TW202249294A - Shield contact layout for power mosfets - Google Patents

Shield contact layout for power mosfets Download PDF

Info

Publication number
TW202249294A
TW202249294A TW111111248A TW111111248A TW202249294A TW 202249294 A TW202249294 A TW 202249294A TW 111111248 A TW111111248 A TW 111111248A TW 111111248 A TW111111248 A TW 111111248A TW 202249294 A TW202249294 A TW 202249294A
Authority
TW
Taiwan
Prior art keywords
trenches
trench
type
polysilicon layer
longitudinal
Prior art date
Application number
TW111111248A
Other languages
Chinese (zh)
Inventor
普拉撒 凡卡翠曼
彼得 A 伯凱
蓋瑞 霍斯特 羅卻特
柏拉奇 帕滿拿漢
艾蜜利 M 林漢
Original Assignee
美商半導體元件工業有限責任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/655,579 external-priority patent/US20220310802A1/en
Application filed by 美商半導體元件工業有限責任公司 filed Critical 美商半導體元件工業有限責任公司
Publication of TW202249294A publication Critical patent/TW202249294A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • H01L29/407Recessed field plates, e.g. trench field plates, buried field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Element Separation (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

A method includes defining a plurality of trenches of a first type that extend in a longitudinal direction in a semiconductor substrate, and defining a trench of a second type extending in a lateral direction and intersecting the plurality of trenches of the first type. The trench of the second type is in fluid communication with each of the intersected plurality of trenches of the first type. The method further includes disposing a shield poly layer in the plurality of trenches of the first type and the trench of the second type, disposing an inter-poly dielectric layer and a gate poly layer above the shield poly layer in the plurality of trenches of the first type and the trench of the second type, and forming an electrical contact to the shield poly layer through an opening in the inter-poly dielectric layer and the gate poly layer disposed in the trench of the second type.

Description

用於功率MOSFET之屏蔽接觸件佈局Shield contact layout for power MOSFETs

本說明係關於屏蔽閘極溝式MOSFET中的接觸件。This note is about contacts in shielded gate trench MOSFETs.

埋入式多晶矽屏蔽電極係用在屏蔽閘極溝槽MOSFET中以用於電荷平衡及降低裝置的汲極-源極導通電阻(RDS on)。然而,與多晶矽屏蔽電極相關聯的電阻及雜散電容可例如藉由在裝置電路中導致未箝制電感切換(unclamped inductive switching, UIS)期間之非所欲的閘極跳動或低雪崩能力來影響裝置的電氣性能,或者以其他方式影響應用效率。隨著半導體裝置(例如,裝置單元大小)及微影設計規則縮小,逐漸難以在半導體裝置(例如,屏蔽閘極溝槽MOSFET)中製作低電阻埋入式多晶矽屏蔽電極,以避免或減少例如閘極跳動及不良的雪崩能力。 Buried polysilicon shield electrodes are used in shielded gate trench MOSFETs for charge balancing and to reduce the drain-source on-resistance (RDS on ) of the device. However, the resistance and stray capacitance associated with the polysilicon shield electrode can affect the device, for example, by causing undesired gate bounce or low avalanche capability during unclamped inductive switching (UIS) in the device circuit. electrical performance, or otherwise affect application efficiency. As semiconductor devices (e.g., device cell size) and lithography design rules shrink, it becomes increasingly difficult to fabricate low-resistance buried polysilicon shield electrodes in semiconductor devices (e.g., shielded gate trench MOSFETs) to avoid or reduce e.g. Extreme jump and poor avalanche capability.

在一通用態樣中,一種裝置包括一第一方向類型的複數個溝槽,其等在一半導體基材中以一縱向方向延伸;及一第二方向類型的一溝槽,其以一橫向方向延伸並與該第一方向類型的該複數個溝槽相交。該縱向方向係正交於該橫向方向。該第二方向類型之該溝槽與該第一方向類型之相交的該複數個溝槽之各者流體連通。In a general aspect, a device includes a plurality of trenches of a first orientation type extending in a longitudinal direction in a semiconductor substrate; and a trench of a second orientation type extending in a lateral direction A direction extends and intersects the plurality of grooves of the first direction type. The longitudinal direction is orthogonal to the transverse direction. The groove of the second directional type is in fluid communication with each of the plurality of intersecting grooves of the first directional type.

該裝置進一步包括一屏蔽多晶矽層,其經設置在該第一方向類型之該複數個溝槽及該第二方向類型之該溝槽中;一多晶矽間介電層(inter-poly dielectric layer, IPL)及一閘極多晶矽層,其等在該第一方向類型的該複數個溝槽及該第二方向類型的該溝槽中經設置在該屏蔽多晶矽層上方;及至該屏蔽多晶矽層之一電接觸件,其經設置在經設置於該第二方向類型之該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口內。The device further includes a shielding polysilicon layer disposed in the plurality of trenches of the first orientation type and the trenches of the second orientation type; an inter-poly dielectric layer (IPL) ) and a gate polysilicon layer disposed over the shielding polysilicon layer in the plurality of trenches of the first directional type and the trenches of the second directional type; and an electrical connection to the shielding polysilicon layer Contacts disposed within an opening in the interpoly dielectric layer and the gate polysilicon layer disposed in the trench of the second orientation type.

在一通用態樣中,一種裝置包括一第一方向類型的複數個縱向溝槽及縱向台面,其等跨一半導體基材以一縱向方向平行地延伸;及一第二方向類型的一側向溝槽,其以正交於該縱向方向之一橫向方向延伸並與該第一方向類型的該複數個縱向溝槽及縱向台面垂直地相交。該側向溝槽與該第一方向類型之該複數個縱向溝槽流體連通。該側向溝槽將該複數個縱向溝槽及縱向台面之各者分成該側向溝槽之一第一側上的一第一區段縱向溝槽及一第一區段台面,以及相對於該側向溝槽之該第一側之一第二側上的一第二區段縱向溝槽及一第二區段縱向台面,該縱向溝槽與該複數個第一區段縱向溝槽及第二區段縱向溝槽之各者流體連通。In a general aspect, a device includes a plurality of longitudinal trenches and longitudinal mesas of a first orientation type extending parallel in a longitudinal direction across a semiconductor substrate; and a lateral orientation of a second orientation type. A trench extending in a transverse direction perpendicular to the longitudinal direction and perpendicularly intersects the plurality of longitudinal trenches and longitudinal mesas of the first direction type. The lateral groove is in fluid communication with the plurality of longitudinal grooves of the first directional type. The lateral groove divides each of the plurality of longitudinal grooves and longitudinal mesas into a first segmental longitudinal groove and a first segmental mesa on a first side of the lateral groove, and relative to a second segment longitudinal groove and a second segment longitudinal mesa on a second side of the first side of the lateral groove, the longitudinal groove and the plurality of first segment longitudinal grooves and Each of the second section longitudinal grooves is in fluid communication.

該裝置進一步包括一屏蔽多晶矽層,其經設置在該複數個縱向溝槽及該側向溝槽中;一多晶矽間介電層(IPL)及一閘極多晶矽層,其等在該複數個縱向溝槽及該側向溝槽中經設置在該屏蔽多晶矽層上方;及藉由至少一絕緣體加襯導電插塞至該屏蔽多晶矽層之一電接觸件,其延伸通過經設置在該側向溝槽中之該多晶矽間介電層及該閘極多晶矽層。The device further includes a shielding polysilicon layer disposed in the plurality of longitudinal trenches and the lateral trenches; an interpolysilicon dielectric layer (IPL) and a gate polysilicon layer disposed in the plurality of longitudinal trenches a trench and the lateral trench disposed above the shielding polysilicon layer; and an electrical contact to the shielding polysilicon layer via at least one insulator lined conductive plug extending through the lateral trench disposed above the shielding polysilicon layer The interpolysilicon dielectric layer and the gate polysilicon layer in the trench.

在一通用態樣中,一種方法包括在一半導體基材中界定一第一類型的複數個溝槽。該第一類型之該複數個溝槽以一縱向方向延伸。該方法進一步包括界定一第二類型之一溝槽,其以一側向方向延伸並與該第一類型的該複數個溝槽相交。該第二類型之該溝槽與所相交之該第一類型的該複數個溝槽之各者流體連通。該方法進一步包括在該第一類型之該複數個溝槽及該第二類型之該溝槽中設置一屏蔽多晶矽層;在該第一類型的該複數個溝槽及該第二類型的該溝槽中將一多晶矽間介電層(IPD)及一閘極多晶矽層設置在該屏蔽多晶矽層上方;及形成至該屏蔽多晶矽層之一電接觸件,其通過經設置在該第二類型之該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口。In a general aspect, a method includes defining a plurality of trenches of a first type in a semiconductor substrate. The plurality of grooves of the first type extend in a longitudinal direction. The method further includes defining a trench of a second type extending in a lateral direction and intersecting the plurality of trenches of the first type. The groove of the second type is in fluid communication with each of the plurality of grooves of the first type that intersect. The method further includes disposing a shielding polysilicon layer in the plurality of trenches of the first type and the trenches of the second type; disposing an interpolysilicon dielectric (IPD) and a gate polysilicon layer in trenches above the shielding polysilicon layer; and forming an electrical contact to the shielding polysilicon layer through the An opening in the interpolysilicon dielectric layer and the gate polysilicon layer in the trench.

金屬氧化物半導體場效電晶體(MOSFET)裝置使用在許多電力切換應用中。在典型的MOSFET裝置中,閘極電極回應於所施加的閘極電壓而提供裝置的導通及關斷控制。例如,在N型增強型MOSFET中,當導電N型反轉層(亦即,通道區域)回應於超過固有臨限電壓的正閘極電壓而形成在p型本體區域中時,導通發生。反轉層將N型源極區域連接至N型汲極區域,並允許多數載子在此等區域之間傳導。Metal Oxide Semiconductor Field Effect Transistor (MOSFET) devices are used in many power switching applications. In a typical MOSFET device, the gate electrode provides on and off control of the device in response to an applied gate voltage. For example, in an N-type enhancement MOSFET, turn-on occurs when a conductive N-type inversion layer (ie, the channel region) forms in the p-type body region in response to a positive gate voltage exceeding an intrinsic threshold voltage. The inversion layer connects the N-type source region to the N-type drain region and allows majority carrier conduction between these regions.

在溝式MOSFET裝置中,閘極電極係形成在從半導體材料(亦可稱為半導體區域)(諸如矽)的主表面向下(例如,垂直向下)延伸的溝中。進一步地,一屏蔽電極可在溝槽中形成於閘極電極下方(並經由極間或多晶矽間介電質絕緣)。在溝式MOSFET裝置中流動的電流主要係垂直的(例如,在N摻雜漂移區域中),且因此,裝置單元可更緻密地包裝。例如,裝置單元可包括溝槽及鄰接台面,該溝槽含有閘極電極及屏蔽電極,該鄰接台面含有裝置的汲極、源極、本體、及通道區。In a trench MOSFET device, the gate electrode is formed in a trench extending downward (eg, vertically downward) from a major surface of a semiconductor material (also referred to as a semiconductor region), such as silicon. Further, a shield electrode may be formed in the trench below the gate electrode (and insulated by an inter-electrode or inter-poly dielectric). Current flow in trench MOSFET devices is predominantly vertical (eg, in the N-doped drift region), and thus, device cells can be more densely packed. For example, a device cell may include a trench containing a gate electrode and a shield electrode, and adjacent mesas containing the drain, source, body, and channel regions of the device.

溝式MOSFET裝置的電流處理能力係由其閘極通道寬度判定。欲最小化成本,使電晶體之晶粒面積尺寸保持儘可能地小並藉由建立在MOSFET晶粒的整個面積上方重複的蜂巢結構而增加通道表面積的寬度(亦即,增加「通道密度」)可係重要的。增加通道密度(且因此增加通道寬度)的方式係降低裝置單元的尺寸且在給定表面區域中以較小節距包裝更多裝置單元。The current handling capability of a Trench MOSFET device is determined by its gate channel width. To minimize cost, keep the die area size of the transistor as small as possible and increase the width of the channel surface area (i.e., increase the "channel density") by creating a honeycomb structure that repeats over the entire area of the MOSFET die Can be important. The way to increase channel density (and thus increase channel width) is to reduce the size of the device units and pack more device units at a smaller pitch in a given surface area.

實例溝式MOSFET裝置可包括數百或數千個裝置單元(各包括一溝及一鄰接台面)的陣列。裝置單元在本文中可稱為溝-台面單元,因為各裝置單元幾何地包括一溝結構及一台面(或二個半台面)結構。屏蔽電極及閘極電極可形成在沿著台面(例如,台面102)延行(例如,沿著台面對準)的線性溝槽(例如,溝槽101)內側。屏蔽電極及閘極電極可由多晶矽製成(例如,「n+屏蔽多晶矽」及「n+閘極多晶矽」)並藉由介電層(例如,圖2B之多晶矽間介電(IPD)層112)彼此隔離。IPD層可例如係氧化物層。屏蔽電極及閘極電極亦藉由介電層(例如,屏蔽介電層及閘極介電層)與台面中的矽隔離。Example trench MOSFET devices may include an array of hundreds or thousands of device cells, each including a trench and an adjacent mesa. A device unit may be referred to herein as a trench-mesa unit, since each device unit geometrically includes a trench structure and a mesa (or two half-mesa) structure. Shield electrodes and gate electrodes may be formed inside linear trenches (eg, trench 101 ) running (eg, aligned along the mesas) along the mesas (eg, mesas 102 ). The shield and gate electrodes can be made of polysilicon (eg, "n+ shield poly" and "n+ gate poly") and separated from each other by a dielectric layer (eg, interpolysilicon dielectric (IPD) layer 112 of FIG. 2B ) . The IPD layer can be, for example, an oxide layer. The shield and gate electrodes are also isolated from the silicon in the mesas by dielectric layers (eg, shield and gate dielectric layers).

