsequently. grid orientation. In some embodiments, the resistivity of the first silicon substrate 110 may range from 1×10 −5 to 1×10 6 ohm centimeters (Ωcm).

接著,請見第1B圖,執行化學氣相沉積 (Chemical Vapor Deposition;CVD),形成碳化矽層120於第一矽基板110的第一表面110A上。Next, please refer to FIG. 1B , performing chemical vapor deposition (Chemical Vapor Deposition; CVD) to form a silicon carbide layer 120 on the first surface 110A of the first silicon substrate 110 .

在一些實施方式中,在包含丙烷(C 3H 8 ­­)、甲矽烷(SiH 4)以及氫氣(H 2)的氣體環境中,執行化學氣相沉積,形成碳化矽層120於第一矽基板110的第一表面110A上。在一些實施方式中,在壓力範圍為1.5托至100托(例如1.5托、5托、10托、20托、30托、40托、50托、60托、70托、80托、90托、100托、或前述區間中的任意數值),溫度範圍為1100°C至1300°C(例如1100°C、1150°C、1200°C、1250°C、1300°C、或前述區間中的任意數值)的條件中,執行化學氣相沉積。在一些實施方式中,碳化矽層120的厚度為5微米至25微米(例如5微米、10微米、15微米、20微米、25微米、或前述區間中的任意數值)。 In some embodiments, when containing propane (C 3 H 8 ­­ ), monosilane (SiH 4 ) and hydrogen (H 2 ) gas environment, perform chemical vapor deposition to form a silicon carbide layer 120 on the first surface 110A of the first silicon substrate 110 . In some embodiments, at pressures ranging from 1.5 Torr to 100 Torr (e.g., 1.5 Torr, 5 Torr, 10 Torr, 20 Torr, 30 Torr, 40 Torr, 50 Torr, 60 Torr, 70 Torr, 80 Torr, 90 Torr, 100 Torr, or any value in the aforementioned interval), the temperature range is 1100°C to 1300°C (such as 1100°C, 1150°C, 1200°C, 1250°C, 1300°C, or any value in the aforementioned interval Numerical value) conditions, the chemical vapor deposition was performed. In some embodiments, the thickness of the silicon carbide layer 120 is 5 microns to 25 microns (eg, 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, or any value in the aforementioned range).

接著,請見第1C圖,加熱碳化矽層120,使碳化矽層120表面的矽原子昇華,形成石墨烯層130於碳化矽層120上。Next, as shown in FIG. 1C , the silicon carbide layer 120 is heated to sublimate the silicon atoms on the surface of the silicon carbide layer 120 to form a graphene layer 130 on the silicon carbide layer 120 .

在一些實施方式中,加熱碳化矽層120可包含在爐管(furnace)中或是化學氣相沉積裝置中,壓力為50帕至500帕(例如50帕、100帕、200帕、或前述區間中的任意數值),以及溫度為950°C至1400°C(例如950°C、1000°C、1100°C、1200°C、1300°C、1400°C、或前述區間中的任意數值)的條件下,以1公升/分鐘的氣體流量,通入氬氣(Ar),生長石墨烯層130。In some embodiments, the heating silicon carbide layer 120 can be included in a furnace tube (furnace) or in a chemical vapor deposition device, and the pressure is 50 Pa to 500 Pa (such as 50 Pa, 100 Pa, 200 Pa, or the aforementioned range. Any value in ), and the temperature is 950°C to 1400°C (such as 950°C, 1000°C, 1100°C, 1200°C, 1300°C, 1400°C, or any value in the preceding range) Under certain conditions, argon (Ar) gas is introduced at a gas flow rate of 1 liter/min to grow the graphene layer 130 .

在一些實施方式中,加熱碳化矽層120可包含四個溫度階段,第一階段的溫度為950°C至1050°C,此階段中可去除碳化矽層120表面的氧化物,以提升碳化矽層120表面的矽原子含量(矽原子富集於表面)。第二階段的溫度提升為1050°C至1150°C,時間可持續10分鐘,以將碳化矽層120表面的結構重構為(√3x√3)R30°的型態。第三階段則將溫度提升至1150°C至1250°C,時間可持續20分鐘,以將碳化矽層120表面的結構轉變為(6√3x6√3)R30°的型態,作為界面緩衝的結構。第四階段進一步將溫度提升至1300°C至1400°C,從而昇華矽原子,並使得碳原子轉變為石墨烯層130。加熱碳化矽層120經過此多個溫度階段的處理,漸進式的轉變碳化矽層120表面的結構,有益於後續形成結構較為連續,晶型更為一致的石墨烯結構,以獲得具有較高的導熱係數的石墨烯層130。In some embodiments, the heating of the silicon carbide layer 120 may include four temperature stages. The temperature of the first stage is 950°C to 1050°C. In this stage, the oxide on the surface of the silicon carbide layer 120 can be removed to enhance the silicon carbide Silicon atom content on the surface of layer 120 (silicon atoms are enriched on the surface). In the second stage, the temperature is increased from 1050°C to 1150°C for 10 minutes to restructure the surface structure of the silicon carbide layer 120 into a (√3x√3)R30° type. In the third stage, the temperature is increased to 1150°C to 1250°C for 20 minutes to change the structure of the surface of the silicon carbide layer 120 into a (6√3x6√3)R30° type as an interface buffer. structure. In the fourth stage, the temperature is further increased to 1300°C to 1400°C, thereby sublimating the silicon atoms and transforming the carbon atoms into the graphene layer 130 . Heating the silicon carbide layer 120 through the treatment of these multiple temperature stages gradually transforms the surface structure of the silicon carbide layer 120, which is beneficial to the subsequent formation of a graphene structure with a relatively continuous structure and a more consistent crystal form, so as to obtain a graphene structure with a higher thermal conductivity of the graphene layer 130 .

