TW202310215A - 晶圓載置台 - Google Patents

晶圓載置台 Download PDF

Info

Publication number
TW202310215A
TW202310215A TW111124249A TW111124249A TW202310215A TW 202310215 A TW202310215 A TW 202310215A TW 111124249 A TW111124249 A TW 111124249A TW 111124249 A TW111124249 A TW 111124249A TW 202310215 A TW202310215 A TW 202310215A
Authority
TW
Taiwan
Prior art keywords
wafer
ceramic
electrode
adsorption
base material
Prior art date
Application number
TW111124249A
Other languages
English (en)
Other versions
TWI822150B (zh
Inventor
竹林央史
久野達也
井上靖也
Original Assignee
日商日本碍子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商日本碍子股份有限公司 filed Critical 日商日本碍子股份有限公司
Publication of TW202310215A publication Critical patent/TW202310215A/zh
Application granted granted Critical
Publication of TWI822150B publication Critical patent/TWI822150B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4581Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber characterised by material of construction or surface finish of the means for supporting the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4585Devices at or outside the perimeter of the substrate support, e.g. clamping rings, shrouds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • H01J37/32724Temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67109Apparatus for thermal treatment mainly by convection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Drying Of Semiconductors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

晶圓載置台10具備陶瓷基材20、冷卻基材30、及接合層40。陶瓷基材20在具有圓形的晶圓載置面22a的中央部22的外周,具備具有環狀的陶瓷聚焦環載置面24a的外周部24。冷卻基材30含有金屬。接合層40接合陶瓷基材20及冷卻基材30。陶瓷基材20的外周部24的厚度為1mm以下,且沒有內置電極。

