TWI792550B - Method of manufacturing a composite substrate - Google Patents

Method of manufacturing a composite substrate Download PDF

Info

Publication number
TWI792550B
TWI792550B TW110133641A TW110133641A TWI792550B TW I792550 B TWI792550 B TW I792550B TW 110133641 A TW110133641 A TW 110133641A TW 110133641 A TW110133641 A TW 110133641A TW I792550 B TWI792550 B TW I792550B
Authority
TW
Taiwan
Prior art keywords
substrate
layer
diamond
epitaxial structure
diamond layer
Prior art date
Application number
TW110133641A
Other languages
Chinese (zh)
Other versions
TW202311584A (en
Inventor
吳建毅
曾頎堯
Original Assignee
合晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 合晶科技股份有限公司 filed Critical 合晶科技股份有限公司
Priority to TW110133641A priority Critical patent/TWI792550B/en
Application granted granted Critical
Publication of TWI792550B publication Critical patent/TWI792550B/en
Publication of TW202311584A publication Critical patent/TW202311584A/en

Links

Images

Landscapes

  • Mechanical Treatment Of Semiconductor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A method of manufacturing a composite substrate is provided in some embodiments of the present disclosure, including: forming a barrier layer on a gallium nitride epitaxial structure of an epitaxial substrate, in which the epitaxial substrate includes a base material and the gallium nitride epitaxial structure, and the gallium nitride epitaxial structure is disposed on a first surface of the base material; forming a diamond layer below a second surface opposite to the first surface of the base material; and removing the barrier layer, obtaining the composite substrate, in which the composite substrate includes the diamond layer, the base material and the epitaxial substrate from bottom to top.

Description

製造複合基板的方法Method of manufacturing composite substrate

本揭示內容涉及製造複合基板的方法。The present disclosure relates to methods of making composite substrates.

近來,對於降低氮化鎵微波功率元件的尺寸,以及提升輸出功率的要求逐漸增加。然而,隨著功率元件(例如包含氮化鎵磊晶結構的高頻元件)密度的增加,元件的熱積累迅速增加,降低元件的性能表現,使得元件的可靠性和穩定性受到嚴重挑戰,也成為提升功率元件之功率的限制。Recently, there has been an increasing demand for downsizing GaN microwave power components and increasing output power. However, with the increase in the density of power components (such as high-frequency components containing gallium nitride epitaxial structures), the heat accumulation of the components increases rapidly, reducing the performance of the components, which seriously challenges the reliability and stability of the components. It becomes the limit to increase the power of power components.

因此,如何改善承載高頻元件的複合基板的散熱效果,是所欲解決的問題。Therefore, how to improve the heat dissipation effect of the composite substrate carrying high-frequency components is a problem to be solved.

本揭示內容之一實施方式的目的在於,提供一種製造複合基板的方法,包含:形成阻障層於磊晶基板的氮化鎵磊晶結構上,其中磊晶基板包含基材與氮化鎵磊晶結構,氮化鎵磊晶結構設置於基材的第一表面上;形成鑽石層於基材相對於第一表面的第二表面下;以及移除阻障層,獲得複合基板,其中複合基板自下而上依序包含鑽石層、基材以及氮化鎵磊晶結構。An object of an embodiment of the present disclosure is to provide a method for manufacturing a composite substrate, comprising: forming a barrier layer on the GaN epitaxial structure of the epitaxial substrate, wherein the epitaxial substrate includes a substrate and a GaN epitaxial structure. crystal structure, the gallium nitride epitaxial structure is disposed on the first surface of the substrate; forming a diamond layer under the second surface of the substrate opposite to the first surface; and removing the barrier layer to obtain a composite substrate, wherein the composite substrate The diamond layer, substrate and GaN epitaxial structure are sequentially included from bottom to top.

在一些實施方式中,基材包含矽基材、絕緣層上覆矽基材、藍寶石基材、或碳化矽基材。In some embodiments, the substrate includes a silicon substrate, a silicon-on-insulator substrate, a sapphire substrate, or a silicon carbide substrate.

在一些實施方式中,在形成阻障層於磊晶基板的氮化鎵磊晶結構上的步驟之前,更包含減薄基板的步驟。In some embodiments, before the step of forming the barrier layer on the GaN epitaxial structure of the epitaxial substrate, the step of thinning the substrate is further included.

在一些實施方式中,減薄基材的步驟包含:使用太鼓研磨技術,以減薄基材。In some embodiments, the step of thinning the substrate comprises: using a Taiko lapping technique to thin the substrate.

在一些實施方式中,形成阻障層於磊晶基板的氮化鎵磊晶結構上的步驟,包含:塗覆玻璃光阻材料於氮化鎵磊晶結構上;以及加熱玻璃光阻材料,使玻璃光阻材料燒結硬化,形成阻障層於氮化鎵磊晶結構上。In some embodiments, the step of forming a barrier layer on the GaN epitaxial structure of the epitaxial substrate includes: coating a glass photoresist material on the GaN epitaxial structure; and heating the glass photoresist material, so that The glass photoresist material is sintered and hardened to form a barrier layer on the GaN epitaxial structure.

在一些實施方式中,形成鑽石層於基材相對於第一表面的第二表面下的步驟包含:提供複數鑽石顆粒於有機溶液中;將形成有阻障層的磊晶基板置入有機溶液中;在有機溶液中,對磊晶基板進行超音波處理,使鑽石顆粒嵌入基材的第二表面下,以形成成核層於基材的第二表面下;以及對基材的第二表面執行鑽石生長製程,以形成鑽石層於基材的第二表面下,其中鑽石層包含成核層。In some embodiments, the step of forming the diamond layer under the second surface of the substrate relative to the first surface comprises: providing a plurality of diamond particles in an organic solution; placing the epitaxial substrate formed with the barrier layer into the organic solution ; In an organic solution, ultrasonic treatment is performed on the epitaxial substrate, so that diamond particles are embedded under the second surface of the substrate to form a nucleation layer under the second surface of the substrate; and performing on the second surface of the substrate The diamond growth process is used to form a diamond layer under the second surface of the substrate, wherein the diamond layer includes a nucleation layer.