在一些實施方式中,石墨烯層130為10層至150層的多層石墨烯結構(例如10層、20層、30層、40層、50層、60層、70層、80層、90層、100層、110層、120層、130層、140層、150層、或前述區間中的任意數值),厚度為3.4奈米至51奈米(例如3.4奈米、5奈米、10奈米、15奈米、20奈米、25奈米、30奈米、35奈米、40奈米、45奈米、50奈米、或前述區間中的任意數值)。在一些實施方式中,可以依照實際需求,調控加熱製程的溫度、加熱的階段數目、各階段持續時間等,控制石墨烯層130的層數以及厚度。在一些實施方式中,可以透過增加加熱的階段、延長加熱的持續時間或同時調控此二參數等方式,提升石墨烯層130的厚度。In some embodiments, the graphene layer 130 is a multilayer graphene structure with 10 to 150 layers (such as 10 layers, 20 layers, 30 layers, 40 layers, 50 layers, 60 layers, 70 layers, 80 layers, 90 layers, 100 layers, 110 layers, 120 layers, 130 layers, 140 layers, 150 layers, or any value in the aforementioned range), with a thickness of 3.4 nm to 51 nm (such as 3.4 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm, or any value in the aforementioned range). In some embodiments, the number and thickness of the graphene layer 130 can be controlled by adjusting the temperature of the heating process, the number of heating stages, the duration of each stage, etc. according to actual needs. In some embodiments, the thickness of the graphene layer 130 can be increased by increasing the heating stage, extending the heating duration, or adjusting the two parameters at the same time.

接著,請見第1D圖,減薄第一矽基板110。Next, as shown in FIG. 1D , the first silicon substrate 110 is thinned.

在一些實施方式中,可以對第一矽基板110的第二表面110B,使用研磨的方法,將第一矽基板110的厚度T1(請同參第1C圖)減薄至80微米至120微米的厚度T2(例如80微米、90微米、100微米、110微米、120微米、或前述任意區間的數值),即,厚度T2小於厚度T1(請同參第1C圖),以降低導通電阻以及熱阻,提升後續所形成的複合基板的作用效率以及散熱效率。在一些實施方式中,可以在減薄第一矽基板110後,接續使用化學機械研磨,平坦化第二表面110B,以提升第一矽基板110後續經由絕緣層(例如第1E圖的絕緣層140)與另一矽基板(例如第1G圖至第1F圖中的第二矽基板150)的接合效果。In some embodiments, the second surface 110B of the first silicon substrate 110 can be polished to reduce the thickness T1 of the first silicon substrate 110 (please refer to FIG. 1C) to 80 microns to 120 microns. Thickness T2 (such as 80 microns, 90 microns, 100 microns, 110 microns, 120 microns, or a value in any of the aforementioned intervals), that is, thickness T2 is smaller than thickness T1 (please refer to Figure 1C), in order to reduce conduction resistance and thermal resistance , improving the action efficiency and heat dissipation efficiency of the subsequently formed composite substrate. In some implementations, after the first silicon substrate 110 is thinned, chemical mechanical polishing can be used to planarize the second surface 110B, so as to improve the first silicon substrate 110 through the insulating layer (for example, the insulating layer 140 in FIG. 1E ). ) and another silicon substrate (for example, the second silicon substrate 150 in FIGS. 1G to 1F ).

接著,請見第1E圖,形成絕緣層140於第一矽基板110中相對於第一表面110A的第二表面110B下。Next, please refer to FIG. 1E , an insulating layer 140 is formed under the second surface 110B of the first silicon substrate 110 opposite to the first surface 110A.

在一些實施方式中,使用高溫爐管製程或是化學氣相沉積製程生長絕緣層140。在一些實施方式中,絕緣層140包含二氧化矽。在一些實施方式中,絕緣層140的厚度為0.5微米至10微米(例如0.5微米、1微米、2微米、3微米、4微米、5微米、6微米、7微米、8微米、9微米、10微米、或前述區間中的任意數值)。In some embodiments, the insulating layer 140 is grown using a high temperature furnace process or a chemical vapor deposition process. In some embodiments, the insulating layer 140 includes silicon dioxide. In some embodiments, the insulating layer 140 has a thickness of 0.5 microns to 10 microns (for example, 0.5 microns, 1 micron, 2 microns, 3 microns, 4 microns, 5 microns, 6 microns, 7 microns, 8 microns, 9 microns, 10 microns). microns, or any value within the preceding range).

接著,請見第1F圖,提供第二矽基板150以及磊晶多層E設置於第二矽基板150上,其中磊晶多層E包含氮化鎵。Next, please refer to FIG. 1F , a second silicon substrate 150 is provided and the epitaxial multilayer E is disposed on the second silicon substrate 150 , wherein the epitaxial multilayer E includes gallium nitride.

在一些實施方式中,第二矽基板150的材料、性質以及厚度可以與第一矽基板110相同或相似。可以理解的是,考慮到磊晶多層E的晶格性質,第二矽基板150的晶格定向可以採用<111>,以實現與磊晶多層E更好的晶格匹配性。In some embodiments, the material, property and thickness of the second silicon substrate 150 may be the same as or similar to that of the first silicon substrate 110 . It can be understood that, considering the lattice properties of the epitaxial multilayer E, the lattice orientation of the second silicon substrate 150 can be <111> to achieve better lattice matching with the epitaxial multilayer E.