Description

晶圓載置台
本發明是有關於一種晶圓載置台。
為了利用電漿在晶圓上進行CVD、蝕刻等而使用晶圓載置台。例如,專利文獻1中所公開的晶圓載置台具備陶瓷基材及冷卻基材,陶瓷基材具有中央部及外周部,中央部具備圓形的晶圓載置面,外周部具備在此中央部的外周側的環狀的陶瓷聚焦環載置面。藉由對嵌入陶瓷基材的中央部的晶圓以晶圓吸附用電極施加直流電壓,使載置在晶圓載置面上的晶圓靜電吸附到晶圓載置面。藉由對嵌入陶瓷基材的外周部的陶瓷聚焦環吸附用電極施加直流電壓,使載置在陶瓷聚焦環載置面上的陶瓷聚焦環靜電吸附到陶瓷聚焦環載置面。冷卻基材接續到第1高頻電源及第2高頻電源,第1高頻電源產生用於生成電漿的來源用高頻,第2高頻電源產生用於將離子吸入至晶圓中的偏壓用高頻。一般來說,偏壓用高頻比來源用高頻具有更低的頻率及更大的振幅。 [先行技術文獻] [專利文獻]
[專利文獻1] 日本專利特開第2018-206804號公報
[發明所欲解決的問題]
但是,專利文獻1所公開的晶圓載置台中,由於陶瓷聚焦環吸附用電極嵌入在陶瓷基材的外周部,存在有藉由偏壓用高頻將離子吸入至陶瓷聚焦環的效率低下的問題。亦即,當將陶瓷聚焦環吸附用電極嵌入陶瓷基材的外周部時,必須使外周部變厚。於是,施加偏壓用高頻的冷卻基材與陶瓷聚焦環載置面之間的距離變大。其結果,由於冷卻基材與陶瓷聚焦環載置面之間的電抗變大,藉由偏壓用高頻將離子吸入至陶瓷聚焦環的效率低下。特別是,由於偏壓用高頻比來源用高頻的頻率低,所以電抗容易變大。
本發明是為了解決這樣的問題而完成的,其主要目標在於藉由偏壓用高頻將離子有效率地吸入至陶瓷聚焦環。 [用以解決問題的手段]
本發明的晶圓載置台具備:陶瓷基材,在具有圓形的晶圓載置面的中央部的外周,具備具有環狀的陶瓷聚焦環載置面的外周部;含有金屬的冷卻基材;以及接合層,接合前述陶瓷基材及前述冷卻基材;前述陶瓷基材的前述外周部的厚度為1mm以下,且沒有內置電極。
在此晶圓載置台中,陶瓷基材的外周部沒有內置電極,其厚度為1mm以下。因此,當施加陶瓷聚焦環吸附用電壓到冷卻基材的情況下,可以使陶瓷聚焦環靜電吸附到陶瓷聚焦環載置面上。此外,當施加偏壓用高頻電壓到冷卻基材的情況下,由於冷卻基材與陶瓷聚焦環載置面之間的電抗變小,藉由偏壓用高頻電壓可以有效率地將離子吸入至陶瓷聚焦環。
在本發明的晶圓載置台中,前述冷卻基材至少可以與陶瓷聚焦環吸附用電源、來源用高頻電源、及偏壓用高頻電源接續。如此一來,冷卻基材可以用作陶瓷聚焦環吸附用電極、來源用高頻電極、及偏壓用高頻電極。
在本發明的晶圓載置台中,前述接合層可以是金屬接合層。如此一來,可以將接合層認定為冷卻基材的一部分。因此,與當接合層為樹脂等的絕緣層的情況下相比,可以減小冷卻基材與陶瓷聚焦環載置面之間的電抗。在此情況下,較佳為前述金屬接合層的周圍以不露出前述金屬接合層的方式被絕緣材料所覆蓋。如此一來,可以保護金屬結合層。
在本發明的晶圓載置台中,前述陶瓷基材的此中央部比前述外周部厚,且內置晶圓吸附用電極的同時,在與前述晶圓載置面相反的一側的面及前述晶圓吸附用電極之間可以內置高頻電極,前述高頻電極可以與前述冷卻基材接續,前述晶圓吸附用電極可以不與前述冷卻基材接續,而可以與晶圓吸附用電源接續。
在本發明的晶圓載置台中,前述陶瓷基材的前述中央部比前述外周部厚,且內置晶圓吸附用電極,在與此晶圓載置面相反的一側的面及此晶圓吸附用電極之間可以沒有內置高頻電極。前述晶圓吸附用電極可以不與前述冷卻基材接續,而可以與晶圓吸附用電源接續。如此一來,與當將高頻電極內置於陶瓷基材中的情況下相比,結構較為簡化。
在本發明的晶圓載置台中,前述陶瓷基材的此中央部比前述外周部厚,且內置晶圓吸附用電極,在與前述晶圓載置面相反的一側的面及前述晶圓吸附用電極之間可以沒有內置高頻電極。前述晶圓吸附用電極可以與前述冷卻基材接續,前述冷卻基材可以與晶圓吸附用電源接續。如此一來,與當晶圓吸附用電極不與冷卻基材接續而與晶圓吸附用電源接續的情況下相比,結構較為簡化。此外,晶圓吸附用電極也作為高頻電極的功能。
在本發明的晶圓載置台中,前述陶瓷基材的此中央部與前述陶瓷基材的前述外周部具有相同的厚度,且可以沒有內置電極,前述冷卻基材可以與晶圓吸附用電源接續。如此一來,可以減薄陶瓷基材的整體的厚度,結構較為簡化。
在本發明的晶圓載置台中,前述冷卻基材也可以不具有電力供給用的貫通孔。如此一來,可以抑制溫度特異點的生成。
在本發明的晶圓載置台中,前述陶瓷基材與前述冷卻基材的熱膨脹係數的差可以為1×10 -6/K以下。如此一來,即使在高溫及低溫下重複使用也會提高耐久性。例如,當陶瓷基材由氧化鋁所製成的情況下,冷卻基材較佳為由SiSiCTi或AlSiC所製成。
[用以實施發明的形態]
以下將參照圖式以說明本發明的較合適的實施形態。圖1是晶圓載置台10的縱剖面圖(沿包含晶圓載置台10的中心軸的面切斷時的剖面圖),圖2是晶圓載置台10的平面圖(但是,省略了陶瓷聚焦環78)。在以下的說明中,有使用上下、左右、前後等來說明之情形,但上下、左右、前後只是相對的位置關係。此外,在本說明書中,表現出數值範圍的「~」是指作為包含該數值範圍前後所記載的數值作為下限值及上限值而使用。
為了利用電漿在晶圓W上進行CVD、蝕刻等而使用晶圓載置台10,並將晶圓載置台10固定在設置於半導體製程用的腔室94的內部的設置板96。晶圓載置台10具備陶瓷基材20、冷卻基材30、接合層40。
陶瓷基材20在具有圓形的晶圓載置面22a的中央部22的外周,具備具有環狀的陶瓷聚焦環載置面24a的外周部24。以下,有時將陶瓷聚焦環簡稱為「FR」。晶圓載置面22a載置有晶圓W,FR載置面24a載置有陶瓷聚焦環78。陶瓷基材20由氧化鋁、氮化鋁等為代表的陶瓷材料所形成。FR載置面24a比晶圓載置面22a低一階。外周部24沒有內置電極(FR吸附用電極、高頻(RF)電極)。外周部24的厚度為1mm以下,較佳為0.7mm以下,更佳為0.5mm以下。