在一些實施方式中,對基材的第二表面執行鑽石生長製程的步驟包含:通入反應氣體成長鑽石層,以形成鑽石層於基材的第二表面下,其中反應氣體包含甲烷以及氫氣。In some embodiments, the step of performing a diamond growth process on the second surface of the substrate includes: injecting a reactive gas to grow the diamond layer to form the diamond layer under the second surface of the substrate, wherein the reactive gas includes methane and hydrogen.

在一些實施方式中,反應氣體更包含氯氣、氯甲烷前述材料之組合。In some embodiments, the reaction gas further comprises chlorine, methyl chloride and a combination of the aforementioned materials.

在一些實施方式中,將反應氣體總和的重量百分比以100%來計,甲烷的重量百分比為1%至16%。In some embodiments, the weight percentage of methane ranges from 1% to 16% based on 100% weight percentage of the sum of the reaction gases.

在一些實施方式中,通入反應氣體成長鑽石層的步驟,包含在低於850°C的溫度下成長鑽石層的步驟。In some embodiments, the step of growing the diamond layer by introducing the reaction gas includes the step of growing the diamond layer at a temperature lower than 850°C.

可以理解的是,下述內容提供的不同實施方式或實施例可實施本揭露之標的不同特徵。特定構件與排列的實施例係用以簡化本揭露而非侷限本揭露。當然,這些僅是實施例,並且不旨在限制。舉例來說,以下所述之第一特徵形成於第二特徵上的敘述包含兩者直接接觸,或兩者之間隔有其他額外特徵而非直接接觸。此外,本揭露在複數個實施例中可重複參考數字及/或符號。這樣的重複是為了簡化和清楚,而並不代表所討論的各實施例及/或配置之間的關係。It can be understood that different implementations or examples provided in the following content can implement different features of the subject matter of the present disclosure. The examples of specific components and arrangements are used to simplify the present disclosure and not to limit the present disclosure. Of course, these are examples only and are not intended to be limiting. For example, the description below that a first feature is formed on a second feature includes that the two are in direct contact, or that there are other additional features between the two instead of direct contact. In addition, the present disclosure may repeat reference numerals and/or symbols in several embodiments. Such repetition is for simplicity and clarity and does not represent a relationship between the various embodiments and/or configurations discussed.

本說明書中所用之術語一般在本領域以及所使用之上下文中具有通常性的意義。本說明書中所使用的實施例,包括本文中所討論的任何術語的例子僅是說明性的,而不限制本揭示內容或任何示例性術語的範圍和意義。同樣地,本揭示內容不限於本說明書中所提供的一些實施方式。The terms used in this specification generally have their ordinary meanings in the art and the context in which they are used. The examples used in this specification, including examples of any term discussed herein, are illustrative only and do not limit the scope and meaning of the disclosure or any exemplified term. Likewise, the disclosure is not limited to some of the embodiments provided in this specification.

另外,空間相對用語,如「下」、「上」等,是用以方便描述一元件或特徵與其他元件或特徵在圖式中的相對關係。這些空間相對用語旨在包含除了圖式中所示之方位以外,裝置在使用或操作時的不同方位。裝置可被另外定位(例如旋轉90度或其他方位),而本文所使用的空間相對敘述亦可相對應地進行解釋。In addition, relative terms in space, such as "below" and "upper", are used to conveniently describe the relative relationship between one element or feature and other elements or features in the drawings. These spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the drawings. The device may be otherwise positioned (eg, rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.

於本文中,除非內文中對於冠詞有所特別限定,否則「一」與「該」可泛指單一個或多個。將進一步理解的是,本文中所使用之「包含」、「包括」、「具有」及相似詞彙,指明其所記載的特徵、區域、整數、步驟、操作、元件與/或組件,但不排除其它的特徵、區域、整數、步驟、操作、元件、組件,與/或其中之群組。In this article, "a" and "the" can generally refer to one or more, unless the article is specifically limited in the context. It will be further understood that the terms "comprising", "comprising", "having" and similar words used herein indicate the features, regions, integers, steps, operations, elements and/or components described therein, but do not exclude Other features, regions, integers, steps, operations, elements, components, and/or groups thereof.

將理解的是,儘管本文可以使用術語第一、第二等來描述各種元件,但是這些元件不應受到這些術語的限制。這些術語用於區分一個元件和另一個元件。舉例來說,在不脫離本實施方式的範圍的情況下,第一元件可以被稱為第二元件,並且類似地,第二元件可以被稱為第一元件。It will be understood that, although the terms first, second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present embodiments.

於本文中,術語「和/或」包含一個或複數個相關聯的所列項目的任何和所有組合。As used herein, the term "and/or" includes any and all combinations of one or more of the associated listed items.

於本文中,所使用之「約」一般通常係指數值之誤差或範圍約百分之二十以內,較好地是約百分之十以內,而更佳地則是約百分之五以內。文中若無明確說明,其所提及的數值皆視作為近似值,即如「約」所表示的誤差或範圍。As used herein, "about" generally means within about 20 percent, preferably within about 10 percent, and more preferably within about 5 percent of the error or range of the value of the index . If there is no explicit statement in the text, the values mentioned are regarded as approximate values, that is, the error or range indicated by "approximately".

以下列舉數個實施方式以更詳盡闡述本發明之觸碰裝置,然其僅為例示說明之用,並非用以限定本發明,本發明之保護範圍當以後附之申請專利範圍所界定者為準。需注意的是,圖式中之各元件之間的比例關係僅為示意。Several implementations are listed below to describe the touch device of the present invention in more detail, but they are only for illustrative purposes and are not intended to limit the present invention. The scope of protection of the present invention shall prevail as defined by the scope of the appended patent application . It should be noted that the proportional relationship among the elements in the drawings is only for illustration.

第1A圖至第1F圖示例性地描述本揭示內容的一些實施方式中製造複合基板的各製程階段的示意圖。Figures 1A-1F exemplarily depict schematic diagrams of various process stages for manufacturing a composite substrate in accordance with some embodiments of the present disclosure.

首先,請見第1A圖,提供磊晶基板110。磊晶基板110包含基材112以及氮化鎵磊晶結構114設置於基材112的第一表面112A上。First, as shown in FIG. 1A , an epitaxial substrate 110 is provided. The epitaxial substrate 110 includes a substrate 112 and a GaN epitaxial structure 114 is disposed on the first surface 112A of the substrate 112 .