為確保每一個單元的恰當電接觸,「平面條(planar stripe)」結構常用於製造在半導體晶粒表面上的溝式MOSFET。在平面條結構中,將溝(例如,線性溝)內的閘極電極(「閘極」)及屏蔽電極(「屏蔽多晶矽」)設置成沿著溝的長度以縱向條延行(例如,沿著溝的長度對準)。包括閘極電極及屏蔽電極的溝槽可稱為主動溝槽,閘極電極(例如,以閘極多晶矽製成)係沿著主動溝槽的長度設置在屏蔽電極(例如,以屏蔽多晶矽製成)的頂部上(或上方)。主動溝槽中的閘極多晶矽係經暴露並在條帶端處由閘極澆道(例如,閘極金屬)接觸,且溝槽中的屏蔽電極(屏蔽多晶矽)可經暴露並在沿著主動溝槽長度的位置處提升至表面(使用遮罩步驟)以用於由源極金屬接觸。To ensure proper electrical contact of each cell, a "planar stripe" structure is often used to fabricate trench MOSFETs on the surface of a semiconductor die. In a planar strip structure, the gate electrode ("gate") and shield electrode ("shield poly") within a trench (eg, a linear trench) are arranged in longitudinal strips (eg, along the length of the trench) along the length of the trench. aligned with the length of the groove). A trench that includes a gate electrode and a shield electrode may be referred to as an active trench. The gate electrode (eg, made of gate polysilicon) is disposed along the length of the active trench over the shield electrode (eg, made of shield polysilicon). ) on (or above) the top of the . The gate polysilicon in the active trenches is exposed and contacted by the gate runner (eg, gate metal) at the ends of the stripes, and the shield electrode (shield polysilicon) in the trenches can be exposed and contacted along the active The location of the trench length is raised to the surface (using a masking step) for contact by the source metal.

在現代溝式MOSFET裝置(例如,具有窄線寬)中,屏蔽電阻係影響裝置效率及效能的因素。較低的屏蔽電阻可藉由對主動溝槽中的屏蔽多晶矽產生多個接觸件(例如,藉由在多個位置處將屏蔽多晶矽垂直地提升至表面以產生與源極金屬的多個屏蔽接觸件)而獲得。In modern trench MOSFET devices (eg, with narrow linewidths), shield resistance is a factor that affects device efficiency and performance. Lower shield resistance can be achieved by creating multiple contacts to the shield poly in the active trench (for example, by raising the shield poly vertically to the surface at multiple locations to create multiple shield contacts to the source metal pieces) obtained.

將屏蔽多晶矽(從閘極多晶矽正下方)垂直地提升至表面使沿著主動溝槽長度延行之閘極多晶矽的連續性中斷或破壞。藉由垂直地提升至表面之屏蔽多晶矽的各例沿著主動溝槽長度將閘極多晶矽破壞成二個不連續節段。在實例實施方案中,在條帶末端處之二個分開的閘極澆道或閘極金屬條(例如,在例如圖6及圖7中所示之閘極金屬710-1、710-2)可需要接觸由垂直提升通過主動溝槽至表面之屏蔽多晶矽的單例所建立之二個不連續的閘極多晶矽節段。沿著主動溝槽長度將屏蔽多晶矽垂直提升通過閘極多晶矽至表面的多例可得出數個分離的閘極多晶矽節段,其等係浮置(亦即,未由兩個分開的閘極澆道接觸),且因此需要多個閘極澆道來接觸各閘極多晶矽節段,其佔用晶粒面積。Lifting the shield polysilicon (from directly below the gate polysilicon) vertically to the surface interrupts or destroys the continuity of the gate polysilicon running along the length of the active trench. The gate polysilicon is broken into two discrete segments along the active trench length by instances of shield polysilicon raised vertically to the surface. In an example embodiment, two separate gate runners or gate metal strips at the ends of the strip (eg, gate metal 710-1, 710-2 as shown in, for example, FIGS. 6 and 7 ) Contact may be required to two discrete gate polysilicon segments created by a single instance of shielding polysilicon vertically lifted through the active trench to the surface. Many instances of lifting the shield poly vertically through the gate poly to the surface along the length of the active trench results in several separate gate poly segments that are floating (i.e., not separated by two separate gate polysilicon segments). runner contact), and thus multiple gate runners are required to contact each gate polysilicon segment, which occupies die area.

本文中之本揭露描述實例裝置組態或佈局以用於製作至屏蔽電極的接觸件,該等屏蔽電極在製造於半導體基材中之MOSFET裝置的主動溝槽中經埋入閘極電極下方。製作至屏蔽多晶矽的接觸件(例如,金屬、金屬合金、金屬矽化物、導電多晶矽、或其他導電材料接觸件),該屏蔽多晶矽在垂直於及橫斷主動溝槽的屏蔽連接溝槽中埋入閘極多晶矽下方。屏蔽連接溝槽可係至主動溝槽側的溝槽部分。接觸件係通過垂直絕緣體加襯(例如,氧化物加襯)開口製作,該開口從頂表面延伸通過疊置於屏蔽電極之閘極多晶矽以抵達埋入式屏蔽多晶矽。埋入式屏蔽多晶矽係留在閘極多晶矽下方的原位,且並未提升至表面。取而代之地,至屏蔽多晶矽的接觸件係藉由在開口中沉積導電材料(例如,金屬鎢)而製成。閘極多晶矽係在屏蔽連接溝槽中繞開口於水平平面中繞線,以保存閘極電極在接觸件的一側上之主動溝槽的一部分及在接觸件的相對側上之主動溝槽的對應部分中之連續性。The present disclosure herein describes example device configurations or layouts for making contacts to shield electrodes buried under gate electrodes in active trenches of MOSFET devices fabricated in semiconductor substrates. Make contacts (eg, metal, metal alloy, metal silicide, conductive polysilicon, or other conductive material contacts) to shield polysilicon buried in shield connection trenches perpendicular to and transverse to the active trenches below the gate polysilicon. The shield connection trench may be tied to the trench portion on the active trench side. Contacts are made through vertical insulator-lined (eg, oxide-lined) openings extending from the top surface through the gate poly overlying the shield electrode to the buried shield poly. The buried shield polysilicon stays in place under the gate polysilicon and is not raised to the surface. Instead, contacts to the shield polysilicon are made by depositing a conductive material (eg, tungsten metal) in the openings. The gate polysilicon is wound in the horizontal plane around the opening in the shield connection trench to preserve a portion of the gate electrode's active trench on one side of the contact and the active trench on the opposite side of the contact. Continuity in the corresponding part.

圖1顯示屏蔽閘極溝槽MOSFET裝置(例如,圖2A、圖2B、及圖2C之裝置200)之一實例裝置遮罩佈局100的一部分,其中裝置中可製作至屏蔽電極的多個接觸件。圖1顯示例如x-y平面中之裝置遮罩佈局100(x-y平面可沿著電晶體裝置之矽晶圓或半導體基材的平面對準)。1 shows a portion of an example device mask layout 100 for a shielded gate trench MOSFET device (e.g., device 200 of FIGS. 2A, 2B, and 2C) in which multiple contacts to the shield electrode can be made. . Figure 1 shows, for example, a device mask layout 100 in the x-y plane (the x-y plane may be aligned along the plane of a silicon wafer or semiconductor substrate of a transistor device).

為了便於描述,所揭示之溝槽MOSFET裝置之特徵(例如,溝槽101及105、台面102等)的相對定向或座標在本文中可參照例如圖1之頁面上所示的x軸及y軸描述。垂直於頁面之x-y平面的方向(例如,z軸)可稱為垂直方向或軸。z方向可係向下進入半導體基材之深度的方向,並可在製造於半導體基材中之MOSFET裝置中的例如溝槽深度之方向上對準。此外,為了視覺上的清晰度,圖1中顯示裝置遮罩佈局100中之溝槽/裝置單元陣列之有限數目的溝槽/裝置單元(例如,3至5個溝槽/裝置單元)。如先前所提及,實際的MOSFET裝置可包括數百或數千個溝槽/裝置單元的陣列,其可例如藉由(例如,在x方向上)重複實例裝置遮罩佈局100中所示之有限的陣列結構而獲得。For ease of description, the relative orientations or coordinates of features of the disclosed trench MOSFET devices (e.g., trenches 101 and 105, mesas 102, etc.) may be referred to herein with reference to, for example, the x-axis and y-axis shown on the page of FIG. describe. A direction perpendicular to the x-y plane of the page (eg, the z-axis) may be referred to as a vertical direction or axis. The z-direction can be the direction down into the depth of the semiconductor substrate, and can be aligned in the direction of, for example, the depth of trenches in MOSFET devices fabricated in the semiconductor substrate. Furthermore, for visual clarity, a limited number of trenches/device units (eg, 3 to 5 trenches/device units) of the array of trenches/device units in device mask layout 100 are shown in FIG. 1 . As previously mentioned, a practical MOSFET device may include an array of hundreds or thousands of trenches/device cells, which may be achieved, for example, by repeating (e.g., in the x-direction) that shown in the example device mask layout 100. A finite array structure is obtained.

如圖1所示之裝置遮罩佈局100包括裝置的數個主動溝槽(亦即,縱向溝槽101),其等(例如,在y方向上)平行(例如,實質上平行)於彼此延行。台面102可形成在成對的縱向溝槽101之間。溝槽101及台面102分別可係線性溝槽及線性台面(例如,在y方向上延行)。溝槽101及台面102分別可具有均勻寬度Wt及Wm(例如,在x方向上的水平寬度)。裝置元件(例如,源極及本體區(未圖示))可形成在台面102中,並在源極接觸區103處例如藉由源極金屬(未圖示)來接觸。裝置元件(例如,源極及本體區)可例如藉由裝置遮罩佈局100之區段104中的n型源極與汲極(n-type source and drain, NSD)植入物來形成。The device mask layout 100 shown in FIG. 1 includes several active trenches (ie, longitudinal trenches 101 ) of the device that are (eg, in the y-direction) parallel (eg, substantially parallel) to each other along Row. A mesa 102 may be formed between the pair of longitudinal grooves 101 . The trench 101 and the mesa 102 may be a linear trench and a linear mesa (for example, running in the y direction), respectively. Trenches 101 and mesas 102 may have uniform widths Wt and Wm, respectively (eg, horizontal widths in the x-direction). Device elements such as source and body regions (not shown) may be formed in the mesas 102 and contacted at source contact regions 103 , for example by source metal (not shown). Device elements (eg, source and body regions) may be formed, for example, by n-type source and drain (NSD) implants in section 104 of device mask layout 100 .

雖然在圖1(及本文中的其他圖式)中僅顯示少量的溝槽101及台面102(例如,四個溝槽及三個台面),須注意實際的MOSFET裝置可包括數百或數千個溝槽/裝置單元的陣列,其等可例如藉由(例如,在x方向上)重複圖式中所示的溝槽及台面結構或圖案而得到。Although only a small number of trenches 101 and mesas 102 (e.g., four trenches and three mesas) are shown in FIG. 1 (and other figures herein), it should be noted that actual MOSFET devices may include hundreds or thousands of An array of trenches/device units can be obtained, for example, by repeating (eg in the x-direction) the trench and mesa structures or patterns shown in the drawings.

水平或側向溝槽(例如,屏蔽連接溝槽105)(側溝槽)可側向(例如,在x方向上)延伸,以在沿著y軸的距離Y處攔截及橫斷(亦即,截斷)溝槽101及台面102。屏蔽連接溝槽105可例如在y方向上具有垂直寬度Wv。屏蔽連接溝槽105可將各縱向溝槽101及各台面102有效地分成兩區段(例如,其中縱向溝槽101的上部區段在裝置遮罩佈局100於y方向上處於屏蔽連接溝槽105上方的上部區域(例如,區域10U)中,且溝槽101的下部區段在裝置遮罩佈局100於y方向上處於屏蔽連接溝槽105下方的下部區域中)。溝槽(亦即,溝槽101及溝槽105)可具有約相同的深度(未圖示)(例如,以台面102的頂表面為參照)。A horizontal or lateral trench (eg, shield connection trench 105 ) (side trench) may extend laterally (eg, in the x direction) to intercept and traverse at a distance Y along the y-axis (ie, truncated) trench 101 and mesa 102. The shield connection trench 105 may, for example, have a vertical width Wv in the y-direction. The shield connection trench 105 can effectively divide each longitudinal trench 101 and each mesa 102 into two sections (for example, wherein the upper section of the longitudinal trench 101 is in the shield connection trench 105 in the y direction of the device mask layout 100 In the upper region above (for example, region 10U), and the lower section of the trench 101 is in the lower region of the device mask layout 100 below the shield connection trench 105 in the y-direction). The trenches (ie, trench 101 and trench 105 ) may have approximately the same depth (not shown) (eg, with reference to the top surface of mesa 102 ).

在實例實施方案中,在屏蔽連接溝槽105的任一側上(亦即,上方及下方)之縱向溝槽101的兩區段(亦即,上部區域10U中之縱向溝槽101的上部區段及下部區域10L中之縱向溝槽101的下部區段)可在水平x方向上對準(亦即,如圖1針對從頁面右側數來之第二最垂直溝槽所繪示般共用或位於共用y軸Yt上)。In an example embodiment, two sections of the longitudinal trench 101 (ie, the upper region of the longitudinal trench 101 in the upper region 10U) on either side (ie, above and below) of the shield connection trench 105 segment and the lower section of the longitudinal groove 101 in the lower region 10L) may be aligned in the horizontal x-direction (i.e., shared or on the common y-axis Yt).

屏蔽連接溝槽105可與溝槽101之分割區段的各者流體連通(換言之,屏蔽連接溝槽105具有至溝槽101之分割區段的各者之實體開口,使得流體(亦即,無固定形狀之氣體或液體)可輕易地從屏蔽連接溝槽105通過開口流入溝槽101之分割區段的各者中,或反之亦然)。裝置之屏蔽電極及閘極電極(未圖示)可例如藉由在溝槽101及105中沉積屏蔽多晶矽及閘極多晶矽而形成在溝槽101中。屏蔽多晶矽及閘極多晶矽可由多晶矽間介電(IPD)層(圖1中未圖示)分開。The shield connection trench 105 may be in fluid communication with each of the divided sections of the trench 101 (in other words, the shield connection trench 105 has a physical opening to each of the divided sections of the trench 101 such that fluid (i.e., no A gas or liquid of fixed shape) can easily flow from the shield connection trench 105 through the opening into each of the divided sections of the trench 101 , or vice versa). Shield and gate electrodes (not shown) of the device may be formed in trench 101 , for example, by depositing shield polysilicon and gate polysilicon in trenches 101 and 105 . The shield polysilicon and gate polysilicon may be separated by an interpolysilicon dielectric (IPD) layer (not shown in FIG. 1 ).