在一些實施方式中,可以使用有機金屬化學氣相沉積(Metal-organic Chemical Vapor Deposition;MOCVD),在第二矽基板150的第一表面150A上,形成厚度為1至10微米的磊晶多層E(高電子移動率晶體電晶體(High electron mobility transistor;HEMT))。在一些實施方式中,磊晶多層E依序包含種子層設置於第二矽基板150上、緩衝層設置於種子層上、阻抗層設置於緩衝層上、通道層設置於阻抗層上、屏障層設置於通道層上、以及覆蓋層設置於屏障層上。在一些實施方式中,種子層可以包含氮化鋁,厚度在30奈米至300奈米之間。在一些實施方式中,緩衝層可以包含氮化鋁鎵、氮化鎵、或其組合,例如梯式氮化鋁鎵或超晶格氮化鋁鎵/氮化鎵,厚度為300奈米至1000奈米之間。在一些實施方式中,阻抗層為氮化鎵,例如摻雜碳或是鐵的氮化鎵,厚度可以為0.5微米至2.5微米之間。在一些實施方式中,通道層為氮化鎵,厚度為0.05微米至1微米之間。在一些實施方式中,屏障層包含氮化鋁鎵,厚度為10奈米至50奈米之間。在一些實施方式中,覆蓋層可以為本質氮化鎵或p型氮化鎵,厚度為0.5奈米至150奈米。在一些實施方式中,在形成磊晶多層E後,接續設置閘極以及源極/汲極於磊晶多層E上。In some embodiments, metal-organic chemical vapor deposition (Metal-organic Chemical Vapor Deposition; MOCVD) can be used to form an epitaxial multilayer E with a thickness of 1 to 10 microns on the first surface 150A of the second silicon substrate 150. (High electron mobility transistor (HEMT)). In some embodiments, the epitaxial multilayer E sequentially includes a seed layer disposed on the second silicon substrate 150, a buffer layer disposed on the seed layer, a resistive layer disposed on the buffer layer, a channel layer disposed on the resistive layer, a barrier layer The channel layer is disposed on the channel layer, and the cover layer is disposed on the barrier layer. In some embodiments, the seed layer may comprise aluminum nitride and have a thickness between 30 nm and 300 nm. In some embodiments, the buffer layer may comprise AlGaN, GaN, or combinations thereof, such as ladder AlGaN or superlattice AlGaN/GaN, with a thickness of 300 nm to 1000 nm. between nanometers. In some embodiments, the resistance layer is GaN, such as GaN doped with carbon or iron, and the thickness may be between 0.5 microns and 2.5 microns. In some embodiments, the channel layer is GaN with a thickness between 0.05 micron and 1 micron. In some embodiments, the barrier layer comprises aluminum gallium nitride and has a thickness between 10 nm and 50 nm. In some embodiments, the capping layer can be intrinsic GaN or p-type GaN with a thickness of 0.5 nm to 150 nm. In some embodiments, after the epitaxial multilayer E is formed, the gate and the source/drain are disposed on the epitaxial multilayer E successively.

在一些實施方式中,可以在形成磊晶多層E於第二矽基板150的第一表面150A上後,對第二矽基板150的第二表面150B,以與第1D圖類似的方式,減薄第二矽基板150,降低導通電阻以及熱阻,提升後續所形成的複合基板的作用效率以及散熱效率。在一些實施方式中,減薄後的第二矽基板150的厚度為0.2微米至10微米(例如0.2微米、0.5微米、1微米、2微米、3微米、4微米、5微米、6微米、7微米、8微米、9微米、10微米、或前述區間中的任意數值)。In some embodiments, after forming the epitaxial multilayer E on the first surface 150A of the second silicon substrate 150, the second surface 150B of the second silicon substrate 150 can be thinned in a manner similar to that in FIG. 1D. The second silicon substrate 150 reduces the on-resistance and thermal resistance, and improves the action efficiency and heat dissipation efficiency of the subsequently formed composite substrate. In some embodiments, the thickness of the thinned second silicon substrate 150 is 0.2 microns to 10 microns (for example, 0.2 microns, 0.5 microns, 1 micron, 2 microns, 3 microns, 4 microns, 5 microns, 6 microns, 7 microns microns, 8 microns, 9 microns, 10 microns, or any value in the aforementioned range).

在一些實施方式中,為避免第二矽基板150經減薄後,因厚度過薄而翹曲,可以在薄化第二矽基板150之前,使用可經由紫外光固定的膠水或是習知的黏合技術,將暫時基材設置於磊晶多層E之上,待後續第二矽基板150與絕緣層140(請同參第1E圖)鍵合後,再移除暫時基材。在一些實施方式中,暫時基材可以包含金屬基材、玻璃基材、陶瓷基材、或前述兩者或兩者以上的組合。In some embodiments, in order to prevent the second silicon substrate 150 from warping due to being too thin after thinning, before thinning the second silicon substrate 150, glue that can be fixed by ultraviolet light or a known Adhesive technology, the temporary substrate is placed on the epitaxial multi-layer E, and the temporary substrate is removed after the second silicon substrate 150 is bonded to the insulating layer 140 (please also refer to FIG. 1E). In some embodiments, the temporary substrate may comprise a metal substrate, a glass substrate, a ceramic substrate, or a combination of two or more of the foregoing.

在一些實施方式中,可以在減薄第二矽基板150後,以與第1D圖類似的方式,平坦化第二表面150B,以提升後續與絕緣層140的鍵合效果(即,越平坦,鍵合效果越好)。In some embodiments, after thinning the second silicon substrate 150, the second surface 150B can be planarized in a manner similar to that shown in FIG. The better the bonding effect).

接著,請見第1G圖,鍵合絕緣層140與第二矽基板150,獲得複合基板100。Next, please refer to FIG. 1G , the insulating layer 140 and the second silicon substrate 150 are bonded to obtain the composite substrate 100 .

在一些實施方式中,鍵合絕緣層140與第二矽基板150的步驟包含:將絕緣層140與第二矽基板150的第二表面150B彼此貼合;以及加熱絕緣層140與第二矽基板150,以鍵合絕緣層140與第二矽基板150。In some embodiments, the step of bonding the insulating layer 140 and the second silicon substrate 150 includes: attaching the insulating layer 140 and the second surface 150B of the second silicon substrate 150 to each other; and heating the insulating layer 140 and the second silicon substrate 150 , to bond the insulating layer 140 and the second silicon substrate 150 .

在一些實施方式中,鍵合可以使用融合接合或低溫接合的方式。In some embodiments, bonding can be by means of fusion bonding or low temperature bonding.