陶瓷基材20的中央部22,從靠近晶圓載置面22a的一側依序內置晶圓吸附用電極26及RF電極28。這些電極26、28例如藉由含有W、Mo、WC、MoC等的材料所形成。晶圓吸附用電極26為圓盤狀或網狀的單極型的靜電電極。在陶瓷基材20中,晶圓吸附用電極26上側的層作為電介質層的功能。晶圓吸附用直流電源52透過電源端子54與晶圓吸附用電極26接續。以電源端子54通過絕緣管55從陶瓷基材20的下表面到達晶圓吸附用電極26的方式進行設置,此絕緣管55配置在於上下方向貫通冷卻基材30及接合層40的貫通孔中。電源端子54以與RF電極28電性絕緣的方式設置。在電源端子54中,在晶圓吸附用直流電源52與晶圓吸附用電極26之間設置低通濾波器(LPF)53。RF電極28設置在陶瓷基材20的中央部22中的晶圓吸附用電極26與陶瓷基材20的下表面之間。RF電極28作為在晶圓側的來源用RF電極及偏壓用RF電極的功能。RF電極28透過從RF電極28朝向冷卻基材延伸的通路29與接合層40及冷卻基材30導通。
冷卻基材30是含有金屬的導電性的圓盤部件。冷卻基材30具備冷媒可以在內部循環的冷媒流路32。此冷媒流路32與未圖示的冷媒供給路及冷媒排出路接續,從冷媒排出路所排出的冷媒在進行溫度調整後再次返回冷媒供給路。冷卻基材30由含有金屬的導電材料製成。作為導電材料,例如可列舉:例如可列舉複合材料、金屬等。作為複合材料,可列舉金屬複合材料(也稱為金屬基複合材料(MMC))等,作為MMC,可列舉包含Si、SiC及Ti的材料、SiC多孔質體浸漬有Al及/或Si的材料等。包含Si、SiC及Ti的材料稱為SiSiCTi,SiC多孔質體浸漬有Al的材料稱為AlSiC,SiC多孔質體浸漬有Si的材料稱為SiSiC。作為金屬,可列舉Ti、Mo、Al及其合金等。
冷卻基材30可以透過電源端子58與FR吸附用直流電源56接續,透過電源端子64與來源用RF電源62接續,透過電源端子74與偏壓用RF電源72接續。低通濾波器(LPF)57配置在冷卻基材30及FR吸附用直流電源56之間,高通濾波器(HPF)63配置在冷卻基材30及來源用RF電源62之間,高通濾波器(HPF)73配置在冷卻基材30及偏壓用RF電源72之間。偏壓用RF具有比來源用RF更低的頻率及更大的振幅。來源用RF的頻率例如是數10~數100MHz,偏壓用RF的頻率例如是數百kHz。
接合層40接合陶瓷基材20的下表面及冷卻基材30的上表面。在本實施形態中,接合層40為金屬接合層。金屬接合層可以是例如由焊料、金屬銅焊料所形成的層。金屬接合層例如藉由熱壓接合(Thermal compression bonding, TCB)所形成。所謂的TCB是一種公知的方法,其是將金屬接合材料夾在2個接合對象的部件之間,並且將2個部件在加熱到金屬接合材料的固相線溫度以下的溫度的狀態下進行加壓接合。陶瓷基材20的外周部24的側面、接合層40的外周、冷卻基材30的側面以及冷卻基材30的上表面中,沒有被接合層40所覆蓋的部分,以絕緣膜42覆蓋。作為絕緣膜42,例如可列舉氧化鋁、氧化釔等的熱熔射膜。
接著,使用圖3說明晶圓載置台10的製造例。圖3是晶圓載置台10的製造步驟圖。首先,藉由模鑄造法製作圓盤狀的第1~第3陶瓷成形體81~83,在第2及第3陶瓷成形體82、83的上表面分別印刷電極糊,以形成電極圖案86、88(參照圖3A)。所謂的模鑄造法是一種公知的方法,其是指將包含陶瓷原料粉末及成形劑的陶瓷漿料注入成形模具內,在其成形模具內藉由使成形劑發生化學反應以使陶瓷漿料成形而獲得成形體。作為成形劑,可以包含例如異氰酸酯及多元醇,並且可以藉由胺基甲酸酯反應而成形。電極糊是在例如W、Mo、WC、MoC等的導電材料中添加陶瓷粉末而成的漿料。印刷在第2陶瓷成形體82的上表面的電極圖案86與晶圓吸附用電極26相同的形狀,印刷在第3陶瓷成形體83的上表面的電極圖案88與RF電極28相同的形狀。
隨後,將第1陶瓷成形體81、在上表面印刷有電極圖案86的第2陶瓷成形體82、以及在上表面印刷有電極圖案88的第3陶瓷成形體83進行積層,並對所獲得的積層體藉由熱壓燒成而獲得陶瓷燒結體90(參照圖3B)。藉此,電極圖案86成為晶圓吸附用電極26,電極圖案88成為RF電極28。
隨後,對所獲得的陶瓷燒結體90的兩面藉由實施研磨加工或噴砂加工等來調整其形狀、厚度的同時,在上下方向形成孔(用於給電源端子54插入的孔90a、用於給通路29插入的孔90b等)(參照圖3C)。
隨後,將電源端子54插入陶瓷燒結體90的孔90a並與晶圓吸附用電極26接合,將接續端子89插入孔90b並與RF電極28接合(圖3D)。之後,陶瓷燒結體90及冷卻基材30藉由接合層40接合以獲得接合體92(圖3E)。冷卻基材30在與陶瓷燒結體90的孔90a、90b各別對應的位置預先設置沿上下方向貫通的孔30a、30b,在接合時將電源端子54插入孔30a,將接續端子89插入孔30b。當陶瓷燒結體90由氧化鋁製成的情況下,冷卻基材30較佳為由SiSiCTi或AlSiC製成。
SiSiCTi板例如含有39~51質量%的平均粒徑為10μm以上且25μm以下的碳化矽原料粒子,並還含有選自包含Ti及Si的1種以上的原料,製作除了源自碳化矽以外的原料中Si及Ti的質量比Si/(Si+Ti)為0.26~0.54的粉體混合物。作為原料,例如可以使用碳化矽、金屬Si、金屬Ti。在此情況下,較佳為以成為39~51質量%的碳化矽、16~24質量%的金屬Si、26~43質量%的金屬Ti的方式進行混合。接著,將所獲得的粉體混合物藉由單軸加壓成形以製作圓盤狀的成形體,藉由在惰性環境中藉由熱壓在1370~1460°C下燒結此成形體,以獲得SiSiCTi板。