屏蔽連接溝槽105中之屏蔽多晶矽可經暴露(用於在溝槽101及105中製作通過一或多個開口(例如,開口106)至屏蔽電極的接觸件,該一或多個開口從閘極多晶矽的頂表面通過屏蔽連接溝槽105中的閘極多晶矽及IPD層製作以抵達下方的屏蔽多晶矽。在實例實施方案中,絕緣體加襯導電插塞(例如,至少顯示在圖2A、圖2B、及圖2C中之絕緣體加襯導電插塞116)可製造於開口106中。絕緣體加襯導電插塞116可例如包括以導電材料109(圖2A)製成之導電中心部分,其由同心絕緣外部部分(以氧化物110製成(圖2A)環繞。Shield polysilicon in shield connection trench 105 may be exposed (for making contacts in trenches 101 and 105 to the shield electrode through one or more openings (e.g., opening 106) from the gate The top surface of the pole poly is made through the gate poly and IPD layer in the shield connection trench 105 to reach the underlying shield poly. In an example embodiment, an insulator lined conductive plug (eg, as shown at least in FIGS. 2A, 2B , and insulator-lined conductive plug 116 in FIG. 2C) may be fabricated in opening 106. Insulator-lined conductive plug 116 may, for example, include a conductive central portion made of conductive material 109 (FIG. 2A) formed by concentric insulating The outer part (made of oxide 110 (FIG. 2A) surrounds.

在實例實施方案中,重新參照裝置遮罩佈局100(圖1),開口106可首先填以氧化物(例如,圖2A的氧化物110)或其他絕緣體,且之後,另一開口可製作成通過氧化物或其他絕緣體填充以形成絕緣體加襯開口(例如,開口16),以再次抵達下方的屏蔽多晶矽。在圖1所示之裝置遮罩佈局100中,此另一絕緣體加襯開口(亦即,開口16)係在開口106內側以虛線格式顯示為矩形。In an example implementation, referring back to device mask layout 100 (FIG. 1), opening 106 may first be filled with an oxide (eg, oxide 110 of FIG. 2A) or other insulator, and thereafter, another opening may be made through An oxide or other insulator is filled to form an insulator-lined opening (eg, opening 16 ) to again reach the underlying shield polysilicon. In the device mask layout 100 shown in FIG. 1 , this other insulator-lined opening (ie, opening 16 ) is shown as a rectangle in dashed-line format inside opening 106 .

金屬或其他導電材料(例如,圖2A之導電材料109)可沉積在氧化物加襯開口16中,以與下方的屏蔽多晶矽建立電接觸件,以用於與例如裝置的源極金屬(例如,圖6至圖9的源極金屬720)連接。Metal or other conductive material (eg, conductive material 109 of FIG. 2A ) may be deposited in the oxide-lined opening 16 to establish electrical contact with the underlying shield polysilicon for use with, for example, the source metal of the device (eg, 6 to 9 source metal 720) connection.

在實例實施方案中,沿著形成於開口106中之絕緣體加襯導電插塞116的一側或周圍沉積在屏蔽連接溝槽105中的閘極多晶矽可跨屏蔽連接溝槽105在溝槽101中提供閘極電極的結構及電連續性(換言之,上部區域10U中之溝槽101的區段中之閘極多晶矽與下部區域10U中之溝槽101的對應區段中之閘極多晶矽連續)。In an example embodiment, the gate polysilicon deposited in the shield connection trench 105 along one side or around the insulator lined conductive plug 116 formed in the opening 106 may be in the trench 101 across the shield connection trench 105 Structural and electrical continuity of the gate electrode is provided (in other words, the gate polysilicon in the segment of the trench 101 in the upper region 10U is continuous with the gate polysilicon in the corresponding segment of the trench 101 in the lower region 10U).

在實例實施方案中,開口106及16(及(多個)絕緣體加襯導電插塞116)在x-y平面中可具有正方形形狀、矩形形狀、圓形形狀、卵形形狀、或任何其他形狀。在如圖1所示之實例實施方案中,開口106可具有矩形形狀,其例如具有x方向上的寬度Wo及y方向上的長度Lo。在實例實施方案中,寬度Wo可大於、相同、或小於台面102的寬度Wm。In an example implementation, openings 106 and 16 (and insulator-lined conductive plug(s) 116 ) may have a square shape, a rectangular shape, a circular shape, an oval shape, or any other shape in the x-y plane. In an example implementation as shown in FIG. 1 , the opening 106 may have a rectangular shape, eg, having a width Wo in the x-direction and a length Lo in the y-direction. In example embodiments, the width Wo may be greater than, the same as, or less than the width Wm of the mesas 102 .

在實例實施方案中,對於具有25V至30V之崩潰電壓BVDSS的MOSFET,溝槽101可具有例如在約0.2µm至1.0µm之範圍內(例如,0.3µm)的寬度Wt;台面102可具有例如在約0.2µm至1.0µm(例如,0.3µm)之範圍內的寬度Wm;屏蔽接觸溝槽105可具有例如在約0.5µm至2.0µm(例如,1.0µm)之範圍內的寬度Wv;絕緣體加襯導電插塞116可具有在約0.3µm至2.0µm(例如,1.4µm)之範圍內的寬度Wo以及在約0.3µm至1.2µm(例如,0.6µm)之範圍內的長度Lo;且接觸開口16可具有在約0.1µm至1.8µm(例如,1.0µm)之範圍內的x方向寬度以及約0.1µm至1.0µm(例如,0.2µm)的y方向長度。In an example embodiment, for a MOSFET having a breakdown voltage BVDSS of 25V to 30V, the trench 101 may have a width Wt, for example, in the range of about 0.2µm to 1.0µm (eg, 0.3µm); the mesa 102 may have a width, for example, between Width Wm in the range of approximately 0.2 µm to 1.0 µm (eg, 0.3 µm); shield contact trench 105 may have a width Wv, eg, in the range of approximately 0.5 µm to 2.0 µm (eg, 1.0 µm); insulator lined The conductive plug 116 may have a width Wo in the range of about 0.3 µm to 2.0 µm (eg, 1.4 µm) and a length Lo in the range of about 0.3 µm to 1.2 µm (eg, 0.6 µm); and the contact opening 16 There may be an x-direction width in the range of about 0.1-1.8 µm (eg, 1.0 µm) and a y-direction length of about 0.1-1.0 µm (eg, 0.2 µm).

對於具有高於30V之崩潰電壓BVDSS的MOSFET,前述特徵的尺寸(例如,溝槽101的寬度Wt、台面102的寬度Wm、屏蔽接觸溝槽105的寬度Wv、絕緣體加襯導電插塞116的寬度Wo及長度Lo、及接觸開口16的寬度及長度)可大於上文針對具有25V至30V之崩潰電壓BVDSS之MOSFET給定的實例數值。For MOSFETs with a breakdown voltage BVDSS higher than 30V, the dimensions of the aforementioned features (e.g., width Wt of trench 101, width Wm of mesa 102, width Wv of shield contact trench 105, width of insulator-lined conductive plug 116 Wo and length Lo, and width and length of contact opening 16 ) may be greater than the example values given above for a MOSFET with a breakdown voltage BVDSS of 25V to 30V.

在實例實施方案中,數個開口106的陣列(例如,陣列106A)可在屏蔽連接溝槽105中沿著x軸設置,以形成(多個)絕緣體加襯導電插塞116的對應陣列116A)(圖2A)。In an example embodiment, an array of several openings 106 (eg, array 106A) may be disposed along the x-axis in shield connection trench 105 to form a corresponding array (116A) of insulator-lined conductive plug(s) 116 ) (Fig. 2A).

在如圖2A所示之實例實施方案中,屏蔽連接溝槽105中之絕緣體加襯導電插塞116可在y方向上與上部區域10U的台面102及下部區域10L的對應台面102對準(換言之,各絕緣體加襯導電插塞116、上部區域10U的台面102、及下部區域10L的對應台面102可在y方向上全部沿著共軸(例如,圖2A的軸Ym)放置)。In the example implementation shown in FIG. 2A , the insulator-lined conductive plugs 116 in the shield connection trenches 105 may be aligned in the y-direction with the mesas 102 of the upper region 10U and corresponding mesas 102 of the lower region 10L (in other words , each insulator-lined conductive plug 116 , the mesa 102 of the upper region 10U, and the corresponding mesa 102 of the lower region 10L may all lie along a common axis (eg, axis Ym of FIG. 2A ) in the y-direction).

圖2A顯示一實例屏蔽閘極溝槽MOSFET裝置200,其具有閘極電極,該等閘極電極在製作至閘極電極下方之屏蔽多晶矽的屏蔽接觸件周圍連續且並未由該等屏蔽接觸件中斷(亦即,無中斷)。在實例實施方案中,裝置200可使用例如裝置遮罩佈局100製造。在圖2A所示之實例中,裝置200包括在y方向上延行之主動溝槽101及台面102以及跨溝槽101及台面102側向(例如,在x方向上)延伸的水平屏蔽連接溝槽105(側溝槽)。處於水平屏蔽連接溝槽105的上方及下方之在y方向上延伸的主動溝槽101(及台面102)之對應區段可在x方向上彼此對準(換言之,上方之溝槽101的區段及下方之對應溝槽101的區段可共用共同y軸(例如,軸Yt),且在x方向上並未相對於彼此交錯)。圖2A顯示例如水平屏蔽連接溝槽105上方之溝槽101的區段101-U及下方之對應溝槽101的區段101-L,其等在共同y軸(亦即,Yt)上對準。類似地,水平屏蔽連接溝槽105上方及下方之台面102的相鄰區段係在共同y軸(亦即,Ym)上對準。2A shows an example shielded gate trench MOSFET device 200 having gate electrodes that are continuous around and not bounded by shield contacts fabricated to the shield polysilicon below the gate electrodes. Interruption (that is, no interruption). In an example implementation, device 200 may be fabricated using, for example, device mask layout 100 . In the example shown in FIG. 2A , device 200 includes active trenches 101 and mesas 102 running in the y-direction and horizontal shield connection trenches extending laterally (e.g., in the x-direction) across trenches 101 and mesas 102. Groove 105 (side groove). Corresponding sections of the active trenches 101 (and mesas 102 ) extending in the y-direction above and below the horizontal shield connection trenches 105 may be aligned with each other in the x-direction (in other words, the sections of the trenches 101 above Segments of corresponding trenches 101 below and below may share a common y-axis (eg, axis Yt) and are not staggered relative to each other in the x-direction). 2A shows, for example, a segment 101-U of a trench 101 above a horizontal shield connection trench 105 and a segment 101-L of a corresponding trench 101 below, which are aligned on a common y-axis (ie, Yt). . Similarly, adjacent segments of mesas 102 above and below horizontal shield connection trenches 105 are aligned on a common y-axis (ie, Ym).

在實例實施方案中,沿著絕緣體加襯導電插塞116的一側或周圍沉積在屏蔽連接溝槽105中的閘極多晶矽可跨屏蔽連接溝槽105提供溝槽101中之閘極電極的結構及電連續性(換言之,在屏蔽連接溝槽105各處,上部區域10U中之溝槽101的區段中之閘極多晶矽與下部區域10U中之溝槽101的對應區段中之閘極多晶矽連續)。In an example embodiment, the gate polysilicon deposited in the shield connection trench 105 along one side or around the insulator-lined conductive plug 116 can provide the structure of the gate electrode in the trench 101 across the shield connection trench 105 and electrical continuity (in other words, throughout the shield connection trench 105, the gate polysilicon in the segment of the trench 101 in the upper region 10U and the gate polysilicon in the corresponding segment of the trench 101 in the lower region 10U continuous).

閘極氧化物107可生長或沉積在與主動溝槽101及屏蔽連接溝槽105接界之台面102的側壁上。閘極多晶矽層108可沉積在主動溝槽101及屏蔽連接溝槽105中以在先前沉積在溝槽中之屏蔽多晶矽層(圖2B的屏蔽多晶矽層111)及多晶矽間介電(IPD)層112(圖2B的IPD層112)上方形成閘極電極。屏蔽多晶矽層及IPD層在圖2A中不可見,因為其等埋入在閘極多晶矽108下方。Gate oxide 107 may be grown or deposited on the sidewalls of mesa 102 bordering active trench 101 and shield connection trench 105 . A gate polysilicon layer 108 may be deposited in the active trench 101 and the shield connection trench 105 to overshadow the shield polysilicon layer (shield polysilicon layer 111 of FIG. 2B ) and interpolysilicon dielectric (IPD) layer 112 previously deposited in the trenches. (IPD layer 112 of FIG. 2B ) is formed over the gate electrode. The shield polysilicon layer and the IPD layer are not visible in FIG. 2A because they are buried under the gate polysilicon 108 .

在裝置200中,埋入式屏蔽多晶矽層係由在屏蔽連接溝槽105中製作成通過閘極多晶矽層108及IPD 112之垂直絕緣體加襯導電插塞116的陣列(例如,陣列116A)接觸。各絕緣體加襯導電插塞116可包括由絕緣襯墊環繞的導電中心部分。在實例實施方案中,絕緣襯墊可以絕緣材料(諸如氧化物110)製成,且導電中心部分可以導電材料109(例如,鎢)製成。各絕緣體加襯導電插塞的導電材料109(例如,鎢)可電接觸埋入裝置200中的閘極多晶矽108及IPD層112下方的屏蔽多晶矽。沿著且圍繞垂直絕緣體加襯導電插塞116之閘極多晶矽108可跨屏蔽連接溝槽105維持形成在主動溝槽101中之閘極電極的電連續性。In device 200 , the buried shield polysilicon layer is contacted by an array (eg, array 116A) of vertical insulator-lined conductive plugs 116 formed in shield connection trench 105 through gate polysilicon layer 108 and IPD 112 . Each insulator-lined conductive plug 116 may include a conductive central portion surrounded by an insulating liner. In an example embodiment, the insulating liner can be made of an insulating material, such as oxide 110 , and the conductive center portion can be made of a conductive material 109 , such as tungsten. The conductive material 109 (eg, tungsten) of each insulator-lined conductive plug may electrically contact the gate polysilicon 108 buried in the device 200 and the shield polysilicon beneath the IPD layer 112 . The gate polysilicon 108 along and around the vertical insulator lined conductive plug 116 can maintain electrical continuity of the gate electrode formed in the active trench 101 across the shield connection trench 105 .

至埋入式屏蔽多晶矽層的電接觸件係由至少一絕緣體加襯導電插塞116製成,該插塞通過設置在屏蔽連接溝槽105中的多晶矽間介電層112及閘極多晶矽層108以抵達埋入式屏蔽多晶矽層。The electrical contact to the buried shield poly layer is made by at least one insulator lined conductive plug 116 passing through the interpoly dielectric layer 112 and the gate poly layer 108 disposed in the shield connection trench 105 To reach the buried shield polysilicon layer.