在一些實施方式中,可以使用融合接合以鍵合絕緣層140與第二矽基板150。具體來說,融合接合是在真空環境下將絕緣層140與欲鍵結的第二矽基板150的第二表面150B接觸,以利用兩者間的凡得瓦力接合,並且在接合後執行高溫退火處理,以使絕緣層140與第二矽基板150之間產生共價鍵結而鍵合,從而形成複合基板100。在一些實施方式中,執行高溫退火處理的溫度約為1000°C。In some embodiments, fusion bonding may be used to bond the insulating layer 140 to the second silicon substrate 150 . Specifically, fusion bonding is to contact the insulating layer 140 with the second surface 150B of the second silicon substrate 150 to be bonded in a vacuum environment, so as to utilize the Van der Waals force bonding between the two, and perform high temperature bonding after bonding. annealing treatment, so that the insulating layer 140 and the second silicon substrate 150 are covalently bonded to form a composite substrate 100 . In some embodiments, the high temperature annealing process is performed at a temperature of about 1000°C.

在一些實施方式中,可以使用低溫接合以鍵合絕緣層140與第二矽基板150。具體來說,低溫接合是將待鍵合的絕緣層140以及第二矽基板150進行電漿處理使其表面的懸浮鍵(dangling bond)的密度增加。由於懸浮鍵是屬於高能量的結構,因此經過電漿處理的絕緣層140以及第二矽基板150的表面接觸時,為了降低能量,兩者會藉由驅動力使表面結合。也就是說,透過電漿處理絕緣層140的表面以及欲鍵結的第二矽基板150的第二表面150B,使懸浮鍵的密度增加,並將絕緣層140以及第二矽基板150欲鍵結的第二表面150B進行接觸以接合,並且在接合後執行低溫退火處理,即可完成低溫接合,鍵合絕緣層140以及第二矽基板150以形成複合基板100。此外,執行低溫退火處理的溫度約為100°C至400°C。In some embodiments, low temperature bonding may be used to bond the insulating layer 140 to the second silicon substrate 150 . Specifically, low-temperature bonding is to perform plasma treatment on the insulating layer 140 to be bonded and the second silicon substrate 150 to increase the density of dangling bonds on the surface. Since the dangling bond is a high-energy structure, when the plasma-treated insulating layer 140 and the surface of the second silicon substrate 150 are in contact, in order to reduce energy, the two will combine the surface through a driving force. That is to say, by plasma processing the surface of the insulating layer 140 and the second surface 150B of the second silicon substrate 150 to be bonded, the density of the dangling bonds is increased, and the insulating layer 140 and the second silicon substrate 150 are to be bonded. The second surface 150B of the second silicon substrate 150B is contacted for bonding, and the low-temperature annealing treatment is performed after the bonding to complete the low-temperature bonding, and the insulating layer 140 and the second silicon substrate 150 are bonded to form the composite substrate 100 . In addition, the temperature at which the low temperature annealing treatment is performed is about 100°C to 400°C.

在一些實施方式中,複合基板100的厚度為82.5微米至150微米之間(例如82.5微米、100微米、110微米、120微米、130微米、140微米、150微米、或前述區間中的任意數值)。In some embodiments, the thickness of the composite substrate 100 is between 82.5 microns and 150 microns (such as 82.5 microns, 100 microns, 110 microns, 120 microns, 130 microns, 140 microns, 150 microns, or any value in the aforementioned range) .

經由前述第1A圖至第1G圖的製備步驟,可獲得複合基板100,包含石墨烯層130、碳化矽層120設置於石墨烯層130上、第一矽基板110設置於碳化矽層120上、絕緣層140設置於第一矽基板110上、第二矽基板150設置於絕緣層140上、以及磊晶多層E設置於第二矽基板150上。值得強調的是,相較於僅包含第一矽基板110、絕緣層140、第二矽基板150以及磊晶多層E的態樣,其中矽的導熱係數僅為約149瓦/公尺·度(W/m·K)以及絕緣層140(例如二氧化矽時)的導熱係數僅為約1.4瓦/公尺·度,複合基板100中還包含導熱係數較高的碳化矽層120(約370瓦/公尺·度)以及石墨烯層130(約5300瓦/公尺·度),特別是高導熱係數的石墨烯層130的存在,可以大大地提升複合基板100的散熱效率,避免複合基板100中承載作為高頻元件的磊晶多層E時,運作中高頻元件的積熱累積而限制作用效率的情形。Through the above-mentioned preparation steps in FIG. 1A to FIG. 1G, a composite substrate 100 can be obtained, including a graphene layer 130, a silicon carbide layer 120 disposed on the graphene layer 130, a first silicon substrate 110 disposed on the silicon carbide layer 120, The insulating layer 140 is disposed on the first silicon substrate 110 , the second silicon substrate 150 is disposed on the insulating layer 140 , and the epitaxial multilayer E is disposed on the second silicon substrate 150 . It is worth emphasizing that, compared to the aspect comprising only the first silicon substrate 110, the insulating layer 140, the second silicon substrate 150 and the epitaxial multilayer E, the thermal conductivity of silicon is only about 149 W/m·degree ( W/m·K) and the thermal conductivity of the insulating layer 140 (such as silicon dioxide) is only about 1.4 W/m·degree, and the composite substrate 100 also includes a silicon carbide layer 120 with a higher thermal conductivity (about 370 W /m·degree) and graphene layer 130 (about 5300 watts/m·degree), especially the existence of graphene layer 130 with high thermal conductivity, can greatly improve the heat dissipation efficiency of composite substrate 100, avoid composite substrate 100 When carrying the epitaxial multilayer E as a high-frequency component, the accumulated heat of the high-frequency component during operation limits the action efficiency.

第2A圖至第2F圖示例性地描述本揭示內容的另一些實施方式中製造複合基板200的各製程階段的示意圖。FIG. 2A to FIG. 2F exemplarily describe the schematic diagrams of various process stages of manufacturing the composite substrate 200 in other embodiments of the present disclosure.

首先,請見第2A圖,提供第一矽基板210。第一矽基板210的材料、厚度T3、晶格定向可以與第1A圖所述之第一矽基板110相同或相似,於此不另贅述。First, as shown in FIG. 2A , a first silicon substrate 210 is provided. The material, thickness T3, and lattice orientation of the first silicon substrate 210 may be the same or similar to those of the first silicon substrate 110 described in FIG. 1A , which will not be repeated here.