陶瓷燒結體90及冷卻基材30使用金屬接合材料進行接合。例如,在由氧化鋁製成的陶瓷燒結體90及由SiSiCTi製成的冷卻基材30之間夾住金屬接合材料以進行TCB接合。具體而言,陶瓷燒結體90及冷卻基材30的積層體在金屬接合材料的固相線溫度以下(例如,從固相線溫度減去20°C的溫度以上且固相線溫度以下)的溫度加壓並進行TCB接合,之後回復到室溫。藉此,金屬接合材料成為接合層40。作為此時的金屬接合材料,可以使用Al-Mg系接合材料、Al-Si-Mg系接合材料。例如,當使用Al-Si-Mg系接合材料(含有88.5重量%的Al、10重量%的Si、1.5重量%的Mg,固相線溫度約為560°C)進行TCB接合的情況下,陶瓷燒結體90在真空環境中加熱至540~560°C的狀態並以0.5~2.0kg/mm 2的壓力經數小時加壓。在TCB接合之前,金屬接合材料在分別與冷卻基材30的孔30a及30b對應的位置設置孔。金屬接合材料較佳為使用厚度為100μm前後的材料。
隨後,切割陶瓷燒結體90的外周以形成段差,藉此作為具備中央部22及外周部24的陶瓷基材20。此外,在冷卻基材30中接續端子89所插入的孔30b中填充導電材料,藉此作為通路29,並且絕緣管55配置在電源端子54所插入的孔30a中(圖3F)。
隨後,將陶瓷基材20的外周部24的側面、接合層40的周圍、冷卻基材30的側面、以及冷卻基材30的上表面的露出部分,使用陶瓷粉末進行熱熔射,藉此形成絕緣膜42(圖3G)。藉此,獲得晶圓載置台10。
接著,使用圖1說明使用晶圓載置台10的使用例。如上所述,晶圓載置台10設置在腔室94的設置板96。將製程氣體從多個氣體噴射孔放出到腔室94的內部的噴頭98配置在腔室94的天井面。
陶瓷聚焦環78載置在晶圓載置台10的FR載置面24a,圓盤狀的晶圓W載置在晶圓載置面22a。陶瓷聚焦環78以不干涉晶圓W的方式沿著上端部的內周具備段差。在此狀態下,施加晶圓吸附用直流電源52的直流電壓到晶圓吸附用電極26以使晶圓W吸附到晶圓載置面22a。與此同時,施加FR吸附用直流電源56的直流電壓到冷卻基材30以使陶瓷聚焦環78吸附到FR載置面24a。然後,將腔室94的內部設定成為預定的真空環境(或減壓環境),從噴頭98供給製程氣體的同時,施加來自來源用RF電源62的來源用RF電壓及來自偏壓用RF電源72的偏壓用RF電壓到冷卻基材30。然後,在內置於陶瓷基材20的中央部22的RF電極28與噴頭98之間產生電漿。然後,利用此電漿對晶圓W實施CVD成膜或蝕刻。施加來源用RF電壓是為了產生電漿,而施加偏壓用RF電壓是為了將離子吸入至晶圓W、陶瓷聚焦環78。注意的是,伴隨著晶圓W所進行電漿處理,陶瓷聚焦環78在也會消耗,但由於陶瓷聚焦環78比晶圓W厚,所以在處理複數個晶圓W後再更換陶瓷聚焦環78。
在本實施形態中,陶瓷基材20的外周部24的厚度為1mm以下。因此,藉由施加偏壓用RF電壓到冷卻基材30以將離子有效率地吸入至陶瓷聚焦環78。與此同時,藉由施加來源用RF電壓到冷卻基材30,即使在陶瓷聚焦環78的上空也有效率地產生電漿。另一方面,施加來自晶圓吸附用直流電源52的直流電壓到晶圓吸附用電極26。藉此,晶圓W被吸附到晶圓載置面22a。因此,即使晶圓W高溫化,晶圓W的熱量也可以有效率地釋放到冷卻基材30。此外,施加來自FR吸附用直流電源56的直流電壓到冷卻基材30。藉此,陶瓷聚焦環78被吸附到FR載置面24a。因此,即使陶瓷聚焦環78高溫化,陶瓷聚焦環78的熱量也可以有效率地釋放到冷卻基材30。進一步地,由於陶瓷基材20的外周部24(作為電介質層的功能)的厚度為1mm以下,可以以充分的力將陶瓷聚焦環78吸附到FR載置面24a。由於接合層40是金屬接合層且具有高的熱傳導率,晶圓W、陶瓷聚焦環78的熱量可以更有效率地釋放到冷卻基材30。
在以上說明的晶圓載置台10中,陶瓷基材20的外周部24沒有內置電極,其厚度為1mm以下。因此,當施加FR吸附用電壓到冷卻基材30的情況下,可以使陶瓷聚焦環78靜電吸附到FR載置面24a。此外,當施加偏壓用RF電壓到冷卻基材30的情況下,由於冷卻基材30與FR載置面24a之間的電抗變小,可以藉由偏壓用RF電壓將離子有效率地吸入至陶瓷聚焦環78。
此外,冷卻基材30與FR吸附用直流電源56、來源用RF電源62、偏壓用RF電源72接續。因此,冷卻基材30及作為金屬接合層的接合層40可以用作FR吸附用電極、FR側的來源用RF電極、及FR側的偏壓用RF電極。
進一步地,由於接合層40是金屬接合層,可以被認定為冷卻基材30的一部分。因此,與當接合層40為樹脂等的絕緣層的情況相比,可以更加減小冷卻基材30與陶瓷聚焦環載置面24a之間的電抗。此外,由於接合層40的周圍以不露出接合層40的方式覆蓋絕緣膜42,可以保護接合層40。
此外,陶瓷基材20的中央部22比外周部24厚,內置晶圓吸附用電極26的同時,與晶圓載置面22a相反的一側的面與晶圓吸附用電極26之間內置RF電極28。RF電極28與冷卻基材30接續,晶圓吸附用電極26不與冷卻基材30接續,而與晶圓吸附用直流電源52接續。因此,在晶圓W吸附到晶圓載置面22a的狀態下,將離子吸入至晶圓W的同時,在晶圓W的上空有效率地產生電漿。
此外,陶瓷基材20較佳為氧化鋁基體,冷卻基材30較佳為SiSiCTi板。如此一來,由於陶瓷基材20與冷卻基材30的熱膨脹係數之差小至1×10 -6/K以下,即使在高溫及低溫下重複使用也會提高耐久性。在40~570°C的線性熱膨脹係數中,氧化鋁為7.7 × 10 -6/K,SiSiCTi為7.8 × 10 -6/K。
注意的是,本發明不限於上述實施形態,只要屬於本發明的技術範圍,可以在各種態樣中實施。