在實例實施方案中,屏蔽連接溝槽105中之垂直絕緣體加襯導電插塞116的數目可等於(或約等於)與屏蔽連接溝槽105相交之主動溝槽101(或台面102)的數目。進一步地,在如圖2A所示之實例實施方案中,各絕緣體加襯導電插塞116可設置在介於上部區域10A中之台面102的區段與下部區域10L中之台面102的對應區段之間的空間中。各絕緣體加襯導電插塞116可具有矩形形狀,其具有x方向上的寬度Wo及y方向上的長度Lo。在實例實施方案中,如先前所提及,寬度Wo可大於、相同、或小於台面102的寬度Wm。在例如圖2A所示之實例實施方案中,寬度Wo可係長度Lo的約兩倍至三倍大。In an example implementation, the number of vertical insulator-lined conductive plugs 116 in shield connection trenches 105 may be equal to (or approximately equal to) the number of active trenches 101 (or mesas 102 ) intersecting shield connection trenches 105 . Further, in the example embodiment shown in FIG. 2A , each insulator-lined conductive plug 116 may be disposed between a section of the mesa 102 in the upper region 10A and a corresponding section of the mesa 102 in the lower region 10L. in the space between. Each insulator-lined conductive plug 116 may have a rectangular shape with a width Wo in the x-direction and a length Lo in the y-direction. In an example implementation, as previously mentioned, the width Wo may be greater than, the same as, or less than the width Wm of the mesa 102 . In an example implementation such as that shown in FIG. 2A, width Wo may be about two to three times as large as length Lo.

圖2B及圖2C顯示裝置200之部分的截面圖。圖2B顯示跨例如上部區域10A中之台面102的區段之部分及下部區域10L中之台面102的對應區段之部分、屏蔽連接溝槽105、及絕緣體加襯導電插塞116(經設置在台面102之間的截面圖(在z-y平面中沿著圖2A的線A-A取得)。絕緣體加襯導電插塞116包括導電中心部分(例如,導電材料109),其由同心絕緣外部部分(例如,氧化物110)環繞。圖2B顯示絕緣體加襯導電插塞116,其通過閘極多晶矽108及IPD 112以抵達屏蔽連接溝槽105中的埋入式屏蔽多晶矽層111。絕緣體加襯導電插塞116之導電中心部分的導電材料109(例如,鎢)電接觸屏蔽連接溝槽105中的埋入式屏蔽多晶矽層111。埋入式屏蔽多晶矽層111可藉由介電層(例如,氧化物層113)來與屏蔽連接溝槽105之底部及側隔離。2B and 2C show cross-sectional views of portions of device 200 . 2B shows a portion spanning, for example, a segment of mesa 102 in upper region 10A and a corresponding segment of mesa 102 in lower region 10L, shield connection trench 105, and insulator-lined conductive plug 116 (disposed on Cross-sectional view (taken in the z-y plane along line A-A of FIG. 2A ) between mesas 102. Insulator-lined conductive plug 116 includes a conductive central portion (eg, conductive material 109 ) consisting of a concentric insulating outer portion (eg, oxide 110). Figure 2B shows an insulator-lined conductive plug 116 passing through the gate polysilicon 108 and the IPD 112 to reach the buried shield polysilicon layer 111 in the shield connection trench 105. The insulator-lined conductive plug 116 The conductive material 109 (for example, tungsten) of the conductive central portion of the conductive core electrically contacts the buried shield polysilicon layer 111 in the shield connection trench 105. The buried shield polysilicon layer 111 can be connected by a dielectric layer (for example, an oxide layer 113 ) to isolate the bottom and sides of the shield connection trench 105 .

圖2C顯示跨例如沿著屏蔽連接溝槽105的一部分及兩絕緣體加襯導電插塞116的截面圖(在z-x平面中沿著圖2A的線B-B取得)。圖2C顯示例如兩絕緣體加襯導電插塞116,其通過閘極多晶矽108及IPD 112以抵達屏蔽連接溝槽105中的埋入式屏蔽多晶矽層111。如圖2B中,兩絕緣體加襯導電插塞116之各者包括導電中心部分(例如,導電材料109),其由同心絕緣外部部分(例如,氧化物110)環繞。導電材料109(例如,鎢)電接觸屏蔽連接溝槽105中的埋入式屏蔽多晶矽層111。FIG. 2C shows a cross-sectional view (taken in the z-x plane along line B-B of FIG. 2A ) across, for example, along a portion of the shield connection trench 105 and the two insulator-lined conductive plugs 116 . FIG. 2C shows, for example, two insulator lined conductive plugs 116 passing through gate polysilicon 108 and IPD 112 to reach buried shield polysilicon layer 111 in shield connection trench 105 . As in FIG. 2B , each of the two insulator-lined conductive plugs 116 includes a conductive central portion (eg, conductive material 109 ) surrounded by a concentric insulating outer portion (eg, oxide 110 ). The conductive material 109 (eg, tungsten) electrically contacts the buried shield polysilicon layer 111 in the shield connection trench 105 .

如先前所提及,在圖2A所示之實例實施方案中,在水平屏蔽連接溝槽105上方及下方於y方向上延伸之主動溝槽101(及台面102)的對應區段係在x方向上彼此對準,且在x方向上並未相對於彼此交錯)。屏蔽連接溝槽105與具有非交錯區段之縱向溝槽101的相交可建立溝槽之四向(x-y)交叉,如圖2A之箭頭11所描繪者。As previously mentioned, in the example implementation shown in FIG. 2A , the corresponding segments of active trenches 101 (and mesas 102 ) extending in the y-direction above and below the horizontal shield connection trenches 105 are in the x-direction. are aligned with each other and are not staggered relative to each other in the x-direction). The intersection of the shield connection trenches 105 with the longitudinal trenches 101 having non-staggered segments can create a four-way (x-y) intersection of the trenches, as depicted by arrow 11 of FIG. 2A .

圖3顯示另一實例屏蔽閘極溝槽MOSFET裝置300,其具有閘極電極,該等閘極電極在製作至水平屏蔽連接溝槽中之閘極電極下方之屏蔽多晶矽的屏蔽接觸件周圍連續且並未由該等屏蔽接觸件中斷(例如,無中斷)。在裝置300中,在水平屏蔽連接溝槽105上方及下方於y方向上延伸之主動溝槽101(及台面102)的對應區段係在x方向上例如以x方向上的距離DS相對於彼此交錯。屏蔽連接溝槽105可充當用於縱向溝槽101之交錯區段的終止溝槽,並可建立溝槽的三向(x-x-y)交叉,如圖3之箭頭12所描繪者。在一些處理條件下,處理溝槽的三向交叉可優於處理溝槽的四向交叉(圖2A的箭頭11),FIG. 3 shows another example shielded gate trench MOSFET device 300 having gate electrodes that are continuous around shield contacts fabricated to the shield polysilicon below the gate electrodes in the horizontal shield connection trenches. are not interrupted by the shield contacts (eg, no interruptions). In device 300, corresponding sections of active trenches 101 (and mesas 102) extending in y-direction above and below horizontal shield connection trenches 105 are relative to each other in x-direction, for example by a distance DS in x-direction staggered. Shield connection trenches 105 may serve as termination trenches for alternating sections of longitudinal trenches 101 and may create a three-way (x-x-y) intersection of trenches, as depicted by arrow 12 of FIG. 3 . Under some processing conditions, the three-way intersection of the treatment grooves may be superior to the four-way intersection of the treatment grooves (arrow 11 of Fig. 2A),

圖4及圖5顯示其他實例屏蔽閘極溝槽MOSFET裝置(亦即,分別係裝置400及裝置500),其等具有閘極電極,該等閘極電極在製作至水平屏蔽連接溝槽中之閘極電極下方之屏蔽多晶矽的屏蔽接觸件周圍連續且並未由該等屏蔽接觸件中斷。在裝置400及裝置500中,如在裝置200中,在水平屏蔽連接溝槽105上方及下方於y方向上延伸之主動溝槽101(及台面102)的對應區段係在x方向上彼此對準,且在x方向上並未相對於彼此交錯。然而,屏蔽連接溝槽105中之垂直絕緣體加襯導電插塞106的數目可小於與屏蔽連接溝槽105相交之主動溝槽101(或台面102)的數目。4 and 5 show other example shielded gate trench MOSFET devices (i.e., device 400 and device 500, respectively) having gate electrodes fabricated into horizontal shield connection trenches. The shield contacts of the shield polysilicon under the gate electrodes are continuous around and not interrupted by the shield contacts. In device 400 and device 500, as in device 200, corresponding sections of active trenches 101 (and mesas 102) extending in the y-direction above and below the horizontal shield connection trenches 105 face each other in the x-direction aligned and not staggered relative to each other in the x-direction. However, the number of vertical insulator-lined conductive plugs 106 in shield connection trenches 105 may be less than the number of active trenches 101 (or mesas 102 ) intersecting shield connection trenches 105 .

在實例實施方案中,屏蔽連接溝槽105中之垂直絕緣體加襯導電插塞106的數目可等於與屏蔽連接溝槽105相交之主動溝槽101(或台面102)之數目的約一半。In an example implementation, the number of vertical insulator-lined conductive plugs 106 in shield connection trenches 105 may be equal to about half the number of active trenches 101 (or mesas 102 ) intersecting shield connection trenches 105 .

在圖4所示之一實例實施方案(裝置400)中,各絕緣體加襯導電插塞106可具有大於台面102之Wm的寬度Wo(在x方向上)(例如,Wo可係Wm的約兩倍大)。在一實例實施方案中,Wo可約等於或大於台面102的寬度(Wm)與溝槽101的寬度(Wt)之總和。進一步地,在如圖4所示之實例實施方案中,各絕緣體加襯導電插塞106在屏蔽連接溝槽105中可設置在介於上部區域10U中之一對台面102的區段與下部區域10L中之成對台面102的一對對應區段之間的空間中。各絕緣體加襯導電插塞106可具有矩形形狀,其具有x方向上的寬度Wo及y方向上的長度Lo。在實例實施方案中,如先前所提及,寬度Wo可大於台面102的寬度Wm。例如,在圖4所示之實例實施方案中,寬度Wo可約等於兩台面的寬度(2Wm)與一溝槽的寬度(Wt),亦即,Wo可大約等於2*Wm+Wt。In one example implementation (device 400) shown in FIG. 4, each insulator-lined conductive plug 106 can have a width Wo (in the x-direction) that is greater than Wm of the mesa 102 (e.g., Wo can be about two times Wm). doubled). In an example implementation, Wo may be approximately equal to or greater than the sum of the width (Wm) of the mesa 102 and the width (Wt) of the trench 101 . Further, in the example embodiment shown in FIG. 4 , each insulator-lined conductive plug 106 in the shield connection trench 105 may be disposed between a section of a pair of mesas 102 in the upper region 10U and the lower region In the space between a pair of corresponding sections of the pair of mesas 102 in 10L. Each insulator-lined conductive plug 106 may have a rectangular shape with a width Wo in the x-direction and a length Lo in the y-direction. In an example implementation, as previously mentioned, the width Wo may be greater than the width Wm of the mesas 102 . For example, in the example embodiment shown in FIG. 4, the width Wo may be approximately equal to the width of two mesas (2Wm) and the width of a trench (Wt), ie, Wo may be approximately equal to 2*Wm+Wt.

圖5顯示裝置之另一實例實施方案,其在屏蔽連接溝槽105中所具有的垂直絕緣體加襯導電插塞106的數目等於主動溝槽101的數目之約一半。在裝置500中,各絕緣體加襯導電插塞106可具有寬度Wo(在x方向上),其小於台面102的寬度Wm。進一步地,在如圖5所示之實例實施方案中,各絕緣體加襯導電插塞106在屏蔽連接溝槽105中可設置在介於上部區域10A中之交替台面102的區段與下部區域10L中之交替台面102的對應區段之間的空間中。換言之,關於第一台面102,開口絕緣體加襯導電插塞在屏蔽連接溝槽105中可設置在介於上部區域10U中之第一台面102的區段與下部區域10L中之第一台面102的對應區段之間的空間中;然而,關於第二(相鄰)台面102,無絕緣體加襯導電插塞106經設置在第二台面102之上部區段與下部區段之間。FIG. 5 shows another example implementation of a device having a number of vertical insulator-lined conductive plugs 106 equal to about half the number of active trenches 101 in shield connection trenches 105 . In device 500 , each insulator-lined conductive plug 106 may have a width Wo (in the x-direction) that is less than width Wm of mesa 102 . Further, in the example embodiment shown in FIG. 5 , each insulator-lined conductive plug 106 in the shield connection trench 105 may be disposed in a segment of alternating mesas 102 between the upper region 10A and the lower region 10L. In the space between the corresponding sections of the alternating mesas 102 . In other words, with respect to the first mesa 102, the open insulator lined conductive plug in the shield connection trench 105 may be disposed between the section of the first mesa 102 in the upper region 10U and the first mesa 102 in the lower region 10L. However, with respect to the second (adjacent) mesa 102 , an insulator-lined conductive plug 106 is disposed between the upper and lower sections of the second mesa 102 .

在圖1至圖5所示之實例中,縱向主動溝槽及台面(例如,溝槽101及台面102)縱向地(例如,沿著y軸或y方向)延伸自閘極接觸區域(閘極饋電)。縱向主動溝槽及台面可例如在兩個閘極饋電(例如,圖6至圖8之閘極金屬710-1及閘極金屬710-2)之間延伸。複數個縱向主動溝槽及台面可例如由單一水平屏蔽連接溝槽105及設置在屏蔽連接溝槽105中之絕緣體加襯導電插塞的單一線性陣列(例如,陣列106A)垂直地橫斷,該陣列係用以在裝置中製作至屏蔽多晶矽的屏蔽接觸件。In the example shown in FIGS. 1-5 , the longitudinal active trenches and mesas (eg, trench 101 and mesa 102 ) extend longitudinally (eg, along the y-axis or y-direction) from the gate contact area (gate feed). Vertical active trenches and mesas may, for example, extend between two gate feeds (eg, gate metal 710-1 and gate metal 710-2 of FIGS. 6-8). The plurality of longitudinal active trenches and mesas may, for example, be vertically traversed by a single horizontal shield connection trench 105 and a single linear array (e.g., array 106A) of insulator-lined conductive plugs disposed in shield connection trench 105, which The array is used to make shield contacts to the shield polysilicon in the device.