接著,接著,請見第2B圖,執行滲碳爐(Carburization)製程,形成碳化矽層220於第一矽基板210的第一表面210A上。Next, as shown in FIG. 2B , a carburization process is performed to form a silicon carbide layer 220 on the first surface 210A of the first silicon substrate 210 .

在一些實施方式中,在包含C 3H 8的氣體環境中,執行滲碳爐製程,形成碳化矽層220於第一矽基板210的第一表面210A上。在一些實施方式中,以110毫升/分鐘至120毫升/分鐘的氣體流量通入丙烷,執行滲碳爐製程,壓力範圍為1.5托至100托(例如1.5托、5托、10托、20托、30托、40托、50托、60托、70托、80托、90托、100托、或前述區間中的任意數值),溫度範圍為900°C至950°C(例如900°C、910°C、920°C、930°C、940°C、950°C、或前述區間中的任意數值),時間維持30分鐘至60分鐘(例如30分鐘、45分鐘、60分鐘、或前述區間中的任意數值),使碳擴散至第一矽基板210表面,再以30°C至55°C的溫度處理,以定型碳化矽結構,獲得碳化矽層220。在一些實施方式中,碳化矽層220的厚度為5微米至25微米(例如5微米、10微米、15微米、20微米、25微米、或前述區間中的任意數值)。在一些實施方式中,碳化矽層220中所生長的碳化矽結構可以包含4H-SiC、3C-SiC、4H-SiC、6H-SiC等晶體結構。值得注意的是,經由滲碳爐製程,運用碳擴散的原理所形成的碳化矽層220,碳可以較為均勻並且連續地分布於矽之間,有助於在後續製程中,形成更為連續性延伸的石墨烯層,並具有較高的導熱係數。 In some embodiments, a carburizing furnace process is performed in a gas environment containing C 3 H 8 to form the silicon carbide layer 220 on the first surface 210A of the first silicon substrate 210 . In some embodiments, the carburizing furnace process is performed by feeding propane at a gas flow rate of 110 ml/min to 120 ml/min at a pressure ranging from 1.5 torr to 100 torr (e.g., 1.5 torr, 5 torr, 10 torr, 20 torr . 910°C, 920°C, 930°C, 940°C, 950°C, or any value in the aforementioned interval), the time is maintained for 30 minutes to 60 minutes (such as 30 minutes, 45 minutes, 60 minutes, or the aforementioned interval any value in ), diffuse carbon to the surface of the first silicon substrate 210 , and then process at a temperature of 30° C. to 55° C. to shape the silicon carbide structure to obtain the silicon carbide layer 220 . In some embodiments, the thickness of the silicon carbide layer 220 is 5 microns to 25 microns (eg, 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, or any value in the aforementioned range). In some embodiments, the silicon carbide structure grown in the silicon carbide layer 220 may include 4H-SiC, 3C-SiC, 4H-SiC, 6H-SiC and other crystal structures. It is worth noting that, through the carburizing furnace process, the silicon carbide layer 220 is formed by using the principle of carbon diffusion, and the carbon can be more uniformly and continuously distributed between the silicon, which helps to form a more continuous process in the subsequent process. Extended graphene layers with high thermal conductivity.

接著,請見第2C圖,使用含氮氣體,對碳化矽層220執行電漿輔助選擇性反應(Plasma-assisted Selective Reaction;PSR),分別形成氮化矽層230於碳化矽層220上以及石墨烯層240於氮化矽層230上。Next, please refer to FIG. 2C, using a nitrogen-containing gas to perform a plasma-assisted selective reaction (Plasma-assisted Selective Reaction; PSR) on the silicon carbide layer 220, respectively forming a silicon nitride layer 230 on the silicon carbide layer 220 and graphite An alkene layer 240 is on the silicon nitride layer 230 .

對碳化矽層220執行電漿輔助選擇性反應可以包含兩步驟。第一步驟,使用氮氣,對碳化矽層220執行電漿佈植(plasma implantation) 反應,利用氮原子打斷碳化矽層220中的複數碳矽鍵結。在一些實施方式中,可以在頻率為10百萬赫茲至15百萬赫茲(例如10百萬赫茲、12百萬赫茲、13.56百萬赫茲、14百萬赫茲、15百萬赫茲、或前述區間中的任意數值),功率為100瓦至300瓦(例如100瓦、200瓦、300瓦、或前述區間中的任意數值),以及壓力為1/100托至1/10托(例如1/100托、1/50托、1/10托、或前述區間中的任意數值)的條件下,使用氮氣,對於碳化矽層220執行電漿佈植,持續20分鐘至60分鐘。第二步驟,在含有氮氣以及氫氣的氣體環境中,對碳化矽層220執行退火製程,形成氮化矽層230於碳化矽層220上以及石墨烯層240於氮化矽層230上。在一些實施方式中,可以在含有氮氣以及氫氣的氣體條件中,並以溫度為1000°C至1300°C(例如1000°C、1050°C、1100°C、1150°C、1200°C、1250°C、1300°C、或前述區間中的任意數值),對碳化矽層220執行10分鐘至60分鐘的退火製程。在退火製程中,氮原子於高溫下(例如1150°C)時,會與矽形成氮化矽層230(Si 3N 4的結構),並且碳原子在氮化矽層230上形成石墨烯層240。此外,氫氣可與氧氣反應,以維持反應腔室的潔淨,避免氧氣氧化碳化矽層220或第一矽基板210等元件。在一些實施方式中,氮化矽層230的厚度為1至2奈米,石墨烯層240的厚度為3奈米至20奈米(例如3奈米、5奈米、10奈米、15奈米、20奈米、或前述區間中的任意數值)。 Performing the plasma-assisted selective reaction on the SiC layer 220 may include two steps. In the first step, a plasma implantation reaction is performed on the silicon carbide layer 220 using nitrogen gas, and nitrogen atoms are used to break a plurality of carbon-silicon bonds in the silicon carbide layer 220 . In some embodiments, the frequency can be between 10 megahertz and 15 megahertz (such as 10 megahertz, 12 megahertz, 13.56 megahertz, 14 megahertz, 15 megahertz, or the aforementioned interval ), the power is 100 watts to 300 watts (such as 100 watts, 200 watts, 300 watts, or any value in the foregoing range), and the pressure is 1/100 torr to 1/10 torr (such as 1/100 torr , 1/50 Torr, 1/10 Torr, or any value in the foregoing range), using nitrogen gas, perform plasma implantation on the silicon carbide layer 220 for 20 minutes to 60 minutes. In the second step, an annealing process is performed on the silicon carbide layer 220 in an atmosphere containing nitrogen and hydrogen to form a silicon nitride layer 230 on the silicon carbide layer 220 and a graphene layer 240 on the silicon nitride layer 230 . In some embodiments, in a gas condition containing nitrogen and hydrogen, and at a temperature of 1000°C to 1300°C (such as 1000°C, 1050°C, 1100°C, 1150°C, 1200°C, 1250° C., 1300° C., or any value in the aforementioned range), perform an annealing process on the silicon carbide layer 220 for 10 minutes to 60 minutes. In the annealing process, nitrogen atoms will form a silicon nitride layer 230 (Si 3 N 4 structure) with silicon at high temperature (for example, 1150°C), and carbon atoms form a graphene layer on the silicon nitride layer 230 240. In addition, the hydrogen gas can react with oxygen to keep the reaction chamber clean and prevent components such as the silicon carbide layer 220 or the first silicon substrate 210 from being oxidized by oxygen. In some embodiments, the thickness of the silicon nitride layer 230 is 1 to 2 nanometers, and the thickness of the graphene layer 240 is 3 nanometers to 20 nanometers (such as 3 nanometers, 5 nanometers, 10 nanometers, 15 nanometers). meters, 20 nm, or any value within the preceding range).

