TW202247359A - 半導體記憶體結構及其形成方法 - Google Patents

半導體記憶體結構及其形成方法 Download PDF

Info

Publication number
TW202247359A
TW202247359A TW110119325A TW110119325A TW202247359A TW 202247359 A TW202247359 A TW 202247359A TW 110119325 A TW110119325 A TW 110119325A TW 110119325 A TW110119325 A TW 110119325A TW 202247359 A TW202247359 A TW 202247359A
Authority
TW
Taiwan
Prior art keywords
liner
forming
nitride
nitride liner
memory structure
Prior art date
Application number
TW110119325A
Other languages
English (en)
Other versions
TWI757193B (zh
Inventor
盧建鳴
吳柏翰
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW110119325A priority Critical patent/TWI757193B/zh
Application granted granted Critical
Publication of TWI757193B publication Critical patent/TWI757193B/zh
Publication of TW202247359A publication Critical patent/TW202247359A/zh

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

本發明實施例提供一種半導體記憶體結構,其包含半導體基板、設置於半導體基板上的位元線、設置於位元線一側的介電襯層、設置於半導體基板上的電容接觸件、以及設置於半導體基板上的填充件。位元線沿著第一方向延伸。介電襯層包含設置於位元線的側壁上的第一氮化物襯層、設置於第一氮化物襯層的側壁上的氧化物襯層、以及設置於氧化物襯層的側壁上的第二氮化物襯層。在垂直第一方向的第二方向上,電容接觸件藉由第一氮化物襯層、氧化物襯層以及第二氮化物襯層與位元線間隔。在第二方向上,填充件僅藉由第一氮化物襯層與位元線間隔。本發明實施例亦提供形成一種上述半導體記憶體結構的方法。