例如,在上述實施形態中,接合層40的外周被絕緣膜42覆蓋,但作為替代絕緣膜42的方案,也可以採用如圖4所示的O形環44、或如圖5所示的樹脂層46。在圖4及圖5中,關於與上述實施形態相同的構成要素使用相同的符號表示。在圖4中,O形環44配置在由陶瓷基材20的外周部24、接合層40的側面、以及冷卻基材30的上表面所圍成的空間內。在圖5中,藉由樹脂填充此空間而形成樹脂層46。作為O形環44、樹脂層46的材質,較佳為具有絕緣性的材質,更佳為具有絕緣性及耐電漿性的材質。作為其具體的材質,可列舉氟樹脂(聚四氟碳等)、矽酮樹脂等。即使在採用O形環44、樹脂層46的情況下,接合層40也以與絕緣膜42相同的方式受保護。注意的是,在圖4及圖5中,冷卻基材30的側面及冷卻基材30的上表面中沒有被接合層40所覆蓋的部分,可以覆蓋絕緣膜(例如,陶瓷熱熔射膜)。
在上述實施形態的晶圓載置台10中,陶瓷基材20的中央部22內置晶圓吸附用電極26及RF電極28,但本發明並不特別限定於此,例如,可以如圖6~圖8的晶圓載置台110~310般的構成。注意的是,圖6~圖8中,關於與上述實施形態相同的構成要素使用相同的符號表示。
在圖6所示的晶圓載置台110中,陶瓷基材120的中央部122內置晶圓吸附用電極26,但沒有內置RF電極。因此,可以使陶瓷基材120的總厚度(中央部122的厚度)比上述實施形態的中央部22薄。對應於中央部122的厚度,可以使陶瓷聚焦環178的厚度比上述實施形態的陶瓷聚焦環78薄。外周部124與外周部24相同,厚度為1mm以下且沒有內置電極。因此,當施加FR吸附用電壓到冷卻基材30的情況下,可以使陶瓷聚焦環178靜電吸附到FR載置面24a。此外,當施加偏壓用RF電壓到冷卻基材30的情況下,由於冷卻基材30與FR載置面24a之間的電抗變小,可以藉由偏壓用RF電壓將離子有效率地吸入至陶瓷聚焦環78。作為金屬接合層的接合層40,實質上兼用於FR吸附用電極、FR側的來源用RF電極、FR側的偏壓用RF電極、晶圓側的來源用RF電極、以及晶圓側的偏壓用RF電極。晶圓載置台110比如晶圓載置台10般在陶瓷基材20中內置高頻電極28的情況,結構較為簡化。
圖7所示的晶圓載置台210中,陶瓷基材220的中央部222內置晶圓吸附用電極26,但沒有內置RF電極。因此,可以使陶瓷基材220的總厚度(中央部222的厚度)比上述實施形態的中央部22薄。對應於中央部222的厚度,可以使陶瓷聚焦環278的厚度比上述實施形態的陶瓷聚焦環78薄。此外,晶圓吸附用電極26及接合層40是以導電性的通路27所接續。因此,不需要如圖1所示的電源端子54、晶圓吸附用直流電源52,且FR吸附用直流電源56兼用於晶圓吸附用直流電源。外周部224與外周部24相同,厚度為1mm以下且沒有內置電極。因此,當施加FR吸附用電壓到冷卻基材30的情況下,可以使陶瓷聚焦環278靜電吸附到FR載置面24a。此外,當施加偏壓用RF電壓到冷卻基材30的情況下,由於冷卻基材30與FR載置面24a之間的電抗小,可以藉由偏壓用RF電壓將離子有效率地吸入至陶瓷聚焦環278。作為金屬接合層的接合層40實質上兼用於FR吸附用電極、FR側的來源用RF電極、以及FR側的偏壓用RF電極。晶圓吸附用電極26兼用於晶圓側的來源用RF電極及晶圓側的偏壓用RF電極。在晶圓載置台210中,由於兼用於RF電極的晶圓吸附用電極26與晶圓載置面22a之間的電抗比晶圓載置台10、110更小,可以將離子有效率地吸入至晶圓W,並且可以在晶圓W的上空有效率地產生電漿。在晶圓載置台210中,與如晶圓載置台10、110般之晶圓吸附用電極26不與冷卻基材30接續而與晶圓吸附用直流電源52接續的情況相比,結構較為簡化。此外,由於不需要設置用於向冷卻基材30供給電源的貫通孔,可以抑制溫度特異點的生成。
在圖8所示的晶圓載置台310中,陶瓷基材320的中央部322沒有內置晶圓吸附用電極,也沒有內置RF電極。在此情況下,陶瓷基材320的總厚度(中央部322的厚度)可以比圖1、圖6及圖7的中央部22、122、222更薄。對應於中央部322的厚度,陶瓷聚焦環378的厚度可以較薄。在圖8中,中央部322的厚度與外周部324的厚度相同。外周部324與外周部24相同,厚度為1mm以下且沒有內置電極。因此,當施加FR吸附用電壓到冷卻基材30的情況下,可以使陶瓷聚焦環378靜電吸附到FR載置面24a。此外,當施加偏壓用RF電壓到冷卻基材30的情況下,由於冷卻基材30與FR載置面24a之間的電抗小,可以藉由偏壓用RF電壓將離子有效率地吸入至陶瓷聚焦環378。在晶圓載置台310中,陶瓷基材320的總厚度可以比晶圓載置台10、110、210薄,結構較為簡化。此外,由於不需要設置用於向冷卻基材30供給電源的貫通孔,可以抑制溫度特異點的生成。注意的是,考慮到強度、絕緣耐壓,中央部322的厚度可以比外周部分324厚。
上述實施形態的冷卻基材30具有冷媒流路32,但也可以不具有冷媒流路32。
在上述的實施形態中,陶瓷成形體是藉由模鑄造法而製作的,但本發明並不特別限定於此。例如,可以積層複數個帶成形體來製作陶瓷成形體。或者,代替圖3A的第1及第3陶瓷成形體81、83,而使用第1及第3陶瓷燒結體,並在第1及第3陶瓷燒結體之間形成陶瓷粉末層,藉由在此狀態進行熱壓燒成,可以製作內置有晶圓吸附用電極26及RF電極28的陶瓷燒結體90。
視需求,可以在上述的實施形態的陶瓷基材20中嵌入加熱器電極。
[實施例] 以下說明關於本發明的實施例。注意的是,以下的實施例不以任何方式限制本發明。
[實施例1] 實施例1是如圖1所示的晶圓載置台10,使用氧化鋁基體作為陶瓷基材20,使用SiSiCTi板作為冷卻基材30,使用Al-Si-Mg系接合材料的TCB接合層作為接合層40。氧化鋁的介電常數為10 [F/m]。晶圓載置面22a的直徑為300 [mm],FR載置面24a的外徑及內徑分別為340 [mm]及305 [mm],從晶圓載置面22a到晶圓吸附用電極26的距離Dwc(參照圖1)為0.5 [mm],從晶圓載置面22a到RF電極28的距離Dwp(參照圖1)為2.5 [mm],從FR載置面24a到接合層40的距離Df(參照圖1,在實施例1中與外周部24的厚度相同)為0.5 [mm]。