接著,請見第2D圖至第2F圖,減薄第一矽基板210(第2D圖,即,使得第2D圖的厚度T4小於第2C圖的厚度T3)、形成絕緣層250於第一矽基板210的第二表面210B上(第2E圖)、以及鍵合絕緣層250與第二矽基板260(其中磊晶多層E設置於第二矽基板260上,並且磊晶多層E包含氮化鎵)(第2F圖),獲得複合基板200。Next, see FIG. 2D to FIG. 2F, thin the first silicon substrate 210 (FIG. 2D, that is, make the thickness T4 of FIG. 2D smaller than the thickness T3 of FIG. 2C), and form an insulating layer 250 on the first silicon substrate. On the second surface 210B of the substrate 210 (FIG. 2E), and the bonding insulating layer 250 and the second silicon substrate 260 (wherein the epitaxial multilayer E is disposed on the second silicon substrate 260, and the epitaxial multilayer E includes gallium nitride ) (FIG. 2F), a composite substrate 200 is obtained.

第2D圖至第2F圖的具體製程以及材料,可以基本上與第1D圖至第1G圖的步驟以及材料相同或類似(例如第2D圖可對應於第1D圖,第2E圖可對應於第1E圖,第2F圖可對應於第1F圖以及第1G圖),於此不另贅述。The specific process and materials in Figure 2D to Figure 2F can be basically the same or similar to the steps and materials in Figure 1D to Figure 1G (for example, Figure 2D can correspond to Figure 1D, and Figure 2E can correspond to Figure 1 FIG. 1E, FIG. 2F may correspond to FIG. 1F and FIG. 1G), and will not be repeated here.

請見第2F圖,複合基板200包含石墨烯層240、氮化矽層230設置於石墨烯層240上、碳化矽層220設置於氮化矽層230上、第一矽基板210設置於碳化矽層220上、絕緣層250設置於第一矽基板210上、第二矽基板260設置於絕緣層250上、以及磊晶多層E設置於第二矽基板260上。值得強調的是,複合基板200中包含導熱係數較高的碳化矽層220(約370瓦/公尺·度)、石墨烯層240(約5300瓦/公尺·度),特別是高導熱係數的石墨烯層130的存在,可以大大地提升複合基板200的散熱效率,避免複合基板200中包含作為高頻元件的磊晶多層E時,運作中積熱累積而限制作用效率的情形。Please refer to FIG. 2F, the composite substrate 200 includes a graphene layer 240, a silicon nitride layer 230 is disposed on the graphene layer 240, a silicon carbide layer 220 is disposed on the silicon nitride layer 230, and the first silicon substrate 210 is disposed on the silicon carbide layer. layer 220 , the insulating layer 250 is disposed on the first silicon substrate 210 , the second silicon substrate 260 is disposed on the insulating layer 250 , and the epitaxial multilayer E is disposed on the second silicon substrate 260 . It is worth emphasizing that the composite substrate 200 includes a silicon carbide layer 220 (about 370 W/m·degree) and a graphene layer 240 (about 5300 W/m·degree) with high thermal conductivity. The existence of the graphene layer 130 can greatly improve the heat dissipation efficiency of the composite substrate 200, and avoid the situation where the composite substrate 200 includes the epitaxial multilayer E as a high-frequency component, and the heat accumulation during operation limits the efficiency.

值得注意的是,相較於第1G圖的複合基板100,是先經由化學氣相沉積製程形成碳化矽層120,再昇華碳化矽層120中的矽,從而形成石墨烯層130,第2F圖的複合基板200則是利用滲碳爐製程,經由碳擴散成長出碳化矽層220,再經由使用含氮氣體的電漿輔助選擇性反應,利用氮原子打斷碳矽鍵結,並與矽鍵結,成長出氮化矽層230,而碳原子則形成石墨烯層240。本領域技術人員可以依實際的成品規格或是製程需求,選用合適的方法,本揭示內容的製造方法並不以此為限。It is worth noting that, compared with the composite substrate 100 in FIG. 1G, the silicon carbide layer 120 is first formed through a chemical vapor deposition process, and then the silicon in the silicon carbide layer 120 is sublimated to form the graphene layer 130. FIG. 2F The composite substrate 200 of the company uses a carburizing furnace process to grow a silicon carbide layer 220 through carbon diffusion, and then uses nitrogen atoms to break the carbon-silicon bond and bond with silicon through a plasma-assisted selective reaction using nitrogen atoms. junction, the silicon nitride layer 230 is grown, and the carbon atoms form the graphene layer 240 . Those skilled in the art can select an appropriate method according to actual product specifications or manufacturing process requirements, and the manufacturing method of the disclosure is not limited thereto.