Description

半導體記憶體結構及其形成方法
本揭露係有關於一種半導體記憶體結構,且特別是有關於動態隨機存取記憶體之電容接觸件。
動態隨機存取記憶體(Dynamic Random Access Memory,DRAM)裝置廣泛地應用於消費性電子產品中。為了增加動態隨機存取記憶體裝置內的元件密度以及改善其整體表現,目前動態隨機存取記憶體裝置的製造技術持續朝向元件尺寸的微縮化而努力。
然而,當元件尺寸持續縮小時,許多挑戰隨之而生。舉例而言,在自對準蝕刻製程中難以清除邊角的材料,導致後續形成的電容接觸件容易於邊角有短路的情形。因此,業界仍需要改進動態隨機存取記憶體裝置的製造方法,以克服元件尺寸縮小所產生的問題。
本發明實施例提供一種半導體記憶體結構,其包含半導體基板、設置於半導體基板上的位元線、設置於位元線一側的介電襯層、設置於半導體基板上的電容接觸件、以及設置於半導體基板上的填充件。位元線沿著第一方向延伸。介電襯層包含設置於位元線的側壁上的第一氮化物襯層、設置於第一氮化物襯層的側壁上的氧化物襯層、以及設置於氧化物襯層的側壁上的第二氮化物襯層。在垂直第一方向的第二方向上,電容接觸件藉由第一氮化物襯層、氧化物襯層以及第二氮化物襯層與位元線間隔。在第二方向上,填充件僅藉由第一氮化物襯層與位元線間隔。
本發明實施例提供一種半導體記憶體結構的形成方法,其包含提供半導體基板;形成複數個位元線於半導體基板上;形成介電襯層於位元線的側壁上;形成介電材料層於該些位元線之間;於介電材料層中形成開口;沿著開口之側壁,側向(laterally)移除部分的第二氮化物襯層與氧化物襯層,直到露出第一氮化物襯層;形成填充件於開口中,且開口之側壁露出部分的第二氮化物襯層;以及以電容接觸件置換剩餘的介電材料層。位元線沿著第一方向延伸。形成該介電襯層的步驟包括:形成第一氮化物襯層於位元線的側壁上;形成氧化物襯層於第一氮化物襯層的側壁上;以及形成第二氮化物襯層於氧化物襯層的側壁上。
以下參照本發明實施例之圖式以更全面地闡述本揭露。然而,本揭露亦可以各種不同的實施方式實現,而不應限於本文中所述之實施例。圖式中的層與區域的厚度可能會為了清楚起見而放大,並且在各圖式中相同或相似之參考號碼表示相同或相似之元件。
本發明實施例藉由移除部分的介電襯層,可減少後續形成的複數個電容接觸件於邊角處因距離過短而產生短路的問題,藉以提高半導體效能。
第1圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第2圖是根據本發明的一些實施例,繪示對應於第1圖中剖線A-A’之半導體記憶體結構的剖面圖。在一些實施例中,半導體記憶體結構10是動態隨機存取記憶體(DRAM)陣列(array)的一部分。
如第1及2圖所示,提供半導體基板100。在一些實施例中,半導體基板100可以是元素半導體基板,例如矽基板、或鍺基板;或化合物半導體基板,例如碳化矽基板、或砷化鎵基板。在一些實施例中,半導體基板100可以是絕緣體上的半導體(semiconductor-on-insulator,SOI)基板。
如第2圖所示,於半導體基板100中設置隔離部件110。在一些實施例中,半導體基板100中設置隔離部件110以定義出主動區。在一些實施例中,隔離部件110可包含氮化物或氧化物,例如氧化矽(SiO)、氮化矽(SiN)、氮氧化矽(SiON)、及/或前述之組合。隔離部件110的形成可包含圖案化製程(例如微影製程和蝕刻製程)、沉積製程(例如化學氣相沉積(chemical vapor deposition,CVD))、平坦化製程(例如化學機械研磨(chemical mechanical polish,CMP))。在一些實施例中,蝕刻製程可包含乾蝕刻製程,例如反應式離子蝕刻(reactive ion etching,RIE)、中性粒子束蝕刻(neutral beam etch,NBE)、感應耦合電漿蝕刻(inductive coupled plasma etch)、適合的蝕刻製程或上述之組合等等。
在一些實施例中,在半導體基板中更埋設字元線(未繪示)。在一些實施例中,字元線作為閘極,並包含閘極介電層、閘極襯層、以及閘極電極(未繪示)。
如第1圖與第2圖所示,於半導體基板100上形成複數個位元線200,其沿著第一方向D1延伸。在一些實施例中,位元線200包含導電層230、240與250及位於其上的介電層260、270與280。藉由上層的介電層260、270與280,可保護下方膜層(例如導電層230、240與250)在後續製程中免於受到損害。
在一些實施例中,導電層230、240與250包含摻雜的多晶矽、金屬、或金屬氮化物,例如鎢(W)、鈦(Ti)及氮化鈦(TiN)等。在一些實施例中,介電層260、270與280包含氮化物或氧化物,例如氮化矽或氧化矽等。
如第2圖所示,設置於隔離部件110(或隔離區)上的位元線200更包含蓋層210與220,其設置於導電層230與隔離部件110之間。在一些實施例中,蓋層210與220可包含氧化矽(例如熱氧化矽、四乙氧基矽烷(tetraethylorthosilicate,TEOS)氧化物)、氮化矽(SiN)或氮氧化矽(SiON)。在一些實施例中,未設置於隔離部件110(或主動區)上的位元線200中的導電層230更延伸至半導體基板100中。
