TW202242261A - 高效率的渦輪分子泵裝置 - Google Patents
高效率的渦輪分子泵裝置 Download PDFInfo
- Publication number
- TW202242261A TW202242261A TW110114338A TW110114338A TW202242261A TW 202242261 A TW202242261 A TW 202242261A TW 110114338 A TW110114338 A TW 110114338A TW 110114338 A TW110114338 A TW 110114338A TW 202242261 A TW202242261 A TW 202242261A
- Authority
- TW
- Taiwan
- Prior art keywords
- temperature
- pump device
- heater
- turbomolecular pump
- efficiency
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D19/00—Axial-flow pumps
- F04D19/02—Multi-stage pumps
- F04D19/04—Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
- F04D19/042—Turbomolecular vacuum pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D27/00—Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
- F04D27/001—Testing thereof; Determination or simulation of flow characteristics; Stall or surge detection, e.g. condition monitoring
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/58—Cooling; Heating; Diminishing heat transfer
- F04D29/582—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
- F04D29/584—Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps cooling or heating the machine
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Non-Positive Displacement Air Blowers (AREA)
Abstract
本發明公開一種高效率的渦輪分子泵裝置,包括一殼體結構、一定子元件、一轉子元件以及一加熱器。殼體結構具有相連通的一腔室以及一排氣口。定子元件設置於腔室內,且定子元件包括一導氣環。轉子元件設置於腔室內,且位置對應定子元件,轉子元件包括一轉子基座,且轉子基座與導氣環之間具有一氣體通道。加熱器設置於導氣環上,其中加熱器經配置以使氣體通道具有多個溫度區段,且多個溫度區段包括靠近排氣口的一第一溫度區段,其溫度為60℃至80℃。
Description
本發明涉及一種抽真空裝置,特別是涉及一種高效率的渦輪分子泵裝置。
當元件尺寸不斷縮小,半導體技術不斷往更小線寬、更高密度的方向發展時,半導體製程如薄膜沉積、乾蝕刻等便需要在低壓真空的環境下進行,使得渦輪分子泵在電子半導體工業的應用越來越廣泛。
然而,當渦輪分子泵用於對半導體製程腔體進行抽真空時,夾帶於製程氣體中的粉塵、微粒或其他懸浮物會進入渦輪分子泵,並在較低的環境溫度下沉積於排氣口及氣體流路末端。且一旦沉積物量太多,氣體流路可能被阻塞而無法順利抽真空。為了解決這個問題,大多數業者採用加熱方式來減緩沉積物的形成,具體作法是在泵本體外部(如磁浮軸承座外部)加裝加熱器,通過從泵本體外部加熱來提高半導體製程腔體內的環境溫度。
上述作法雖然解決了氣體流路的阻塞問題,但仍有以下不足之處:1.升溫速度慢;2.熱損失嚴重且耗能;3.精密電器構件可能因長時間承受高溫加熱而發生故障。
本發明所要解決的技術問題在於,針對現有技術的不足提供一種高效率的渦輪分子泵裝置,其能減少能源損耗和熱傳過程中的損失,並且能長時間正常運作。