圖6、圖7、圖8及圖9顯示其他實例實施方案,其中兩閘極饋電(例如,圖6至圖8之閘極金屬710-1及710-2)之間的縱向主動溝槽及台面(例如溝槽101及台面102)係由多於一個水平屏蔽連接溝槽及多於一個絕緣體加襯導電插塞的線性陣列(例如,陣列106A)垂直地橫斷,該陣列可用以在裝置中製作至水平屏蔽連接溝槽中之屏蔽多晶矽的屏蔽接觸件。Figures 6, 7, 8, and 9 show other example implementations in which a vertical active trench between two gate feeds (eg, gate metals 710-1 and 710-2 of Figures 6-8) and mesas (e.g., trenches 101 and mesas 102) are vertically traversed by a linear array (e.g., array 106A) of more than one horizontal shield connection trenches and more than one insulator-lined conductive plugs, which can be used in Shield contacts are fabricated in the device to the shield polysilicon in the horizontal shield connection trenches.

圖6顯示另一實例屏蔽閘極溝槽MOSFET裝置600,其具有閘極電極,該等閘極電極在製作至閘極電極下方之屏蔽多晶矽的屏蔽接觸件周圍連續且並未由該等屏蔽接觸件中斷。在圖6所示之實例中,裝置600包括在兩閘極饋電之間以縱向方向(例如,沿著y方向)平行地延伸之第一方向類型的主動溝槽101及台面102。兩閘極饋電係由閘極金屬(例如,閘極金屬710-1及閘極金屬710-2)的兩片材或條形成,其等在主動溝槽101的端區中經連接至閘極電極接觸件(例如,接觸件702)。FIG. 6 shows another example shielded gate trench MOSFET device 600 having gate electrodes that are continuous around and not contacted by shield contacts fabricated to the shield polysilicon below the gate electrodes. The file is interrupted. In the example shown in FIG. 6 , device 600 includes active trenches 101 and mesas 102 of a first direction type extending parallel in a longitudinal direction (eg, along the y-direction) between two gate feeds. The two gate feeds are formed from two sheets or strips of gate metal (e.g., gate metal 710-1 and gate metal 710-2), which are connected to the gate in the end region of the active trench 101. Pole electrode contacts (eg, contacts 702 ).

第二方向類型的第一水平屏蔽連接溝槽105-1(側溝槽)以橫向方向(例如,沿著x方向)側向地延伸,並在y軸上之約位置Y1處與溝槽101及台面102相交。第二方向類型的第二水平屏蔽連接溝槽105-1(側溝槽)以正交於縱向方向的橫向方向(例如,沿著x方向)側向地延伸,並在y軸上之約位置Y2處與溝槽101及台面102相交。屏蔽連接溝槽105-1及105-2可將各縱向溝槽101及各台面102有效地分成三個區段(例如,其中縱向溝槽101的第一區段在屏蔽連接溝槽105-1的一側(遠離在y方向上較靠近屏蔽連接溝槽105-2的一側)上之第一區域(例如,上部區域10U)中,縱向溝槽101的第二區段在y方向上介於屏蔽連接溝槽105-1與105-2之間的第二區域中,且溝槽101的第三區段在屏蔽連接溝槽105-2的一側(遠離在y方向上較靠近屏蔽連接溝槽105-1的一側)上之第三區域(例如,下部區域10L)中)。全部三個區域中之台面102上的源極接觸區103可例如由源極金屬720接觸。The first horizontal shield connection trench 105-1 (side trench) of the second direction type extends laterally in a lateral direction (for example, along the x-direction) and is connected to the trench 101 and the trench 101 at an approximate position Y1 on the y-axis. The mesas 102 intersect. The second horizontal shield connection trench 105 - 1 (side trench) of the second direction type extends laterally in a transverse direction (for example, along the x direction) that is orthogonal to the longitudinal direction, and is approximately at a position Y2 on the y axis. intersects the trench 101 and the mesa 102 . The shield connection trenches 105-1 and 105-2 can effectively divide each longitudinal groove 101 and each mesa 102 into three sections (for example, wherein the first section of the longitudinal trench 101 is in the shield connection trench 105-1 In the first region (for example, the upper region 10U) on one side (away from the side closer to the shield connection trench 105-2 in the y direction), the second section of the longitudinal trench 101 is interposed in the y direction. In the second area between the shield connection trenches 105-1 and 105-2, and the third section of the trench 101 is on one side of the shield connection trench 105-2 (farther away from the shield connection in the y direction) One side of the trench 105 - 1 ) in the third region (eg, the lower region 10L)). The source contact regions 103 on the mesas 102 in all three regions may be contacted, for example, by source metal 720 .

在水平屏蔽連接溝槽105-1及105-2上方(例如,在上部區域10U中)、之間(例如,在中間區域10M中)、及下方(例如,在下部區域10L中)於y方向上延伸之溝槽101及台面102的區段及主動溝槽101(及台面102)的對應區段可在x方向上彼此對準(換言之,水平屏蔽連接溝槽105-1上方之溝槽101的第一區段、水平屏蔽連接溝槽105-1與105-2之間的溝槽101之第二區段、及水平屏蔽連接溝槽105-2下方之對應溝槽101的第三區段可共用共同y軸(例如,軸Yt),且在x方向上並未相對於彼此交錯)。例如,圖6顯示全部在共同y軸(亦即,Yt)上對準之水平屏蔽連接溝槽105-1上方之溝槽101的溝槽區段101-U、水平屏蔽連接溝槽105-1與105-2之間的溝槽101之溝槽區段101-M、及水平屏蔽連接溝槽105-2下方之溝槽101的溝槽區段101-L。類似地,水平屏蔽連接溝槽105-1及105-2的上方、之間、及下方之台面102的相鄰區段係全部在共同y軸(亦即,Ym)上對準。在裝置600中,如在裝置200中,在水平屏蔽連接溝槽105-1及105-2的上方(例如,溝槽區段10-U)、之間(例如,溝槽區段10-M)、及下方(例如,溝槽區段10-L)於y方向上延伸之主動溝槽101(及台面102)的對應區段係在x方向上彼此對準,且在x方向上並未相對於彼此交錯。Above (for example, in the upper region 10U), between (for example, in the middle region 10M), and below (for example, in the lower region 10L) the horizontal shield connection trenches 105-1 and 105-2 in the y direction Sections of trenches 101 and mesas 102 extending above and corresponding sections of active trenches 101 (and mesas 102 ) may be aligned with each other in the x-direction (in other words, trenches 101 above horizontal shield connection trenches 105-1 the first section of the trench 101 between the horizontal shield connection trenches 105-1 and 105-2, and the third section of the corresponding trench 101 below the horizontal shield connection trench 105-2 may share a common y-axis (eg, axis Yt) and are not staggered relative to each other in the x-direction). For example, FIG. 6 shows trench segment 101-U, horizontal shield connection trench 105-1 of trench 101 above horizontal shield connection trench 105-1 all aligned on a common y-axis (ie, Yt). The trench section 101-M of the trench 101 between the trench 105-2 and the trench section 101-L of the trench 101 below the horizontal shield connection trench 105-2. Similarly, adjacent segments of mesa 102 above, between, and below horizontal shield connection trenches 105-1 and 105-2 are all aligned on a common y-axis (ie, Ym). In device 600, as in device 200, above (eg, trench section 10-U), between (eg, trench section 10-M) horizontal shield connection trenches 105-1 and 105-2 ), and the corresponding segments of the active trench 101 (and the mesa 102 ) extending in the y-direction below (for example, trench segment 10-L) are aligned with each other in the x-direction, and are not in the x-direction staggered relative to each other.

在實例實施方案中,兩水平屏蔽連接溝槽105-1及105-2可用作用以接觸在裝置中埋入閘極多晶矽下方之屏蔽多晶矽的區域。例如,絕緣體加襯導電插塞116之陣列116A可設置在溝槽105-1中,且絕緣體加襯導電插塞116之陣列116B可設置在溝槽105-2中以製作屏蔽多晶矽接觸件。相比僅使用單一屏蔽連接溝槽之可在裝置中製作的屏蔽接觸件之數目,具有兩水平屏蔽連接溝槽105-1及105-2可增加可製作之屏蔽接觸件的數目。在實例實施方案中,源極金屬720可用以連接至形成在兩水平屏蔽連接溝槽105-1及105-2中的屏蔽接觸件。In an example implementation, two horizontal shield connection trenches 105-1 and 105-2 may be used as regions to contact the shield polysilicon buried under the gate polysilicon in the device. For example, array 116A of insulator-lined conductive plugs 116 may be disposed in trench 105-1 and array 116B of insulator-lined conductive plugs 116 may be disposed in trench 105-2 to make shielded polysilicon contacts. Having two horizontal shield connection trenches 105-1 and 105-2 increases the number of shield contacts that can be fabricated in a device compared to using only a single shield connection trench. In an example implementation, the source metal 720 may be used to connect to shield contacts formed in the two horizontal shield connection trenches 105-1 and 105-2.

在實例實施方案中,如先前於上文參照裝置200(圖2A至圖2C)所述,在裝置600中,沿著絕緣體加襯導電插塞116的一側或周圍沉積在屏蔽連接溝槽105-1及105-2中的閘極多晶矽可跨屏蔽連接溝槽105-1及105-2提供溝槽101中之閘極電極的結構及電連續性。In an example embodiment, as previously described above with reference to device 200 ( FIGS. 2A-2C ), in device 600 , the shield connection trench 105 is deposited along one side or around the insulator-lined conductive plug 116 . The gate polysilicon in -1 and 105-2 can provide structural and electrical continuity to the gate electrode in trench 101 across shield connection trenches 105-1 and 105-2.

如先前參照裝置200所述,裝置600中之埋入式屏蔽多晶矽層可由經製作為通過屏蔽連接溝槽105-1及105-2中之閘極多晶矽層108(圖2A)之垂直絕緣體加襯導電插塞116的陣列(116A及116B)接觸。各絕緣體加襯導電插塞116可以絕緣體(例如,圖2A之氧化物110)加襯以形成內部開口16。內部開口16可填以導電材料(例如,圖2A至圖2C之導電材料109)以接觸在裝置600中埋入閘極多晶矽108下方的屏蔽多晶矽。沿著且圍繞垂直接觸絕緣體加襯導電插塞116設置之閘極多晶矽108在裝置600中跨屏蔽連接溝槽105-1及105-2維持形成在主動溝槽101中之閘極電極的電連續性。As previously described with reference to device 200, the buried shield polysilicon layer in device 600 may be lined by a vertical insulator fabricated as a through-shield connection to gate polysilicon layer 108 (FIG. 2A) in trenches 105-1 and 105-2. The arrays ( 116A and 116B ) of conductive plugs 116 make contacts. Each insulator-lined conductive plug 116 may be lined with an insulator (eg, oxide 110 of FIG. 2A ) to form internal opening 16 . Internal opening 16 may be filled with a conductive material (eg, conductive material 109 of FIGS. 2A-2C ) to contact the shield polysilicon underlying buried gate polysilicon 108 in device 600 . Gate polysilicon 108 disposed along and around vertical contact insulator lined conductive plug 116 maintains electrical continuity of the gate electrode formed in active trench 101 across shield connection trenches 105-1 and 105-2 in device 600 sex.

如上文參照圖6所提及,在裝置600中,在水平屏蔽連接溝槽105-1及105-2的上方(例如,溝槽區段10-U)、之間(例如,溝槽區段10-M)、及下方(例如,溝槽區段10-L)於y方向上延伸之主動溝槽101(及台面102)的對應區段係在x方向上彼此對準,且在x方向上並未相對於彼此交錯。As mentioned above with reference to FIG. 6, in device 600, above (eg, trench section 10-U), between (eg, trench section 10-M), and corresponding segments of the active trench 101 (and mesa 102 ) extending in the y-direction below (for example, trench segment 10-L) are aligned with each other in the x-direction, and in the x-direction are not staggered relative to each other.

圖7顯示如裝置600之一實例屏蔽閘極溝槽MOSFET裝置700,其具有垂直地與主動溝槽101及台面102相交之兩屏蔽連接溝槽105-1及105-2。然而,在裝置700中,不同於裝置600,兩屏蔽連接溝槽105-1及105-2係經組態為用於主動溝槽101的區段之終止溝槽。此外,在兩水平屏蔽連接溝槽105-1及105-2之間於y方向上延伸之主動溝槽101(及台面102)的區段(例如,溝槽區段10-M)係在x方向上相對於在兩水平屏蔽連接溝槽105-1及105-2的上方及下方之溝槽區段(例如,溝槽區段10-U及10-L)交錯。在圖7中,不同溝槽區段之間的交錯距離係指示為x方向上之距離DS。換言之,中間區段縱向溝槽(例如,溝槽區段10-M中的溝槽101-M)係相對於第一區段縱向溝槽及第二區段縱向溝槽(例如,溝槽101-U及101-L)平行於第一側向溝槽及第二側向溝槽(例如,水平屏蔽連接溝槽105-1及105-2)偏移交錯距離DS。使主動溝槽區段交錯避免必須處理大型(4向)溝槽相交。7 shows an example shielded gate trench MOSFET device 700 as device 600 with two shield connection trenches 105 - 1 and 105 - 2 intersecting the active trench 101 and the mesa 102 vertically. However, in device 700 , unlike device 600 , two shield connection trenches 105 - 1 and 105 - 2 are configured as termination trenches for a segment of active trench 101 . Furthermore, the section of active trench 101 (and mesa 102 ) extending in the y direction between the two horizontal shield connection trenches 105 - 1 and 105 - 2 (for example, trench section 10 -M ) is defined at x The direction is staggered with respect to the trench segments (eg, trench segments 10 -U and 10 -L) above and below the two horizontal shield connection trenches 105 - 1 and 105 - 2 . In FIG. 7, the stagger distance between different trench segments is indicated as the distance DS in the x-direction. In other words, the middle section longitudinal groove (eg, groove 101-M in groove section 10-M) is relative to the first section longitudinal groove and the second section longitudinal groove (eg, groove 101 -U and 101 -L) parallel to the first and second lateral trenches (eg, the horizontal shield connection trenches 105 - 1 and 105 - 2 ) are offset by a stagger distance DS. Staggering active trench segments avoids having to deal with large (4-way) trench intersections.

在實例實施方案中,用以攔截及橫斷(亦即,截斷)溝槽101及台面102以建立用於製作屏蔽多晶矽接觸件之區域的水平溝槽(例如,屏蔽連接溝槽105)可包括多個長度短之不連續溝槽節段,其等各僅橫斷少量的溝槽101及台面102(例如,二至五個溝槽101)。進一步地,這些長度短的水平溝槽節段可在裝置佈局中於不同位置處橫斷少量的溝槽101。In an example embodiment, horizontal trenches (eg, shield connection trenches 105 ) to intercept and intersect (i.e., truncate) trenches 101 and mesas 102 to create regions for making shielded polysilicon contacts may include A plurality of short length discrete trench segments each intersecting only a small number of trenches 101 and mesas 102 (eg, two to five trenches 101 ). Further, these short length horizontal trench segments can intersect a small number of trenches 101 at different locations in the device layout.