[實施例2] 實施例2為如圖8所示的晶圓載置台310,各部件的材料與實施例1相同。晶圓載置面22a的直徑、FR載置面24a的外徑及內徑與實施例1相同。從晶圓載置面22a到接合層40的距離D(參照圖8)設定為0.5 [mm]。由於接合層40兼用於FR吸附用電極、FR側的來源用RF電極、FR側的偏壓用RF電極、晶圓吸附用電極、晶圓側的來源用RF電極、晶圓側的偏壓用RF電極,此距離D相當於實施例1中的距離Dwc、Dwp、Df。
[比較例1] 在比較例1中,除了將在實施例1中,陶瓷基材20的外周部24的厚度改為2.5 [mm],在其外周部24中距FR載置面24a的深度為0.5 [mm]處嵌入FR吸附用電極,並透過電源端子(與接合層、冷卻基材電性絕緣)使FR吸附用電極接續到FR吸附用直流電源以外,與實施例1相同。
[實施例 3] 在實施例3中,除了將在實施例1中,距離Dwc(參照圖1)改為1.0 [mm],距離Dwp(參照圖1)改為3.0 [mm],距離Df(參照圖1、在實施例3中與外周部24的厚度相同)改為1.0 [mm]以外,與實施例1相同。
[實施例 4] 在實施例4中,除了將在實施例2中,距離D(參照圖8)改為1.0 [mm]以外,與實施例2相同。
[比較例2] 在比較例2中,除了將在實施例3中,陶瓷基材20的外周部24的厚度改為3.0 [mm],其外周部24中距FR載置面24a的深度為1.0 [mm]處嵌入FR吸附用電極,並透過電源端子(與接合層、冷卻基材電性絕緣)使FR吸附用電極接續到FR吸附用直流電源以外,與實施例3相同。
[結果] 關於實施例1、2及比較例1,來源用RF電壓的頻率設定為50 [MHz],偏壓用電壓的頻率設定為500 [kHz],晶圓吸附用直流電壓及FR吸附用直流電壓設定為3 [kV]。被吸附物的接觸率(晶圓載置面22a與晶圓W的接觸率及FR載置面24a與陶瓷聚焦環78的接觸率)設為100 [%]。關於實施例3、4及比較例2,來源用RF電壓的頻率設定為50 [MHz],偏壓用電壓的頻率設定為500 [kHz],晶圓吸附用直流電壓及FR吸附用直流電壓設定為9 [kV]。被吸附物的接觸率設為100 [%]。
求出施加偏壓用RF電壓到冷卻基材時的FR載置面與接合層之間的電抗。其結果為,實施例1、2為101 [Ω],而比較例1為507 [Ω]。此外,實施例3、4為203 [Ω],而比較例2為609 [Ω]。求出施加來源用RF電壓到冷卻基材時的FR載置面與接合層之間的電抗。其結果為,實施例1、2為1.0 [Ω],而比較例1為5.1 [Ω]。此外,實施例3、4為2.0 [Ω],而比較例2為6.1 [Ω]。
如此一來,在實施例1、2中,當施加偏壓用RF電壓到冷卻基材時,由於FR載置面與接合層之間的電抗比比較例1小,可以藉由偏壓用RF電壓將離子有效率地吸入至陶瓷聚焦環。關於實施例3、4與比較例2相比也是相同。此外,在實施例1、2中,當施加來源用RF電壓到冷卻基材時,由於FR載置面及接合層之間的電抗比比較例1中的小,可以藉由來源用RF電壓在陶瓷聚焦環的上方有效率地產生電漿。關於實施例3、4與比較例2相比也是相同。
本申請基於2021年8月17日申請的日本專利申請第2021-132886號作為優先權主張的基礎,並且其所有內容通過引用包含在本說明書中。
10:晶圓載置台 20:陶瓷基材 22:中央部 22a:晶圓載置面 24:外周部 24a:陶瓷聚焦環載置面 26:晶圓吸附用電極 27:通路 28:RF電極 29:通路 30:冷卻基材 30a:孔 30b:孔 32:冷媒流路 40:接合層 42:絕緣膜 44:O形環 46:樹脂層 52:晶圓吸附用直流電源 53:低通濾波器 54:電源端子 55:絕緣管 56:FR吸附用直流電源 57:低通濾波器 58:電源端子 62:來源用RF電源 63:高通濾波器 64:電源端子 72:偏壓用RF電源 73:高通濾波器 74:電源端子 78:陶瓷聚焦環 81:第1陶瓷成形體 82:第2陶瓷成形體 83:第3陶瓷成形體 86:電極圖案 88:電極圖案 89:接續端子 90:陶瓷燒結體 90a:孔 90b:孔 92:接合體 94:腔室 96:設置板 98:噴頭 110:晶圓載置台 120:陶瓷基材 122:中央部 124:外周部 178:陶瓷聚焦環 210:晶圓載置台 220:陶瓷基材 222:中央部 224:外周部 278:陶瓷聚焦環 310:晶圓載置台 320:陶瓷基材 322:中央部 324:外周部 378:陶瓷聚焦環 D:距離 Dwp:距離 Dwc:距離 Df:距離 W:晶圓
圖1是晶圓載置台10的縱剖面圖。 圖2是晶圓載置台10的平面圖。 圖3是晶圓載置台10的製造步驟圖。 圖4是採用O形環44代替絕緣膜42時的部分剖面圖。 圖5是採用樹脂層46代替絕緣膜42時的部分剖面圖。 圖6是晶圓載置台110的縱剖面圖。 圖7是晶圓載置台210的縱剖面圖。 圖8是晶圓載置台310的縱剖面圖。
10:晶圓載置台
20:陶瓷基材
22:中央部
22a:晶圓載置面
24:外周部
24a:陶瓷聚焦環載置面
26:晶圓吸附用電極
28:RF電極
29:通路
30:冷卻基材
32:冷媒流路
40:接合層
42:絕緣膜
52:晶圓吸附用直流電源
53:低通濾波器
54:電源端子
55:絕緣管
56:FR吸附用直流電源
57:低通濾波器
58:電源端子
62:來源用RF電源
63:高通濾波器
64:電源端子
72:偏壓用RF電源
73:高通濾波器
74:電源端子
78:陶瓷聚焦環
94:腔室
96:設置板
98:噴頭
W:晶圓