在一些實施方式中,基材112包含矽基材、絕緣層上覆矽(Silicon On Insulator;SOI)基材、藍寶石基材、或碳化矽基材。在一些實施方式中,基材112的厚度範圍為300微米至1000微米,例如300微米、400微米、500微米、600微米、700微米、800微米、900微米、1000微米或前述任意區間的數值。在一些實施方式中,基材112的晶格定向包含<111>、<100>、<110>或前述組合。值得說明的是,若欲於基材112上形成氮化鎵磊晶結構114,基材112採用合適的晶格定向,可實現較好的晶格匹配性,避免缺陷產生,並提升磊晶生長的穩定與平整性,例如矽基材以及 SOI 基材的晶格定向為<111>,碳化矽的晶格定向為<11-20>,藍寶石基材的晶格定向為<0001>。In some embodiments, the substrate 112 includes a silicon substrate, a silicon-on-insulator (SOI) substrate, a sapphire substrate, or a silicon carbide substrate. In some embodiments, the thickness of the substrate 112 is in the range of 300 microns to 1000 microns, such as 300 microns, 400 microns, 500 microns, 600 microns, 700 microns, 800 microns, 900 microns, 1000 microns or any value in the aforementioned range. In some embodiments, the lattice orientation of the substrate 112 comprises <111>, <100>, <110>, or a combination thereof. It is worth noting that if it is desired to form the GaN epitaxial structure 114 on the substrate 112, the substrate 112 adopts a suitable lattice orientation, which can achieve better lattice matching, avoid defects, and improve epitaxial growth. For example, the lattice orientation of silicon substrate and SOI substrate is <111>, the lattice orientation of silicon carbide is <11-20>, and the lattice orientation of sapphire substrate is <0001>.

在一些實施方式中,可以使用有機金屬化學氣相沉積(Metal-organic Chemical Vapor Deposition;MOCVD),在基材112的第一表面112A上,形成厚度為1至10微米的氮化鎵磊晶結構114(高電子移動率晶體電晶體(High electron mobility transistor;HEMT))。在一些實施方式中,氮化鎵磊晶結構114依序包含種子層設置於基材112上、緩衝層設置於種子層上、阻抗層設置於緩衝層上、通道層設置於阻抗層上、屏障層設置於通道層上以及覆蓋層設置於屏障層上。在一些實施方式中,種子層可以包含氮化鋁,厚度在30奈米至300奈米之間。在一些實施方式中,緩衝層可以包含氮化鋁鎵、氮化鎵、前述材料之組合,例如梯式氮化鋁鎵或超晶格氮化鋁鎵/氮化鎵,厚度為300奈米至1000奈米之間。在一些實施方式中,阻抗層為氮化鎵,厚度可以為0.5微米至2.5微米之間。在一些實施方式中,通道層為氮化鎵,厚度為0.05微米至1微米之間。在一些實施方式中,屏障層包含氮化鋁鎵,厚度為10奈米至50奈米之間。在一些實施方式中,覆蓋層為氮化鎵,厚度為0.5奈米至150奈米。在一些實施方式中,在形成氮化鎵磊晶結構114後,接續設置閘極以及源極/汲極於氮化鎵磊晶結構114上。In some embodiments, metal-organic chemical vapor deposition (Metal-organic Chemical Vapor Deposition; MOCVD) can be used to form a gallium nitride epitaxial structure with a thickness of 1 to 10 microns on the first surface 112A of the substrate 112 114 (High electron mobility transistor (HEMT)). In some embodiments, the gallium nitride epitaxial structure 114 sequentially includes a seed layer disposed on the substrate 112, a buffer layer disposed on the seed layer, a resistive layer disposed on the buffer layer, a channel layer disposed on the resistive layer, a barrier A layer is disposed on the channel layer and a cover layer is disposed on the barrier layer. In some embodiments, the seed layer may comprise aluminum nitride and have a thickness between 30 nm and 300 nm. In some embodiments, the buffer layer may comprise AlGaN, GaN, combinations of the foregoing, such as ladder AlGaN or superlattice AlGaN/GaN, with a thickness of 300 nm to between 1000 nm. In some embodiments, the resistance layer is gallium nitride, and its thickness may be between 0.5 microns and 2.5 microns. In some embodiments, the channel layer is GaN with a thickness between 0.05 micron and 1 micron. In some embodiments, the barrier layer comprises aluminum gallium nitride and has a thickness between 10 nm and 50 nm. In some embodiments, the capping layer is GaN with a thickness of 0.5 nm to 150 nm. In some embodiments, after forming the GaN epitaxial structure 114 , the gate and the source/drain are disposed on the GaN epitaxial structure 114 subsequently.

接著,請見第1B圖,減薄基材112,以降低HEMT的導通電阻以及熱阻,提升電晶體的作用效率。Next, as shown in FIG. 1B , the substrate 112 is thinned to reduce the on-resistance and thermal resistance of the HEMT, and improve the efficiency of the transistor.

在一些實施方式中,可以先在氮化鎵磊晶結構114的表面114A上貼上厚度為100微米至200微米的保護膜(例如藍膜(舉例而言可以為熱解膠或紫外光膠),圖未示),以保護氮化鎵磊晶結構114。接著,由基材112的第二表面112B一側執行機械減薄,使基材112的厚度減薄至65微米至125微米後,再移除保護膜。舉例而言,請回見第1A圖,可以使用太鼓研磨(taiko grinding)技術,減薄基材112的內側區域R1,保留外圍區域R2,減薄後的基材112的第二表面112B一側將形成自外而內凹入的外厚內薄結構(第1B圖未示),此種結構將有益於克服因減薄基材112而造成的基材112以及氮化鎵磊晶結構114過薄,應力易過度累積而翹曲的現象。In some embodiments, a protective film (such as a blue film (for example, pyrolytic glue or ultraviolet glue) can be pasted on the surface 114A of the gallium nitride epitaxial structure 114 with a thickness of 100 microns to 200 microns. , not shown in the figure) to protect the GaN epitaxial structure 114 . Next, mechanical thinning is performed from the side of the second surface 112B of the substrate 112 to reduce the thickness of the substrate 112 to 65 microns to 125 microns, and then remove the protective film. For example, please refer back to FIG. 1A, the inner region R1 of the substrate 112 can be thinned by using taiko grinding technology, and the peripheral region R2 is reserved, and the second surface 112B side of the substrate 112 after thinning will form The outer thick and inner thin structure (not shown in Figure 1B) concave from the outside to the inside, this structure will be beneficial to overcome the thin substrate 112 and GaN epitaxial structure 114 caused by thinning the substrate 112, and the stress is easy The phenomenon of warping due to excessive accumulation.