為了解決上述的技術問題,本發明所採用的其中一技術方案是提供一種高效率的渦輪分子泵裝置,其包括一殼體結構、一定子元件、一轉子元件以及一加熱器。所述殼體結構具有一腔室以及與所述腔室連通的一排氣口;所述定子元件設置於所述腔室內,其中所述定子元件包括一導氣環;所述轉子元件設置於所述腔室內且位置對應所述定子元件,其中所述轉子元件包括一轉子基座,且所述轉子基座與所述導氣環之間具有一氣體通道;所述加熱器設置於所述導氣環上,其中所述加熱器經配置以使所述氣體通道具有多個溫度區段,且所述多個溫度區段包括靠近所述排氣口的一第一溫度區段,其溫度為60℃至80℃。
在本發明的一實施例中,所述殼體結構包括一上殼體以及一下殼體,且所述上殼體與所述下殼體結合成一體。所述導氣環組裝於所述下殼體,且所述導氣環的位置對應所述轉子基座。
在本發明的一實施例中,所述導氣環的一部分與所述下殼體之間具有一定位結構。
在本發明的一實施例中,所述導氣環包括一支撐部以及一主體部,所述主體部一體成型於所述支撐部上且圍繞所述轉子基座,且所述定位結構設置於所述支撐部與所述下殼體之間或所述主體部與所述下殼體之間。
在本發明的一實施例中,所述定位結構包括一個或多個緩衝墊片。
在本發明的一實施例中,所述加熱器為一帶式加熱器,且所述加熱器內藏於所述導氣環。
在本發明的一實施例中,所述渦輪分子泵裝置還包括一溫度感測器,且所述溫度感測器經配置以偵測所述第一溫度區段的溫度狀態。
在本發明的一實施例中,所述溫度感測器配置於所述加熱器的附近。
在本發明的一實施例中,所述多個溫度區段還包括遠離所述排氣口的一第二溫度區段以及位於所述第一溫度區段與所述第二溫度區段之間的一第三溫度區段,所述第二溫度區段的預設溫度為60℃至80℃,且所述第三溫度區段的預設溫度為70℃至90℃。
在本發明的一實施例中,所述渦輪分子泵裝置還包括一控制器,所述控制器與所述加熱器電性連接,以控制所述加熱器的一加熱溫度和/或一加熱範圍。
本發明的其中一有益效果在於,本發明的渦輪分子泵裝置,其能通過“加熱器設置於導氣環上,且經配置以使位於轉子基座與導氣環之間的氣體通道具有多個溫度區段,其中包括靠近排氣口且溫度為60℃至80℃的第一溫度區段”的技術手段,以在大幅提高供熱效益的同時,避免半導體製程的衍生物於氣體通道中發生堆積而影響抽真空效率。並且,本發明的渦輪分子泵裝置能在較短時間內達到最佳運行狀態。
更進一步來說,本發明的渦輪分子泵裝置不僅能延長維護週期,而且還能避免磁浮軸承因長期承受高溫加熱而發生故障。
為使能更進一步瞭解本發明的特徵及技術內容,請參閱以下有關本發明的詳細說明與圖式,然而所提供的圖式僅用於提供參考與說明,並非用來對本發明加以限制。
由於渦輪分子泵的工作效率可能對產品良率和經濟效益帶來負面影響,本發明提供一種高效率的渦輪分子泵裝置。此渦輪分子泵裝置將加熱器安裝在泵內部的特定位置,能減少能源損耗和熱傳過程中的損耗,以及避免精密電器構件因長時間承受高溫加熱而發生故障。
以下是通過特定的具體實施例來說明本發明所公開有關“高效率的渦輪分子泵裝置”的實施方式,本領域技術人員可由本說明書所公開的內容瞭解本發明的優點與效果。本發明可通過其他不同的具體實施例加以施行或應用,本說明書中的各項細節也可基於不同觀點與應用,在不背離本發明的構思下進行各種修改與變更。另外,本發明的附圖僅為簡單示意說明,並非依實際尺寸的描繪,事先聲明。以下的實施方式將進一步詳細說明本發明的相關技術內容,但所公開的內容並非用以限制本發明的保護範圍。另外,本文中所使用的術語“或”,應視實際情況可能包括相關聯的列出項目中的任一個或者多個的組合。
請參閱圖1至圖3,圖1顯示本發明的渦輪分子泵裝置主要的零組件,圖2及圖3顯示本發明的渦輪分子泵裝置的構造。如上述圖式所示,本發明的渦輪分子泵裝置Z主要包括一泵主體1及用於控制泵主體1的運行狀態的一控制器2,其中泵主體1包括一殼體結構11、一轉子元件12、一定子元件13、一加熱器14及一驅動器15。殼體結構11具有呈密封狀態的一腔室110及與腔室110連通的一排氣口112;轉子元件12與定子元件13設置於腔室110內,且彼此的位置相對應,其中轉子元件12與定子元件13之間具有一氣體通道G,用以將氣體導引至排氣口112;加熱器14設置於定子元件13上,用以使氣體通道G處於特定的熱環境下,其中熱環境中具有溫度梯度分佈;驅動器15設置於腔室110內,用以驅動轉子元件12相對於定子元件13高速旋轉。
於使用時,渦輪分子泵裝置Z可通過一隔離閥與一製程腔體(圖中未顯示)連通,其中控制器2電性連接加熱器14與驅動器15,控制器2能啟動加熱器14並令其達到目標加熱溫度,以及令驅動器15驅動轉子元件12並使其達到目標轉速;如此一來,渦輪分子泵裝置Z即進入正常運行模式,而能將製程腔體抽真空至一目標真空度。控制器2可為任意種類的處理器或可程式化電路,但不限於此。