如第1圖與第2圖所示,於位元線200的側壁上形成介電襯層300。詳細來說,形成介電襯層300的步驟包括共形性地(conformally)形成第一氮化物材料層(未繪示)於位元線200的頂表面上與側壁上以及於半導體基板100上;共形性地形成氧化物材料層(未繪示)於第一氮化物材料層上;移除於位元線200的頂表面上與半導體基板100的頂表面上的第一氮化物材料層與氧化物材料層,以形成第一氮化物襯層310與氧化物襯層320;最後,共形性地形成第二氮化物襯層330於位元線200的頂表面上、氧化物襯層320的側壁上與於半導體基板100上。
在一些實施例中,在形成第一氮化物材料襯層的步驟之後更包含形成間隔物305於延伸至半導體基板100中的導電層230的兩側,以有效隔絕導電層230與後續形成的電容接觸件並避免短路。
在一些實施例中,第一與第二氮化物襯層310與330包含相同的材料,例如氮化矽,氧化物襯層320包含氧化矽。
在一些實施例中,氧化物襯層320夾設於第一氮化物襯層310與第二氮化物襯層330之間,藉以防止位元線200與後續形成的電容接觸件之間產生寄生電容。
接著,請參照第3-4圖,第3-4圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。
如第3圖所示,於位元線200之間及之上毯覆性地(blanketly)形成介電材料層400。具體來說,介電材料層400形成於介電襯層300上,並完全填入位元線200之間的空隙。
在一些實施例中,介電材料層400的材料可包含氧化矽、氮氧化矽、矽酸磷玻璃(phosphosilicate glass,PSG)、矽硼玻璃(borophosphosilicate glass,BPSG)、氟化矽酸鹽玻璃(fluorinated silicate glass,FSG)、有機矽酸玻璃(organosilicate glass,OSG)、SiO xC y、旋塗式玻璃(spin-on glass,SOG)、低介電常數介電材料,其他適合的材料等。在一些實施例中,介電材料層400的形成可包含沉積製程,例如化學氣相沉積(CVD) 、物理氣相沉積(physical vapor deposition,PVD)、或原子層沉積(atomic layer deposition,ALD)等等。
如第4圖所示,進行平坦化製程移除部分介電材料層400,使得剩餘的介電材料層400’之頂表面與位元線200的頂表面上的介電襯層300齊平。接著,於與第一方向D1垂直的第二方向D2上間隔形成條狀光阻500於介電襯層300與剩餘的介電材料層400’之頂表面上。
在一些實施例中,平坦化製程可包含化學機械研磨(CMP)或回蝕刻製程。在一些實施例中,條狀光阻500的形成可包含微影製程,其包含光阻塗佈、曝光前烘烤、使用遮罩曝光、顯影等等。
接著,請參照第5-6圖,第5圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第6圖是根據本發明的一些實施例,繪示對應於第5圖之半導體記憶體結構的部分上視圖。
如第5-6圖所示,移除部分介電材料層400’與部分第二氮化物襯層330。詳細來說,使用條狀光阻500作為蝕刻遮罩,移除條狀光阻500正下方以外的介電材料層400’,而大致上不移除位元線200與介電襯層300,以形成開口H,並留下條狀光阻500正下方的介電材料層400’’。接著,移除條狀光阻500,並移除位於位元線200的頂表面上與半導體基板100上的第二氮化物襯層330,僅留下位於位元線200側壁上的第二氮化物襯層330’。
在此,「大致上不移除/蝕刻」可包含完全不移除/蝕刻、些微移除/蝕刻(相較於目標物的厚度之3%以下)。
在一些實施例中,開口H之側壁露出部分的第二氮化物襯層330’,而開口H之底部露出半導體基板100。在一些實施例中,開口H具有圓角R,其位於第二氮化物襯層330’的側壁上。在一些實施例中,在第一方向D1上,開口H與介電材料層400’’交錯排列。
如第6圖所示,開口H是由介電襯層300與介電材料層400’’的側壁定義而成。
在一些實施例中,部分介電材料層400’的移除包含蝕刻製程,例如具有蝕刻選擇性的乾蝕刻。舉例來說,使用高碳氟比之蝕刻氣體(如C 4F 8),以達到介電材料層400’對位元線200與介電襯層300之高選擇比。在一些實施例中,對介電材料層400’之蝕刻速率與對位元線200與介電襯層300之蝕刻速率之比為約10:1-30:1,例如約15:1-25:1。
在一些實施例中,部分第二氮化物襯層330的移除包含蝕刻製程,例如使用高含氫氣體(如CH 2F 2)非等向性乾蝕刻,以移除位元線200上與半導體基板100上的第二氮化物襯層330而大致上不移除位元線200側壁上的第二氮化物襯層330。