接著,請見第1C圖,形成阻障層120於氮化鎵磊晶結構114上,以用於在後續製程中保護氮化鎵磊晶結構114。Next, please refer to FIG. 1C , a barrier layer 120 is formed on the GaN epitaxial structure 114 for protecting the GaN epitaxial structure 114 in subsequent processes.

在一些實施方式中,阻障層120的材料易於設置與移除、可以保護氮化鎵磊晶結構114免於鑽石顆粒於超音波環境的衝擊損傷、並且可以耐高溫(例如可承受化學氣相沉積的作用溫度(例如至少400°C以上))。舉例而言,阻障層120可以為玻璃光阻。In some embodiments, the material of the barrier layer 120 is easy to install and remove, can protect the gallium nitride epitaxial structure 114 from the impact damage of the diamond particles in the ultrasonic environment, and can withstand high temperature (for example, can withstand chemical vapor phase Deposition temperature (for example, at least 400 ° C above)). For example, the barrier layer 120 can be a glass photoresist.

具體而言,形成阻障層120於氮化鎵磊晶結構114上的步驟,包含塗覆玻璃光阻材料於氮化鎵磊晶結構114上;以及加熱玻璃光阻材料(例如500°C至700°C),使玻璃光阻材料燒結而硬化,形成阻障層120於氮化鎵磊晶結構114上。在一些實施方式中,阻障層120僅覆蓋氮化鎵磊晶結構114的表面114A。在一些實施方式中,阻障層120除了覆蓋氮化鎵磊晶結構114的表面114A外,還可延伸覆蓋氮化鎵磊晶結構114的側壁114S,以提升保護氮化鎵磊晶結構114的效果(圖未示)。在一些實施方式中,阻障層120的厚度範圍可以為50微米至100微米(例如50微米、60微米、70微米、80微米、90微米、100微米或前述任意區間中的數值)。值得說明的是,阻障層120除了用於保護外,也可同時作為暫時基板,支撐磊晶基板110以避免磊晶基板110過薄而翹曲。Specifically, the step of forming the barrier layer 120 on the GaN epitaxial structure 114 includes coating a glass photoresist material on the GaN epitaxial structure 114; and heating the glass photoresist material (for example, 500 ° C to 700°C), the glass photoresist material is sintered and hardened to form a barrier layer 120 on the GaN epitaxial structure 114 . In some embodiments, the barrier layer 120 covers only the surface 114A of the GaN epitaxial structure 114 . In some embodiments, in addition to covering the surface 114A of the GaN epitaxial structure 114 , the barrier layer 120 may also extend to cover the sidewall 114S of the GaN epitaxial structure 114 to improve the protection of the GaN epitaxial structure 114 effect (not shown). In some embodiments, the thickness of the barrier layer 120 may range from 50 microns to 100 microns (eg, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns, 100 microns, or a value in any of the aforementioned intervals). It is worth noting that the barrier layer 120 is not only used for protection, but also serves as a temporary substrate to support the epitaxial substrate 110 to prevent the epitaxial substrate 110 from being too thin and warped.

接著,請見第1D圖,形成成核層132於基材112的第二表面112B下,以針對後續待生長的鑽石層,預先提供足夠密度的成核晶粒,提升後續待生長的鑽石層的連續性(即,相鄰的晶粒之間連結及延伸的程度)。在一些實施方式中,形成成核層132於基材112的第二表面112B下的步驟包含:提供複數鑽石顆粒P於有機溶液(例如丙酮)中;將形成有阻障層120的磊晶基板110置入有機溶液中;在有機溶液中,對磊晶基板110進行超音波處理,使鑽石顆粒P嵌入基材112的第二表面112B下,以形成成核層132於基材112的第二表面112B下。在一些實施方式中,將形成有阻障層120的磊晶基板110置入有機溶液中包含將形成有阻障層120的磊晶基板110整體浸入有機溶液中,即,阻障層120以及磊晶基板110均浸入有機溶液中,相較於僅將磊晶基板110的第二表面112B浸於有機溶液中,可達成較好的鑽石顆粒P嵌入效果。在一些實施方式中,可以調整超音波的頻率以及有機溶液中鑽石顆粒P的密度等參數,從而實現期望的成核層132中的鑽石顆粒P密度,舉例而言,成核層132中的鑽石顆粒P密度大於10 10個/平方公分時,可以使後續所形成的鑽石層連續性更佳。 Next, as shown in FIG. 1D, a nucleation layer 132 is formed under the second surface 112B of the substrate 112 to provide sufficient density of nucleation crystal grains in advance for the subsequent diamond layer to be grown, so as to enhance the subsequent diamond layer to be grown The continuity (that is, the degree of connection and extension between adjacent grains). In some embodiments, the step of forming the nucleation layer 132 under the second surface 112B of the substrate 112 includes: providing a plurality of diamond particles P in an organic solution (such as acetone); forming the epitaxial substrate with the barrier layer 120 110 is placed in an organic solution; in the organic solution, the epitaxial substrate 110 is subjected to ultrasonic treatment, so that diamond particles P are embedded under the second surface 112B of the substrate 112 to form a nucleation layer 132 on the second surface of the substrate 112 under surface 112B. In some embodiments, placing the epitaxial substrate 110 formed with the barrier layer 120 into the organic solution includes immersing the entire epitaxial substrate 110 formed with the barrier layer 120 into the organic solution, that is, the barrier layer 120 and the epitaxial substrate 110 The epitaxial substrates 110 are all immersed in the organic solution. Compared with only immersing the second surface 112B of the epitaxial substrate 110 in the organic solution, a better embedding effect of the diamond particles P can be achieved. In some embodiments, parameters such as the frequency of the ultrasonic wave and the density of the diamond particles P in the organic solution can be adjusted, so as to realize the desired density of the diamond particles P in the nucleation layer 132, for example, the diamond particle P density in the nucleation layer 132 When the particle P density is greater than 10 10 per square centimeter, the continuity of the subsequently formed diamond layer can be improved.