Claims (10)

  1. 一種晶圓載置台,具備: 陶瓷基材,在具有圓形的晶圓載置面的中央部的外周,具備具有環狀的陶瓷聚焦環載置面的外周部; 含有金屬的冷卻基材;以及 接合層,接合前述陶瓷基材及前述冷卻基材; 前述陶瓷基材的前述外周部的厚度為1mm以下,且沒有內置電極。
  2. 如請求項1所述的晶圓載置台,其中 前述冷卻基材至少與陶瓷聚焦環吸附用電源、偏壓用高頻電源、及來源用高頻電源接續。
  3. 如請求項1所述的晶圓載置台,其中 前述接合層為金屬接合層。
  4. 如請求項3所述的晶圓載置台,其中 前述金屬接合層的周圍以不露前述金屬接合層的方式被絕緣材料所覆蓋。
  5. 如請求項1至請求項4中任一項所述的晶圓載置台,其中 前述陶瓷基材的前述中央部比前述外周部厚,且內置晶圓吸附用電極的同時,在與前述晶圓載置面相反的一側的面及前述晶圓吸附用電極之間內置高頻電極; 前述高頻電極與前述冷卻基材接續; 前述晶圓吸附用電極不與前述冷卻基材接續,而與晶圓吸附用電源接續。
  6. 如請求項1至請求項4中任一項所述的晶圓載置台,其中 前述陶瓷基材的前述中央部比前述外周部厚,且內置晶圓吸附用電極,在與前述晶圓載置面相反的一側的面及前述晶圓吸附用電極之間沒有內置高頻電極; 前述晶圓吸附用電極不與前述冷卻基材接續,而與晶圓吸附用電源接續。
  7. 如請求項1至請求項4中任一項所述的晶圓載置台,其中 前述陶瓷基材的前述中央部比前述外周部厚,且內置晶圓吸附用電極,在與前述晶圓載置面相反的一側的面及前述晶圓吸附用電極之間沒有內置高頻電極; 前述晶圓吸附用電極與前述冷卻基材接續; 前述冷卻基材與晶圓吸附用電源接續。
  8. 如請求項1至請求項4中任一項所述的晶圓載置台,其中 前述陶瓷基材的前述中央部與前述陶瓷基材的前述外周部具有相同的厚度,且沒有內置電極; 前述冷卻基材與晶圓吸附用電源接續。
  9. 如請求項1~4中任一項所述的晶圓載置台,其中 前述冷卻基材不具有電力供給用的貫通孔。
  10. 如請求項1~4中任一項所述的晶圓載置台,其中。 前述陶瓷基材與前述冷卻基材的熱膨脹係數的差為1×10 -6/K以下。
TW111124249A 2021-08-17 2022-06-29 晶圓載置台 TWI822150B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-132886 2021-08-17
JP2021132886A JP2023027640A (ja) 2021-08-17 2021-08-17 ウエハ載置台