在一些實施例中,在高度方向Z上,位元線200的高度在移除部分第二氮化物襯層330的蝕刻製程之前與之後可大致上不變。在另一些實施例中,在高度方向Z上,位元線200上方膜層,例如介電層280,可能受移除部分第二氮化物襯層330的蝕刻製程的影響而部分被移除,因此位元線200在蝕刻製程之後的高度較移除部分第二氮化物襯層330的蝕刻製程之前的高度低。
由於蝕刻製程並無法完全移除位於條狀光阻500正下方以外的介電材料層400’,例如部分欲去除的介電材料層400’可能殘留於邊角處,因此所形成的開口H具有圓角R,開口H在第一方向D1上只有最大寬度Lm,但由於圓角的形成,開口H在位元線200的寬度縮小為Le(Le<Lm)。也就是說,兩兩介電材料層400’’之間的距離Lm在靠近位元線200處因圓角的產生而縮小至Le。
由於剩下的介電材料層400’’後續將置換為電容接觸件,介電材料層400’’之間的距離過近,將導致靠近位元線200處之兩兩電容接觸件之間的距離過近而產生短路的問題。本發明實施例將說明解決上述問題的手段,以克服電容接觸件短路的問題,詳情請見後文所述。
接著,請參照第7-10圖,第7、9圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第8、10圖是根據本發明的一些實施例,繪示分別對應於第7、9圖之半導體記憶體結構的部分上視圖。
如第7-8圖所示,沿著開口H之側壁,側向移除部分的第二氮化物襯層330’,直到露出氧化物襯層320,以形成不連續的第二氮化物襯層330’’。在一些實施例中,沿著第二方向D2擴大開口H而沿著第一方向D1維持原樣,而形成開口H’。相較於開口H,開口H’之圓角R更接近位元線200。
在一些實施例中,開口H’同時露出第二氮化物襯層330’’與氧化物襯層320。在一些實施例中,在第一方向D1上,第二氮化物襯層330’’與開口H’交錯排列。
在一些實施例中,部分第二氮化物襯層330’的移除包含蝕刻製程,例如具有蝕刻選擇性的等向性乾蝕刻,以蝕刻暴露於開口兩側側壁的第二氮化物襯層330。舉例來說,使用含氫氣體(如CH 2F 2或CH 3F等)的乾蝕刻,以達到第二氮化物襯層330’對氧化物襯層320之高選擇比。在一些實施例中,對第二氮化物襯層330’之蝕刻速率與對氧化物襯層320之蝕刻速率之比為約25:1以上,例如約25:1-40:1。此外,在此實施例中,氧化物襯層320可作為蝕刻停止層。
如第9-10圖所示,沿著開口H’之側壁,側向移除部分的氧化物襯層320,直到露出第一氮化物襯層 310,以形成不連續的氧化物襯層320’。 在一些實施例中,沿著第二方向D2擴大開口H’而沿著第一方向D1維持原樣,而形成開口H’’。 相較於開口H’,開口H’’之圓角R更接近位元線200。
在一些實施例中,開口H’’同時露出第二氮化物襯層330’’、氧化物襯層320’與第一氮化物襯層310。在一些實施例中,在第一方向D1上,氧化物襯層320’與開口H’’交錯排列。
在一些實施例中,氧化物襯層320’與介電材料層400’’包含相同的材料,例如氧化矽。在此實施例中,由於在第二方向D2上,介電材料層400’’的厚度遠大於氧化物襯層320’,因此即使移除部分的氧化物襯層320’, 仍可大致上不移除介電材料層400’’。
在一些實施例中,部分氧化物襯層320的移除包含蝕刻製程,例如具有蝕刻選擇性的濕蝕刻,以蝕刻暴露於開口兩側側壁上的氧化物襯層320。此外,在此蝕刻製程中,第一氮化物襯層310可作為蝕刻停止層。
在使用濕蝕刻的實施例中,可利用蝕刻劑來調控蝕刻選擇性,例如蝕刻氧化物時可大致上不蝕刻氮化物。濕蝕刻所使用的蝕刻劑可包含緩衝氧化物蝕刻液(buffered oxide etch,BOE)、氫氟酸稀釋溶液(diluted HF,DHF)等。
由於移除了部分第二氮化物襯層330’與氧化物襯層320,圓角R由開口的中心沿著第二方向D2向位元線200推進,使得在第一方向D1上兩兩介電材料層400’’(後續將取代為電容接觸件)之間的距離可大致上維持相同(Le’約等於Lm’),以避免後續形成的電容接觸件短路。
接著,請參照第11-12圖,第11圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。第12圖是根據本發明的一些實施例,繪示對應於第11圖之半導體記憶體結構的部分上視圖。
如第11-12圖所示,形成填充件600於開口H’’中。在一些實施例中,填充件600可包含氮化物,例如氮化矽、氮氧化矽等。在一些實施例中,填充件600的形成包含以沉積製程沉積填充材料,再以平坦化製程或蝕刻製程移除過多的填充材料,使得填充件600的頂表面大致上與位元線200的頂表面齊平。在一些實施例中,填充件600之頂表面、位元線200之頂表面與介電材料層400’’之頂表面大致上共平面。
在一些實施例中,由於填充件600完全覆蓋開口H’’,因此填充件600也具有圓角R。在此實施例中,圓角R直接接觸介電襯層300,例如同時直接接觸第一與第二氮化物襯層310與330’’及氧化物襯層320。