接著,請見第1E圖(並同時參考第1D圖),以成核層132為種子層,對基材112的第二表面112B執行鑽石生長製程,以形成鑽石層130於基材112的第二表面112B下,並且,在形成鑽石層130之後,原本的成核層132將作為鑽石層130的部份存在(圖未示)。Next, see FIG. 1E (and refer to FIG. 1D at the same time), using the nucleation layer 132 as a seed layer, a diamond growth process is performed on the second surface 112B of the substrate 112 to form a diamond layer 130 on the second surface 112B of the substrate 112. Under the two surfaces 112B, and after the diamond layer 130 is formed, the original nucleation layer 132 will exist as a part of the diamond layer 130 (not shown).

在一些實施方式中,對基材112的第二表面112B執行鑽石生長製程的步驟包含:通入包含甲烷以及氫氣的反應氣體成長鑽石層130,以形成鑽石層130於基材112的第二表面112B下。具體而言,可以經由化學氣相沉積(Chemical Vapor Disposition;CVD),在負壓(例如壓力為1x10 -3托)、400°C至850°C(例如400°C、450°C、500°C、550°C、600°C、650°C、700°C、800°C、850°C或前述任意區間中的數值)的溫度範圍,以及1%至16%(例如1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%或前述任意區間中的數值)的甲烷濃度範圍內(此處濃度單位為重量百分比,並且反應氣體總和的重量百分比以100%來計),成長鑽石層130。 In some embodiments, the step of performing the diamond growth process on the second surface 112B of the substrate 112 includes: growing the diamond layer 130 by introducing a reactive gas comprising methane and hydrogen to form the diamond layer 130 on the second surface of the substrate 112 112B under. Specifically, chemical vapor deposition (Chemical Vapor Disposition; CVD) can be carried out under negative pressure (such as a pressure of 1x10 -3 Torr), 400°C to 850°C (such as 400°C, 450°C, 500° C, 550°C, 600°C, 650°C, 700°C, 800°C, 850°C, or a value in any of the preceding intervals), and a temperature range of 1% to 16% (such as 1%, 2% , 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16% or any value in the aforementioned range) The diamond layer 130 is grown within the range of the methane concentration (here the concentration unit is weight percentage, and the weight percentage of the total reaction gas is 100%).

值得注意的是,晶粒尺寸越小,則所生成之鑽石層130表面130B的粗糙度越小,散熱效果越好。在一些實施方式中,可以經由調控反應氣體種類、反應氣體濃度以及溫度等參數,控制鑽石層130的晶粒尺寸以及成長速度。It is worth noting that the smaller the grain size, the smaller the roughness of the surface 130B of the diamond layer 130 and the better the heat dissipation effect. In some embodiments, the grain size and growth rate of the diamond layer 130 can be controlled by adjusting parameters such as the type of reaction gas, the concentration of the reaction gas, and the temperature.

針對晶粒尺寸的調控方面,可以經由調控反應氣體的濃度,調控晶粒尺寸。舉例而言,在作用氣體為甲烷以及氫氣,並且溫度維持一致的條件下,隨著甲烷濃度由8%提升至16%,晶粒尺寸將由約20奈米下降至約14奈米,此外,隨著甲烷濃度持續提升(例如提升至20%),晶粒尺寸將仍維持於約14奈米,並未持續下降,因此,甲烷濃度16%為可取得最小的晶粒尺寸的最低甲烷濃度,選擇此作用濃度,可於最低反應成本下獲得最小的晶粒尺寸。因此,反應氣體的濃度與晶粒尺寸的關係,並非全然正相關或是負相關,需經實際測試,方可從中選擇適當的濃度,從而獲得期望的晶粒尺寸。Regarding the control of the grain size, the grain size can be controlled by adjusting the concentration of the reaction gas. For example, under the condition that the working gases are methane and hydrogen, and the temperature is kept constant, as the concentration of methane increases from 8% to 16%, the grain size will decrease from about 20 nm to about 14 nm. As the methane concentration continues to increase (for example, to 20%), the grain size will still be maintained at about 14 nanometers and will not continue to decrease. Therefore, the methane concentration of 16% is the lowest methane concentration that can obtain the smallest grain size. With this concentration, the smallest grain size can be obtained at the lowest reaction cost. Therefore, the relationship between the concentration of the reaction gas and the grain size is not completely positive or negative, and an appropriate concentration can be selected through actual testing to obtain the desired grain size.

在一些實施方式中,也可以透過降低溫度,來降低晶粒尺寸。舉例而言,在反應氣體使用甲烷以及氫氣的條件下,溫度控制在750°C時,可以獲得約為15.5奈米的晶粒尺寸,當溫度下降至650°C時,則晶粒尺寸下降至約為14.5奈米,當溫度進一步下降至550°C時,則晶粒尺寸下降至約6奈米至約7奈米。In some embodiments, the grain size can also be reduced by lowering the temperature. For example, under the condition of using methane and hydrogen as the reaction gas, when the temperature is controlled at 750°C, a grain size of about 15.5 nm can be obtained, and when the temperature drops to 650°C, the grain size drops to It is about 14.5 nm, and when the temperature further drops to 550° C., the grain size drops to about 6 nm to about 7 nm.

在一些實施方式中,晶粒尺寸的範圍可以控制在9奈米至50奈米之間,例如9奈米、10奈米、15奈米、20奈米、25奈米、30奈米、35奈米、40奈米、45奈米、50奈米或前述區間中的任意數值。In some embodiments, the range of grain size can be controlled between 9 nm and 50 nm, such as 9 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm Nanometer, 40nm, 45nm, 50nm, or any value in the aforementioned range.