Publications (2)

Publication Number Publication Date
TW202310215A true TW202310215A (zh) 2023-03-01
TWI822150B TWI822150B (zh) 2023-11-11

Family

ID=85180715

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111124249A TWI822150B (zh) 2021-08-17 2022-06-29 晶圓載置台

Country Status (5)

Country Link
US (1) US20230057107A1 (zh)
JP (1) JP2023027640A (zh)
KR (1) KR20230026252A (zh)
CN (1) CN115705989A (zh)
TW (1) TWI822150B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1310285C (zh) * 2003-05-12 2007-04-11 东京毅力科创株式会社 处理装置
JP5395633B2 (ja) * 2009-11-17 2014-01-22 東京エレクトロン株式会社 基板処理装置の基板載置台
JP6741548B2 (ja) * 2016-10-14 2020-08-19 日本碍子株式会社 半導体製造装置用部材及びその製法
JP6924618B2 (ja) 2017-05-30 2021-08-25 東京エレクトロン株式会社 静電チャック及びプラズマ処理装置
JP6870768B2 (ja) * 2019-09-06 2021-05-12 Toto株式会社 静電チャック

Also Published As

Publication number Publication date
CN115705989A (zh) 2023-02-17
US20230057107A1 (en) 2023-02-23
TWI822150B (zh) 2023-11-11
JP2023027640A (ja) 2023-03-02
KR20230026252A (ko) 2023-02-24

Similar Documents

Publication Publication Date Title
JP7414751B2 (ja) 半導体製造装置用部材及びその製法
JP2003124299A (ja) 電極内蔵型サセプタ及びその製造方法
TWI822204B (zh) 晶圓放置座
TW202310215A (zh) 晶圓載置台
JP7060771B1 (ja) 半導体製造装置用部材
TWI829212B (zh) 晶圓載置台
WO2022168368A1 (ja) 半導体製造装置用部材及びその製法
WO2024089762A1 (ja) ウエハ載置台
TWI836924B (zh) 晶圓載置台
TWI840855B (zh) 晶圓載置台
JP2023056710A (ja) ウエハ載置台
WO2024069742A1 (ja) ウエハ載置台
WO2024047857A1 (ja) ウエハ載置台
US20240079218A1 (en) Wafer placement table
KR20230053499A (ko) 웨이퍼 배치대
JP2023150185A (ja) ウエハ載置台
CN116960043A (zh) 晶片载放台
TW202410282A (zh) 晶圓載置台
TW202331919A (zh) 半導體製造裝置用構件
JP2022092824A (ja) 半導体製造装置用部材及びその製法
CN118251756A (zh) 晶圆载置台
CN116130324A (zh) 晶片载放台