在一些實施例中,填充件600與第一氮化物襯層310包含相同的材料,例如氮化矽。也就是說,第一氮化物襯層310與填充件600之間並無界線。在第一氮化物襯層310與填充件600皆為氮化矽的實施例中,在第二方向D2上,位元線200與氮化矽交錯排列。
在一些實施例中,填充件600與介電材料層400’’包含不同的材料,例如填充件600包含氮化矽而介電材料層400’’包含氧化矽,以利於後續選擇性移除介電材料層400’’。
接著,請參照第13-14圖,以電容接觸件700置換介電材料層400’’。詳細來說,完全移除介電材料層400’’,以形成凹口C;以及以導電材料填充凹口C,以形成電容接觸件700。
在一些實施例中,在第二方向D2上,電容接觸件700藉由第一氮化物襯層310、氧化物襯層320’、第二氮化物襯層330’’與位元線200間隔,而填充件600僅藉由第一氮化物襯層310與位元線200間隔。也可以說,在任意兩位元線200之間的第二方向D2上,填充件600的寬度大於電容接觸件700的寬度。
本發明實施例中電容接觸件700與位元線200之間設置第一氮化物襯層310、氧化物襯層320’、第二氮化物襯層330’’而填充件600與位元線200之間設置第一氮化物襯層310,可在確保整體電性的情況下,進一步減少短路的問題。
在一些實施例中,填充件600的圓角R直接接觸介電襯層300而大致上不直接接觸電容接觸件700,以減少兩兩電容接觸件700之間短路的可能性。在一些實施例中,在第一方向D1上,電容接觸件700與填充件600交錯排列。
相較於不移除部分氮化物襯層與氧化物襯層的情況,本發明實施例藉由移除部分氮化物襯層與氧化物襯層,並將填充件的圓角推進至介電襯層中,可減少兩兩電容接觸件在靠近位元線處因圓角之距離過短而產生的短路問題。
在一些實施例中,介電材料層400’’的移除包含蝕刻製程,例如具有蝕刻選擇性的濕蝕刻,以蝕刻介電材料層400’’直到完全露出填充件600的側壁。在一些實施例中,凹口C延伸並露出填充件600之間的半導體基板100之頂表面。
在一些實施例中,濕蝕刻所使用的蝕刻劑可包含緩衝氧化物蝕刻液(BOE),以在大致上不移除填充件600與介電襯層300的情況下完全移除介電材料層400’’。
在一些實施例中,導電材料可包含摻雜的多晶矽、金屬、或金屬矽化物等。金屬可包含鎢、鋁、銅、金、銀、上述之合金或其他合適的金屬材料。金屬矽化物可包含矽化鈷。
應注意的是,在形成電容接觸件700之後仍可形成額外的部件,例如電容、金屬層與介電層等等,以完成記憶元件(如動態隨機存取記憶體(DRAM))的製作。
綜上所述,本發明實施例藉由移除部分的氮化物襯層與氧化物襯層,可使兩兩電容接觸件在靠近位元線處的距離增加,而減少短路的情形。
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
10:半導體記憶體結構 100:半導體基板 110:隔離部件 200:位元線 210,220:蓋層 230,240,250:導電層 260,270,280:介電層 300:介電襯層 305:間隔物 310:第一氮化物襯層 320,320’:氧化物襯層 330,330’ ,330’’:第二氮化物襯層 400,400’ ,400’’:介電材料層 500:條狀光阻 600:填充件 700:電容接觸件 C:凹口 H,H’,H’’:開口 D1:第一方向 D2:第二方向 Le,Le’,Lm,Lm’:距離/寬度 R:圓角 Z:高度方向
讓本發明之特徵和優點能更明顯易懂,下文特舉不同實施例,並配合所附圖式作詳細說明如下: 第1圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 第2圖是根據本發明的一些實施例,繪示對應於第1圖中剖線A-A’之半導體記憶體結構的剖面圖。 第3-5圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 第6圖是根據本發明的一些實施例,繪示對應於第5圖之半導體記憶體結構的部分上視圖。 第7圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 第8圖是根據本發明的一些實施例,繪示對應於第7圖之半導體記憶體結構的部分上視圖。 第9圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 第10圖是根據本發明的一些實施例,繪示對應於第9圖之半導體記憶體結構的部分上視圖。 第11圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。 第12圖是根據本發明的一些實施例,繪示對應於第11圖之半導體記憶體結構的部分上視圖。 第13-14圖是根據本發明的一些實施例,繪示形成半導體記憶體結構在不同階段的立體圖。
10:半導體記憶體結構
100:半導體基板
200:位元線
300:介電襯層
310:第一氮化物襯層
320’:氧化物襯層
330”:第二氮化物襯層
600:填充件
700:電容接觸件
D1:第一方向
D2:第二方向
R:圓角
Z:高度方向