,針對成長速度的調控方面,也可以經由調控甲烷濃度,調控成長速度。需說明的是,甲烷在不同濃度範圍下,成長速度的趨勢將會變化。當甲烷濃度小於3.5%時,隨著甲烷濃度提升,成長速度提升,例如甲烷濃度為1.5%時,成長速度約0.25微米/小時,當甲烷濃度提升為3.5%時,成長速度提升至約2.0微米/小時。但是,當甲烷濃度大於3.5%時,隨著甲烷濃度提升,成長速度卻會下降,例如甲烷濃度為4.5%時,成長速度下降至約1.5微米/小時。在一些實施方式中,成長速度的範圍可以控制在0.25微米/小時、0.5微米/小時、0.5微米/小時1微米/小時、1.5微米/小時、1.8微米/小時、2微米/小時、2.5微米/小時或前述區間中的任意數值。, for the control of the growth rate, the growth rate can also be regulated by regulating the methane concentration. It should be noted that, under different concentration ranges of methane, the trend of growth rate will change. When the methane concentration is less than 3.5%, the growth rate increases as the methane concentration increases. For example, when the methane concentration is 1.5%, the growth rate is about 0.25 μm/hour, and when the methane concentration increases to 3.5%, the growth rate increases to about 2.0 μm /Hour. However, when the methane concentration is greater than 3.5%, the growth rate will decrease as the methane concentration increases. For example, when the methane concentration is 4.5%, the growth rate will decrease to about 1.5 μm/hour. In some embodiments, the range of growth rate can be controlled at 0.25 micron/hour, 0.5 micron/hour, 0.5 micron/hour, 1 micron/hour, 1.5 micron/hour, 1.8 micron/hour, 2 micron/hour, 2.5 micron/hour Hours or any value in the preceding range.

在一些實施方式中,為提升成長速度,反應氣體可以更包含氯甲烷(CH xCl y,其中1≦x≦2,2≦y≦3)、氯氣(C1 2)前述材料之組合,利用C-Cl鍵結較C-H鍵結弱的原理,在氣相條件下可以產生較高濃度的含碳自由基,與此同時,氯原子還可以加速奪氫反應(hydrogen abstraction),共同提升鑽石層130的成核密度,從而提升成長速度。藉此,可以在較低的反應溫度(一般而言,溫度越低,成長速度較慢),同時維持甚至提升鑽石成長速度,獲得具有較小晶粒尺寸的鑽石層130。舉例而言,在反應氣體更包含氯甲烷以及氯氣時,鑽石層130的生長溫度僅需在400°C至600°C的範圍內(400°C、450°C、500°C、550°C、600°C或前述任意組合),即可達成反應氣體僅為甲烷以及氫氣,以及反應溫度為850°C時,所達成的反應速率(例如維持成長速度為0.8微米/小時至1.8微米/小時之間),同時獲得更小的晶粒尺寸。 In some embodiments, in order to increase the growth rate, the reaction gas may further include methyl chloride (CH x Cl y , where 1≦x≦2, 2≦y≦3), chlorine (C1 2 ) and a combination of the aforementioned materials. The principle that the -Cl bond is weaker than the CH bond can generate a higher concentration of carbon-containing free radicals under gas-phase conditions. At the same time, chlorine atoms can also accelerate the hydrogen abstraction reaction (hydrogen abstraction), and jointly enhance the diamond layer 130 nucleation density, thereby increasing the growth rate. Thereby, the diamond layer 130 with a smaller grain size can be obtained at a lower reaction temperature (generally speaking, the lower the temperature, the slower the growth rate), while maintaining or even increasing the diamond growth rate. For example, when the reaction gas further includes methyl chloride and chlorine, the growth temperature of the diamond layer 130 only needs to be in the range of 400°C to 600°C (400°C, 450°C, 500°C, 550°C , 600°C or any combination of the foregoing), the reaction gas can be only methane and hydrogen, and when the reaction temperature is 850°C, the reaction rate achieved (for example, maintain a growth rate of 0.8 μm/hour to 1.8 μm/hour between), while obtaining a smaller grain size.

在一些實施方式中,鑽石層130的厚度範圍為1微米至40微米之間,舉例而言1微米、5微米、10微米、15微米、20微米、25微米、30微米、35微米、40微米、或前述任意區間中的數值。In some embodiments, the thickness of the diamond layer 130 ranges from 1 micron to 40 microns, for example 1 micron, 5 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns , or a value in any of the aforementioned intervals.

在一些替代性的實施方式中,也可以直接經由CVD形成鑽石層130於基材112的第二表面112B下,而無須經由請參第1D圖的超音波處理,預先形成核層132的步驟。In some alternative implementations, the diamond layer 130 can also be formed directly under the second surface 112B of the substrate 112 by CVD, without the step of pre-forming the core layer 132 through the ultrasonic treatment referring to FIG. 1D .

接著,請見第1F圖,移除阻障層120,獲得複合基板100,複合基板100自下而上依序包含鑽石層130、基板112以及氮化鎵磊晶結構114。在一些實施方式中,複合基板100的厚度範圍為67微米至175微米,舉例而言67微米、80微米、90微米、100微米、125微米、150微米、175微米或前述任意區間中的數值。Next, as shown in FIG. 1F , the barrier layer 120 is removed to obtain a composite substrate 100 , which sequentially includes a diamond layer 130 , a substrate 112 and a GaN epitaxial structure 114 from bottom to top. In some embodiments, the thickness of the composite substrate 100 ranges from 67 microns to 175 microns, for example, 67 microns, 80 microns, 90 microns, 100 microns, 125 microns, 150 microns, 175 microns or any value in the aforementioned range.

本揭示內容之一些實施方式中所提供的複合基板100,採用將鑽石層130設置於基材112的第二表面112B下的設計,利用鑽石具有高導熱率(2000瓦/公尺·度(W/m·K))的原理(相較之下,矽的導熱率僅為150瓦/公尺·度,氮化鎵的導熱率僅為130瓦/公尺·度),作為磊晶基板110的散熱基板,提升複合基板100的散熱效率,改善因磊晶基板110或其上所承載的元件(例如源極)的熱累積問題,並可作為實現提升元件功率密度提升以及高功率特性的途徑。The composite substrate 100 provided in some embodiments of the present disclosure adopts a design in which the diamond layer 130 is disposed under the second surface 112B of the substrate 112, and utilizes the high thermal conductivity (2000 watts/meter·degree (W /m·K)) principle (in comparison, the thermal conductivity of silicon is only 150 W/m·degree, and the thermal conductivity of GaN is only 130 W/m·degree), as the epitaxial substrate 110 The heat dissipation substrate improves the heat dissipation efficiency of the composite substrate 100, improves the problem of heat accumulation caused by the epitaxial substrate 110 or the components (such as the source) carried on it, and can be used as a way to improve the power density and high power characteristics of the components. .