圖8顯示一實例屏蔽閘極溝槽MOSFET裝置800,其中長度短的水平溝槽節段垂直地相交及橫斷少量的主動溝槽,以建立用於製作屏蔽多晶矽接觸件的側區域。FIG. 8 shows an example shielded gate trench MOSFET device 800 in which short length horizontal trench segments vertically intersect and intersect a small number of active trenches to create side regions for making shielded polysilicon contacts.

裝置800(如裝置600及700)可包括在兩閘極饋電之間於y方向上延行的主動溝槽101及台面102。兩閘極饋電係由閘極金屬(例如,閘極金屬710-1及閘極金屬710-2)的兩片材或條形成,其等在主動溝槽101的端區中經連接至閘極電極接觸件(例如,接觸件702)。Device 800 (eg, devices 600 and 700 ) may include active trenches 101 and mesas 102 running in the y-direction between two gate feeds. The two gate feeds are formed from two sheets or strips of gate metal (e.g., gate metal 710-1 and gate metal 710-2), which are connected to the gate in the end region of the active trench 101. Pole electrode contacts (eg, contacts 702 ).

第一長度短的屏蔽連接溝槽105-3在y軸上的約位置Y1處跨溝槽101-1、101-2、及101-c(及台面102-1及102-2)側向地(例如,在x方向上)延伸。第二長度短的屏蔽連接溝槽105-4在y軸上的約位置Y2處跨溝槽101-c、101-3、及101-4(及台面102-3及102-3)側向地(例如,在x方向上)延伸。The first short-length shield connection trench 105-3 is located laterally across trenches 101-1, 101-2, and 101-c (and mesas 102-1 and 102-2) at approximately position Y1 on the y-axis (for example, in the x-direction) extend. The second, short-length shield connection trench 105-4 is located laterally across trenches 101-c, 101-3, and 101-4 (and mesas 102-3 and 102-3) at approximately position Y2 on the y-axis. (for example, in the x-direction) extend.

如圖8所示,長度短的屏蔽連接溝槽105-3將各縱向溝槽101-1及101-2以及各台面102-1及102-2有效地分成兩個區段(例如,其中上部區段在y方向上處於屏蔽連接溝槽105-3上方的上部區域(例如,區域12U)中,且下部區段在y方向上處於屏蔽連接溝槽105-3下方的下部區域(例如,區域12L)中)。長度短的屏蔽連接溝槽105-4將各縱向溝槽101-3及101-4以及各台面102-3及102-4有效地分成兩個區段(例如,其中上部區段在y方向上處於屏蔽連接溝槽105-4上方的上部區域(例如,區域14U)中,且下部區段在y方向上處於屏蔽連接溝槽105-4下方的下部區域(例如,區域14L)中)。As shown in FIG. 8, the short-length shield connection trenches 105-3 effectively divide each of the longitudinal trenches 101-1 and 101-2 and each of the mesas 102-1 and 102-2 into two sections (for example, the upper The section is in the upper region (eg, region 12U) above the shield connection trench 105-3 in the y-direction, and the lower section is in the lower region (eg, region 12U) below the shield connection trench 105-3 in the y-direction. 12L). The short-length shield connection trenches 105-4 effectively divide each of the longitudinal trenches 101-3 and 101-4 and each of the mesas 102-3 and 102-4 into two sections (e.g., where the upper section is in the y direction in the upper region (eg, region 14U) above the shield connection trench 105 - 4 , and the lower section is in the lower region (eg, region 14L) below the shield connection trench 105 - 4 in the y-direction).

長度短的屏蔽連接溝槽105-3及105-4由於其等之有限的長度或面積而僅可容納有限數目之用於在裝置800中製作屏蔽多晶矽接觸件的絕緣體加襯導電插塞116。例如,各包含兩個絕緣體加襯導電插塞116之陣列116C及陣列116D可分別設置在長度短的屏蔽連接溝槽105-3及105-4中。然而,可在其中使用長度短的屏蔽連接溝槽105-3及105-4之位置的多樣性(例如,位置Y1及Y2)及隨之而來之用於製作屏蔽多晶矽接觸件之絕緣體加襯導電插塞116的位置之多樣性可得出裝置設計彈性及處理強健性。The short length shield connection trenches 105 - 3 and 105 - 4 can accommodate only a limited number of insulator lined conductive plugs 116 for making shield polysilicon contacts in device 800 due to their limited length or area. For example, array 116C and array 116D, each comprising two insulator-lined conductive plugs 116, may be disposed in short-length shield connection trenches 105-3 and 105-4, respectively. However, the diversity of locations in which short length shield connection trenches 105-3 and 105-4 can be used (e.g., locations Y1 and Y2) and the consequent insulator lining for making shield polysilicon contacts The variety in the location of the conductive plug 116 can result in device design flexibility and processing robustness.

在一實例實施方案中,MOSFET裝置包括一組縱向溝槽及縱向台面,其等從閘極饋電跨半導體基材縱向地延伸。該裝置進一步包括一第一側向溝槽,其在離該閘極饋電一第一距離處與該組縱向溝槽及縱向台面中之至少一者垂直地相交,該第一側向溝槽與所相交之該組縱向溝槽中之該至少一者流體連通;及一第二側向溝槽,其在離該閘極饋電一第二距離處於該半導體基材內與該組縱向溝槽及縱向台面中之至少一者垂直地相交,該第二側向溝槽與所相交之該組縱向溝槽中之該至少一者流體連通。In an example implementation, a MOSFET device includes a set of vertical trenches and vertical mesas extending longitudinally across a semiconductor substrate from a gate feed. The device further includes a first lateral trench perpendicularly intersecting at least one of the set of longitudinal trenches and the longitudinal mesa at a first distance from the gate feed, the first lateral trench in fluid communication with the at least one of the set of longitudinal trenches intersected; and a second lateral trench in the semiconductor substrate at a second distance from the gate feed to the set of longitudinal trenches At least one of the grooves and the longitudinal mesas perpendicularly intersect, the second lateral groove being in fluid communication with the at least one of the intersecting set of longitudinal grooves.

在該MOSFET裝置中,一屏蔽多晶矽層係設置在該組縱向溝槽及該第一及第二側向溝槽中。一多晶矽間介電層(IPD)及一閘極多晶矽層係在該組縱向溝槽及該側向溝槽中設置在該屏蔽多晶矽層上方。In the MOSFET device, a shielding polysilicon layer is disposed in the set of vertical trenches and the first and second lateral trenches. An interpoly dielectric (IPD) and a gate polysilicon layer are disposed over the shielding polysilicon layer in the set of vertical trenches and the lateral trenches.

進一步地,在該MOSFET裝置中,至該屏蔽多晶矽層之一第一電接觸件係由通過經設置在該第一側向溝槽中之該多晶矽間介電層及該閘極多晶矽層之一第一絕緣體加襯導電插塞製成,且至該屏蔽多晶矽層之第二電接觸件係由通過經設置在該第二側向溝槽中之該多晶矽間介電層及該閘極多晶矽層之一第二絕緣體加襯導電插塞製成。Further, in the MOSFET device, a first electrical contact to the shielding polysilicon layer is made through one of the interpolysilicon dielectric layer and the gate polysilicon layer disposed in the first lateral trench A first insulator lined conductive plug is made and a second electrical contact to the shield polysilicon layer is made through the interpoly dielectric layer and the gate polysilicon layer disposed in the second lateral trench A second insulator lined with a conductive plug is made.

在該MOSFET裝置中,經設置在與該第一側向溝槽相交之該組縱向溝槽中之至少一者中的該閘極多晶矽形成未由至該屏蔽多晶矽層之該電接觸件中斷之該裝置的一連續閘極電極,該電接觸件由通過經設置在該第一側向溝槽中之該多晶矽間介電層及該閘極多晶矽層之該第一絕緣體加襯導電插塞製成。經設置在與該第二側向溝槽相交之該組縱向溝槽中之至少一者中的該閘極多晶矽亦形成未由至該屏蔽多晶矽層之該電接觸件中斷之該裝置的一連續閘極電極,該電接觸件由通過經設置在該第二側向溝槽中之該多晶矽間介電層及該閘極多晶矽層之該第一絕緣體加襯導電插塞製成。In the MOSFET device, the gate polysilicon disposed in at least one of the set of vertical trenches intersecting the first lateral trench forms an electrical contact not interrupted by the shielding polysilicon layer A continuous gate electrode of the device, the electrical contact being made by the first insulator lined conductive plug through the interpoly dielectric layer and the gate polysilicon layer disposed in the first lateral trench become. The gate polysilicon disposed in at least one of the set of longitudinal trenches intersecting the second lateral trench also forms a continuation of the device uninterrupted by the electrical contact to the shielding polysilicon layer A gate electrode, the electrical contact being made by the first insulator-lined conductive plug through the interpolysilicon dielectric layer and the gate polysilicon layer disposed in the second lateral trench.

在該MOSFET裝置之一些實例實施方案中,在該第一距離處與該第一側向溝槽相交之該組縱向溝槽中之該至少一者與在該第二距離處與該第二側向溝槽相交之該至少一縱向溝槽係該組縱向溝槽之一不同者。In some example implementations of the MOSFET device, the at least one of the set of longitudinal trenches that intersects the first lateral trench at the first distance is the same as the second side trench at the second distance. The at least one longitudinal groove that intersects the grooves is a different one of the set of longitudinal grooves.

在該MOSFET裝置之一些實例實施方案中,在該第一距離處與該第一側向溝槽相交之該組縱向溝槽中之該至少一者與在該第二距離處與該第二側向溝槽相交之該組縱向溝槽中的一者係相同的。In some example implementations of the MOSFET device, the at least one of the set of longitudinal trenches that intersects the first lateral trench at the first distance is the same as the second side trench at the second distance. The ones of the set of longitudinal grooves intersecting toward the grooves are identical.

在該MOSFET裝置之一些實例實施方案中,在該第一距離處與該第一側向溝槽相交及在該第二距離處與該第二側向溝槽相交之該組縱向溝槽中之該至少一者係分成該第一側向區段之一側上的一第一區段縱向溝槽、該第一側向溝槽與該第二側向溝槽之間的一中間區段側向溝槽、及該第二側向溝槽之一側上的一第三區段縱向溝槽。在該裝置的一些實例實施方案中,該中間區段縱向溝槽係相對於第一區段縱向溝槽及第二區段縱向溝槽平行於該第一側向溝槽及該第二側向溝槽偏移一交錯距離。In some example implementations of the MOSFET device, one of the set of longitudinal trenches that intersects the first lateral trench at the first distance and intersects the second lateral trench at the second distance The at least one is divided into a first section longitudinal groove on one side of the first lateral section, an intermediate section side between the first lateral groove and the second lateral groove towards the groove, and a third section longitudinal groove on one side of the second lateral groove. In some example embodiments of the device, the intermediate section longitudinal groove is parallel to the first lateral groove and the second lateral groove relative to the first section longitudinal groove and the second section longitudinal groove. The grooves are offset by a stagger distance.

圖9顯示一實例方法900,其用於降低屏蔽閘極溝槽MOSFET裝置中的屏蔽電極電阻。FIG. 9 shows an example method 900 for reducing shield electrode resistance in a shielded gate trench MOSFET device.

方法900包括在一半導體基材中界定一第一類型的複數個溝槽(910)。該第一類型之該複數個溝槽以一縱向方向延伸(例如,延伸自一閘極饋電區)。方法900進一步包括界定一第二類型的一溝槽,其以一側向方向延伸並與該第一類型的該複數個溝槽相交(920),該第二類型的該溝槽與所相交之該第一類型的該複數個溝槽之各者流體連通。方法900進一步包括在該第一類型之該複數個溝槽及該第二類型之該溝槽中設置一屏蔽多晶矽層(930);在該第一類型的該複數個溝槽及該第二類型的該溝槽中將一多晶矽間介電層(IPL)及一閘極多晶矽層設置在該屏蔽多晶矽層上方(940);及形成至該屏蔽多晶矽層之一電接觸件,其通過經設置在該第二類型之該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口(950)。Method 900 includes defining a plurality of trenches of a first type in a semiconductor substrate (910). The plurality of trenches of the first type extend in a longitudinal direction (eg, extend from a gate feed region). Method 900 further includes defining a trench of a second type extending in a lateral direction and intersecting the plurality of trenches of the first type (920), the trench of the second type intersecting Each of the plurality of grooves of the first type are in fluid communication. Method 900 further includes disposing (930) a shielding polysilicon layer in the plurality of trenches of the first type and the trenches of the second type; disposing an interpolysilicon dielectric layer (IPL) and a gate polysilicon layer over the shielding polysilicon layer in the trench (940); and forming an electrical contact to the shielding polysilicon layer through An opening in the interpoly dielectric layer and the gate polysilicon layer in the trench of the second type (950).

在方法900中,通過該開口形成至該屏蔽多晶矽層之該電接觸件包括以一絕緣體(例如,一氧化物)加襯該開口以及在該開口中設置一金屬(例如,鎢)、一金屬合金、一金屬矽化物、或導電多晶矽中之一者。In method 900, forming the electrical contact to the shielding polysilicon layer through the opening includes lining the opening with an insulator (eg, an oxide) and disposing a metal (eg, tungsten), a metal alloy, a metal silicide, or conductive polysilicon.

一種方法包括:在一半導體基材中界定一第一類型的複數個溝槽,該第一類型之該複數個溝槽以一縱向方向延伸;界定一第二類型之一溝槽,其以一側向方向延伸並與該第一類型的該複數個溝槽相交,該第二類型的該溝槽與所相交之該第一類型的該複數個溝槽之各者流體連通;在該第一類型的該複數個溝槽及該第二類型的該溝槽中設置一屏蔽多晶矽層;在該第一類型的複數個溝槽及該第二類型的該溝槽中將一多晶矽間介電層(IPL)及一閘極多晶矽層設置在該屏蔽多晶矽層上方;及通過經設置在該第二類型的該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口形成至該屏蔽多晶矽層的一電接觸件。A method includes: defining a plurality of trenches of a first type in a semiconductor substrate, the plurality of trenches of the first type extending in a longitudinal direction; defining a trench of a second type with a extending in a lateral direction and intersecting the plurality of grooves of the first type, the grooves of the second type being in fluid communication with each of the intersecting first type of the plurality of grooves; A shielding polysilicon layer is disposed in the plurality of trenches of the first type and the trenches of the second type; an interpolysilicon dielectric layer is disposed in the plurality of trenches of the first type and the trenches of the second type (IPL) and a gate polysilicon layer disposed over the shield polysilicon layer; and formed through an opening in the interpoly dielectric layer and the gate polysilicon layer disposed in the trench of the second type to An electrical contact of the shielding polysilicon layer.