值得一提的是,加熱器14可經配置以使氣體通道G具有不同環境溫度的多個溫度區段,其中最靠近排氣口112的溫度區段的溫度為60℃至80℃。藉此,能避免半導體製程的衍生物,例如在乾蝕刻製程中由反應物與被蝕刻物所產生的生成物,堆積於氣體通道中阻礙氣體的流動,並且還能避免精密電器構件因長時間承受高溫加熱而發生故障。
如圖2及圖3所示,在本實施例中,殼體結構11包括一上殼體11a及一下殼體11b,其可通過鎖固方式結合成一體。上殼體11a與下殼體11b各呈大致圓筒狀,且共同圍構形成腔室110,其中上殼體11a界定出腔室110的上游區域,且上殼體11a具有與腔室連通的一進氣口111,下殼體11b界定出腔室110的下游區域,且下殼體11b具有與腔室連通的一排氣口112。以上所述只是可行的實施方式,而並非用以限定本發明。
轉子元件12包括一轉子基座121、一轉子軸122及多個旋轉翼123,其中轉子軸122穿過轉子基座121的中心,並通過鎖固方式與轉子基座121結合成一體,多個旋轉翼123以沿軸向上下分層排列的方式固定連接於轉子基座121的外壁。另外,定子元件13包括多個固定翼131及一導氣環132,其中多個固定翼131固定連接於上殼體11a的內壁,且多個固定翼與多個旋轉翼123交替排列,即每一個固定翼131是位於兩個旋轉翼123之間空開的間隙;導氣環132配置於旋轉翼123與固定翼131的下方,且導氣環132與轉子基座121共同界定出環形的氣體通道G。
請再參閱圖2及3並配合參閱圖4,圖4顯示旋轉翼123與固定翼131的配置方式及所導致的氣體流動路徑。實際應用時,旋轉翼123與固定翼131各自可排列有七層,其中每一個旋轉翼123包括呈放射狀排列的多個轉子葉片1231,且每一個固定翼131包括呈放射狀排列的多個定子葉片1311。又,如圖4所示,轉子葉片1231的傾斜方向與定子葉片1311的傾斜方向相反,且上層的轉子葉片1231的傾斜角度大於或等於下層的轉子葉片1231的傾斜角度,上層的定子葉片1311的傾斜角度大於或等於下層的定子葉片1311的傾斜角度。藉此,能確保氣體分子不可逆地向外流動。另外,導氣環132可組裝於下殼體11b,且位置對應轉子基座121。以上所述只是可行的實施方式,而並非用以限定本發明。
加熱器14內藏於定子元件13的導氣環132,加熱器14可為一帶式加熱器,但不限於此。為了消除機械公差,導氣環132的一部分與下殼體11b之間可具有一定位結構16,其中定位結構16可包括一個或多個緩衝墊片(如華司墊片),但不限於此。進一步而言,導氣環132包括一支撐部1321及一主體部1322,主體部1322一體成型於支撐部1321上且圍繞轉子基座121,其中主體部1322可具有一螺紋槽(圖中未顯示)。定位結構16可設置於導氣環132的支撐部1321與下殼體11b之間,如圖2所示;或者,定位結構16可設置於導氣環132的主體部1322與下殼體11b之間,如圖3所示。實際應用時,導氣環132可通過一個或多個鎖固元件(如螺栓,圖中未標號)與下殼體11b連接成一體;定位結構16的位置可對應於鎖固元件(如螺栓,圖中未標號),且鎖固元件視需要可穿設於定位結構16。
驅動器15可包括一磁浮軸承,其能以非接觸的方式支持並驅動轉子軸122。作為驅動器15的磁浮軸承,其可包括驅動馬達、軸向和徑向電磁元件及軸向和徑向位移感測器,但不限於此。
請再參閱圖1並配合參閱圖2及圖5,本發明的渦輪分子泵裝置可進一步包括一溫度感測器3,其可經配置以偵測氣體通道G的各個溫度區段的溫度狀態;舉例來說,溫度感測器3配置於加熱器14的附近。於使用時,控制器2與溫度感測器3電性連接,且控制器2可根據溫度感測器3所測到的溫度變化來決定加熱器14的加熱溫度和/或加熱範圍,以避免造成不必要的能源浪費。
值得注意的是,在加熱器14的加熱作用下,氣體通道G的多個溫度區段可包括一第一溫度區段G1、一第二溫度區段G2及一第三溫度區段G3,如圖5所示。第一溫度區段G1的位置靠近排氣口112,其溫度為60℃至80℃;第二溫度區段G2的位置遠離排氣口112,其溫度為60℃至80℃;第三溫度區段G3位於第一溫度區段G1與第二溫度區段G2之間且對應加熱器14,其溫度為70℃至90℃。然而,本發明不以上述所舉的例子為限。
[實施例的有益效果]
本發明的其中一有益效果在於,本發明的渦輪分子泵裝置,其能通過“加熱器設置於導氣環上,且經配置以使位於轉子基座與導氣環之間的氣體通道具有多個溫度區段,其中包括靠近排氣口且溫度為60℃至80℃的第一溫度區段”的技術手段,以在大幅提高供熱效益的同時,避免半導體製程的衍生物於氣體通道中發生堆積而影響抽真空效率。並且,本發明的渦輪分子泵裝置能在較短時間內達到最佳運行狀態。