此外,相較於習知透過鍵合技術鍵合散熱基板的與基材的散熱技術,本揭示內容透過直接在基材112下成長鑽石層130,免於執行鍵合製程,並且同時免除在鍵合製程前需預執行的減薄散熱基板,以及分別氧化散熱基板以及基材的步驟,不僅可以簡化製程,並且可以避免基材112在鍵合相關的步驟中,因應力過度累積而破損的問題。In addition, compared with the conventional heat dissipation technology of bonding the heat dissipation substrate and substrate through bonding technology, the present disclosure avoids performing the bonding process by directly growing the diamond layer 130 under the substrate 112, and at the same time eliminates the need for bonding on the bond. The thinning of the heat dissipation substrate and the steps of separately oxidizing the heat dissipation substrate and the base material before the bonding process can not only simplify the manufacturing process, but also avoid the problem of damage to the base material 112 due to excessive stress accumulation in the bonding-related steps. .

綜上所述,本揭示內容的一些實施方式提供的製造複合基板的方法,直接在基材上生成鑽石層作為散熱基板,利用鑽石的高導熱率,提升複合基板的散熱效率。此外,直接在基材上形成鑽石層的設計,可避免習知鍵合散熱基板與基材時所需的繁瑣步驟,以及基材可能於鍵合相關步驟中破損的問題,提升製程效率以及複合基板的良率。To sum up, some embodiments of the present disclosure provide a method for manufacturing a composite substrate, directly forming a diamond layer on the base material as a heat dissipation substrate, and utilizing the high thermal conductivity of diamond to improve the heat dissipation efficiency of the composite substrate. In addition, the design of directly forming the diamond layer on the substrate can avoid the cumbersome steps required for bonding the heat dissipation substrate and the substrate, as well as the problem that the substrate may be damaged during the bonding process, and improve the process efficiency and composite substrate. yield.

儘管本揭示內容已根據某些實施方式具體描述細節,其他實施方式也是可行的。因此,所附請求項的精神和範圍不應限於本文所記載的實施方式。While this disclosure has described details in terms of certain implementations, other implementations are possible. Therefore, the spirit and scope of the appended claims should not be limited to the implementations described herein.

100:複合基板 110:磊晶基板 112:基材 114:氮化鎵磊晶結構 120:阻障層 130:鑽石層 132:成核層 112A:第一表面 112B:第二表面 114A、130B:表面 114S:側壁 P:鑽石顆粒 R1、R2:區域 100: composite substrate 110: Epitaxy substrate 112: Substrate 114: Gallium Nitride Epitaxial Structure 120: barrier layer 130: diamond layer 132: Nucleation layer 112A: first surface 112B: second surface 114A, 130B: surface 114S: side wall P: diamond particles R1, R2: area

通過閱讀以下參考附圖對實施方式的詳細描述,可以更完整地理解本揭示內容。 第1A圖至第1F圖示例性地描述本揭示內容的一些實施方式中製造複合基板的各製程階段的示意圖。 A more complete understanding of the present disclosure can be obtained by reading the following detailed description of the embodiments with reference to the accompanying drawings. Figures 1A-1F exemplarily depict schematic diagrams of various process stages for manufacturing a composite substrate in accordance with some embodiments of the present disclosure.

100:複合基板 100: composite substrate

110:磊晶基板 110: Epitaxy substrate

112:基材 112: Substrate

114:氮化鎵磊晶結構 114: Gallium Nitride Epitaxial Structure

130:鑽石層 130: diamond layer

112B:第二表面 112B: second surface

Claims (9)