在前述方法中,通過該開口形成至該屏蔽多晶矽層之該電接觸件包括以一絕緣體加襯該開口。In the foregoing method, forming the electrical contact to the shield polysilicon layer through the opening includes lining the opening with an insulator.

在前述方法中,通過該開口形成至該屏蔽多晶矽層之該電接觸件包括在該開口中設置一金屬、一金屬合金、一金屬矽化物、或導電多晶矽中之一者。In the foregoing method, forming the electrical contact to the shielding polysilicon layer through the opening includes disposing one of a metal, a metal alloy, a metal silicide, or conductive polysilicon in the opening.

在前述方法中,通過該開口形成至該屏蔽多晶矽層之該電接觸件包括在該開口中設置鎢。In the foregoing method, forming the electrical contact to the shield polysilicon layer through the opening includes disposing tungsten in the opening.

本文所揭示之特定結構及功能細節僅代表描述實例實施例之目的。然而,實例實施例可以許多替代形式體現,且不應解釋為受限於本文所闡述的實施例。Specific structural and functional details disclosed herein are merely representative for purposes of describing example embodiments. Example embodiments may, however, be embodied in many alternate forms and should not be construed as limited to the embodiments set forth herein.

將理解,屏蔽連接溝槽中之電接觸件的特定數目及幾何尺寸和分佈並未受限於本文之圖式中所示者。It will be understood that the specific number and geometric size and distribution of electrical contacts in the shield connection trenches are not limited to what is shown in the drawings herein.

例如,本文圖式中所繪示之代表性實施例可包括屏蔽連接溝槽中之電接觸件(例如,藉由絕緣體加襯導電插塞116)的特定數目及幾何尺寸和對準。例如,圖式中所繪示之代表性實施例顯示針對每一台面或針對每兩台面在屏蔽連接溝槽中的一個電接觸件、所具有的寬度堪比一個台面的寬度或兩個台面的寬度之電接觸件、及通常在幾何上與台面對準的電接觸件等。本揭露之範疇內的其他實施例不需受限於本文之圖式中所示的代表性實施例。例如,其他實施例可包括與台面間溝槽對準、或部分對準台面及台面間溝槽、或隨機定位在屏蔽連接溝槽中而無關於與台面或台面間溝槽對準的電接觸件。例如,其他實施例可包括具有任何寬度的電接觸件,該寬度不需是台面寬度(或台面間溝槽寬度)的整數倍數或整數分數。類似地,例如,其他實施例在屏蔽連接溝槽中可包括的接觸件數目並非台面(或台面間溝槽)之數目的整數倍數或整數分數。For example, representative embodiments depicted in the figures herein may include a specific number and geometry and alignment of electrical contacts (eg, via insulator-lined conductive plugs 116 ) in shield connection trenches. For example, the representative embodiments depicted in the drawings show one electrical contact in the shield connection trench for each mesa, or for every two mesas, having a width comparable to the width of one mesa or the width of two mesas. Width electrical contacts, and electrical contacts that are usually geometrically aligned with the mesa, etc. Other embodiments within the scope of the present disclosure are not necessarily limited to the representative embodiments shown in the drawings herein. For example, other embodiments may include electrical contacts aligned with the inter-mesa trenches, or partially aligned with the mesa and the inter-mesa trenches, or randomly positioned in the shield connection trenches regardless of alignment with the mesas or the inter-mesa trenches. pieces. For example, other embodiments may include electrical contacts having any width that need not be an integer multiple or integer fraction of the mesa width (or inter-mesa trench width). Similarly, for example, other embodiments may include a number of contacts in a shield connection trench that is not an integer multiple or an integer fraction of the number of mesas (or trenches between mesas).

一些實施方案可使用各種半導體處理及/或封裝技術來實作。一些實施方案可使用與半導體基材相關聯的各種類型之半導體處理技術來實施,包括但不限於例如矽(Si)、碳化矽(SiC)、砷化鎵(GaAs)、氮化鎵(GaN)、及/或等等。Some implementations may be implemented using various semiconductor processing and/or packaging techniques. Some embodiments may be implemented using various types of semiconductor processing technologies associated with semiconductor substrates, including but not limited to, for example, silicon (Si), silicon carbide (SiC), gallium arsenide (GaAs), gallium nitride (GaN) , and/or etc.

本文中使用之術語僅係為了描述具體實施方案之目的,並且不意欲限制實施方案。如本文中所使用,除非上下文另有明確指示,單數形式「一(a, an)」及「該(the)」亦意欲包括複數形式。將進一步理解,當用語「包含(comprise/comprising)」及/或「包括(include/including)」使用在本說明書中時,指明所述特徵、步驟、操作、元件、及/或組件的存在,但不排除一或多個其他特徵、步驟、操作、元件、組件、及/或其群組的存在或加入。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the embodiments. As used herein, the singular forms "a, an" and "the" are intended to include the plural forms unless the context clearly dictates otherwise. It will be further understood that when the terms "comprise/comprising" and/or "include/including" are used in this specification, it indicates the existence of said features, steps, operations, elements, and/or components, But it does not exclude the existence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof.

也將瞭解當元件(諸如,層、區域、或基材)稱為在另一元件上、連接至另一元件、電連接至另一元件、耦接或電耦接至另一元件時,其可直接在另一元件上、連接或耦接至另一元件、或可存在一或多個中間元件。相反地,當元件被稱為直接在另一元件或層上、直接連接至或直接耦接至另一元件或層時,則無中間元件或層存在。雖然用語直接在…上(directly on)、直接連接至(directly connected to)、或直接耦接至(directly coupled to)可能不在實施方式各處使用,但可如此稱呼顯示為直接在…上、直接連接至、或直接耦接至的元件。本申請案之申請專利範圍可經修改成敘述在本說明書中描述或圖式中所展示之例示性關係。It will also be understood that when an element (such as a layer, region, or substrate) is referred to as being on, connected to, electrically connected to, coupled to, or electrically coupled to another element, its It can be directly on, connected or coupled to another element, or one or more intervening elements may be present. In contrast, when an element is referred to as being directly on, directly connected to or directly coupled to another element or layer, there are no intervening elements or layers present. Although the terms directly on (directly on), directly connected to (directly connected to), or directly coupled to (directly coupled to) may not be used throughout the embodiments, they may be displayed as directly on, directly A component that is connected to, or directly coupled to. The claims of this application may be amended to recite the illustrative relationships described in this specification or shown in the drawings.

當用於本說明書中時,單數形式可包括複數形式,除非在內文中明確指示特定情況。除了圖式中所描繪之定向之外,空間相對用語(例如,之上(over)、上方(above)、上部(upper)、下(under)、底下(beneath)、下方(below)、下部(lower)等)旨在涵蓋裝置在使用中或操作中的不同定向。在一些實施方案中,相對用語上方(above)及下方(below)分別地包括垂直上方及垂直下方。在一些實施方案中,用語相鄰(adjacent)可包括側向相鄰於或水平相鄰於。When used in this specification, a singular form may include a plural form unless a specific case is clearly indicated in the context. In addition to the orientation depicted in the drawings, spatially relative terms (e.g., over, above, upper, under, beneath, below, below ( lower), etc.) are intended to cover different orientations of the device in use or in operation. In some embodiments, the relative terms above and below include vertically above and below, respectively. In some embodiments, the term adjacent can include laterally adjacent or horizontally adjacent.

本發明概念之實例實施方案在本文中係參照截面繪圖描述,該等截面繪圖係實例實施方案之理想化實施方案(及中間結構)的示意繪圖。如此,可預期從繪圖的形狀變化作為例如製造技術及/或公差的結果。因此,本發明概念之實例性實施方案不應解讀為受限於本文所繪示之區域的特定形狀,而是包括例如由於製造的形狀偏差。據此,圖中所繪示之區域在本質上係示意的,且其等之形狀不意欲繪示一裝置之一區域的實際形狀,且不意欲限制實例實施方案之範圍。Example implementations of inventive concepts are described herein with reference to cross-sectional drawings that are schematic illustrations of idealized implementations (and intermediate structures) of example implementations. As such, variations in shape from the drawings may be expected as a result, for example, of manufacturing techniques and/or tolerances. Thus, example embodiments of the inventive concept should not be construed as limited to the particular shapes of regions illustrated herein but are to include deviations in shapes that result, for example, from manufacturing. Accordingly, the regions depicted in the figures are schematic in nature and their shapes are not intended to illustrate the actual shape of a region of a device and are not intended to limit the scope of example implementations.

將理解,雖然用語「第一(first)」、「第二(second)」等可在本文中用以描述各種元件,這些元件不應受限於這些用語。此等用語僅用以將一元件與另一者區分開。因此,「第一」元件可稱為「第二」元件而不偏離本實施方案之教示。It will be understood that although the terms "first", "second", etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. Thus, a "first" element could be termed a "second" element without departing from the teachings of the present embodiments.

除非另有定義,本文使用之所有用語(包括技術及科學用語)具有由本發明概念所屬的技術領域中具有通常知識者所通常瞭解的相同意義。應進一步理解,用語(諸如在通常使用的字典中所定義者)應解讀為具有與其等在相關技術及/或本說明書之上下文中意義一致的意義,且將不在理想化或過度正式的意義上解讀,除非在本文中明示地如此定義。Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the technical field to which the inventive concept belongs. It should be further understood that terms (such as those defined in commonly used dictionaries) should be interpreted to have a meaning consistent with their meaning in the context of the relevant art and/or this specification, and will not be in an idealized or overly formal sense read, unless expressly so defined herein.

雖然所描述之實施方案的某些特徵已如本文所描述而說明,但所屬技術領域中具有通常知識者現將想到許多修改、替換、改變及均等物。因此,應當理解,隨附申請專利範圍旨在涵蓋落於實施方案範圍內的所有此類修改及改變。應當理解,其等僅以實例(非限制)方式呈現,並且可進行各種形式及細節改變。本文所描述之設備及/或方法之任何部分可以任何組合進行組合,除了互斥組合之外。本文所描述之實施方案可包括所描述之不同實施方案之功能、組件及/或特徵的各種組合及/或子組合。While certain features of the described implementations have been illustrated as described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the scope of the embodiments. It should be understood that these are presented by way of example only (not limitation), and that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The implementations described herein can include various combinations and/or subcombinations of the functions, components, and/or features of the different implementations described.

10L:下部區域 10M:中間區域 10U:上部區域 11:箭頭 12:箭頭 12L:區域 12U:區域 14L:區域 14U:區域 16:內部開口 100:裝置遮罩佈局 101:溝槽 101-1:溝槽 101-2:溝槽 101-3:溝槽 101-4:溝槽 101-c:溝槽 101-L:溝槽區段 101-M:溝槽區段 101-U:溝槽區段 102:台面 102-1:台面 102-2:台面 102-3:台面 102-4:台面 103:源極接觸區 104:區段 105:屏蔽連接溝槽 105-1:溝槽 105-2:溝槽 105-3:溝槽 105-4:溝槽 106:開口 106A:陣列 107:閘極氧化物 108:閘極多晶矽層 109:導電材料 110:氧化物 111:埋入式屏蔽多晶矽層 112:多晶矽間介電(IPD)層 113:氧化物層 116:絕緣體加襯導電插塞 116A:陣列 116B:陣列 116C:陣列 116D:陣列 200:屏蔽閘極溝槽MOSFET裝置 300:屏蔽閘極溝槽MOSFET裝置 400:屏蔽閘極溝槽MOSFET裝置 500:屏蔽閘極溝槽MOSFET裝置 600:屏蔽閘極溝槽MOSFET裝置 700:屏蔽閘極溝槽MOSFET裝置 702:接觸件 710-1:閘極金屬 710-2:閘極金屬 720:源極金屬 800:屏蔽閘極溝槽MOSFET裝置 900:方法 910:步驟 920:步驟 930:步驟 940:步驟 950:步驟 10L: Lower area 10M: middle area 10U: Upper area 11: Arrow 12: Arrow 12L: area 12U: area 14L: area 14U: area 16: Internal opening 100:Device Mask Layout 101: Groove 101-1: groove 101-2: groove 101-3: Groove 101-4: Groove 101-c: Trench 101-L: Groove section 101-M: Trench Section 101-U: Trench Section 102: Mesa 102-1: Mesa 102-2: Mesa 102-3: Mesa 102-4: Mesa 103: Source contact area 104: section 105: Shield connection groove 105-1: groove 105-2: groove 105-3: groove 105-4: groove 106: opening 106A: array 107:Gate oxide 108: Gate polysilicon layer 109: Conductive material 110: oxide 111: Buried shielding polysilicon layer 112: Inter-polysilicon dielectric (IPD) layer 113: oxide layer 116: Insulator lined with conductive plug 116A: array 116B: array 116C: array 116D: array 200: Shielded Gate Trench MOSFET Device 300: Shielded Gate Trench MOSFET Devices 400: Shielded Gate Trench MOSFET Devices 500: Shielded Gate Trench MOSFET Devices 600: Shielded Gate Trench MOSFET Devices 700: Shielded Gate Trench MOSFET Devices 702: contact piece 710-1: Gate metal 710-2: Gate metal 720: source metal 800: Shielded Gate Trench MOSFET Devices 900: method 910: step 920: step 930: step 940: step 950: step

[圖1]繪示一實例裝置遮罩佈局的一部分。 [圖2A]繪示一實例屏蔽閘極溝槽MOSFET裝置的一部分。 [圖2B]繪示圖2A之裝置的一部分的截面圖。 [圖2C]繪示圖2A之裝置的一部分的另一截面圖。 [圖3]繪示另一實例屏蔽閘極溝槽MOSFET裝置。 [圖4]繪示又另一實例屏蔽閘極溝槽MOSFET裝置。 [圖5]繪示一進一步的實例屏蔽閘極溝槽MOSFET裝置。 [圖6]繪示再另一實例屏蔽閘極溝槽MOSFET裝置。 [圖7]繪示一額外的實例屏蔽閘極溝槽MOSFET裝置。 [圖8]繪示又另一額外的實例屏蔽閘極溝槽MOSFET裝置。 [圖9]繪示一實例方法。 [FIG. 1] depicts a portion of an example device mask layout. [FIG. 2A] depicts a portion of an example shielded gate trench MOSFET device. [ FIG. 2B ] is a cross-sectional view of a part of the device shown in FIG. 2A . [FIG. 2C] Another cross-sectional view showing a part of the device of FIG. 2A. [FIG. 3] shows another example shielded gate trench MOSFET device. [FIG. 4] shows yet another example shielded gate trench MOSFET device. [FIG. 5] shows a further example shielded gate trench MOSFET device. [FIG. 6] shows yet another example shielded gate trench MOSFET device. [FIG. 7] shows an additional example shielded gate trench MOSFET device. [FIG. 8] illustrates yet another additional example shielded gate trench MOSFET device. [Fig. 9] shows an example method.