更進一步來說,本發明的渦輪分子泵裝置不僅能延長維護週期,而且還能避免磁浮軸承因長期承受高溫加熱而發生故障。
更進一步來說,在本發明的渦輪分子泵裝置中,導氣環的一部分與下殼體之間可具有一定位結構用以消除機械公差,定位結構可包括一個或多個緩衝墊片(如華司墊片)。如此一來,渦輪分子泵裝置的運作可以更加平穩可靠。
以上所公開的內容僅為本發明的優選可行實施例,並非因此侷限本發明的申請專利範圍,所以凡是運用本發明說明書及圖式內容所做的等效技術變化,均包含於本發明的申請專利範圍內。
Z:渦輪分子泵裝置
1:泵主體
11:殼體結構
11a:上殼體
11b:下殼體
110:腔室
111:進氣口
112:排氣口
12:轉子元件
121:轉子基座
122:轉子軸
123:旋轉翼
1231:轉子葉片
13:定子元件
131:固定翼
1311:定子葉片
132:導氣環
1321:支撐部
1322:主體部
14:加熱器
15:驅動器
16:定位結構
2:控制器
3:溫度感測單元
G:氣體通道
G1:第一溫度區段
G2:第二溫度區段
G3:第三溫度區段
圖1為本發明的渦輪分子泵裝置的功能方塊圖。
圖2為本發明的渦輪分子泵裝置的泵主體的其中一種結構示意圖。
圖3為本發明的渦輪分子泵裝置的泵主體的另外一種結構示意圖。
圖4為本發明的渦輪分子泵裝置的泵主體的氣體流路示意圖。
圖5為圖2中V部分的局部放大圖。
1:泵主體
11:殼體結構
11a:上殼體
11b:下殼體
110:腔室
111:進氣口
112:排氣口
12:轉子元件
121:轉子基座
122:轉子軸
123:旋轉翼
13:定子元件
131:固定翼
132:導氣環
1321:支撐部
1322:主體部
14:加熱器
15:驅動器
16:定位結構
G:氣體通道
Claims (10)
- 一種高效率的渦輪分子泵裝置,包括: 一殼體結構,所述殼體結構具有一腔室以及與所述腔室連通的一排氣口; 一定子元件,所述定子元件設置於所述腔室內,其中所述定子元件包括一導氣環; 一轉子元件,所述轉子元件設置於所述腔室內且其位置對應所述定子元件,其中所述轉子元件包括一轉子基座,且所述轉子基座與所述導氣環之間具有一氣體通道;以及 一加熱器,所述加熱器設置於所述導氣環上,其中所述加熱器經配置以使所述氣體通道具有多個溫度區段,且所述多個溫度區段包括靠近所述排氣口的一第一溫度區段,其溫度為60℃至80℃。
- 如請求項1所述的高效率的渦輪分子泵裝置,其中,所述殼體結構包括一上殼體以及一下殼體,且所述上殼體與所述下殼體結合成一體;其中,所述導氣環組裝於所述下殼體,且所述導氣環的位置對應所述轉子基座。
- 如請求項2所述的高效率的渦輪分子泵裝置,其中,所述導氣環的一部分與所述下殼體之間具有一定位結構。
- 如請求項3所述的高效率的渦輪分子泵裝置,其中,所述導氣環包括一支撐部以及一主體部,所述主體部一體成型於所述支撐部上且圍繞所述轉子基座,且所述定位結構設置於所述支撐部與所述下殼體之間或所述主體部與所述下殼體之間。
- 如請求項4所述的高效率的渦輪分子泵裝置,其中,所述定位結構包括一個或多個緩衝墊片。
- 如請求項1所述的高效率的渦輪分子泵裝置,其中,所述加熱器為一帶式加熱器,且所述加熱器內藏於所述導氣環。
- 如請求項1所述的高效率的渦輪分子泵裝置,還包括一溫度感測器,且所述溫度感測器經配置以偵測所述第一溫度區段的溫度狀態。
- 如請求項7所述的高效率的渦輪分子泵裝置,其中,所述溫度感測器配置於所述加熱器的附近。
- 如請求項1所述的高效率的渦輪分子泵裝置,其中,所述多個溫度區段還包括遠離所述排氣口的一第二溫度區段及位於所述第一溫度區段與所述第二溫度區段之間的一第三溫度區段,所述第二溫度區段的預設溫度為60℃至80℃,且所述第三溫度區段的預設溫度為70℃至90℃。
- 如請求項1所述的高效率的渦輪分子泵裝置,還包括一控制器,所述控制器與所述加熱器電性連接,以控制所述加熱器的一加熱溫度和/或一加熱範圍。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110114338A TWI757158B (zh) | 2021-04-21 | 2021-04-21 | 高效率的渦輪分子泵裝置 |
CN202111589470.2A CN115217776A (zh) | 2021-04-21 | 2021-12-23 | 高效率的涡轮分子泵装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW110114338A TWI757158B (zh) | 2021-04-21 | 2021-04-21 | 高效率的渦輪分子泵裝置 |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI757158B TWI757158B (zh) | 2022-03-01 |