一種製造複合基板的方法,包含:塗覆一玻璃光阻材料於一磊晶基板的一氮化鎵磊晶結構上,其中該磊晶基板包含一基材與該氮化鎵磊晶結構,該氮化鎵磊晶結構設置於該基材的一第一表面上;加熱該玻璃光阻材料,使該玻璃光阻材料燒結硬化,形成一阻障層於該氮化鎵磊晶結構上;形成一鑽石層於該基材相對於該第一表面的一第二表面下;以及移除該阻障層,獲得一複合基板,其中該複合基板自下而上依序包含該鑽石層、該基材以及該氮化鎵磊晶結構。 A method for manufacturing a composite substrate, comprising: coating a glass photoresist material on a gallium nitride epitaxial structure of an epitaxial substrate, wherein the epitaxial substrate includes a substrate and the gallium nitride epitaxial structure, the The GaN epitaxial structure is disposed on a first surface of the base material; the glass photoresist material is heated to sinter and harden the glass photoresist material, and a barrier layer is formed on the GaN epitaxial structure; A diamond layer is under a second surface of the substrate relative to the first surface; and the barrier layer is removed to obtain a composite substrate, wherein the composite substrate comprises the diamond layer, the substrate in sequence from bottom to top material and the gallium nitride epitaxial structure. 如請求項1所述的方法,其中該基材包含一矽基材、一絕緣層上覆矽基材、一藍寶石基材、或一碳化矽基材。 The method according to claim 1, wherein the substrate comprises a silicon substrate, a silicon-on-insulator substrate, a sapphire substrate, or a silicon carbide substrate. 如請求項1所述的方法,其中在形成該阻障層於該磊晶基板的該氮化鎵磊晶結構上的步驟之前,更包含減薄該基材的步驟。 The method according to claim 1, further comprising a step of thinning the substrate before the step of forming the barrier layer on the GaN epitaxial structure of the epitaxial substrate. 如請求項3所述的方法,其中減薄該基材的步驟包含:使用太鼓研磨技術,以減薄該基材。 The method as claimed in claim 3, wherein the step of thinning the substrate comprises: using a Taiko lapping technique to thin the substrate. 如請求項1所述的方法,其中形成該鑽石層 於該基材相對於該第一表面的該第二表面上的步驟包含:提供複數鑽石顆粒於一有機溶液中;將形成有該阻障層的該磊晶基板置入該有機溶液中;在該有機溶液中,對該磊晶基板進行一超音波處理,使該些鑽石顆粒嵌入該基材的該第二表面下,以形成一成核層於該基材的該第二表面下;以及對該基材的該第二表面執行一鑽石生長製程,以形成該鑽石層於該基材的該第二表面下,其中該鑽石層包含該成核層。 The method as claimed in claim 1, wherein the diamond layer is formed The steps on the second surface of the substrate opposite to the first surface include: providing a plurality of diamond particles in an organic solution; placing the epitaxial substrate formed with the barrier layer into the organic solution; In the organic solution, the epitaxial substrate is subjected to an ultrasonic treatment, so that the diamond particles are embedded under the second surface of the substrate to form a nucleation layer under the second surface of the substrate; and A diamond growth process is performed on the second surface of the substrate to form the diamond layer under the second surface of the substrate, wherein the diamond layer includes the nucleation layer. 如請求項5所述的方法,其中對該基材的該第二表面執行該鑽石生長製程的步驟包含:通入一反應氣體成長該鑽石層,以形成該鑽石層於該基材的該第二表面下,其中該反應氣體包含甲烷以及氫氣。 The method as claimed in item 5, wherein the step of performing the diamond growth process on the second surface of the substrate comprises: feeding a reaction gas to grow the diamond layer, so as to form the diamond layer on the first surface of the substrate Two subsurfaces, wherein the reactive gas comprises methane and hydrogen. 如請求項6所述的方法,其中該反應氣體更包含氯氣、氯甲烷前述材料之組合。 The method as claimed in item 6, wherein the reaction gas further comprises a combination of chlorine gas and methyl chloride. 如請求項6所述的方法,其中將該反應氣體總和的重量百分比以100%來計,甲烷的重量百分比為1%至16%。 The method as claimed in item 6, wherein the weight percentage of the total reaction gas is 100%, and the weight percentage of methane is 1% to 16%. 如請求項6所述的方法,其中通入該反應氣體成長該鑽石層的步驟,包含在低於850℃的溫度下成長 該鑽石層的步驟。 The method as claimed in item 6, wherein the step of feeding the reaction gas to grow the diamond layer comprises growing at a temperature lower than 850°C The diamond layer steps.
TW110133641A 2021-09-09 2021-09-09 Method of manufacturing a composite substrate TWI792550B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110133641A TWI792550B (en) 2021-09-09 2021-09-09 Method of manufacturing a composite substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110133641A TWI792550B (en) 2021-09-09 2021-09-09 Method of manufacturing a composite substrate

Publications (2)

Publication Number Publication Date
TWI792550B true TWI792550B (en) 2023-02-11
TW202311584A TW202311584A (en) 2023-03-16

Family

ID=86689168

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110133641A TWI792550B (en) 2021-09-09 2021-09-09 Method of manufacturing a composite substrate

Country Status (1)

Country Link
TW (1) TWI792550B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI517383B (en) * 2012-03-20 2016-01-11 諾斯拉普葛蘭門系統公司 Direct growth of diamond in backside vias for gan hemt devices
US20160197027A1 (en) * 2013-09-02 2016-07-07 Firooz Nasser-Faili Semiconductor device structures comprising polycrystalline cvd diamond with improved near-substrate thermal conductivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI517383B (en) * 2012-03-20 2016-01-11 諾斯拉普葛蘭門系統公司 Direct growth of diamond in backside vias for gan hemt devices
US20160197027A1 (en) * 2013-09-02 2016-07-07 Firooz Nasser-Faili Semiconductor device structures comprising polycrystalline cvd diamond with improved near-substrate thermal conductivity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
期刊 D.C. Dumka,T.M. Chou,F. Faili,D. Francis,F. Ejeckam AlGaN/GaN HEMTs on diamond substrate with over 7 W/mm output power density at 10 GHz Semiconductor Technology 49(20) IET 01 September 2013 1289-1299 *

Also Published As

Publication number Publication date
TW202311584A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
US8030176B2 (en) Method for preparing substrate having monocrystalline film
US9359693B2 (en) Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture
US7842134B2 (en) Diamond based substrate for electronic devices
EP2554718B1 (en) Method for producing single crystal 3c-sic substrate
CN111095480B (en) Wafer with group III nitride and diamond layer
JP2009256138A (en) Epitaxial silicon carbide single crystal substrate and its manufacturing method
CN111540684A (en) Microelectronic device of diamond-based heterogeneous integrated gallium nitride thin film and transistor and preparation method thereof
CN113690298A (en) Semiconductor composite substrate, semiconductor device and preparation method
US20140117382A1 (en) Epitaxial Wafer, Method for Fabricating the Wafer, and Semiconductor Device Including the Wafer
US20130221377A1 (en) Heterogrowth
CN108987257B (en) Growth of Ga on Si substrate by halide vapor phase epitaxy2O3Method for making thin film
US20140159055A1 (en) Substrates for semiconductor devices
JP6463517B2 (en) Semiconductor substrate
CN114899099A (en) Epitaxial method for growing gallium nitride high electron mobility transistor on diamond substrate
TWI792550B (en) Method of manufacturing a composite substrate
US10714338B2 (en) Wafer bow reduction
JP2006253617A (en) SiC SEMICONDUCTOR AND ITS MANUFACTURING METHOD
US20100248499A1 (en) Enhanced efficiency growth processes based on rapid thermal processing of gallium nitride films
Volinsky et al. Residual stress in CVD-grown 3C-SiC films on Si substrates
JP7259906B2 (en) Manufacturing method of heteroepitaxial wafer
KR20240088896A (en) Method for manufacturing polycrystalline silicon carbide substrate
TW202312230A (en) Composite substrate and manufacture method
CN112103178A (en) GaN film coated on copper surface and preparation method thereof
CN117568925A (en) Preparation method of diamond-like structure wafer
TW201823528A (en) Epitaxial heat dissipating substrate and a manufacturing method thereof capable of ensuring excellent flatness and high quality of epitaxy, and useful for preparing a semiconductor element which is flat and isotropic crystalline growth is ensured