10L:下部區域 10L: Lower area

10M:中間區域 10M: middle area

10U:上部區域 10U: Upper area

16:內部開口 16: Internal opening

101:溝槽 101: Groove

101-L:溝槽區段 101-L: Groove section

101-M:溝槽區段 101-M: Trench Section

101-U:溝槽區段 101-U: Trench Section

102:台面 102: Mesa

103:源極接觸區 103: Source contact area

105-1:溝槽 105-1: groove

105-2:溝槽 105-2: groove

106:開口 106: opening

108:閘極多晶矽層 108: Gate polysilicon layer

116A:陣列 116A: array

116B:陣列 116B: array

600:屏蔽閘極溝槽MOSFET裝置 600: Shielded Gate Trench MOSFET Devices

702:接觸件 702: contact piece

710-1:閘極金屬 710-1: Gate metal

710-2:閘極金屬 710-2: Gate metal

720:源極金屬 720: source metal

Claims (11)

一種裝置,其包含: 一半導體基材中之一第一方向類型的複數個溝槽,該第一方向類型之該複數個溝槽以一縱向方向延伸; 一第二方向類型之一溝槽,其以一橫向方向延伸並與該第一方向類型的該複數個溝槽相交,該第二方向類型的該溝槽與所相交之該第一方向類型的該複數個溝槽之各者流體連通,該縱向方向正交於該橫向方向; 一屏蔽多晶矽層,其經設置在該第一方向類型的該複數個溝槽及該第二方向類型的該溝槽中; 一多晶矽間介電層(IPL)及一閘極多晶矽層,其等在該第一方向類型的該複數個溝槽及該第二方向類型的該溝槽中設置在該屏蔽多晶矽層上方;及 至該屏蔽多晶矽層的一電接觸件,其經設置在經設置於該第二方向類型的該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口內。 A device comprising: a plurality of trenches of a first directional type in a semiconductor substrate, the plurality of trenches of the first directional type extending in a longitudinal direction; a groove of a second directional type extending in a lateral direction and intersecting the plurality of grooves of the first directional type, the grooves of the second directional type intersecting the intersected grooves of the first directional type each of the plurality of grooves is in fluid communication, the longitudinal direction being normal to the transverse direction; a shielding polysilicon layer disposed in the plurality of trenches of the first orientation type and the trenches of the second orientation type; an interpolysilicon dielectric layer (IPL) and a gate polysilicon layer disposed over the shield polysilicon layer in the plurality of trenches of the first orientation type and the trenches of the second orientation type; and An electrical contact to the shield polysilicon layer is disposed within an opening in the interpoly dielectric layer and the gate polysilicon layer disposed in the trench of the second orientation type. 如請求項1之裝置,其中經設置在該多晶矽間介電層及該閘極多晶矽層中的一開口內之至該屏蔽多晶矽層的該電接觸件係一絕緣體加襯導電插塞,該絕緣體加襯導電插塞係一氧化物加襯導電插塞。The device of claim 1, wherein the electrical contact to the shielding polysilicon layer is an insulator lined conductive plug disposed in an opening in the interpolysilicon dielectric layer and the gate polysilicon layer, the insulator The lined conductive plug is an oxide lined conductive plug. 如請求項1之裝置,其中經設置在該第一方向類型之該複數個溝槽中的該閘極多晶矽層形成該裝置之一連續閘極電極,該連續閘極電極未由經設置在經設置於該第二方向類型的該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的該開口內之至該屏蔽多晶矽層的該電接觸件中斷。The device according to claim 1, wherein a continuous gate electrode of the device is formed through the gate polysilicon layer disposed in the plurality of trenches of the first direction type, and the continuous gate electrode is not formed by being disposed in the plurality of trenches The electrical contact to the shield polysilicon layer is interrupted within the opening in the interpoly dielectric layer and the gate polysilicon layer disposed in the trench of the second orientation type. 一種裝置,其包含: 一第一方向類型之複數個縱向溝槽及縱向台面,其等跨一半導體基材以一縱向方向平行地延伸; 一第二方向類型之一側向溝槽,其以正交於該縱向方向之一橫向方向延伸並與該第一方向類型之該複數個縱向溝槽及縱向台面垂直地相交,該側向溝槽與該第一方向類型的該複數個縱向溝槽流體連通,該側向溝槽將該複數個縱向溝槽及縱向台面之各者分成該側向溝槽之一第一側上的一第一區段縱向溝槽及一第一區段台面以及相對於該側向溝槽之該第一側之一第二側上的一第二區段縱向溝槽及一第二區段縱向台面,該側向溝槽與該等第一區段縱向溝槽及第二區段縱向溝槽之各者流體連通; 一屏蔽多晶矽層,其經設置在該複數個縱向溝槽及該側向溝槽中; 一多晶矽間介電層(IPL)及一閘極多晶矽層,其等在該複數個縱向溝槽及該側向溝槽中經設置在該屏蔽多晶矽層上方;及 至該屏蔽多晶矽層的一電接觸件,其係由至少一絕緣體加襯導電插塞製成,該插塞延伸通過經設置在該側向溝槽中的該多晶矽間介電層及該閘極多晶矽層。 A device comprising: A plurality of longitudinal trenches and longitudinal mesas of a first directional type extending parallel in a longitudinal direction across a semiconductor substrate; A lateral groove of a second direction type extending in a transverse direction perpendicular to the longitudinal direction and perpendicularly intersecting the plurality of longitudinal grooves and longitudinal mesas of the first direction type, the lateral groove The groove is in fluid communication with the plurality of longitudinal grooves of the first direction type, the lateral groove dividing each of the plurality of longitudinal grooves and the longitudinal mesas into a second groove on a first side of the lateral groove. a segmental longitudinal groove and a first segmental mesa and a second segmental longitudinal groove and a second segmental longitudinal mesa on a second side opposite the first side of the lateral groove, the lateral groove is in fluid communication with each of the first and second section longitudinal grooves; a shielding polysilicon layer disposed in the plurality of longitudinal trenches and the lateral trenches; an interpolysilicon dielectric layer (IPL) and a gate polysilicon layer disposed over the shield polysilicon layer in the plurality of vertical trenches and the lateral trenches; and an electrical contact to the shield polysilicon layer made of at least one insulator lined conductive plug extending through the interpoly dielectric layer and the gate disposed in the lateral trench polysilicon layer. 如請求項4之裝置,其中該至少一絕緣體加襯導電插塞、一第一區段縱向台面、及一第二區段縱向台面係沿著垂直於該側向溝槽之一共同縱軸對準。The device of claim 4, wherein the at least one insulator-lined conductive plug, a first segment longitudinal mesa, and a second segment longitudinal mesa are aligned along a common longitudinal axis perpendicular to the lateral trench allow. 如請求項4之裝置,其中該複數個縱向溝槽及縱向台面之各者具有一溝槽寬度及一台面寬度,且其中該至少一絕緣體加襯導電插塞具有一寬度,其係:相同或小於該台面寬度或大於該台面寬度。The device of claim 4, wherein each of the plurality of longitudinal trenches and longitudinal mesas has a trench width and a mesa width, and wherein the at least one insulator-lined conductive plug has a width that is: the same or Less than the mesa width or greater than the mesa width. 如請求項4之裝置,其中該至少一絕緣體加襯導電插塞包括經設置在該側向溝槽中的數個絕緣體加襯導電插塞,該等絕緣體加襯導電插塞的數目係該複數個縱向溝槽中之縱向溝槽的約相同數目或約一半數目。The device of claim 4, wherein the at least one insulator-lined conductive plug includes a plurality of insulator-lined conductive plugs disposed in the lateral trench, and the number of the insulator-lined conductive plugs is the plurality About the same number or about half the number of longitudinal grooves in the longitudinal grooves. 如請求項4之裝置,其中在經設置於該側向溝槽中之該多晶矽間介電質及該閘極多晶矽層中之該至少一絕緣體加襯導電插塞係設置在一第一區段台面與一第二區段台面之間的一空間中。The device of claim 4, wherein the at least one insulator-lined conductive plug in the interpoly dielectric and the gate polysilicon layer disposed in the lateral trench is disposed in a first section In a space between the table top and the table top of a second section. 如請求項4之裝置,其中經設置在該複數個縱向溝槽及該側向溝槽中之該閘極多晶矽層形成該裝置之一連續閘極電極,該連續閘極電極未由通過經設置在該側向溝槽中之該多晶矽間介電層及該閘極多晶矽層之該至少一絕緣體加襯導電插塞製成之至該屏蔽多晶矽層的該電接觸件中斷。The device according to claim 4, wherein a continuous gate electrode of the device is formed through the gate polysilicon layer disposed in the plurality of vertical trenches and the lateral trenches, and the continuous gate electrode is not provided by passing through The electrical contact to the shield polysilicon layer is interrupted by the at least one insulator-lined conductive plug in the interpolysilicon dielectric layer and the gate polysilicon layer in the lateral trench. 一種方法,其包含: 在一半導體基材中界定一第一類型的複數個溝槽,該第一類型之該複數個溝槽以一縱向方向延伸; 界定一第二類型之一溝槽,其以一側向方向延伸並與該第一類型的該複數個溝槽相交,該第二類型的該溝槽與所相交之該第一類型的該複數個溝槽之各者流體連通; 在該第一類型的該複數個溝槽及該第二類型的該溝槽中設置一屏蔽多晶矽層; 在該第一類型的該複數個溝槽及該第二類型的該溝槽中將一多晶矽間介電層(IPD)及一閘極多晶矽層設置在該屏蔽多晶矽層上方;及 通過經設置在該第二類型的該溝槽中之該多晶矽間介電層及該閘極多晶矽層中的一開口形成至該屏蔽多晶矽層的一電接觸件。 A method comprising: defining a plurality of trenches of a first type in a semiconductor substrate, the plurality of trenches of the first type extending in a longitudinal direction; defining a groove of a second type extending in a lateral direction and intersecting the plurality of grooves of the first type, the grooves of the second type intersecting the plurality of grooves of the first type Each of the grooves is in fluid communication; disposing a shielding polysilicon layer in the plurality of trenches of the first type and the trenches of the second type; disposing an interpolysilicon dielectric (IPD) and a gate polysilicon layer over the shield polysilicon layer in the plurality of trenches of the first type and the trenches of the second type; and An electrical contact to the shield polysilicon layer is formed through an opening in the interpolysilicon dielectric layer and the gate polysilicon layer disposed in the trench of the second type. 如請求項10之方法,其中通過該開口形成至該屏蔽多晶矽層之該電接觸件包括以一絕緣體加襯該開口。The method of claim 10, wherein forming the electrical contact to the shielding polysilicon layer through the opening includes lining the opening with an insulator.
TW111111248A 2021-03-26 2022-03-25 Shield contact layout for power mosfets TW202249294A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163166242P 2021-03-26 2021-03-26
US63/166,242 2021-03-26
US17/655,579 US20220310802A1 (en) 2021-03-26 2022-03-21 Shield contact layout for power mosfets
US17/655,579 2022-03-21

Publications (1)

Publication Number Publication Date
TW202249294A true TW202249294A (en) 2022-12-16

Family

ID=81326032

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111111248A TW202249294A (en) 2021-03-26 2022-03-25 Shield contact layout for power mosfets

Country Status (5)

Country Link
EP (1) EP4295408A1 (en)
JP (1) JP2024511470A (en)
KR (1) KR20230159452A (en)
TW (1) TW202249294A (en)
WO (1) WO2022204691A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8187939B2 (en) * 2009-09-23 2012-05-29 Alpha & Omega Semiconductor Incorporated Direct contact in trench with three-mask shield gate process
US8431457B2 (en) * 2010-03-11 2013-04-30 Alpha And Omega Semiconductor Incorporated Method for fabricating a shielded gate trench MOS with improved source pickup layout
US9570605B1 (en) * 2016-05-09 2017-02-14 Nxp B.V. Semiconductor device having a plurality of source lines being laid in both X and Y directions
CN109065454A (en) * 2018-07-25 2018-12-21 七色堇电子科技(上海)有限公司 A kind of mos transistor switch, preparation method and the electronic device comprising it

Also Published As

Publication number Publication date
KR20230159452A (en) 2023-11-21
EP4295408A1 (en) 2023-12-27
WO2022204691A1 (en) 2022-09-29
JP2024511470A (en) 2024-03-13

Similar Documents

Publication Publication Date Title
EP1745517B1 (en) Insulated gate semiconductor device
JP5578183B2 (en) Semiconductor device
US7936013B2 (en) Charge balance techniques for power devices
US8580644B2 (en) Multi-level lateral floating coupled capacitor transistor structures
US10453931B2 (en) Semiconductor device having termination trench
KR20010108029A (en) Field effect transistor arrangement with a trench gate electrode and an additional highly doped layer in the body region
EP3686929B1 (en) Semiconductor die
US20220310802A1 (en) Shield contact layout for power mosfets
EP0961325B1 (en) High integration density MOS technology power device
TW202249294A (en) Shield contact layout for power mosfets
CN117099208A (en) Shield contact layout for power MOSFET
KR20230009248A (en) Power semiconductor device and method of fabricating the same
EP3739636B1 (en) Semiconductor device
EP4160692A1 (en) Transistor device
CN117352554B (en) Semiconductor power device with gate trench
EP4131419A1 (en) Transistor device
TWI714683B (en) Surface-optimised transistor with superlattice structures
KR20240059627A (en) Power semiconductor devices including multiple gate bond pads
TW202303970A (en) Shield contacts in a shielded-gate trench power mosfet
WO2022204687A1 (en) Shield contacts in a shielded gate mosfet
CN117410335A (en) Semiconductor die and method of manufacturing the same