Claims (10)

  1. 一種半導體記憶體結構,包括: 一半導體基板; 一位元線,設置於該半導體基板上,並沿著一第一方向延伸; 一介電襯層,設置於該位元線的一側,其中該介電襯層包括: 一第一氮化物襯層,設置於該位元線之側壁上; 一氧化物襯層,設置於該第一氮化物襯層之側壁上;以及 一第二氮化物襯層,設置於該氧化物襯層之側壁上; 一電容接觸件,設置於該半導體基板上,其中在垂直於該第一方向的一第二方向上,該電容接觸件藉由該第一氮化物襯層、該氧化物襯層以及該第二氮化物襯層與該位元線間隔;以及 一填充件,設置於該半導體基板上,其中在該第二方向上,該填充件的寬度大於該電容接觸件的寬度。
  2. 如請求項1之半導體記憶體結構,其中在該第一方向上,該第一氮化物襯層為連續設置,且該氧化物襯層與該第二氮化物襯層為不連續設置。
  3. 如請求項1之半導體記憶體結構,其中在上視圖中,該填充件具有一圓角,其中該圓角直接接觸該介電襯層。
  4. 如請求項3之半導體記憶體結構,其中該圓角不直接接觸該電容接觸件。
  5. 如請求項1之半導體記憶體結構,其中在該第一方向上,該填充件與該電容接觸件交錯排列。
  6. 如請求項1之半導體記憶體結構,其中在該第二方向上,該填充件僅藉由該第一氮化物襯層與該位元線間隔。
  7. 一種半導體記憶體結構的形成方法,包括: 提供一半導體基板; 形成複數個位元線於該半導體基板上,且該些位元線沿著一第一方向延伸; 形成一介電襯層於該些位元線的側壁上,其中形成該介電襯層的步驟包括: 形成一第一氮化物襯層於該些位元線的側壁上; 形成一氧化物襯層於該第一氮化物襯層的側壁上;以及 形成一第二氮化物襯層於該氧化物襯層的側壁上; 形成一介電材料層於該些位元線之間; 於該介電材料層中形成一開口,其中該開口之側壁露出部分的該第二氮化物襯層; 沿著該開口之側壁,側向(laterally)移除部分的該第二氮化物襯層,直到露出該氧化物襯層; 形成一填充件於該開口中;以及 以一電容接觸件置換剩餘的該介電材料層。
  8. 如請求項7之半導體記憶體結構的形成方法,其中側向移除部分的該第二氮化物襯層的步驟包括沿著與該第一方向垂直的一第二方向擴大該開口。
  9. 如請求項7之半導體記憶體結構的形成方法,其中形成該介電材料層的步驟包括: 沉積一介電材料於該介電襯層上;以及 平坦化該介電材料,以形成該介電材料層,其中該介電材料層之頂表面與該介電襯層的頂表面齊平。
  10. 如請求項7之半導體記憶體結構的形成方法,其中形成該第二氮化物襯層的步驟包括:形成該第二氮化物襯層於該些位元線的頂表面上、與在該些位元線之間的半導體基板上;以及 其中形成該開口的步驟更包括:移除該些位元線的頂表面上與在該些位元線之間的該半導體基板上的該第二氮化物襯層,以露出該半導體基板。
TW110119325A 2021-05-28 2021-05-28 半導體記憶體結構及其形成方法 TWI757193B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110119325A TWI757193B (zh) 2021-05-28 2021-05-28 半導體記憶體結構及其形成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119325A TWI757193B (zh) 2021-05-28 2021-05-28 半導體記憶體結構及其形成方法