綜上所述,本揭示內容的一些實施方式提供的複合基板及其製造方法,在矽基板上生成高導熱係數的石墨烯層,利用石墨烯的高導熱係數,提升複合基板的散熱效率,改善將高頻元件應用於複合基板上,因運作時的積熱問題所衍伸的表現效率降低的情形,並提升複合基板應用上的彈性。To sum up, some embodiments of the present disclosure provide composite substrates and manufacturing methods thereof. A graphene layer with high thermal conductivity is formed on a silicon substrate, and the high thermal conductivity of graphene is used to improve the heat dissipation efficiency of the composite substrate and improve Applying high-frequency components to composite substrates will reduce performance efficiency due to heat accumulation problems during operation, and improve the flexibility of composite substrate applications.

儘管本揭示內容已根據某些實施方式具體描述細節,其他實施方式也是可行的。因此,所附請求項的精神和範圍不應限於本文所記載的實施方式。While this disclosure has described details in terms of certain implementations, other implementations are possible. Therefore, the spirit and scope of the appended claims should not be limited to the implementations described herein.

100、200:複合基板 110、210:第一矽基板 110A、150A、210A:第一表面 110B、150B、210B:第二表面 120、220:碳化矽層 130、240:石墨烯層 140、250:絕緣層 150、260:第二矽基板 230:氮化矽層 E:磊晶多層 T1、T2、T3、T4:厚度 100, 200: composite substrate 110, 210: the first silicon substrate 110A, 150A, 210A: first surface 110B, 150B, 210B: second surface 120, 220: silicon carbide layer 130, 240: graphene layer 140, 250: insulating layer 150, 260: the second silicon substrate 230: silicon nitride layer E: epitaxial multilayer T1, T2, T3, T4: Thickness

通過閱讀以下參考附圖對實施方式的詳細描述,可以更完整地理解本揭示內容。 第1A圖至第1G圖示例性地描述本揭示內容的一些實施方式中製造複合基板的各製程階段的示意圖。 第2A圖至第2F圖示例性地描述本揭示內容的另一些實施方式中製造複合基板的各製程階段的示意圖。 A more complete understanding of the present disclosure can be obtained by reading the following detailed description of the embodiments with reference to the accompanying drawings. Figures 1A-1G exemplarily depict schematic diagrams of various process stages for manufacturing a composite substrate in accordance with some embodiments of the present disclosure. FIG. 2A to FIG. 2F exemplarily depict schematic diagrams of various process stages of manufacturing a composite substrate in other embodiments of the present disclosure.

100:複合基板 100: composite substrate

110:第一矽基板 110: The first silicon substrate

110A、150A:第一表面 110A, 150A: first surface

110B、150B:第二表面 110B, 150B: second surface

120:碳化矽層 120: silicon carbide layer

130:石墨烯層 130: graphene layer

140:絕緣層 140: insulating layer

150:第二矽基板 150: the second silicon substrate

E:磊晶多層 E: epitaxial multilayer

Claims (10)