TW202242261A true TW202242261A (zh) | 2022-11-01 |
Family
ID=81711002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW110114338A TWI757158B (zh) | 2021-04-21 | 2021-04-21 | 高效率的渦輪分子泵裝置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN115217776A (zh) |
TW (1) | TWI757158B (zh) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6705228B2 (ja) * | 2016-03-14 | 2020-06-03 | 株式会社島津製作所 | 温度制御装置およびターボ分子ポンプ |
GB2553374B (en) * | 2016-09-06 | 2021-05-12 | Edwards Ltd | Temperature sensor for a high speed rotating machine |
US10655638B2 (en) * | 2018-03-15 | 2020-05-19 | Lam Research Corporation | Turbomolecular pump deposition control and particle management |
TWM616858U (zh) * | 2021-04-21 | 2021-09-11 | 致揚科技股份有限公司 | 高效率的渦輪分子泵裝置 |
-
2021
- 2021-04-21 TW TW110114338A patent/TWI757158B/zh active
- 2021-12-23 CN CN202111589470.2A patent/CN115217776A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
CN115217776A (zh) | 2022-10-21 |
TWI757158B (zh) | 2022-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6287475B2 (ja) | 真空ポンプ | |
US7798767B2 (en) | Casing and gas turbine | |
CN111836968B (zh) | 真空泵 | |
JP6735058B2 (ja) | 真空ポンプ | |
CN110735805B (zh) | 真空泵 | |
JP7356869B2 (ja) | 真空ポンプ | |
JP2011080407A (ja) | 真空ポンプ | |
JP4222747B2 (ja) | 真空ポンプ | |
WO2021065584A1 (ja) | 真空ポンプ | |
KR20160119758A (ko) | 진공 펌프, 및 이 진공 펌프에 이용되는 단열 스페이서 | |
TWM616858U (zh) | 高效率的渦輪分子泵裝置 | |
TWI757158B (zh) | 高效率的渦輪分子泵裝置 | |
TW202305240A (zh) | 渦輪分子幫浦 | |
US20070274822A1 (en) | Vacuum Pump | |
JP6390478B2 (ja) | 真空ポンプ | |
JP2021116735A (ja) | 真空ポンプおよびステータコラム | |
JP6353257B2 (ja) | 排気口部品、および真空ポンプ | |
JP2007278192A (ja) | ターボ分子ポンプ | |
JP3827579B2 (ja) | 真空ポンプ | |
JP2000161284A (ja) | ターボ真空ポンプ | |
CN111094752A (zh) | 拖曳泵和包括拖曳泵的真空泵组 | |
TWI780855B (zh) | 真空泵 | |
TWI804846B (zh) | 高可靠性的渦輪分子泵及其系統 | |
CN114427539B (zh) | 涡轮分子泵 | |
WO2023106154A1 (ja) | 真空ポンプおよび良熱伝導性部品 |