Publications (2)

Publication Number Publication Date
TWI757193B TWI757193B (zh) 2022-03-01
TW202247359A true TW202247359A (zh) 2022-12-01

Family

ID=81710569

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119325A TWI757193B (zh) 2021-05-28 2021-05-28 半導體記憶體結構及其形成方法

Country Status (1)

Country Link
TW (1) TWI757193B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627493B2 (en) * 2001-03-28 2003-09-30 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned method for fabricating a capacitor under bit-line (cub) dynamic random access memory (DRAM) cell structure
DE10308924B3 (de) * 2003-02-28 2004-10-28 Infineon Technologies Ag Integrierte Halbleiterschaltung mit einer Vielzahl von Speicherzellen
TWI269407B (en) * 2005-06-09 2006-12-21 Nanya Technology Corp Memory cell manufacturing method and memory cell layout structure
US7419871B2 (en) * 2006-04-25 2008-09-02 Micron Technology, Inc. Methods of forming semiconductor constructions
US10217748B2 (en) * 2017-05-25 2019-02-26 Winbond Electronics Corp. Dynamic random access memory and method of manufacturing the same

Also Published As

Publication number Publication date
TWI757193B (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US6613621B2 (en) Methods of forming self-aligned contact pads using a damascene gate process
KR100846099B1 (ko) 리세스 채널 트랜지스터를 포함하는 반도체 장치 제조 방법
US20210005509A1 (en) Semiconductor device including a passivation spacer and method of fabricating the same
US20190221570A1 (en) Semiconductor device and method for fabricating the same
WO2022088758A1 (zh) 半导体结构的形成方法以及半导体结构
WO2022088788A1 (zh) 半导体结构的形成方法以及半导体结构
US20230290727A1 (en) Semiconductor devices and methods of manufacturing the same
US7138340B2 (en) Method for fabricating semiconductor device without damaging hard mask during contact formation process
TWI757043B (zh) 半導體記憶體結構及其形成方法
CN108962817B (zh) 半导体结构及其形成方法
TWI734530B (zh) 半導體結構及其形成方法
US11665889B2 (en) Semiconductor memory structure
TWI808383B (zh) 半導體結構及其製造方法
TWI757193B (zh) 半導體記憶體結構及其形成方法
TWI750574B (zh) 半導體記憶體結構及其形成方法
US11991875B2 (en) Semiconductor memory structure and the method for forming the same
US11101179B2 (en) Semiconductor structure with protection portions and method for forming the same
US10910386B2 (en) Semiconductor device and method for fabricating the same
TW202236534A (zh) 半導體記憶體結構
TWI588973B (zh) 記憶元件及其製造方法
KR100643568B1 (ko) 반도체소자의 깊은 콘택홀 형성 방법
TWI685087B (zh) 半導體結構及其製造方法
JP6092277B2 (ja) 半導体装置およびその製造方法
CN115513206A (zh) 半导体存储器结构及其形成方法
KR100604812B1 (ko) 자기 정렬된 컨택 공정을 이용한 반도체 소자의 제조 방법