一種複合基板,包含: 一石墨烯層; 一碳化矽層,設置於該石墨烯層上; 一第一矽基板,設置於該碳化矽層上; 一絕緣層,設置於該第一矽基板上;以及 一第二矽基板,設置於該絕緣層上。 A composite substrate comprising: a graphene layer; a silicon carbide layer disposed on the graphene layer; a first silicon substrate disposed on the silicon carbide layer; an insulating layer disposed on the first silicon substrate; and A second silicon substrate is arranged on the insulating layer. 如請求項1所述的複合基板,其中該石墨烯層為一多層石墨烯結構。The composite substrate as claimed in claim 1, wherein the graphene layer is a multilayer graphene structure. 如請求項1所述的複合基板,更包含一氮化矽層設置於該石墨烯層與該碳化矽層之間。The composite substrate as claimed in claim 1 further comprises a silicon nitride layer disposed between the graphene layer and the silicon carbide layer. 如請求項1所述的複合基板,更包含一磊晶多層,設置於該第二矽基板上,包含有氮化鎵。The composite substrate as claimed in claim 1 further includes an epitaxial multilayer disposed on the second silicon substrate, including gallium nitride. 一種製造複合基板的方法,包含: 形成一碳化矽層於一第一矽基板的一第一表面上; 形成一石墨烯層於該碳化矽層上; 形成一絕緣層於該第一矽基板中相對於該第一表面的一第二表面下;以及 鍵合該絕緣層與一第二矽基板,以獲得一複合基板。 A method of manufacturing a composite substrate comprising: forming a silicon carbide layer on a first surface of a first silicon substrate; forming a graphene layer on the silicon carbide layer; forming an insulating layer under a second surface of the first silicon substrate opposite to the first surface; and Bonding the insulating layer and a second silicon substrate to obtain a composite substrate. 如請求項5所述的方法,其中在形成該石墨烯層於該碳化矽層上的步驟之後,更包含步驟:減薄該第一矽基板。The method according to claim 5, further comprising the step of: thinning the first silicon substrate after the step of forming the graphene layer on the silicon carbide layer. 如請求項5所述的方法,其中形成該碳化矽層於該第一矽基板的該第一表面上的步驟包含步驟:執行一化學氣相沉積製程,形成該碳化矽層;以及 形成該石墨烯層於該碳化矽層上的步驟包含步驟:加熱該碳化矽層,使該碳化矽層表面的複數矽原子昇華,以形成該石墨烯層。 The method according to claim 5, wherein the step of forming the silicon carbide layer on the first surface of the first silicon substrate comprises the steps of: performing a chemical vapor deposition process to form the silicon carbide layer; and The step of forming the graphene layer on the silicon carbide layer includes the step of: heating the silicon carbide layer to sublimate a plurality of silicon atoms on the surface of the silicon carbide layer to form the graphene layer. 如請求項5所述的方法,其中,形成該碳化矽層於該第一矽基板的該第一表面上的步驟包含步驟:執行一滲碳爐製程,以形成該碳化矽層;以及 形成該石墨烯層於該碳化矽層上的步驟包含步驟:使用一含氮氣體,對該碳化矽層執行一電漿輔助選擇性反應,分別形成一氮化矽層於該碳化矽層上以及該石墨烯層於該氮化矽層上。 The method according to claim 5, wherein the step of forming the silicon carbide layer on the first surface of the first silicon substrate comprises the steps of: performing a carburizing furnace process to form the silicon carbide layer; and The step of forming the graphene layer on the silicon carbide layer includes the steps of: performing a plasma-assisted selective reaction on the silicon carbide layer using a nitrogen-containing gas, respectively forming a silicon nitride layer on the silicon carbide layer and The graphene layer is on the silicon nitride layer. 如請求項8所述的方法,其中對該碳化矽層執行電漿輔助選擇性反應的步驟包含步驟: 使用氮氣,對該碳化矽層執行一電漿佈植反應,以打斷該碳化矽層中的複數碳矽鍵結;以及 在含有氮氣以及氫氣的氣體環境中,對該碳化矽層執行一退火製程,形成該氮化矽層於該碳化矽層上以及該石墨烯層於該氮化矽層上。 The method as recited in claim 8, wherein the step of performing a plasma-assisted selective reaction on the silicon carbide layer comprises the steps of: performing a plasma implantation reaction on the silicon carbide layer using nitrogen gas to break a plurality of carbon-silicon bonds in the silicon carbide layer; and In a gas environment containing nitrogen and hydrogen, an annealing process is performed on the silicon carbide layer to form the silicon nitride layer on the silicon carbide layer and the graphene layer on the silicon nitride layer. 如請求項5所述的方法,其中在鍵合該絕緣層與該第二矽基板的步驟之前,包含步驟:形成包含氮化鎵的一磊晶多層於該第二矽基板的一第一表面上;並且 鍵合該絕緣層與該第二矽基板的步驟包含步驟: 將該絕緣層與該第二矽基板中相對於該第一表面的一第二表面彼此貼合;以及 加熱該絕緣層與該第二矽基板,以鍵合該絕緣層與該第二矽基板。 The method as claimed in claim 5, wherein before the step of bonding the insulating layer and the second silicon substrate, comprising the step of: forming an epitaxial multilayer comprising gallium nitride on a first surface of the second silicon substrate on; and The step of bonding the insulating layer and the second silicon substrate includes the steps of: attaching the insulating layer to a second surface of the second silicon substrate opposite to the first surface; and The insulating layer and the second silicon substrate are heated to bond the insulating layer and the second silicon substrate.
TW110133642A 2021-09-09 2021-09-09 Composite substrate and manufacture method TWI780901B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110133642A TWI780901B (en) 2021-09-09 2021-09-09 Composite substrate and manufacture method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110133642A TWI780901B (en) 2021-09-09 2021-09-09 Composite substrate and manufacture method

Publications (2)

Publication Number Publication Date
TWI780901B TWI780901B (en) 2022-10-11
TW202312230A true TW202312230A (en) 2023-03-16

Family

ID=85462692

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133642A TWI780901B (en) 2021-09-09 2021-09-09 Composite substrate and manufacture method

Country Status (1)

Country Link
TW (1) TWI780901B (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141799A1 (en) * 2010-12-03 2012-06-07 Francis Kub Film on Graphene on a Substrate and Method and Devices Therefor
US9771665B2 (en) * 2013-09-16 2017-09-26 Griffith University Process for forming graphene layers on silicon carbide
JP6572694B2 (en) * 2015-09-11 2019-09-11 信越化学工業株式会社 Method for manufacturing SiC composite substrate and method for manufacturing semiconductor substrate

Also Published As

Publication number Publication date
TWI780901B (en) 2022-10-11

Similar Documents

Publication Publication Date Title
TWI719051B (en) SiC composite substrate and manufacturing method thereof
TWI316769B (en) Semiconductor element and its fabrication method
WO2010131573A1 (en) Insulating gate type bipolar transistor
CN113690298A (en) Semiconductor composite substrate, semiconductor device and preparation method
US10283594B2 (en) SiC structure, semiconductor device having SiC structure, and process of forming the same
CN104867818B (en) A kind of method for reducing silicon carbide epitaxy material defect
US20140117382A1 (en) Epitaxial Wafer, Method for Fabricating the Wafer, and Semiconductor Device Including the Wafer
WO2016002386A1 (en) Silicon carbide semiconductor element production method
US10246795B2 (en) Transfer-free method for forming graphene layer
JP6463517B2 (en) Semiconductor substrate
JP4907476B2 (en) Nitride semiconductor single crystal
WO2015141620A1 (en) Method for producing thin-film solar cell, and thin-film solar cell
JP2014240340A (en) Substrate, method of producing substrate, and electronic apparatus
TWI780901B (en) Composite substrate and manufacture method
JP6163024B2 (en) Substrate manufacturing method
KR20200054655A (en) Method for synthesizing graphene pattern and method for manufacturing electro-optical modulator using the same
Kato et al. Formation of epitaxial 3C-SiC layers by microwave plasma-assisted carbonization
JP2014241387A (en) Substrate, method of manufacturing the same, and electronic equipment
JP6927429B2 (en) Manufacturing method of SiC epitaxial substrate
WO2024029217A1 (en) Method for manufacturing 3c-sic laminated substrate, 3c-sic laminated substrate, and 3c-sic independent substrate
TWI792550B (en) Method of manufacturing a composite substrate
CN116053120B (en) Nitride epitaxial structure and preparation method and application thereof
WO2023037838A1 (en) Method for manufacturing nitride semiconductor substrate
CN113594110B (en) Semiconductor device and preparation method thereof
CN109244226B (en) Composite film, semiconductor device and semiconductor

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent