TW202241496A - 金黃色葡萄球菌疫苗組合物 - Google Patents

金黃色葡萄球菌疫苗組合物 Download PDF

Info

Publication number
TW202241496A
TW202241496A TW111112917A TW111112917A TW202241496A TW 202241496 A TW202241496 A TW 202241496A TW 111112917 A TW111112917 A TW 111112917A TW 111112917 A TW111112917 A TW 111112917A TW 202241496 A TW202241496 A TW 202241496A
Authority
TW
Taiwan
Prior art keywords
amino acid
seq
spa
variant
immunogenic composition
Prior art date
Application number
TW111112917A
Other languages
English (en)
Inventor
布萊恩 某瑞
謝爾蓋 康斯坦丁諾夫
杰倫 格森
金泉 羅
桑迪普 索馬尼
彼得•T 巴克利
維克特•J 托雷斯
揚•修尼斯 普爾曼
Original Assignee
美商楊森製藥公司
紐約大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商楊森製藥公司, 紐約大學 filed Critical 美商楊森製藥公司
Publication of TW202241496A publication Critical patent/TW202241496A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/085Staphylococcus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/305Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F)
    • C07K14/31Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Micrococcaceae (F) from Staphylococcus (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55505Inorganic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55566Emulsions, e.g. Freund's adjuvant, MF59
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55572Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55577Saponins; Quil A; QS21; ISCOMS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/70Multivalent vaccine

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本發明涉及用於誘導受試者免疫應答以治療和/或預防金黃色葡萄球菌感染的免疫原性組合物。本文公開的免疫原性組合物包含金黃色葡萄球菌蛋白A(SpA)多肽和金黃色葡萄球菌殺白細胞素A(LukA)和/或殺白細胞素B(LukB)變體多肽。本發明還涉及在需要施用所公開的免疫原性組合物的受試者中產生針對金黃色葡萄球菌的免疫應答的方法。

Description

金黃色葡萄球菌疫苗組合物
本發明涉及金黃色葡萄球菌免疫原性組合物,以及所述組合物在治療和/或預防金黃色葡萄球菌感染的受試者中誘導免疫應答的用途。
金黃色葡萄球菌( Staphylococcus aureus)可引起廣泛的侵襲性疾病,包括敗血症、感染性心內膜炎和中毒性休克,以及較輕的皮膚和軟組織感染(Tong等人,“ Staphylococcus aureusInfections: Epidemiology, Pathophysiology, Clinical Manifestations, and Management,” Clin. Microbiol. Rev.28(3):603-661 (2015))。目前,還沒有疫苗被批准用於對抗金黃色葡萄球菌,並且治療方案因新出現的抗生素耐藥性而進一步受到限制(Sause等人,“Antibody-Based Biologics and Their Promise to Combat Staphylococcus aureus Infections,” Trends Pharmacol. Sci.37(3):231-241 (2016))。金黃色葡萄球菌引起多種臨床綜合征的能力通常與基因組成分的重大變化有關(Copin等人,“After the Deluge: Mining Staphylococcus aureusGenomic Data for Clinical Associations and Host-Pathogen Interactions,” Curr. Opin. Microbiol.41:43-50 (2018)和Recker等人,“Clonal Differences in Staphylococcus aureus Bacteraemia-Associated Mortality,” Nat. Microbiol. 2(10):1381-1388 (2017))。值得注意的是,所有的金黃色葡萄球菌分離株未共有大約40%的基因組(Bosi等人, “Comparative Genome-Scale Modelling of Staphylococcus aureus Strains Identifies Strain-Specific Metabolic Capabilities Linked to Pathogenicity,” Proc. Natl. Acad. Sci. USA 113(26):E3801-3809 (2016)),從而使疫苗和生物製劑生產中保守靶點的識別變得更加複雜。
本發明旨在克服本領域的這些和其他限制。
本發明的第一方面涉及包含(i)金黃色葡萄球菌蛋白A(SpA)多肽和(ii)金黃色葡萄球菌殺白細胞素A(LukA)變體多肽的免疫原性組合物。在替代方案中,本發明提供兩種或多種組合物的組合,它們共同包含(i)金黃色葡萄球菌蛋白A(SpA)多肽和(ii)金黃色葡萄球菌殺白細胞素A(LukA)變體多肽。
一方面,LukA變體多肽包含一個或多個氨基酸殘基處的氨基酸替換,所述氨基酸殘基對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193。
本發明的其他方面涉及免疫原性組合物或兩種或兩種以上免疫原性組合物的組合,所述免疫原性組合物包含LukA變體多肽,所述LukA變體多肽包含一個或多個附加氨基酸替換、刪除和/或添加至上述組合物。
本發明的另一個方面涉及免疫原性組合物或兩種或兩種以上免疫原性組合物的組合,共同包含(i)金黃色葡萄球菌蛋白A(SpA)多肽,(ii)金黃色葡萄球菌殺白細胞素A(LukA)變體多肽,以及(iii)金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體。
本發明的其他方面涉及免疫原性組合物或兩種或兩種以上免疫原性組合物的組合,包括一個或多個編碼本文所述的金黃色葡萄球菌蛋白A(SpA)多肽或其變體、LukA變體多肽和LukB多肽或其變體的核酸分子。
本發明的另一方面涉及一種免疫原性組合物或兩種或多種免疫原性組合物的組合,其包含一種或多種載體,所述載體包含編碼本文所述免疫原性組合物的金黃色葡萄球菌蛋白A(SpA)多肽或其變體、LukA變體多肽、以及LukB多肽或其變體的一種或多種核酸分子。
本發明的另一方面涉及包含宿主細胞的免疫原性組合物,其中所述宿主細胞包含本文所述的一個或多個核酸分子或載體。
本發明的另一方面涉及治療或預防有需要的受試者葡萄球菌感染的方法。所述方法涉及在有效治療或預防所述受試者葡萄球菌感染的條件下,向受試者施用有效量的如本文所述免疫原性組合物或免疫原性組合物的組合。
本發明的另一方面涉及一種在有需要的受試者中誘導金黃色葡萄球菌免疫應答的方法。所述方法涉及在有效誘導所述受試者對金黃色葡萄球菌產生免疫應答的條件下,向受試者施用有效量的如本文所述的免疫原性組合物或免疫原性組合物的組合。
本發明的另一方面涉及一種在有需要的受試者體內使葡萄球菌細菌去定植(decolonize)或防止其定植或再定植的方法。所述方法涉及在有效去定植或防止葡萄球菌細菌在受試者中定植或再定植的條件下,向受試者施用有效量的如本文所述的免疫原性組合物或免疫原性組合物的組合。
本發明的另一個方面涉及如本文所述的免疫原性組合物或免疫原性組合物的組合在受試者中產生對金黃色葡萄球菌免疫應答的方法中的用途。
金黃色葡萄球菌(S.aureus)是造成大量醫院和社區獲得性感染的原因。為了逃避免疫系統的清除,金黃色葡萄球菌採用多種策略。葡萄球菌蛋白A(SpA)是一種表面蛋白,是金黃色葡萄球菌的一個關鍵毒力因數,它至少具有兩種促進感染相關的功能。首先,細菌表面的細胞壁錨定SpA與IgG的Fcγ-結構域結合,並使抗體喪失效應器功能。抗體被非特異性地“倒置”結合,從而保護葡萄球菌免受宿主免疫細胞的調理吞噬殺傷(opsonophagocytic killing,OPK),並防止徹底(proper)清除。第二,SpA是一個關鍵的免疫逃逸決定因素,在金黃色葡萄球菌定植和感染期間阻止保護性免疫的形成。在定植和侵襲性疾病期間,釋放的SpA交聯VH3克隆B細胞受體,並觸發非金黃色葡萄球菌特異性抗體分泌,這些抗體無法將葡萄球菌決定簇識別為抗原。這種B細胞超抗原活性(即釋放的SpA的VH3結合活性)負責防止在定植或侵襲性疾病期間對金黃色葡萄球菌的保護性免疫的形成。使用失去免疫球蛋白結合活性的SpA變體作為疫苗抗原,可誘導以下SpA特異性抗體:(1)通過Fcγ中和其結合IgG的能力,(2)通過VH3獨特型重鏈對其結合IgG的能力進行中和,並使抗葡萄球菌免疫得以形成,(3)通過表面結合的SpA誘導調理吞噬清除。
葡萄球菌殺白細胞素A和B形成一種雙組分毒素(LukAB),在促進金黃色葡萄球菌感染方面具有不同的作用模式。LukAB是一種分泌毒素,與吞噬細胞結合後,聚集成孔,插入細胞膜,並溶解宿主細胞。這使得金黃色葡萄球菌能夠逃脫中性粒細胞的攻擊,並逃脫宿主的清除。通過LukA、LukB或LukAB類毒素免疫誘導的抗體會對LukAB毒素活性進行中和,從而使吞噬細胞存活下來,進而清除金黃色葡萄球菌。
包含這些抗原即SpA、LukA、LukB和LukAB的組合的免疫原性組合物會誘導對兩種金黃色葡萄球菌毒力因數進行中和的抗體,並阻止金黃色葡萄球菌的兩種獨立關鍵逃逸機制,以使抗體介導的調理吞噬作用生效。
在描述本發明的組合物和方法之前,應當理解,本發明不限於所描述的特定組合物或方法,因為它們可能有所不同。還應理解,描述中使用的術語僅用於描述特定版本或實施方案,並不旨在限制本文實施方案的範圍,其將僅受所附申請專利範圍的限制。除非另有定義,本文中使用的所有技術和科學術語具有本領域普通技術人員通常理解的相同含義。儘管與本文描述的那些類似或等效的任何方法和材料可以用於本文實施方案的實施或測試中,但是現描述優選的方法、裝置和材料。本文提及的所有出版物均以引用方式全部併入。本文中的任何內容均不得解釋為承認本文中的實施方案已被先前的發明提前披露。
必須注意,如本文和所附申請專利範圍中所使用的,單數形式“一個(a)”、“一個(an)”和“所述(the)”包括複數引用,除非上下文另有明確規定。
除非另有說明,否則任何數值,如本文所述的濃度或濃度範圍,應理解為在所有情況下都被術語“約”修飾。因此,數值通常包括所述數值的±10%。例如,1 mg/mL的濃度包括0.9 mg/mL至1.1 mg/mL。同樣,1%至10%(w/v)的濃度範圍包括0.9%(w/v)至11%(w/v)。如本文所使用的,除非上下文另有明確指示,否則數位範圍的使用明確包括所有可能的子範圍、該範圍內的所有單個數值,包括該範圍內的整數和數值的分數。
除非另有說明,否則一系列元素之前的術語“至少”應理解為指該系列中的每個元素。本領域技術人員將僅使用常規實驗來識別或能夠確定本文所述的本發明的特定實施方案的許多等效物。此類等效物旨在包含于本發明中。
如本文所用,術語“包含(comprises)”、“包含(comprising)”、“包括(includes)”、“包括(including)”“有(has)”、“有(having)”、“含(contains)”或“含(containing)”或其任何其他變體將被理解為包含所述整數或整數組,但不排除任何其他整數或整數組,且旨在非排他或開放式。例如,包含元素清單的組合物、混合物、工藝、方法、物品或裝置不一定僅限於這些元素,而是可以包括未明確列出的或此類組合物、混合物、工藝、方法、物品或裝置固有的其他元素。此外,除非另有明確相反規定,“或”指的是包容性的“或”,而不是排他性的“或”。例如,條件A或B由以下任一項滿足:A為真(或存在),B為假(或不存在),A為假(或不存在),B為真(或存在),A和B均為真(或存在)。如本文所使用的,多個所述元素之間的連詞“和/或”被理解為包含單個和組合選項。例如,當兩個元素由“和/或”連接時,第一個選項指的是第一個元素的適用性,而不是第二個元素。第二個選項指的是第二個元素在沒有第一個元素的情況下的適用性。第三種選擇是指第一和第二種元素同時適用。這些選項中的任何一個都被理解為在含義範圍內,因此滿足本文所用術語“和/或”的要求。多個選項的同時適用性也被理解為在含義範圍內,因此滿足術語“和/或”的要求。
如本文所用,本說明書和申請專利範圍中使用的術語“由...組成(consists of)”或變體,如“由...組成(consist of)”或“由...組成(consisting of)”表示包含任何列舉的整數或整數組,但不能向指定的方法、結構或組合中添加額外的整數或整數組。
如本文所用,術語“基本上由...組成(consists essentially of)”或在整個說明書和申請專利範圍中使用的“基本上由...組成(consist essentially of)”或“基本上由...組成(consisting essentially of)”等變體表示包含任何列舉的整數或整數組,以及可選地包含任何陳述的整數或整數組,這些整數或整數組不會實質性地改變指定方法、結構或組合的基本或新穎屬性。
如本文所用,“受試者”指任何動物,優選哺乳動物,最優選人類。本文使用的術語“哺乳動物”包括任何哺乳動物。哺乳動物的示例包括但不限於牛、馬、羊、豬、貓、狗、小鼠、大鼠、兔子、豚鼠、猴子、人類等,更優選人類。
還應理解,當提及優選發明的元件的尺寸或特徵時,此處使用的術語“約”、“大約”、“一般”、“實質上”和類似術語,指出所描述的尺寸/特徵不是嚴格的邊界或參數,並且不排除功能相同或類似的微小變化,應為本領域普通技術人員所理解。至少,包括數位參數的此類參考將包括使用本領域公認的數學和工業原理(例如,舍入、測定或其他系統誤差、製造公差等)不會改變最低有效數字的變化。
在兩個或多個核酸或多肽序列(例如,金黃色葡萄球菌LukA、LukB、SpA多肽和編碼它們的多核苷酸)的上下文中,術語“相同”或百分比“同一性”指的是兩個或多個相同的序列或子序列,或具有指定百分比的相同氨基酸殘基或核苷酸,當使用以下序列比較演算法之一或通過目視檢查進行測定時,進行比較和比對以獲得最大對應。
對於序列比較,通常一個序列作為參考序列,與測試序列進行比較。當使用序列比較演算法時,將測試序列和參考序列輸入電腦,必要時指定子序列座標,並指定序列演算法程式參數。然後,序列比較演算法根據指定的程式參數,計算測試序列相對於參考序列的序列同一性百分比。
可通過Smith&Waterman,Adv. Appl. Math. 2:482 (1981),的局部同源演算法對用於比較的序列進行優化比對,通過Needleman&Wunsch的同源比對演算法,J.Mol.Biol。48:443(1970),通過Pearson&Lipman,Proc. Nat’l. Acad. Sci. USA 85:2444 (1988)的相似性搜索方法,通過電腦實現這些演算法(威斯康辛遺傳學套裝軟體中的GAP、BESTFIT、FASTA和TFASTA,Genetics Computer Group, 575 Science Dr., Madison, WI),或通過目視檢查(一般見Current Protocols in Molecular Biology, F.M. Ausubel等人,(Current Protocols, (1995 Supplement))。
適用於確定百分比序列同一性和序列相似性的演算法示例為BLAST和BLAST 2.0演算法,其分別描述於Altschul等人 J. Mol. Biol. 215: 403-410和Altschul 等人(1997) Nucleic Acids Res. 25: 3389- 3402。進行BLAST分析的軟體可通過國家生物技術資訊中心(National Center for Biotechnology Information)公開獲取。
除了計算序列同一性百分比外,BLAST演算法還對兩個序列之間的相似性進行統計分析(參見Karlin&Altschul,Proc.Nat'l.Acad.Sci.USA 90:5873-5787(1993))。BLAST演算法提供的一個相似性度量是最小和概率(P(N)),它指示兩個核苷酸或氨基酸序列之間偶然匹配的概率。例如,如果測試核酸與參考核酸的比較中的最小和概率小於約0.1、更優選小於約0.01且最優選小於約0.001,則認為核酸與參考序列相似。
兩個核酸序列或多肽基本相同的另一個表現是,由第一個核酸編碼的多肽與由第二個核酸編碼的多肽在免疫上發生交叉反應,如下所述。因此,一種多肽通常與第二種多肽基本相同,例如,兩種多肽僅因保守替換而不同。兩個核酸序列基本相同的另一個表現是,這兩個分子在嚴格條件下相互雜交。
如本文所用,術語“多核苷酸”同義稱為“核酸分子”、“核苷酸”或“核酸”,指任何多核糖核酸或多去氧核糖核酸,其可以是未經修飾的RNA或DNA或經修飾的RNA或DNA。“多核苷酸”包括但不限於單鏈和雙鏈DNA、由單鏈和雙鏈區域、單鏈和雙鏈RNA混合而成的DNA,以及由單鏈和雙鏈區域混合而成的RNA、由DNA和RNA組成的雜交分子,可以是單鏈,或者更典型地,雙鏈或單鏈和雙鏈區域的混合物。此外,“多核苷酸”指由RNA或DNA或RNA和DNA組成的三鏈區域。多核苷酸一詞還包括含有一個或多個修飾鹼基的DNA或RNA,以及為穩定性或其他原因而修飾主體DNA或RNA。例如,“修飾”鹼基包括三醯化鹼基和不常用鹼基,如肌苷。可以對DNA和RNA進行多種修飾;因此,“多核苷酸”包括自然界中常見的化學、酶或代謝修飾形式的多核苷酸,以及病毒和細胞特有的DNA和RNA的化學形式。“多核苷酸”也包含相對較短的核酸鏈,通常被稱為寡核苷酸。
如本文所用,術語“載體”指的是,例如,任何數量的可插入所需序列的核酸,例如,限制和連接,用於在遺傳環境之間傳輸或在宿主細胞中表達。核酸載體可以是DNA或RNA。載體包括但不限於質粒、噬菌體、噬菌體、細菌基因組、病毒基因組、自擴增RNA、複製子。
如本文所用,術語“宿主細胞”指包含本發明核酸分子的細胞。“宿主細胞”可以是任何類型的細胞,例如原代細胞、培養中的細胞或細胞系中的細胞。在一個實施方案中,“宿主細胞”是用本發明的核酸分子轉染或轉導的細胞。在另一個實施方案中,“宿主細胞”是此類轉染或轉導細胞的後代或潛在後代。細胞的子代可能與母細胞相同,也可能與母細胞不同,例如,由於在後續世代中可能發生的突變或環境影響,或核酸分子整合到宿主細胞基因組中。
本文使用的術語“表達”指基因產物的生物合成。該術語包括將基因轉錄成RNA。該術語還包括將RNA翻譯成一種或多種多肽,並進一步包括所有自然發生的轉錄後和翻譯後修飾。表達的多肽可以位於宿主細胞的細胞質內,進入細胞外環境,如細胞培養的生長介質,或錨定在細胞膜上。
如本文所用,術語“肽”、“多肽”或“蛋白質”可指由氨基酸組成的分子,且本領域技術人員可將其識別為蛋白質。本文使用氨基酸殘基的常規一字母或三字母代碼。術語“肽”、“多肽”和“蛋白質”可在本文中互換使用,以指代任何長度的氨基酸聚合物。聚合物可以是線性的或支化的,它可以包含改性氨基酸,並且可以被非氨基酸打斷。這些術語還包括一種氨基酸聚合物,所述聚合物已通過自然或干預進行了修飾;例如,二硫鍵形成、糖基化、脂質化、乙醯化、磷酸化或任何其他操作或修飾,例如與標記成分的結合。定義中還包括,例如,含有一種或多種氨基酸類似物(包括,例如,非天然氨基酸等)的多肽,以及本領域已知的其他修飾。
本文所述的多肽序列是根據通常的慣例編寫的,其中肽的N端區域位於左側,C端區域位於右側。儘管已知氨基酸的異構形式,但除非另有明確說明,否則代表的是氨基酸的L型。
術語“分離”可指基本上不含來源細胞材料、細菌材料、病毒材料或培養基(通過重組DNA技術生產時)或化學前體或其他化學品(化學合成時)的核酸或多肽。此外,分離多肽是指可以作為分離多肽給受試者施用的多肽;換句話說,如果多肽粘附在柱上或嵌入凝膠中,則不能簡單地認為它是“分離的”。此外,“分離核酸片段”或“分離肽”是不以片段形式自然產生的片段和/或通常不處於功能狀態的核酸或蛋白質片段。
如本文所用,短語“免疫反應”或其等效表達“免疫學反應”是指在受體受試者中對本發明的蛋白質、肽、碳水化合物或多肽產生的體液(抗體介導的)、細胞(由抗原特異性T細胞或其分泌產物介導)或體液和細胞反應。這種反應可以是由免疫原誘導的主動反應,也可以是由抗體、含抗體材料或預處理T細胞誘導的被動反應。通過呈現與I類或II類MHC分子相關的多肽表位,啟動抗原特異性CD4(+)輔助性T細胞和/或CD8(+)細胞毒性T細胞,誘導細胞免疫反應。這種反應還可能涉及單核細胞、巨噬細胞、NK細胞、嗜鹼性粒細胞、樹突狀細胞、星形膠質細胞、小膠質細胞、嗜酸性粒細胞或其他先天免疫成分的啟動。如本文所用,“主動免疫”指通過給予抗原而賦予受試者的任何免疫。
本發明涉及適於誘導對金黃色葡萄球菌免疫應答的免疫原性組合物。如本文所述,在一些實施方案中,所述免疫原性組合物包含金黃色葡萄球菌蛋白A(SpA)多肽和金黃色葡萄球菌殺白細胞素A(LukA)變體多肽。在一些實施方案中,所述免疫原性組合物進一步包含金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體多肽。在一些實施方案中,所述免疫原性組合物包含金黃色葡萄球菌SpA蛋白和金黃色葡萄球菌LukB變體多肽。本發明進一步涉及在治療和/或預防金黃色葡萄球菌感染中使用免疫原性組合物的用途和方法。
因此,在廣義方面,本發明提供了一種組合物,其包括: (i)        一種金黃色葡萄球菌蛋白A(SpA)多肽,和 (ii)     金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽在對應於SEQ ID NO: 25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基處包含氨基酸替換。 在某些實施方案中,所述組合物進一步包含(iii)金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體。在某些實施方案中,所述組合物進一步包含(iv)佐劑。
所述組合物的組分(i)、(ii)、(iii)和(iv)可配製為單一產品,即作為單一組合物。或者,組分(i)、(ii)、(iii)和(iv)可分別在單個組合物中或在包含兩種或兩種以上組分組合的組合物中配製。因此,在另一方面,本發明提供了兩種或兩種以上組合物的組合,其共同包括: (i)        一種金黃色葡萄球菌蛋白A(SpA)多肽,和 (ii)     一種金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽在對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基處包含氨基酸替換。 在某些實施方案中,兩種或兩種以上組合物的組合進一步包含(iii)金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體。在某些實施方案中,所述兩種或兩種以上組合物的組合還包括(iv)佐劑。 在某些實施方案中,組合物的組合可在使用前組合成單個組合物。在其他實施方案中,所述組合物的組合用作將相互組合施用的單獨組合物。 免疫原性組合物的金黃色葡萄球菌殺白細胞素 A LukA )多肽
一方面,本發明的免疫原性組合物包含金黃色葡萄球菌LukA變體多肽。合適的LukA變體多肽包含一個或多個氨基酸殘基插入、替換和/或缺失,使含有這種LukA變體的LukAB雙組分複合物無細胞毒性。LukA變體多肽還能使LukAB異二聚體穩定,提高熔融溫度和/或增加異二聚體的溶解性。
在所有實施方案中,所述免疫原性組合物的LukA變體多肽可以是全長LukA蛋白的變體,其包含對應于全長成熟LukA蛋白序列的所有氨基酸殘基。如本文所述,“成熟”殺白細胞素蛋白質序列是缺乏氨基末端分泌信號的殺白細胞素蛋白質序列,其通常包含氨基末端上的前27-28個氨基酸殘基。
在任意實施方案中,所述免疫原性組合物的LukA變體多肽可以是小於全長成熟LukA蛋白的變體。在任意實施方案中,變體LukA多肽的長度至少為100個氨基酸殘基。在任意實施方案中,變體LukA多肽的長度為至少110、至少120、至少130、至少140、至少150、至少160、至少170、至少180、至少190、至少200、至少210、至少220、至少230、至少240、至少250、至少260、至少270、至少280、至少290、至少300個氨基酸殘基。
儘管本文所述免疫原性組合物的示例性LukA變體蛋白質和多肽是克隆複合物CC8(SEQ ID NO:1)和CC45(SEQ ID NO:2)的變體LukA蛋白質(見下表1),本領域技術人員將容易理解,在SEQ ID NO:1和SEQ ID NO:2的上下文中識別的LukA的氨基酸替換和/或刪除是在各種克隆複合物中保守的氨基酸殘基,或在各種克隆複合物中高度保守的LukA區域內保守的氨基酸殘基。事實上,來自15種不同金黃色葡萄球菌菌株的LukA蛋白序列的比對(見圖1)表明,本文中鑒定為易變異的氨基酸殘基是在所有15種比對的LukA氨基酸序列中保守的殘基。雖然已識別的變異殘基在各個LukA序列之間的位置可能不同,但序列比對示出了這些位置之間的對應關係。為清楚起見,根據序列比對生成了具有SEQ ID NO:25氨基酸序列的LukA共有序列,並用於指定特定氨基酸變異的位置。例如,SEQ ID NO:25中賴氨酸殘基83處的氨基酸替換對應於SEQ ID NO:1的LukA序列中80位的賴氨酸殘基、SEQ ID NO:2的LukA序列中81位的賴氨酸殘基以及SEQ ID NO:26–38的LukA序列中83位的賴氨酸殘基。因此,本文所述的已識別氨基酸變體可普遍應用於現在或將來已知的任何LukA氨基酸序列的相應氨基酸殘基。
根據本發明的這一方面,在任意實施方案中,所述免疫原性組合物的LukA變體多肽在對應於SEQ ID NO:25的殘基Lys83、Ser141、Val113、Val193的一個或多個氨基酸殘基處包含氨基酸殘基插入、替換和/或缺失。在任意實施方案中,除了上述一個或多個氨基酸殘基插入、替換和/或缺失之外,LukA變體多肽還包括對應於SEQ ID NO:25的Glu323的氨基酸殘基處的氨基酸替換或刪除。在任意實施方案中,Glu323處的氨基酸替換或缺失包含SEQ ID NO:25的第323位處的谷氨酸到丙氨酸的替換(Glu323Ala)。
在任意實施方案中,LukA(以及本文所述的其他金黃色葡萄球菌蛋白質)的一個或多個鑒定位置處的氨基酸替換是保守替換。這種保守替換包括用一個氨基酸殘基替換同一類別的另一個氨基酸殘基,後者起到功能等效物的作用,造成靜默改變。也就是說,相對于原生序列的變化不會明顯削弱LukA的基本屬性。這類氨基酸殘基包括非極性(疏水)氨基酸(例如,丙氨酸、亮氨酸、異亮氨酸、纈氨酸、脯氨酸、苯丙氨酸、色氨酸和蛋氨酸);極性中性氨基酸(如甘氨酸、絲氨酸、蘇氨酸、半胱氨酸、酪氨酸、天冬醯胺和穀氨醯胺);帶正電的(鹼性)氨基酸(如精氨酸、賴氨酸和組氨酸;帶負電的(酸性)氨基酸(如天冬氨酸和谷氨酸)。
在其他實施方案中,如本文所述的變體殺白細胞素或SpA多肽的一個或多個已鑒定位置處的氨基酸替換是非保守改變(即,破壞已識別區域的序列、結構、功能或活性的替換)。為了降低或減輕蛋白質的細胞毒性,這種替代可能是期望的。非保守替換是指將一個特定類別的氨基酸殘基替換為另一類別的氨基酸殘基。例如,用極性中性氨基酸替換非極性(疏水性)氨基酸殘基,反之亦然。在另一個實施方案中,非保守替換涉及帶正電(鹼性)氨基酸殘基與帶負電(酸性)氨基酸殘基(例如天冬氨酸和谷氨酸)的替換,或反之亦然。這種分子改變可以通過本領域眾所周知的方法實現,包括使用單鏈範本(Kunkel等人,Proc.Acad.Sci., USA 82:488-492(1985),通過引用將其全部併入本文)、雙鏈DNA範本(Papworth等人,Strategies 9(3):3-4 (1996),通過引用將其全部內容併入本文)、和PCR克隆(Braman, J. (ed.), IN VITRO MUTAGENESIS PROTOCOLS, 2nd ed. Humana Press, Totowa, N.J. (2002),通過引用將其全部內容併入本文)。
在任意實施方案中,免疫原性組合物的LukA變體多肽在與SEQ ID NO:25第83位賴氨酸對應的殘基處包含賴氨酸到蛋氨酸的替換(Lys83Met)。在任意實施方案中,免疫原性組合物的LukA變體多肽在對應與SEQ ID NO:25第141位絲氨酸的殘基處包含絲氨酸到丙氨酸的替換(Ser141Ala)。在任意實施方案中,免疫原性組合物的LukA變體多肽在對應於SEQ ID NO:25第113位處的纈氨酸殘基處包含纈氨酸到異亮氨酸的替換(Val113Ile)。在任意實施方案中,免疫原性組合物的LukA變體多肽在對應於SEQ ID NO:25第193位處的纈氨酸殘基處包含纈氨酸到異亮氨酸的替換(Val193Ile)。
在任意實施方案中,所述免疫原性組合物的LukA變體多肽除了在任意實施方案中對應於SEQ ID NO:25的Lys83、Ser141、Val113和Val193的殘基處的任何一個或多個替換之外,還在對應於SEQ ID NO:25的第323位谷氨酸殘基的殘基處包括谷氨酸到丙氨酸的替換(Glu323Ala)。
在任意實施方案中,所述免疫原性組合物的LukA變體多肽包含一種蛋白質或其多肽,所述蛋白質或多肽在對應於SEQ ID NO:25的Lys83、Ser141、Val113和Val193的上述兩個氨基酸殘基處具有氨基酸殘基插入、替換和/或缺失。在任意實施方案中,LukA變體多肽包含上述三個氨基酸殘基處的氨基酸殘基插入、替換和/或缺失。在任意實施方案中,LukA變體多肽包含上述所有四個氨基酸殘基處的氨基酸殘基插入、替換和/或缺失。在任意實施方案中,LukA變體多肽包含在對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile和Val193Ile的前述氨基酸殘基處賴氨酸到蛋氨酸、絲氨酸到丙氨酸、纈氨酸到異亮氨酸的氨基酸替換。在任意實施方案中,變體LukA蛋白質或其多肽進一步包含對應於SEQ ID NO:25的Glu323Ala的氨基酸替換,即變體LukA包含對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的替換。
本文所述免疫原性組合物的示例性LukA變體多肽在對應於SEQ ID NO:25中Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的氨基酸替換。在任意實施方案中,免疫原性組合物的LukA變體多肽為CC8 LukA變體,其包含選自SEQ ID NO:1中的Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的任何一個或多個氨基酸替換。在任意實施方案中,免疫原性組合物的LukA變體多肽為CC8 LukA變體,其包含對應於SEQ ID NO:1中Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala中每一個的氨基酸替換。在任意實施方案中,所述LukA變體多肽具有SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的LukA變體多肽是CC45 LukA變體多肽,其包含與SEQ ID NO:2中的Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala相對應的任何一個或多個氨基酸替換。在任意實施方案中,所述免疫原性組合物的LukA變體多肽是CC45 LukA變體多肽,其包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala中每一個的氨基酸替換。在一些實施方案中,所述LukA變體多肽具有SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。其他示例性變體LukA蛋白質包括SEQ ID NO:26–38的LukA蛋白質中的任何一種,其包含對應於SEQ ID NO:25中Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala的替換的氨基酸替換。
在任意實施方案中,如本文所述的免疫原性組合物的LukA變體多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基處的氨基酸替換。在一個實施方案中,上述一個或多個殘基處的氨基酸替換引入能夠形成二硫鍵的半胱氨酸殘基,以穩定LukAB異二聚體結構的構象。例如,在一個實施方案中,本文所述的LukA變體多肽在對應於SEQ ID NO:25的Tyr74的氨基酸殘基處包含酪氨酸到半胱氨酸的替換(Tyr74Cys),並且在對應於SEQ ID NO:25的Asp140的氨基酸殘基處包含天冬醯胺到半胱氨酸的替換(Asp140Cys)。第74和140位處的這些半胱氨酸殘基形成二硫鍵,從而相對於野生型LukA或相對于本文所述的不包含能夠形成二硫鍵的成對半胱氨酸殘基的其他變體LukA蛋白質和多肽增加變體LukA的熱穩定性。
在另一個實施方案中,本文所述的免疫原性組合物的LukA變體多肽在對應於SEQ ID NO:25的Gly149的氨基酸殘基處包含甘氨酸到半胱氨酸的替換(Gly149Cys),並且在對應於SEQ ID NO:25的Gly156的氨基酸殘基處包含甘氨酸到半胱氨酸的替換(Gly156Cys)。這些在149和156位引入的半胱氨酸殘基形成二硫鍵,從而提高變體LukA相對於野生型LukA或相對于本文所述的不含能夠形成二硫鍵的成對半胱氨酸殘基的其他變體LukA多肽的熱穩定性。
在任意實施方案中,所述免疫原性組合物的變體LukA多肽包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。在任意實施方案中,所述免疫原性組合物的變體LukA多肽包含對應於SEQ ID NO:1的氨基酸殘基Tyr71、Asp137、Gly146和Gly153的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。在任意實施方案中,所述免疫原性組合物的變體LukA多肽包含對應於SEQ ID NO:2的氨基酸殘基Tyr72、Asp138、Gly147和Gly154的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。
在任意實施方案中,所述免疫原性組合物的變體LukA蛋白質或多肽包含對應於Lys83、Ser141、Val113、Val193和Glu323的一個或多個氨基酸殘基處的氨基酸替換,以及對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,變體LukA多肽包含對應於SEQ ID NO:25的殘基Lys83、Ser141、Val113、Val193和Glu323的氨基酸殘基,以及殘基Tyr74、Asp140、Gly149和Gly156處的氨基酸替換。
在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320、Tyr71、Asp137、Gly146和Gly153中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys中的每一個的殘基處具有氨基酸替換。在任意實施方案中,所述CC8 LukA變體多肽包含SEQ ID NO:5的氨基酸序列,或與SEQ ID NO:5的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,免疫原性組合物的示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321、Tyr72、Asp138、Gly147和Gly154中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys中的每一個的殘基處具有氨基酸替換。在一些實施方案中,所述CC45 LukA變體多肽包含SEQ ID NO:6的氨基酸序列,或與SEQ ID NO:6的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
所述免疫原性組合物的其他示例性LukA變體多肽包括SEQ ID NO:26–38的LukA蛋白質中的任何一種,其包含對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile、Glu323Ala、Tyr74Cys、Asp140Cys、Gly149Cys和Gly156Cys的氨基酸替換。
在任意實施方案中,如本文所述的免疫原性組合物的LukA變體多肽在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基處包含氨基酸替換或刪除。在任意實施方案中,LukA變體包含對應於Thr249的殘基處的替換,其中所述替換是該殘基處的蘇氨酸對纈氨酸的替換(Thr249Val)。
在任意實施方案中,如本文所述的免疫原性組合物的LukA變體蛋白質或多肽包括與SEQ ID NO:25的Thr249相對應的氨基酸殘基處的氨基酸替換,以及本文所述的任何一種其他氨基酸殘基替換,即與Lys83、Ser141、Val113、Val193相對應的殘基處的替換,SEQ ID NO:25的Glu323 Tyr74、Asp140、Gly149和Gly156。在任意實施方案中,本文所述的LukA變體蛋白質或多肽包含對應於SEQ ID NO:25的Thr249的氨基酸殘基處的氨基酸替換,以及本文所述的至少兩個、至少三個、至少四個、至少五個、至少六個、至少七個、至少八個或所有九個其他氨基酸殘基替換。在任意實施方案中,變體LukA蛋白質或多肽包含對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323和Thr249的每個殘基處的氨基酸替換。
在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC8 LukA變體多肽,其在殘基Thr246處僅具有氨基酸替換,或與對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190和Glu320中的每一個的任何一個或多個氨基酸替換組合。在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320和Thr246中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala和Thr246Val中的每一個的殘基處具有氨基酸替換。在一個實施方案中,示例性LukA變體多肽在對應於上述每個位置的殘基處具有氨基酸替換,其具有SEQ ID NO:7的氨基酸序列,或與SEQ ID NO:7的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC45 LukA變體多肽,其在殘基Thr247處僅具有氨基酸替換,或與對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191和Glu321中的每一個的任何一個或多個氨基酸替換組合。在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321和Thr247中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala和Thr247Val中的每一個的殘基處具有氨基酸替換。在一個實施方案中,在對應於上述每個位置的殘基處具有氨基酸替換的示例性LukA變體多肽具有SEQ ID NO:8的氨基酸序列,或與SEQ ID NO:8的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。
所述免疫原性組合物的其他示例性變體LukA蛋白質包括SEQ ID No:26–38的LukA蛋白質中的任何一種,其在對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323和Thr249的氨基酸殘基處包含所述氨基酸替換。
在任意實施方案中,所述免疫原性組合物的變體LukA蛋白質或多肽包含對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Thr249、Tyr74、Asp140、Gly149和Gly156的每個殘基處的氨基酸替換。
在任意實施方案中,所述免疫原性組合物的示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80、Ser138、Val110、Val190、Glu320、Tyr71、Asp137、Gly146、Gly153和Thr246中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC8 LukA變體多肽,其在對應於SEQ ID NO:1的Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Glu320Ala、Tyr71Cys、Asp137Cys、Gly146Cys、Gly153Cys和Thr246Val中的每一個的殘基處具有氨基酸替換。在一個實施方案中,示例性LukA變體多肽在對應於上述每個位置的殘基處具有氨基酸替換,其具有SEQ ID NO:9的氨基酸序列,或與SEQ ID NO:9的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。
在任意實施方案中,免疫原性組合物的示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81、Ser139、Val111、Val191、Glu321、Tyr72、Asp138、Gly147、Gly154和Thr247中的每一個的殘基處具有氨基酸替換。在任意實施方案中,示例性LukA變體多肽是CC45 LukA變體多肽,其在對應於SEQ ID NO:2的Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Glu321Ala、Tyr72Cys、Asp138Cys、Gly147Cys、Gly154Cys和Thr247Ala中的每一個的殘基處具有氨基酸替換。在一個實施方案中,在對應於上述每個位置的殘基處具有氨基酸替換的示例性LukA變體多肽具有SEQ ID NO:10的氨基酸序列,或與SEQ ID NO:10的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。
所述免疫原性組合物的其他示例性變體LukA蛋白質包括SEQ ID NO:26–38的LukA蛋白質中的任何一種,所述蛋白包含所述對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Thr249、Tyr74、Asp140、Gly149和Gly156殘基的氨基酸替換。
下表1提供了本文所公開的免疫原性組合物的示例性變體LukA氨基酸序列。 1. 示例性 LukA 多肽氨基酸序列
SEQ ID NO 名稱 描述
1 LukA CC8 WT HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHKEEKNSNWLKYPSEYHVDFQVKRNRKTEILDQLPKNKISTAKVDSTFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWSVIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYKEG
  2   LukA CC45 WT ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYKEG  
3 LukA CC8 W95E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKVD A TFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
4 LukA CC45 W95E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
5 LukA CC8 W95W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKV CA TFSYSSG C KFDSTK C IGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
6 LukA CC45 W95W72E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Tyr72Cys, Asp138Cys,  Gly147Cys, Gly154Cys ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKV CA TFSYSLG C KFDSTK C IGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
7 LukA CC8 W97E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKVN A TFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFL V YLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
8 LukA CC45 W97 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
9 LukA CC8 W97 W72E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val, Tyr71Cys, Asp137Cys, Gly146Cys, Gly153Cys HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHKEEKNSNWLKYPSEYH I DFQVKRNRKTEILDQLPKNKISTAKV CA TFSYSSG C KFDSTK C IGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS I IANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFL V YLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
10 LukA CC45 W97 W72 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val, Tyr72Cys, Asp138Cys,  Gly147Cys, Gly154Cys ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPT C DKNVLLVK M QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKV CA TFSYSLG C KFDSTK C IGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
11 LukA CC45 W94E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile   ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK L QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
12 LukA CC45 W96E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile, Thr247Val   ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVK L QGSIHSNLKFESHRNETNASWLKYPSEYH I DFQVQRNPKTEILDQLPKNKISTAKVD A TFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWS I VANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFL V YISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
13 LukA CC8Glu320Ala   HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK KQGSIHSNLKFESHKEEKNSNWLKYPSEYH VDFQVKRNRKTEILDQLPKNKISTAKVD STFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS VIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKYSDDNKPYK A G
14 LukA CC45Glu321Ala ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKYSDQNKPYK A G
113 LukA CC8 Δ 10 HKDSQDQNKKEHVDKSQQKDKRNVTNKDKNSTAPDDIGKNGKITKRTETVYDEKTNILQNLQFDFIDDPTYDKNVLLVK KQGSIHSNLKFESHKEEKNSNWLKYPSEYH VDFQVKRNRKTEILDQLPKNKISTAKVD STFSYSSGGKFDSTKGIGRTSSNSYSKTISYNQQNYDTIASGKNNNWHVHWS VIANDLKYGGEVKNRNDELLFYRNTRIATVENPELSFASKYRYPALVRSGFNPEFLTYLSNEKSNEKTQFEVTYTRNQDILKNRPGIHYAPPILEKNKDGQRLIVTYEVDWKNKTVKVVDKY
114 LukA CC45 Δ 10 ANKDSQDQTKKEHVDKAQQKEKRNVNDKDKNTPGPDDIGKNGKVTKRTVSEYDKETNILQNLQFDFIDDPTYDKNVLLVKKQGSIHSNLKFESHRNETNASWLKYPSEYHVDFQVQRNPKTEILDQLPKNKISTAKVDSTFSYSLGGKFDSTKGIGRTSSNSYSKSISYNQQNYDTIASGKNNNRHVHWSVVANDLKYGNEIKNRNDEFLFYRNTRLSTVENPELSFASKYRYPALVRSGFNPEFLTYISNEKTNDKTRFEVTYTRNQDILKNKPGIHYGQPILEQNKDGQRFIVVYEVDWKNKTVKVVEKY
免疫原性組合物的金黃色葡萄球菌殺白細胞素 B LukB )多肽
在一些方面,本發明的免疫原性組合物包含金黃色葡萄球菌殺白細胞素B(LukB)蛋白質或多肽。在任意實施方案中,所述金黃色葡萄球菌LukB蛋白質或多肽是野生型蛋白質或多肽。合適的LukB多肽包括本文公開的LukB多肽中的任何一種,例如,具有選自SEQ ID NO:15、16和39-51的任何氨基酸序列的多肽。在任意實施方案中,所述LukB多肽為CC8 LukB多肽。合適的CC8 LukB多肽包含SEQ ID NO:15的氨基酸序列。在任意實施方案中,所述LukB多肽為CC45 LukB多肽。一種合適的CC45 LukB多肽包含SEQ ID NO:16的氨基酸序列。
在任意實施方案中,本文公開的免疫原性組合物的LukB多肽包含LukB變體多肽。合適的LukB變體多肽包含一個或多個氨基酸殘基插入、替換和/或缺失,其可提高LukB穩定性,從而有助於LukB類毒素穩定性。如本文所述,這些變體LukB蛋白質和多肽是理想的候選疫苗抗原,其可與SpA多肽單獨或與殺白細胞素A(LukA)變體蛋白質或多肽組合包含在免疫原性組合物中。當所述免疫原性組合物包含LukB和LukA多肽的組合時,產生的類毒素模擬金黃色葡萄球菌LukAB毒素的結構,從而促進產生針對金黃色葡萄球菌最有效毒素之一的強大免疫應答。
在任意實施方案中,所述免疫原性組合物的LukB變體多肽是全長LukB蛋白質的變體,包含對應于全長成熟LukB蛋白質序列的所有氨基酸殘基。在任意實施方案中,所述LukB變體多肽是小於全長成熟LukB蛋白質的變體。在任意實施方案中,所述變體LukB多肽的長度至少為100個氨基酸殘基。在任意實施方案中,所述變體LukB多肽的長度為至少110、至少120、至少130、至少140、至少150、至少160、至少170、至少180、至少190、至少200、至少210、至少220、至少230、至少240、至少250、至少260、至少270、至少280、至少290、至少300個氨基酸殘基。
本文所述的示例性LukB變異蛋白質和多肽是克隆複合物CC8(SEQ ID NO:15)和CC45(SEQ ID NO:16)的變異LukB蛋白質(見下表2),本領域技術人員將容易理解,在SEQ ID NO:15和SEQ ID NO:16的背景下鑒定的LukB的氨基酸替換和/或刪除是在各種克隆複合物中保守的氨基酸殘基或在各種克隆複合物中高度保守的LukB區域內保守的氨基酸殘基。來自14種不同金黃色葡萄球菌菌株的LukB蛋白質序列的比對(見圖2)表明,本文中鑒定為進行變異的殘基的氨基酸殘基是在所有14種比對的LukB氨基酸序列中保守的殘基。雖然已鑒定的變異殘基的位置在各個LukB序列之間可能不同,但序列比對示出了這些位置之間的對應關係。為清楚起見,根據序列比對生成了具有SEQ ID NO:39氨基酸序列的LukB共有序列,並用於指定特定氨基酸變異的位置。例如,SEQ ID NO:39中谷氨酸殘基109處的氨基酸替換對應於SEQ ID NO:15、42、44和46–51的LukB序列中109位的谷氨酸殘基,SEQ ID NO:16、40、43和45的LukB序列中110位的谷氨酸殘基,以及SEQ ID NO:41的LukB序列中60位的谷氨酸殘基。因此,本文所述的已鑒定氨基酸變體可普遍應用於現在或將來已知的任何LukB氨基酸序列中的相應氨基酸殘基。
在任意實施方案中,本文所公開的免疫原性組合物的合適LukB變體多肽在對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基處包含氨基酸替換或刪除。在任意實施方案中,Val53處的氨基酸替換包括纈氨酸到亮氨酸(Val53Leu)替換。在任意實施方案中,一種示例性LukB變體多肽包含對應於SEQ ID NO:39中Val53Leu替換的替換。
在任意實施方案中,所述免疫原性組合物的示例性LukB變體多肽為CC8 LukB變體多肽,其在對應於SEQ ID NO:15的第53位的氨基酸位置處具有氨基酸替換。在任意實施方案中,示例性LukB變體多肽是CC8 LukB變體多肽,其在對應於SEQ ID NO:15的第53位的位置處具有纈氨酸到亮氨酸氨基酸替換。在任意實施方案中,在第53位處具有纈氨酸到亮氨酸替換的示例性CC8 LukB序列包含SEQ ID NO:17的氨基酸序列,或與SEQ ID NO:17的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的示例性LukB變體多肽為CC45 LukB變體多肽,其在對應於SEQ ID NO:16的第53位的氨基酸位置處具有氨基酸替換。在任意實施方案中,示例性LukB變體多肽是CC45 LukB變體多肽,其在對應於SEQ ID NO:16的第53位的位置處具有纈氨酸到亮氨酸氨基酸替換。包含纈氨酸到亮氨酸替換的示例性LukB變體多肽包含SEQ ID NO:18的氨基酸序列,或與SEQ ID NO:18的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
其他示例性變體LukB蛋白質包括SEQ ID NO:40–51的任何一種LukB蛋白質,其包含對應於Val53Leu的氨基酸替換。
在任意實施方案中,如本文所述的免疫原性組合物的LukB變體多肽包含一個或多個對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154氨基酸殘基處的氨基酸替換。在任意實施方案中,在上述一個或多個殘基處的氨基酸替換引入了能夠形成二硫鍵以穩定LukAB異二聚體結構構象的半胱氨酸殘基。例如,在一個實施方案中,本文所述的LukB變體蛋白質或多肽在對應於SEQ ID NO:39的Glu45的氨基酸殘基處包含谷氨酸到半胱氨酸的替換(Glu45Cys),並且在對應於SEQ ID NO:39的Thr121的氨基酸殘基處包含蘇氨酸到半胱氨酸的替換(Thr21Cys)。第45和121位處的這些半胱氨酸殘基形成二硫鍵,從而提高變體LukB相對於野生型LukB或相對于本文所述的其他變體LukB蛋白質和多肽(不含能夠形成二硫鍵的成對半胱氨酸殘基)的熱穩定性。
在任意實施方案中,本文所述免疫原性組合物的LukB變體蛋白質或多肽在對應於SEQ ID NO:39的Glu109的氨基酸殘基處包含谷氨酸到半胱氨酸的替換(Glu109Cys),並且在對應於SEQ ID NO:39的Arg154的氨基酸殘基處包含精氨酸到半胱氨酸的替換(Arg154Cys)。這些在109和154位置引入的半胱氨酸殘基形成二硫鍵,從而相對於野生型LukB或相對于本文所述的不包含能夠形成二硫鍵的成對半胱氨酸殘基的其他變體LukB蛋白質和多肽增加變體LukB的熱穩定性。
在任意實施方案中,免疫原性組合物的LukB變體多肽是CC8 LukB變體多肽,其包含對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,免疫原性組合物的LukB變體多肽是CC8 LukB變體多肽,其包含對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。在任意實施方案中,在對應於Glu45、Glu109、Thr121和Arg154的殘基處包含半胱氨酸氨基酸替換的示例性LukB變體多肽包含SEQ ID NO:21的氨基酸序列,或與SEQ ID NO:21的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,如本文所述的免疫原性組合物的LukB變體多肽包含一個或多個對應於SEQ ID NO:16氨基酸殘基Glu45、Glu110、Thr122和Arg155的氨基酸殘基的氨基酸替換。在任意實施方案中,所述免疫原性組合物的LukB變體多肽是CC45 LukB變體多肽,其包含對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。在任意實施方案中,在對應於Glu45、Glu110、Thr122和Arg155的殘基處包含半胱氨酸氨基酸替換的示例性LukB變體多肽包含SEQ ID NO:22的氨基酸序列,或與SEQ ID NO:22的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,如本文所公開的免疫原性組合物的LukB變體多肽包括與SEQ ID NO:39的Val53對應的氨基酸殘基處的氨基酸替換,以及與SEQ ID NO:39的Glu45、Glu109、Thr121和Arg154對應的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,所述LukB變體多肽是CC8 LukB變體多肽,其包含對應於SEQ ID NO:15的氨基酸殘基Val53、Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,所述LukB變體多肽是CC8 LukB變體多肽,其包含對應於SEQ ID NO:15的氨基酸殘基Val53Leu、Glu45Cys、Glu109Cys、Thr121Cys和Arg154Cys的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,示例性CC8 LukB變體多肽包含SEQ ID NO:19的氨基酸序列,或與SEQ ID NO:19的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的LukB變體多肽是CC45 LukB變體多肽,其包含對應於SEQ ID NO:16的氨基酸殘基Val53、Glu45、Glu110、Thr122和Arg155的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,所述LukB變體多肽是CC45 LukB變體多肽,其包含對應於SEQ ID NO:16的氨基酸殘基Val53Leu、Glu45Cys、Glu110Cys、Thr123Cys和Arg155Cys的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,示例性CC45 LukB變體多肽包含SEQ ID NO:20的氨基酸序列,或與SEQ ID NO:20的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
免疫原性組合物的其他示例性LukB變體多肽包括SEQ ID NO:40–51的LukB蛋白質中的任何一種,其包含SEQ ID NO:39的對應於SEQ ID NO:39殘基Val53、Glu45、Glu109、Thr121和Arg154的所述氨基酸替換。
下表2提供了本文所公開的免疫原性組合物的示例性變體LukB氨基酸序列。 2. 示例性 LukB 多肽氨基酸序列
SEQ ID NO 名稱 描述
  15   LukB CC8 WT KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLTEPNYDKETVFIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKESNYSETISYQQPSYRTLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK  
  16   LukB CC45 WT EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLTEPNYDKETVFIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKEKNYSETISYQQPSYRTLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK
  17   LukB CC8 Val53Leu KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLTEPNYDKET L FIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKESNYSETISYQQPSYRTLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK  
  18   LukB CC45 Val53Leu EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLTEPNYDKET L FIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQDESREVKYTYGYKTGGDFSINRGGLTGNITKEKNYSETISYQQPSYRTLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
  19   LukB CC8 Val53Leu, Glu45Cys, Glu109Cys, Thr121Cys, and Arg154Cys KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLT C PNYDKET L FIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKESNYSETISYQQPSY C TLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK
  20     LukB CC45 Val53Leu, Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLT C PNYDKET L FIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKEKNYSETISYQQPSY C TLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
  21   LukB CC8 Glu45Cys, Glu109Cys, Thr121Cys, and Arg154Cys KINSEIKQVSEKNLDGDTKMYTRTATTSDSQKNITQSLQFNFLT C PNYDKET VFIKAKGTIGSGLRILDPNGYWNSTLRWPGSYSVSIQNVDDNNNTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKESNYSETISYQQPSY C TLLDQSTSHKGVGWKVEAHLINNMGHDHTRQLTNDSDNRTKSEIFSLTRNGNLWAKDNFTPKDKMPVTVSEGFNPEFLAVMSHDKKDKGKSQFVVHYKRSMDEFKIDWNRHGFWGYWSGENHVDKKEEKLSALYEVDWKTHNVKFVKVLNDNEKK
  22     LukB CC45 Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys EIKSKITTVSEKNLDGDTKMYTRTATTSDTEKKISQSLQFNFLT C PNYDKET VFIKAKGTIGSGLKILNPNGYWNSTLRWPGSYSVSIQNVDDNNNSTNVTDFAPKNQD C SREVKYTYGYK C GGDFSINRGGLTGNITKEKNYSETISYQQPSY C TLIDQPTTNKGVAWKVEAHSINNMGHDHTRQLTNDSDDRVKSEIFSLTRNGNLWAKDNFTPKNKMPVTVSEGFNPEFLAVMSHDKNDKGKSRFIVHYKRSMDDFKLDWNKHGFWGYWSGENHVDQKEEKLSALYEVDWKTHDVKLIKTFNDKEKK  
免疫原性組合物的葡萄球菌蛋白 A SpA )多肽
本文所述的免疫原性組合物包含金黃色葡萄球菌蛋白A多肽。“蛋白A”或“SpA”在本文中互換使用,指金黃色葡萄球菌的細胞壁錨定表面蛋白,其功能是使細菌逃避受感染宿主的固有和適應性免疫反應。蛋白A可以在Fc部分結合免疫球蛋白,可以與B細胞受體的V H3結構域相互作用,適當刺激B細胞增殖和凋亡,可以結合血管性血友病因數A1結構域以啟動細胞內凝血,還可以結合TNF受體1以促進葡萄球菌肺炎的發病機制。
大多數金黃色葡萄球菌菌株表達蛋白A(SpA)的結構基因,該蛋白是一種具有良好特徵的毒力因數,其細胞壁錨定表面蛋白產物(SpA)包含五個高度同源的免疫球蛋白結合域,分別命名為E、D、A、B和C。免疫球蛋白域在氨基酸水準上示出約80%的同一性,長度為56到61個殘基,並被組織成串聯重複。每個免疫球蛋白結合域都由反平行α螺旋組成,它們組裝成一個三螺旋束,並結合免疫球蛋白G(IgG)的Fc結構域、IgM的V H3重鏈(Fab)、A1結構域的血管性血友病因數和腫瘤壞死因數α(TNF-α)受體1(TNFR1)。
SpA通過結合IgG的Fc成分阻止中性粒細胞吞噬葡萄球菌。此外,SpA能夠通過結合血管性血友病因數A1結構域啟動血管內凝血。血漿蛋白,如纖維蛋白原和纖維連接蛋白,在葡萄球菌(ClfA和ClfB)和血小板整合素GPIIb/IIIa之間起橋樑作用,這種活性通過與vWF A1的SpA結合得到補充,使葡萄球菌能夠通過GPIb-α血小板受體捕獲血小板。SpA還結合TNFR1,這種相互作用有助於葡萄球菌肺炎的發病機制。SpA通過TNFR1介導的TRAF2、p38/c-Jun激酶、絲裂原活化蛋白激酶(MAPK)和Rel轉錄因數NF-κB啟動促炎信號。SpA結合進一步誘導TNFR1脫落,這種活性似乎需要TNF轉化酶(TACE)。每個公開的活性都通過五個IgG結合域介導,並且可以被相同的氨基酸替換所干擾,最初由其對蛋白質A和人類IgG1之間相互作用的需要來定義(Cedergren等人,(1993))。
SpA還通過捕獲攜帶VH3的IgM(B細胞受體)的Fab區,發揮B細胞超抗原的作用。靜脈注射後,葡萄球菌SpA突變表現出器官組織中的葡萄球菌負荷減少,形成膿腫的能力顯著降低。
在任意實施方案中,所述免疫原性組合物的SpA多肽為野生型(非變體)SpA多肽。在任意實施方案中,所述SpA多肽包含至少一個SpA A、B、C、D或E IgG結構域。在任意實施方案中,所述SpA多肽包含至少一個SpA A結構域。在任意實施方案中,所述SpA A結構域包含SEQ ID NO:55或48的氨基酸序列。在任意實施方案中,所述SpA多肽包含至少一個SpA B結構域。在任意實施方案中,所述SpA B結構域包含SEQ ID NO:56或49的氨基酸序列。在任意實施方案中,SpA多肽包含至少一個SpA C結構域。在任意實施方案中,所述SpA C結構域包含SEQ ID NO:57或50的氨基酸序列。在任意實施方案中,所述SpA多肽包含至少一個SpA D結構域。在任意實施方案中,所述SpA D結構域包含SEQ ID NO:58或51的氨基酸序列。在任意實施方案中,所述SpA多肽包含至少一個SpA E結構域。在任意實施方案中,所述SpA E結構域包含SEQ ID NO:59或52的氨基酸序列。在任意實施方案中,所述SpA多肽包含至少兩個SpA IgG結構域、至少三個SpA IgG結構域、至少四個SpA IgG結構域或所有五個SpA IgG結構域。在任意實施方案中,所述SpA多肽包含SEQ ID NO:53的氨基酸序列或與SEQ ID NO:53具有至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%序列同一性的序列。下面的表3提供了示例性SpA結構域和全長序列。
在任意實施方案中,免疫原性組合物的SpA多肽為SpA變體多肽。如本文所述,術語“蛋白質A變體”、“SpA變體”、“蛋白質A變體多肽”和“SpA變體多肽”是指包括SpA IgG結構域的多肽,該結構域具有至少一個會破壞與Fc和VH3結合的氨基酸替換。在某些實施方案中,所述SpA變體多肽包括變體A結構域、變體B結構域、變體C結構域、變體D結構域和/或變體E結構域。合適的SpA變體多肽包括無毒且刺激對葡萄球菌細菌蛋白A和蛋白A樣蛋白和/或表達該蛋白的細菌的免疫應答的那些變體及其片段。
本文描述的SpA變體多肽不與免疫球蛋白結合,因此是野生型SpA多肽的非細胞毒性變體。SpA變異多肽無毒,可刺激體液免疫反應,防止葡萄球菌感染和疾病。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽是包含至少一個變體E、D、a、B或C結構域的全長SpA變體。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含與SEQ ID NO:60或61的氨基酸序列至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%相同的氨基酸序列。在任意實施方案中,所述SpA變體多肽包含與SEQ ID NO:54的氨基酸序列至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%相同的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含全長SpA多肽的片段。所述SpA變體多肽片段可包含1、2、3、4、5或更多個IgG結合域。例如,IgG結合域可以是1、2、3、4、5或更多個變體A、B、C、D和/或E域。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含1、2、3、4、5或更多個變體A結構域。在任意實施方案中,所述SpA變體多肽包含1、2、3、4、5或更多個變體B結構域。在任意實施方案中,所述SpA變體多肽包含1、2、3、4、5或更多個變體C結構域。在任意實施方案中,所述SpA變體多肽包含1、2、3、4、5或更多個變體D結構域。在任意實施方案中,所述SpA變體多肽包含1、2、3、4、5或更多個變體E結構域。
在任意實施方案中,例如,所述SpA變體多肽的變體A結構域包含SEQ ID NO:55或48的氨基酸序列內的一個或多個氨基酸替換。例如,變體B結構域包含SEQ ID NO:56或49的氨基酸序列內的一個或多個氨基酸替換。例如,變體C結構域包含SEQ ID NO:57或50的氨基酸序列內的一個或多個氨基酸替換。例如,變體D結構域包含SEQ ID NO:58或51的氨基酸序列內的一個或多個氨基酸替換。例如,變體E結構域包含SEQ ID NO:59或52的氨基酸序列內的一個或多個氨基酸替換。
在某些實施方案中,所述免疫原性組合物的SpA變體多肽包含變體E、D、A、B和/或C結構域,其包含分別與SEQ ID NO:59或52、SEQ ID NO:58或51、SEQ ID NO:55或48、SEQ ID NO:56或49以及SEQ ID NO:57或50具有75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的氨基酸序列。
在任意實施方案中,所述SpA變體多肽包含變體E結構域,該結構域包含SEQ ID NO:59的氨基酸第6、7、33和/或34位處的替換。在任意實施方案中,所述SpA變體多肽包含變體D結構域,該結構域包含SEQ ID NO:58的氨基酸第9、10、36和/或37位處的替換。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含變體A結構域,該結構域包含SEQ ID NO:55的氨基酸第7、8、34和/或35位處的替換。在任意實施方案中所述,SpA變體多肽包含變體B結構域,該結構域包含SEQ ID NO:56的氨基酸第7、8、34和/或35位處的替換。在任意實施方案中,SpA變體多肽包含變體C結構域,該結構域包含SEQ ID NO:57的氨基酸第7、8、34和/或35位處的替換。變體E、D、A、B和/或C結構域中的氨基酸替換在WO2011/005341和WO2020232471中進行了描述,通過引用將其全部併入本文。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含SpA結構域D的IgG Fc結合子域中的一個或多個氨基酸替換,和/或在其他IgG結構域中的相應氨基酸位置。一個或多個氨基酸替換可破壞或減少SpA變體多肽與IgG Fc的結合。在任意實施方案中,所述SpA變體多肽進一步包含SpA結構域D的VH3結合子域,和/或在其他IgG結構域中的相應氨基酸位置的一個或多個氨基酸替換。一個或多個氨基酸替換可以破壞或減少與VH3的結合。
上述SpA結構域D中的氨基酸替換(即IgG Fc亞結構域結合區或VH3結合亞結構域中的替換)可併入每個結構域對應位置的SpA A、B、C和/或E結構域中。通過SpA結構域D與SpA結構域A、B、C和/或E的比對來定義相應的位置,以確定SpA結構域A、B、C和/或E的哪些殘基對應於變體SpA D殘基。例如,SpA結構域D的SEQ ID NO:58中第9位處的穀氨醯胺殘基的氨基酸替換對應於SpA結構域A的SEQ ID NO:55中第7位處的穀氨醯胺殘基,SpA結構域B的SEQ ID NO:56中第7位處的穀氨醯胺殘基,SpA結構域C的SEQ ID NO:57中第7位處的穀氨醯胺殘基,以及SpA結構域E的SEQ ID NO:59中第6位處的穀氨醯胺殘基。因此,本文所述的已識別氨基酸變體可普遍應用於現在或將來已知的任何SpA結構域氨基酸序列的相應氨基酸殘基。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包括(a)SpA結構域D的IgG Fc結合子域,和/或在其他IgG結構域中的相應氨基酸位置的一個或多個氨基酸替換;和(b)SpA結構域D的VH3結合子域,和/或其他IgG結構域中的相應氨基酸位置的一個或多個氨基酸替換。一個或多個氨基酸替換減少SpA變體多肽與IgG Fc和VH3的結合,從而使SpA變體多肽降低或消除了宿主生物體中的毒性。
在任意實施方案中,對SEQ ID NO:58的SpA D結構域的IgG Fc結合子域的氨基酸殘基F5、Q9、Q10、S11、F13、Y14、L17、N28、I31和/或K35進行修飾或替換,以減少或消除與IgG Fc的結合。在任意實施方案中,相應的修飾被併入SpA、B、C和/或E域中。通過將SpA結構域D與SpA結構域A、B、C和/或E比對來定義相應的位置,以確定SpA結構域A、B、C和/或E中與SpA結構域D中感興趣的殘基相對應的殘基。
在任意實施方案中,對SEQ ID NO:58的SpA D結構域的VH3結合子域的氨基酸殘基Q26、G29、F30、S33、D36、D37、Q40、N43和/或E47進行修飾或替換,以減少或消除與VH3的結合。相應的修飾可併入SpA A、B、C和/或E域中。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含1、2、3、4、5、6、7、8、9、10或更多個變體D結構域。變體D結構域可包含1、2、3、4、5、6、7、8、9、10或更多個氨基酸殘基替換或修飾。例如,氨基酸殘基替換或修飾可以發生在SpA結構域D(SEQ ID NO:58)的IgG Fc結合子域的氨基酸殘基F5、Q9、Q10、S11、F13、Y14、L17、N28、I31和/或K35和/或SpA結構域D(SEQ ID NO:58)的V H3結合子域的氨基酸殘基Q26、G29、F30、S33、D36、D37、Q40、N43和/或E47處。在任意實施方案中,氨基酸殘基替換或修飾位於SEQ ID NO:58的氨基酸殘基Q9和Q10處。在任意實施方案中,氨基酸殘基替換或修飾位於SEQ ID NO:58的氨基酸殘基D36和D37處。WO2011/005341中描述了變體A、B、C、D和/或E結構域中的氨基酸替換,通過引用將其全部併入本文。
在任意實施方案中,免疫原性組合物的SpA變體多肽包含一個氨基酸序列,該氨基酸序列與SEQ ID NO:53或72具有至少75%、至少80%、至少85%、至少90%(但不是100%)的序列同一性。在任意實施方案中,SpA變體多肽包含與SEQ ID NO:53或72具有91%、92%、93%、94%、95%、96%、97%、98%、99%同一性的氨基酸序列,或SEQ ID NO:53或72的至少n個連續氨基酸的片段,其中n為至少7、至少8、至少10、至少20、至少30、至少40、至少50、至少75、至少100、至少125、至少150,至少175個、至少200個、至少225個、至少250個、至少275個、至少300個、至少325個、至少350個、至少375個、至少400個或至少425個氨基酸。在任意實施方案中,所述SpA變體多肽可包含選自SEQ ID NO:72的羧基(C)末端(例如,至少1、2、3、4、5、10、15、20、25、30或35個氨基酸)刪除一個或多個氨基酸和/或從氨基酸(N)末端刪除一個或多個氨基酸(例如,至少1、2、3、4、5、10、15、20、25、30或35個氨基酸)。在任意實施方案中,刪除最後35個C端氨基酸。在某些實施方案中,刪除前36個N端氨基酸。在任意實施方案中,SpA變體多肽包含SEQ ID NO:72的37至327個氨基酸。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含所有五個SpA IgG結合域,其從N端到C端排列,依次包含E結構域、D結構域、A結構域、B結構域和C結構域。在任意實施方案中,所述SpA變體多肽連續包含SpA的E、D、A、B和C結構域。在任意實施方案中,所述SpA變體多肽包含1、2、3、4或5個天然E、D、A、B和/或C結構域。在刪除1、2、3、4或5個天然結構域的實施方案中,所述SpA變體多肽可防止B細胞過度膨脹和凋亡,如果SpA作為B細胞超抗原發揮作用,則可發生過度膨脹和凋亡。在任意實施方案中,所述SpA變體多肽僅包含SpA E結構域。在任意實施方案中,所述SpA變體多肽僅包含SpA D結構域。在任意實施方案中,所述SpA變體多肽僅包含SpA A結構域。在任意實施方案中,所述SpA變體多肽僅包含SpA B結構域。在任意實施方案中,所述SpA變體多肽僅包含SpA C結構域。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含相對於SEQ ID NO:72的十一(11)個二肽序列重複中的至少一個的突變(例如,QQ二肽重複和/或DD二肽重複)。舉例來說,包含SEQ ID NO:73的SpA變體多肽氨基酸序列,其中XX二肽在氨基酸第7和8、34和35、60和61、68和69、95和96、126和127、153和154、184和185、211和212、242和243位處重複,並替換269和270以降低SpA變體多肽對免疫球蛋白的親和力。Gln-Gln(QQ)二肽的有用二肽替代物可包括但不限於Lys-Lys(KK)、Arg-Arg(RR)、Arg-Lys(RK)、Lys-Arg(KR)、Ala-Ala(AA)、Ser-Ser(SS)、Ser-Thr(ST)和Thr-Thr(TT)二肽。優選地,用KR二肽替換QQ二肽。Asp-Asp(DD)二肽的有用二肽替代物可包括但不限於Ala-Ala(AA)、Lys-Lys(KK)、Arg-Arg(RR)、Lys-Arg(KR)、His-His(HH)和Val-Val(VV)二肽。例如,二肽替換可以降低SpA變體多肽對人IgG的Fc部分和含有V H3的人B細胞受體的Fab部分的親和力。
因此,在任意實施方案中,所述免疫原性組合物的SpA變體多肽可包含SEQ ID NO:78,其中11個XX二肽重複序列中一個或多個,優選全部被不同於SEQ ID NO:72的對應二肽的氨基酸替換。在任意實施方案中,所述SpA變體多肽包含SEQ ID NO:79,其中第60和61位處的氨基酸雙鏈分別為Lys和Arg(K和R)。在任意實施方案中,所述SpA變體多肽包含SEQ ID NO:80或SEQ ID NO:81。在某些實施方案中,所述SpA變體多肽包含SEQ ID NO:75,其中SEQ ID NO:75的優選實施方案為SEQ ID NO:76或SEQ ID NO:77(SEQ ID NO:77為帶有N端蛋氨酸的SEQ ID NO:76)。
在任意實施方案中,所述SpA變體多肽N端包含SEQ ID NO:72的前36個氨基酸的缺失,C端包含SEQ ID NO:72的最後35個氨基酸的缺失。包含SEQ ID NO:72的36個氨基酸的N端缺失和SEQ ID NO:72的35個氨基酸的C端缺失的SpA變體多肽可進一步包含第五Ig結合域的缺失(即,SEQ ID NO:72的Lys-327的下游)。所述SpA變體包含SEQ ID NO:73的氨基酸序列,其中XX二肽可被氨基酸替換,使得氨基酸不同於SEQ ID NO:72中的相應二肽序列。在任意實施方案中,所述SpA變體多肽包含SEQ ID NO:74。
如上文所述,在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含1、2、3或4個天然A、B、C、D和/或E結構域。例如,所述SpA變體多肽可僅包含SpA E結構域,而不包含D、A、B或C結構域。因此,所述SpA變體多肽可包含變體SpA E結構域,其中SpA E結構域包含SEQ ID NO:83的至少一個氨基酸殘基的替換。例如,所述替換可以位於SEQ ID NO:83的氨基酸第60和61位處。在任意實施方案中,SpA變體多肽可包含SEQ ID NO:79、SEQ ID NO:80、SEQ ID NO:81或SEQ ID NO:82。在任意實施方案中,所述SpA變體多肽可包含具有至少一個氨基酸替換的SEQ ID NO:79、SEQ ID NO:80、SEQ ID NO:81或SEQ ID NO:82。SpA變體多肽在WO2015/144653中有描述,通過引用將其全部併入本文。
在任意實施方案中,免疫原性組合物的SpA變體多肽包含SEQ ID NO:84的氨基酸43Q、44Q、96Q、97Q、162Q、163Q、220Q、221Q、278Q和279Q處的氨基酸替換。SEQ ID NO:84的氨基酸43Q、44Q、96Q、97Q、162Q、163Q、220Q、221Q、278Q和279Q處的氨基酸替換例如可以是賴氨酸(K)或精氨酸(R)替換。在某些實施方案中,SpA變體多肽包含SEQ ID NO:84的氨基酸70D、71D、131D、132D、189D、190D、247D、248D、305D和306D處的氨基酸替換。例如,SEQ ID NO:84的氨基酸70D、71D、131D、132D、189D、190D、247D、248D、305D和306D處的氨基酸替換可以是丙氨酸(A)或纈氨酸(V)替換。在某些實施方案中,所述SpA變體多肽可選自SEQ ID NO:85、SEQ ID NO:86、SEQ ID NO:87和SEQ ID NO:100。SpA變體多肽在US2016/0304566中進行了描述,通過引用將其全部併入本文。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含變體A結構域,例如,包含SEQ ID NO:62、67、88或93的氨基酸序列的變體A結構域,或與SEQ ID NO:62、67、88或93的任何一個氨基酸序列具有至少90%同一性的氨基酸序列。在任意實施方案中,免疫原性組合物的SpA變體多肽包含變體B結構域,例如,變體B結構域包含SEQ ID NO:63、68、89或94的氨基酸序列,或與SEQ ID NO:63、68、89或94的任何一個氨基酸序列具有至少90%同一性的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含變體C結構域,例如,包含SEQ ID NO:64、69、90或95的氨基酸序列的變體C結構域,或與SEQ ID NO:64、69、90或95的任何一個氨基酸序列具有至少90%同一性的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含變體D結構域,例如,包含SEQ ID NO:66、71、91或96的氨基酸序列的變體D結構域,或與SEQ ID NO:66、71、91或96的任何一個氨基酸序列具有至少90%同一性的氨基酸序列。在任意實施方案中,免疫原性組合物的SpA變體多肽包含變體E結構域,例如,包含SEQ ID NO:65、70、92或97的氨基酸序列的變體E結構域,或與SEQ ID NO:65、70、92或97的任何一個氨基酸序列具有至少90%同一性的氨基酸序列。
在任意實施方案中,免疫原性組合物的SpA變體多肽的變體A結構域例如可包含SEQ ID NO:62的氨基酸序列。例如,變體B結構域可包含SEQ ID NO:63的氨基酸序列。例如,變體C結構域可包含SEQ ID NO:64的氨基酸序列。例如,變體D結構域可包含SEQ ID NO:66的氨基酸序列。例如,變體E結構域可包含SEQ ID NO:65的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽可包含變體A、B、C、D和E結構域,其可包含與SEQ ID NO:62或67、SEQ ID NO:63或68、SEQ ID NO:64或69,SEQ ID NO:66或71,SEQ ID NO:65或70相同的至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽可包含變體A、B、C、D和E結構域,其可包含分別與SEQ ID NO:88或93、SEQ ID NO:89或94、SEQ ID NO:90或95、SEQ ID NO:91或96以及SEQ ID NO:92或97至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含變體D結構域,其中變體D結構域包含對應於SEQ ID NO:58的第9、10和/或33位的氨基酸位置處的替換。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包括(i)在對應於SpA D結構域(SEQ ID NO:58)的第9和10位的氨基酸位置處的每個SpA A-E結構域中的穀氨醯胺氨基酸殘基的賴氨酸替換;和(ii)在與SpA D結構域(SEQ ID NO:58)的第33位相對應的氨基酸位置處的每個SpA A-E結構域中的絲氨酸氨基酸殘基的谷氨酸替換。與陰性對照相比,SpA變體多肽檢測不到與血液中的IgG和IgE交聯和/或啟動嗜鹼性粒細胞。通過在血液中未檢測到交聯IgG和IgE和/或啟動嗜鹼性粒細胞,SpA變體多肽不會對人類患者造成重大安全或毒性問題,和/或不會對人類患者造成過敏性休克的重大風險。
在任意實施方案中,與由對應於SpA D結構域(SEQ ID NO:58)的第9和10位元的每個SpA A-E結構域中的穀氨醯胺殘基的賴氨酸替換以及對應於SpA D結構域(SEQ ID NO:58)第36和37位元的每個SpA結構域A-E中的天冬氨酸的丙氨酸替換組成的SpA變體多肽(SpA KKAA)相比,本文所述的SpA變體多肽對來自人類IgG的V H3的K A結合親和力降低。由結構域D(SEQ ID NO:58)第9位和第10位對應的氨基酸位置處的每個結構域A-E中的穀氨醯胺到賴氨酸的替換以及結構域D第36位元和第37位對應的氨基酸位置處的每個結構域A-E中的天冬氨酸到丙氨酸的替換組成的SpA變體多肽用作比較物,並命名為SpA KKAA。SpA KKAA變體多肽的氨基酸序列為SEQ ID NO:54。在某些實施方案中,SpA變體多肽對來自人類IgG的V H3具有K A結合親和力,與SpA KKAA相比減少至少兩倍(2倍)。在某些實施方案中,所述免疫原性組合物的SpA變體多肽對來自人類IgG的V H3具有KA結合親和力,與SpA KKAA相比,該親和力降低至少1.2、1.3、1.4、1.5、1.6、1.6、1.7、1.8、1.9、1.9、2.0、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3倍或更多或介於兩者之間的任何值。在某些實施方案中,免疫原性組合物的SpA變體多肽對來自人類IgG的V H3具有K A結合親和力,與SpA KKAA相比,該親和力降低至少10、15、20、25、30、35、40、45、50、55、60、65、70、75、80、85、90、95、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、290、300%或以上,或兩者之間的任何值。在某些實施方案中,所述免疫原性組合物的SpA變體多肽對來自人類IgG的V H3具有小於約1×10 5M -1的KA結合親和力。在某些實施方案中,所述免疫原性組合物的SpA變體多肽對來自人類IgG的V H3具有小於約3、2.9、2.8、2.7、2.6、2.5、2.4、2.3、2.2、2.1、2.0、1.9、1.8、1.7、1.6、1.5、1.4、1.3、1.2、1.1、1.0、0.9、0.8、0.7、0.6、0.5、0.4、0.3、0.2或0.1×10 5M -1之間的任何值的K A結合親和力。在任意實施方案中,所述免疫原性組合物的SpA變體多肽在對應於SpA D結構域(SEQ ID NO:58)第36和37位元的任何SpA A-E結構域中均沒有替換。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包括(i)在對應於SpA D結構域(SEQ ID NO:58)的第9和10位元處的每個SpA A-E結構域中的穀氨醯胺氨基酸殘基的賴氨酸替換;以及(ii)在對應於SpA D結構域(SEQ ID NO:58)的第33位元處的每個SpA A-E結構域中的絲氨酸氨基酸殘基的谷氨酸替換。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含具有SEQ ID NO:65氨基酸序列的SpA E結構域或具有與SEQ ID NO:65至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含具有SEQ ID NO:66氨基酸序列的SpA D結構域或與SEQ ID NO:66具有至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA A結構域,該結構域具有與SEQ ID NO:62相同的氨基酸序列,或與SEQ ID NO:62相同的至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA B結構域,該結構域具有與SEQ ID NO:63相同的氨基酸序列,或與SEQ ID NO:63至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA C結構域,該結構域具有與SEQ ID NO:64相同的氨基酸序列,或與SEQ ID NO:64至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含的氨基酸序列或與SEQ ID NO:60至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任何實施方案中,所述免疫原性組合物的SpA變體多肽包含SEQ ID NO:60的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含(i)在對應於SpA D結構域(SEQ ID NO:58)的第9和10位元的每個SpA A-E結構域中的穀氨醯胺氨基酸殘基的賴氨酸替換;以及(ii)在SpA D結構域(SEQ ID NO:58)的第33位對應的蘇氨酸替換每個SpA A-E結構域中的絲氨酸氨基酸殘基位置處。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA E結構域,該結構域具有與SEQ ID NO:70相同的氨基酸序列SEQ ID NO:70或與SEQ ID NO:70至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA D結構域,該結構域具有與SEQ ID NO:71相同的氨基酸序列,或與SEQ ID NO:71至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA A結構域,該結構域具有與SEQ ID NO:67相同的氨基酸序列,或與SEQ ID NO:67至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA B結構域,該結構域具有與SEQ ID NO:68相同的氨基酸序列,或與SEQ ID NO:68至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含一個SpA C結構域,該結構域具有與SEQ ID NO:69相同的氨基酸序列,或與SEQ ID NO:69至少為90%、至少為91%、至少為92%、至少為93%、至少為94%、至少為95%、至少為96%、至少為97%、至少為98%或至少為99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含SEQ ID NO:61的氨基酸序列或與SEQ ID NO:61至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%或至少99%相同的氨基酸序列。在任意實施方案中,所述免疫原性組合物的SpA變體多肽包含SEQ ID NO:61的氨基酸序列。
與陰性對照相比,所述SpA變體多肽檢測不到與血液中的IgG和IgE交聯和/或啟動嗜鹼性粒細胞。由於在血液中未檢測到交聯IgG和IgE和/或啟動嗜鹼性粒細胞,SpA變體多肽不會對人類患者造成重大安全或毒性問題,也不會對人類患者造成過敏性休克的重大風險。適用于本文所公開的組合物和方法中使用的SpA變體多肽在WO2020232471中進行了描述,通過引用將其全部併入本文。
下表3提供了本文所公開的免疫原性組合物的示例性SpA多肽氨基酸序列。 3. 示例性 SpA 多肽氨基酸序列
SEQ ID NO 名稱 描述
48 WT SpA A結構域long ADNNFNKEQQ NAFYEILNMPNLNEEQRNGF IQSLKDDPSQ SANLLSEAKKLNESQAPK
49 WT SpA B結構域long ADNKFNKEQQ NAFYEILHLPNLNEEQRNGF IQSLKDDPSQ SANLLAEAKKLNDAQAPK
50 WT SpA C結構域long ADNKFNKEQQ NAFYEILHLPNLTEEQRNGF IQSLKDDPSV SKEILAEAKKLNDAQAPK
51 WT SpA D結構域long ADAQQNNFNK DQQSAFYEILNMPNLNEAQR NGFIQSLKDD PSQSTNVLGEAKKLNESQAPK
52 WT SpA E結構域long AQHDEAQQNA FYQVLNMPNLNADQRNGFIQ SLKDDPSQSA NVLGEAQKLNDSQAPK
53 全長WT SpA AQHDEA QQNAFYQVLNMPNLNADQRNGFIQSLK DDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKD QQSAFYEILNMPNLNEAQRNGFIQSLK DDPSQSTNVLGEA QQLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLK DDPSQSANLLSEA QQLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLK DDPSQSANLLAEA QQLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLK DDPSVSKEILAEAKKLNDAQAPK
54 全長SpA KKAA AQHDEA KKNAFYQVLNMPNLNADQRNGFIQSLK AAPSQSANVLGEAQKLNDSQAPKADAQQNNFNKD KKSAFYEILNMPNLNEAQRNGFIQSLK AAPSQSTNVLGEA KKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLK AAPSQSANLLSEA KKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLK AAPSQSANLLAEA KKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLK AAPSVSKEILAEAKKLNDAQAPK
55 WT SpA A 結構域 NNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNES
56 WT SpA B 結構域 NKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNDA
57 WT SpA C 結構域 NKFNKEQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSKEILAEAKKLNDA
58 WT SpA D 結構域 QQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNES
59 WT SpA E 結構域 QHDEAQQNAFYQVLNMPNLNADQRNGFIQSLKDDPSQSANVLGEAQKLNDS
60 SpAS33E AQHDEAKKNAFYQVLNMPNLNADQRNGFIQELKDDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQELKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQELKDDPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQELKDDPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQELKDDPSVSKEILAEAKKLNDAQAPK
61 SpAS33T AQHDEAKKNAFYQVLNMPNLNADQRNGFIQTLKDDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQTLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQTLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQTLKDDPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQTLKDDPSVSKEILAEAKKLNDAQAPK
62 SpA S33EA 結構域 NNFNKEKKNAFYEILNMPNLNEEQRNGFIQELKDDPSQSANLLSEAKKLNES
63 SpA S33EB 結構域 NKFNKEKKNAFYEILHLPNLNEEQRNGFIQELKDDPSQSANLLAEAKKLNDA
64 SpA S33EC 結構域 NKFNKEKKNAFYEILHLPNLTEEQRNGFIQELKDDPSVSKEILAEAKKLNDA
65 SpA S33EE 結構域 QHDEAKKNAFYQVLNMPNLNADQRNGFIQELKDDPSQSANVLGEAQKLNDS
66 SpA S33ED 結構域 QQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQELKDDPSQSTNVLGEAKKLNES
67 SpA S33TA 結構域 NNFNKEKKNAFYEILNMPNLNEEQRNGFIQTLKDDPSQSANLLSEAKKLNES
68 SpA S33TB 結構域 NKFNKEKKNAFYEILHLPNLNEEQRNGFIQTLKDDPSQSANLLAEAKKLNDA
69 SpA S33TC 結構域 NKFNKEKKNAFYEILHLPNLTEEQRNGFIQTLKDDPSVSKEILAEAKKLNDA
70 SpA S33TE 結構域 QHDEAKKNAFYQVLNMPNLNADQRNGFIQTLKDDPSQSANVLGEAQKLNDS
71 SpA S33TD 結構域 QQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQTLKDDPSQSTNVLGEAKKLNES
72 SpA long MKKKNIYSIRKLGVGIASVTLGTLLISGGVTPAANAAQHDEAQQNAFYQVLNMPNLNADQRNGFIQSLKDDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDQQSAFYEILNMPNLNEAQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLSEAKKLNESQAPKADNKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNDAQAPKADNKFNKEQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSKEILAEAKKLNDAQAPKEEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDNNKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDGNKPGKEDGNGVHVVKPGDTVNDIAKANGTTADKIAADNKLADKNMIKPGQELVVDKKQPANHADANKAQALPETGEENPFIGTTVFGGLSLALGAALLAGRRREL
73 SpAXX AQHDEAXXNAFYQVLNMPNLNADQRNGFIQSLKXXPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDXXSAFYEILNMPNLNEAQRNGFIQSLKXXPSQSTNVLGEAKKLNESQAPKADNNFNKEXXNAFYEILNMPNLNEEQRNGFIQSLKXXPSQSANLLSEAKKLNESQAPKADNKFNKEXXNAFYEILHLPNLNEEQRNGFIQSLKXXPSQSANLLAEAKKLNDAQAPKADNKFNKEXXNAFYEILHLPNLTEEQRNGFIQSLKXXPSVSKEILAEAKKLNDAQAPK
74 SpAkkAA AQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAQQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
75 SpAkR AQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAXXNNFNKDKKSAFYEILNMPNLNEAQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
76 SpAkR AQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAKRNNFNKDKKSAFYEILNMPNLNEAQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
77 SpAkR MAQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAKRNNFNKDKKSAFYEILNMPNLNEAQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLSEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
78 SpAkR AQHDEAXXNAFYQVLNMPNLNADQRNGFIQSLKXXPSQSANVLGEAQKLNDSQAPKADAXXNNFNKDXXSAFYEILNMPNLNEAQRNGFIQSLKXXPSQSTNVLGEAKKLNESQAPKADNNFNKEXXNAFYEILNMPNLNEEQRNGFIQSLKXXPSQSANLLSEAKKLNESQAPKADNKFNKEXXNAFYEILHLPNLNEEQRNGFIQSLKXXPSQSANLLAEAKKLNDAQAPKADNKFNKEXXNAFYEILHLPNLTEEQRNGFIQSLKXXPSVSKEILAEAKKLNDAQAPK
79 SpAkR E 結構域 AQHDEAXXNAFYQVLNMPNLNADQRNGFIQSLKXXPSQSANVLGEAQKLNDSQAPKADAXXNNFNKD
80 SpAkR E 結構域 AQHDEAXXNAFYQVLNMPNLNADQRNGFIQSLKXXPSQSANVLGEAQKLNDSQAPKADAKRNNFNKD
81 SpAkR E 結構域 AQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAKRNNFNKD
82 SpA E 結構域 MAQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAKRNNFNKD
83 SpA E 結構域 AQHDEAQQNAFYQVLNMPNLNADQRNGFIQSLKDDPSQSANVLGEAQKLNDSQAPKADAQQNNFNKD
84 SpA 252 MKKKNIYSIRKLGVGIASVTLGTLLISGGVTPAANAAQHDEAQQNAFYQVLNMPNLNADQRNGFIQSLKDDPSQSANVLGEAQKLNDSQAPKADAQQNKFNKDQQSAFYEILNMPNLNEEQRNGFIQSLKDDPSQSTNVLGEAKKLNESQAPKADNNFNKEQQNAFYEILNMPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNESQAPKADNKFNKEQQNAFYEILHLPNLNEEQRNGFIQSLKDDPSQSANLLAEAKKLNDAQAPKADNKFNKEQQNAFYEILHLPNLTEEQRNGFIQSLKDDPSVSKEILAEAKKLNDAQAPKEEDNNKPGKEDNNKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDNKKPGKEDGNKPGKEDGNKPGKEDGNKPGKEDGNKPGKEDGNKPGKEDGNGVHVVKPGDTVNDIAKANGTTADKIAADNKLADKNMIKPGQELVVDKKQPANHADANKAQALPETGEENPFIGTTVFGGLSLALGAALLAGRRREL
85 SpA5 (KKAA) GPLGSAQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADAKKNKFNKDQQSAFYEILNMPNLNEEQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
100 SpA5 (RRAA) GPLGSAQHDEARRNAFYQVLNMPNLNADQRNGFIQSLKAAPSQSANVLGEAQKLNDSQAPKADARRNKFNKDQQSAFYEILNMPNLNEEQRNGFIQSLKAAPSQSTNVLGEAKKLNESQAPKADNNFNKERRNAFYEILNMPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNESQAPKADNKFNKERRNAFYEILHLPNLNEEQRNGFIQSLKAAPSQSANLLAEAKKLNDAQAPKADNKFNKERRNAFYEILHLPNLTEEQRNGFIQSLKAAPSVSKEILAEAKKLNDAQAPK
86 SpA5 (KKVV) GPLGSAQHDEAKKNAFYQVLNMPNLNADQRNGFIQSLKVVPSQSANVLGEAQKLNDSQAPKADAKKNKFNKDQQSAFYEILNMPNLNEEQRNGFIQSLKVVPSQSTNVLGEAKKLNESQAPKADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQSLKVVPSQSANLLAEAKKLNESQAPKADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQSLKVVPSQSANLLAEAKKLNDAQAPKADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQSLKVVPSVSKEILAEAKKLNDAQAPK
87 SpA5 (RRVV) GPLGSAQHDEARRNAFYQVLNMPNLNADQRNGFIQSLKVVPSQSANVLGEAQKLNDSQAPKADARRNKFNKDQQSAFYEILNMPNLNEEQRNGFIQSLKVVPSQSTNVLGEAKKLNESQAPKADNNFNKERRNAFYEILNMPNLNEEQRNGFIQSLKVVPSQSANLLAEAKKLNESQAPKADNKFNKERRNAFYEILHLPNLNEEQRNGFIQSLKVVPSQSANLLAEAKKLNDAQAPKADNKFNKERRNAFYEILHLPNLTEEQRNGFIQSLKVVPSVSKEILAEAKKLNDAQAPK
88 SpA S33EA結構域long ADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQ ELKDDPSQSANLLSEAKKLNESQAPK
89 SpA S33EB結構域long ADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQ ELKDDPSQSANLLAEAKKLNDAQAPK
90 SpA S33EC結構域long ADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQ ELKDDPSVSKEILAEAKKLNDAQAPK
91 SpA S33ED結構域long ADAQQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQ ELKDDPSQSTNVLGE AKKLNESQAPK
92 SpA S33EE結構域long AQHDEAKKNAFYQVLNMPNLNADQRNGFIQ ELKDDPSQSANVLGEAQKLNDSQAPK
93 SpA S33TA結構域long ADNNFNKEKKNAFYEILNMPNLNEEQRNGFIQ TLKDDPSQSANLLSEAKKLNESQAPK
94 SpA S33TB結構域long ADNKFNKEKKNAFYEILHLPNLNEEQRNGFIQ TLKDDPSQSANLLAEAKKLNDAQAPK
95 SpA S33TC結構域long ADNKFNKEKKNAFYEILHLPNLTEEQRNGFIQ TLKDDPSVSKEILAEAKKLNDAQAPK
96 SpA S33TD結構域long ADAQQNNFNKDKKSAFYEILNMPNLNEAQRNGFIQ TLKDDPSQSTNVLGE AKKLNESQAPK
97 SpA S33TE結構域long AQHDEAKKNAFYQVLNMPNLNADQRNGFIQ TLKDDPSQSANVLGEAQKLNDSQAPK
根據本文公開的所有方面,如本文所公開的免疫原性組合物的LukA變體多肽、LukB多肽和SpA多肽可進一步包含一個或多個異源氨基酸序列。合適的異源氨基酸序列包括但不限於標籤序列、免疫原、信號序列等。合適的標籤序列包括但不限於多組氨酸標籤、多精氨酸標籤、FLAG標籤、Step標籤II、泛素標籤、NusA標籤、幾丁質結合域、鈣調素結合肽、纖維素結合域、Hat標籤、S標籤、SBP、麥芽糖結合蛋白、谷胱甘肽S-轉移酶(見“Overview of Tag Protein Fusions: From Molecular and Biochemical Fundamentals to Commercial Systems,” Appl. Microbiol. Biotechnol. 60:523-33 (2003),現通過引用併入)。合適的免疫原包括但不限於T細胞表位、B細胞表位。合適的信號序列包括但不限於PelB信號序列、Sec信號序列、Tat信號序列、AmyE信號序列(參見Freudl R., “Signal Peptides for Recombinant Protein Secretion in Bacterial Expression Systems,” Microbial Cell Factories 17:52 (2018),現通過引用併入本文。在一些實施方案中,如本文所述的LukA、LukB和SpA多肽包含PelB序列(MKYLLPTAAAGLLLLAAQPAMA;SEQ ID NO:23)。在一些實施方案中,如本文所述的LukA、LukB和SpA多肽包含His標籤(例如NSAHHHHHHGS;SEQ ID NO:24)。因此,在一些實施方案中,如本文所述的SpA、LukA和/或LukB多肽包含前述PelB序列和His標籤。 金黃色葡萄球菌 LukA LukB SpA 多核苷酸和結構
本發明的另一方面涉及編碼如本文所述的LukA變體多肽、LukB多肽和SpA多肽的核酸分子,以及包含一個或多個這些核酸分子的免疫原性組合物。本文所述核酸分子包括分離的多核苷酸、重組多核苷酸序列、表達載體的部分或線性DNA序列的部分,包括用於體外或體內轉錄/翻譯的線性DNA序列,以及與變體LukA、LukB的原核和真核細胞表達和分泌相容的載體,以及本文所述的SpA多肽。本發明的多核苷酸可通過化學合成(例如在自動多核苷酸合成器上固相多核苷酸合成)產生,並組裝成完整的單鏈或雙鏈分子。或者,本發明的多核苷酸可以通過其他技術生產,例如PCR,然後進行常規克隆。生產或獲得給定序列的多核苷酸的技術在本領域是眾所周知的。
在任意實施方案中,本文公開的免疫原性組合物包含編碼LukA變體多肽的多核苷酸。在任意實施方案中,所述多核苷酸編碼LukA變體,所述變體在與SEQ ID NO:25第83位處的賴氨酸對應的殘基處包含賴氨酸到蛋氨酸的替換(Lys83Met)。在任意實施方案中,本發明的多核苷酸編碼變體LukA多肽,所述變體LukA多肽在與SEQ ID NO:25第141位處的絲氨酸對應的殘基處包含絲氨酸到丙氨酸的替換(Ser141Ala)。在任意實施方案中,本發明的多核苷酸編碼變體LukA多肽,所述變體LukA多肽在與SEQ ID NO:25的第113位處的纈氨酸對應的殘基處包含纈氨酸到異亮氨酸的替換(Val113Ile)。在任意實施方案中,本發明的多核苷酸編碼變體LukA多肽,該多肽在與SEQ ID NO:25第193位處的纈氨酸對應的殘基處包含纈氨酸到異亮氨酸的替換(Val193Ile)。在任意實施方案中,本發明的多核苷酸編碼其變體LukA多肽,該多肽在對應於前述氨基酸殘基(即SEQ ID NO:25的Lys803Met、Ser141Ala、Val113Ile和Val193Ile)的殘基處包含賴氨酸對甲硫氨酸、絲氨酸對丙氨酸、纈氨酸對異亮氨酸的氨基酸替換。在任意實施方案中,本發明的多核苷酸編碼其變體LukA多肽,該多肽進一步包含對應於Glu323Ala的氨基酸替換,即,該多核苷酸編碼變體LukA,所述變體LukA在對應於SEQ ID NO:25的Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala替換處包含替換。
在一個實施方案中,示例性核酸分子是編碼CC8 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:1的變體,其包含對應於SEQ ID NO:1中Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Glu320Ala的氨基酸替換。本文提供了編碼CC8 LukA的示例性核酸分子,其為SEQ ID NO:101。因此,在任意實施方案中,示例性核酸分子是SEQ ID NO:101的變體,其中所述變體包含與SEQ ID NO:101的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在任意實施方案中,所述免疫原性組合物的示例性核酸分子是編碼SEQ ID NO:3的LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile)的核酸分子或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的氨基酸序列。編碼所述LukA CC8變體的示例性核酸分子包含與SEQ ID NO:103具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC8變體的核酸分子包含SEQ ID NO:103的核苷酸序列。
在另一個實施方案中,示例性核酸分子是編碼CC45 LukA變體序列的核酸分子,例如,編碼SEQ ID NO:2的變體,其包含對應於SEQ ID NO:2中Lys81Met、Ser139Ala、Val111Ile、Val191Ile和Glu321Ala的氨基酸替換。本文提供了編碼CC45-LukA的示例性核酸分子,在本文為SEQ ID NO:102。因此,在任意實施方案中,示例性核酸分子是SEQ ID NO:102的變體,其中所述變體包含與SEQ ID NO:102的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在另一個實施方案中,所述免疫原性組合物的示例性核酸分子是編碼SEQ ID NO:4的LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile)的核酸分子,或具有至少85%、至少90%、至少95%、至少97%的氨基酸序列,或與SEQ ID NO:4的氨基酸序列至少99%的序列相似性。編碼所述LukA CC45變體的示例性核酸分子包含與SEQ ID NO:104具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC8變體的核酸分子包含SEQ ID NO:104的核苷酸序列。
在任意實施方案中,所述免疫原性組合物的一個或多個多核苷酸編碼LukA變體蛋白質或多肽,其包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,所述多核苷酸編碼LukA變體蛋白質或多肽,其在對應於SEQ ID NO:25的Tyr74的氨基酸殘基處包含酪氨酸到半胱氨酸的替換(Tyr74Cys),並且在對應於SEQ ID NO:25的Asp140(Asp140Cys)的氨基酸殘基處包含天冬醯胺到半胱氨酸的替換。在任意實施方案中,所述多核苷酸編碼LukA變體蛋白質或多肽,其在對應於SEQ ID NO:25的Gly149的氨基酸殘基處包含甘氨酸到半胱氨酸的替換(Gly149Cys),並且在對應於SEQ ID NO:25的Gly156(Gly156Cys)的氨基酸殘基處包含甘氨酸到半胱氨酸的替換。在任意實施方案中,所述多核苷酸編碼變體LukA蛋白質或多肽,其包含對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換是如上所述的半胱氨酸殘基。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼變體LukA蛋白質或多肽,其包含對應於Lys83、Ser141、Val113、Val193和Glu323的一個或多個氨基酸殘基處的氨基酸替換,以及對應於氨基酸殘基Tyr74、Asp140、Gly149的一個或多個氨基酸殘基處的氨基酸替換,以及SEQ ID NO:25的Gly156。在任意實施方案中,所述多核苷酸編碼變體LukA蛋白質或多肽,其包含對應於殘基Lys83、Ser141、Val113、Val193和Glu323的氨基酸殘基處的氨基酸替換,以及SEQ ID NO:25的殘基Tyr74、Asp140、Gly149和Gly156。在任意實施方案中,示例性核酸分子是編碼SEQ ID NO:5的LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Tyr71Cys、Asp137Cys、Gly146Cys、Gly153Cys)的核酸分子,或具有至少85%、至少90%、至少95%、至少97%的氨基酸序列,或與SEQ ID NO:5的氨基酸序列至少99%的序列相似性。在任意實施方案中,本發明的示例性核酸分子是編碼SEQ ID NO:6的LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Tyr72Cys、Asp138Cys、Gly147Cys、Gly154Cys)的核酸分子,或與SEQ ID NO:6的氨基酸序列具有至少85%、至少90%、至少95%、至少97%,或至少99%序列相似性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的一個或多個多核苷酸編碼LukA變體多肽,所述多肽在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基處包含氨基酸替換或缺失。在任意實施方案中,所述多核苷酸編碼LukA變體,所述變體在對應於SEQ ID NO:25的第249位的殘基處包含蘇氨酸到纈氨酸的替換。在任意實施方案中,本發明的多核苷酸編碼LukA變體多肽,所述多肽包含對應於Thr249的位置處的氨基酸替換,以及對應於SEQ ID NO:25的Lys83、Ser141、Val113、Val193、Glu323、Tyr74、Asp140、Gly149和Gly156的殘基處的任何一個或所有氨基酸替換。在任意實施方案中,示例性核酸分子是編碼SEQ ID NO:7的LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile和Thr246Val)的核酸分子,或與SEQ ID NO:7的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在任意實施方案中,示例性核酸分子是編碼SEQ ID NO:8的LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val)的核酸分子,或與SEQ ID NO:8的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,示例性核酸分子是編碼SEQ ID NO:9的LukA變體序列(LukA CC8 Glu320Ala、Lys80Met、Ser138Ala、Val110Ile、Val190Ile、Thr246Val、Tyr71Cys、Asp137Cys、Gly146Cys和Gly153Cys),或與SEQ ID NO:9的氨基酸序列具有至少85%、至少90%、至少95%、至少97%的氨基酸序列,或至少99%的序列相似性的核酸分子。在任意實施方案中,編碼該SEQ ID NO:9的LukA CC8變體的示例性核酸分子包含與SEQ ID NO:105具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC8變體的核酸分子包含SEQ ID NO:105的核苷酸序列。
在任意實施方案中,示例性核酸分子是編碼SEQ ID NO:10的LukA變體序列(LukA CC45 Glu321Ala、Lys81Met、Ser139Ala、Val111Ile、Val191Ile、Thr247Val、Tyr72Cys、Asp138Cys、Gly147Cys和Gly154Cys),或與SEQ ID NO:10的氨基酸序列具有至少85%、至少90%、至少95%、至少97%的氨基酸序列,或至少99%的序列相似性的核酸分子。在任意實施方案中,編碼該SEQ ID NO:10的LukA CC45變體的示例性核酸分子包含與SEQ ID NO:106具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC8變體的核酸分子包含SEQ ID NO:106的核苷酸序列。
在任意實施方案中,本文公開的免疫原性組合物的一個或多個多核苷酸進一步編碼本文公開的LukB多肽。在任意實施方案中,所述多核苷酸編碼包含SEQ ID NO:15的氨基酸序列的LukB多肽。本文提供了編碼CC8-LukB的示例性核酸分子,其名稱為SEQ ID NO:107。因此,在任意實施方案中,示例性核酸分子是SEQ ID NO:107的變體,其中所述變體包含與SEQ ID NO:107的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在任意實施方案中,多核苷酸編碼包含SEQ ID NO:16氨基酸序列的LukB多肽。本文提供了編碼CC45-LukB的示例性核酸分子,其名稱為SEQ ID NO:108。因此,在任意實施方案中,示例性核酸分子是SEQ ID NO:108的變體,其中所述變體包含與SEQ ID NO:108的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。
在任意實施方案中,所述多核苷酸編碼變體LukB多肽,所述變體LukB多肽包含對應於SEQ ID NO:39的氨基酸殘基Val53的氨基酸殘基處的氨基酸替換或缺失。在任意實施方案中,Val53處的氨基酸替換包括纈氨酸到亮氨酸替換(Val53Leu)。
在任意實施方案中,本發明的示例性多核苷酸編碼SEQ ID NO:17的變體LukB蛋白質或多肽(LukB CC8 V53L),或與SEQ ID NO:17的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼所述LukB CC8 V53L變體的示例性核酸分子包含與SEQ ID NO:109具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC8變體的核酸分子包含SEQ ID NO:109的核苷酸序列。
在任意實施方案中,本發明的示例性多核苷酸編碼SEQ ID NO:18的變體LukB蛋白質或多肽(LukB CC45 V53L),或與SEQ ID NO:18的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。編碼所述LukB CC45 V53L變體的示例性核酸分子包含與SEQ ID NO:110具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列。在任意實施方案中,編碼所述LukA CC45變體的核酸分子包含SEQ ID NO:110的核苷酸序列。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼變體LukB蛋白質或多肽,其包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,上述一個或多個殘基處的氨基酸替換引入一個或多個能夠形成二硫鍵以穩定LukAB異二聚體結構構象的半胱氨酸殘基。在任意實施方案中,所述多核苷酸編碼LukB變體蛋白質或多肽,其在對應於SEQ ID NO:39的Glu45的氨基酸殘基處包含谷氨酸到半胱氨酸的替換(Glu45Cys),以及在對應於SEQ ID NO:39的Thr121的氨基酸殘基處包含蘇氨酸到半胱氨酸的替換(Thr21Cys)。在任意實施方案中,所述多核苷酸編碼LukB變體蛋白質或多肽,其在對應於SEQ ID NO:39的Glu109的氨基酸殘基處包含谷氨酸對半胱氨酸的替換(Glu109Cys),以及在對應於SEQ ID NO:39的Arg154的氨基酸殘基處包含精氨酸到半胱氨酸的替換(Arg154Cys)。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼變體LukB蛋白質或多肽,其包含對應於SEQ ID NO:39的氨基酸殘基Glu45、Glu109、Thr121和Arg154的每個氨基酸殘基處的氨基酸替換。在任意實施方案中,這些氨基酸殘基中的每一個的氨基酸替換涉及如上所述引入半胱氨酸殘基。在任意實施方案中,所述多核苷酸編碼變體LukB蛋白質或多肽,其包含SEQ ID NO:21的氨基酸序列(LukB CC8 Glu45Cys、Glu109Cys、Thr21Cys和Arg154Cys),或與SEQ ID NO:21的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在任意實施方案中,所述多核苷酸編碼變體LukB蛋白質或多肽,其包含SEQ ID NO:22的氨基酸序列(LukB CC45 Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys),或與SEQ ID NO:22的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,本發明的多核苷酸編碼變體LukB蛋白質或多肽,其包含對應於SEQ ID NO:39的Val53的氨基酸殘基處的氨基酸替換,以及對應於SEQ ID NO:39的Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基處的氨基酸替換。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:19氨基酸序列的變體LukB蛋白質或多肽(LukB CC8 Val53Leu、Glu45Cys、Glu109Cys、Thr21Cys和Arg154Cys),或與SEQ ID NO:19氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:20氨基酸序列的變體LukB蛋白質或多肽(LukB CC45 Val53Leu、Glu45Cys、Thr122Cys、Glu110Cys、Arg155Cys),或與SEQ ID NO:20氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
在任意實施方案中,如本文所述的免疫原性組合物的示例性核酸分子編碼SEQ ID NO:4的CC45-LukA變體序列和SEQ ID NO:16的CC45-LukB序列。編碼所述LukAB異二聚體(RARPR-15)的示例性核酸分子包含與SEQ ID NO:104(CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列和與SEQ ID NO:108(CC45-LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的核苷酸序列可操作性地偶聯。編碼所述LukAB異二聚體的示例性核酸分子包含SEQ ID NO:104的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:108的核苷酸序列偶聯。
在任意實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:4的CC45 LukA變體序列和SEQ ID NO:18的CC45 LukB變體序列。編碼所述LukAB異二聚體(RARPR-30)的示例性核酸分子包含與SEQ ID NO:104(CC45 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列和與SEQ ID NO:110(CC45 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的核苷酸序列可操作地偶聯。編碼所述LukAB異二聚體的示例性核酸分子包含SEQ ID NO:104的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:110的核苷酸序列偶聯。
在任意實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:15的CC8 LukB序列。編碼所述LukAB異二聚體(RARPR-32)的示例性核酸分子包含與SEQ ID NO:103(CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列和與SEQ ID NO:107(CC8 LukB)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%,或至少99%的序列相似性的核苷酸序列可操作地偶聯。編碼所述LukAB異二聚體的示例性核酸分子包含SEQ ID NO:103的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:107的核苷酸序列偶聯。
在任意實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:18的CC45 LukB變體序列。編碼所述LukAB異二聚體(RARPR-33)的示例性核酸分子包括與SEQ ID NO:103(CC8 LukA變體)的核苷酸序列到具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的核苷酸序列,該核苷酸序列和與SEQ ID NO:110(CC45 LukB變體)的核苷酸序列至少85%、至少90%、至少95%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼所述LukAB異二聚體的示例性核酸分子包含SEQ ID NO:103的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:110的核苷酸序列偶聯。
在任意實施方案中,本發明的示例性核酸分子編碼SEQ ID NO:3的CC8 LukA變體序列和SEQ ID NO:17的CC8 LukB變體序列。編碼所述LukAB異二聚體(RARPR-34)的示例性核酸分子包含與SEQ ID NO:103(CC8 LukA變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列和與SEQ ID NO:109(CC8 LukB變體)的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列可操作地偶聯。編碼所述LukAB異二聚體的示例性核酸分子包含SEQ ID NO:103的核苷酸序列,該核苷酸序列可操作地與SEQ ID NO:109的核苷酸序列偶聯。
下表4提供了本發明的示例性LukA和LukB核酸分子序列。 4. 示例性 LukA LukB 多核苷酸序列
構建物名稱 SEQ ID NO: DNA 序列
CC8 LukA wt 101 GCT CAC AAA GAT TCT CAG GAT CAA AAT AAG AAG GAG CAC GTC GAC AAG TCT CAG CAG AAA GAC AAG CGT AAT GTT ACA AAC AAG GAC AAA AAC AGC ACT GCT CCA GAC GAC ATT GGA AAA AAC GGT AAG ATT ACT AAA CGC ACC GAA ACG GTA TAT GAC GAA AAA ACG AAC ATT TTG CAA AAC TTG CAG TTC GAT TTC ATT GAC GAC CCC ACT TAT GAC AAG AAT GTC CTT CTG GTG AAG AAG CAG GGC AGC ATT CAC TCA AAC TTG AAA TTT GAG TCT CAC AAG GAG GAG AAG AAC TCC AAT TGG CTG AAA TAC CCA TCA GAG TAC CAC GTT GAT TTT CAA GTG AAA CGT AAC CGC AAA ACG GAA ATT TTG GAC CAA TTG CCG AAA AAC AAG ATC TCC ACC GCG AAA GTA GAC TCA ACA TTC AGT TAC TCT TCC GGC GGA AAG TTC GAC AGC ACT AAG GGG ATC GGG CGC ACT TCT TCC AAT TCG TAC TCG AAA ACG ATT TCT TAC AAT CAG CAG AAT TAT GAC ACT ATC GCA TCT GGT AAA AAT AAT AAC TGG CAC GTG CAT TGG TCG GTG ATT GCT AAT GAT TTA AAG TAT GGA GGT GAG GTA AAA AAT CGT AAT GAC GAG CTG CTG TTT TAC CGT AAC ACT CGC ATC GCA ACC GTT GAA AAC CCG GAA TTG TCC TTT GCC TCG AAA TAC CGC TAC CCT GCA TTA GTT CGT TCA GGC TTT AAT CCC GAG TTT TTG ACT TAT CTT TCC AAT GAA AAA TCG AAC GAG AAG ACT CAG TTC GAG GTT ACG TAC ACC CGC AAT CAG GAC ATT TTG AAG AAC CGT CCG GGA ATT CAC TAT GCG CCT CCC ATC TTA GAG AAG AAT AAG GAT GGA CAA CGT TTG ATC GTT ACA TAT GAA GTT GAC TGG AAA AAT AAG ACC GTA AAG GTT GTG GAT AAG TAT TCG GAT GAT AAT AAG CCC TAT AAA GAA GGG
CC45 LukA wt 102 GCG AAC AAA GAT TCT CAG GAC CAG ACC AAA AAG GAG CAC GTA GAC AAG GCC CAG CAA AAA GAG AAG CGT AAT GTG AAC GAC AAA GAT AAG AAT ACT CCG GGG CCA GAT GAT ATC GGC AAG AAC GGT AAA GTC ACG AAG CGT ACA GTG TCT GAG TAT GAC AAA GAA ACA AAC ATC CTG CAG AAC TTA CAA TTC GAC TTT ATT GAT GAT CCA ACT TAC GAT AAG AAT GTG TTG CTG GTT AAG AAA CAA GGT TCA ATC CAT TCT AAC TTG AAG TTC GAG TCA CAC CGT AAC GAA ACG AAC GCG TCG TGG TTG AAA TAT CCG TCA GAG TAT CAT GTT GAT TTT CAA GTA CAA CGT AAT CCC AAA ACG GAA ATT TTG GAC CAA TTA CCT AAA AAT AAG ATT AGC ACC GCC AAG GTT GAC TCA ACT TTC TCC TAC TCA TTA GGA GGA AAG TTC GAT TCG ACA AAA GGG ATC GGG CGT ACA TCT TCG AAT AGC TAC AGT AAG AGC ATT AGC TAT AAC CAG CAG AAC TAT GAT ACG ATT GCT TCA GGG AAA AAT AAC AAC CGT CAC GTA CAT TGG TCA GTG GTT GCG AAC GAT CTT AAA TAT GGA AAC GAG ATT AAG AAT CGT AAC GAC GAA TTT TTG TTT TAC CGC AAT ACA CGC CTT AGT ACC GTG GAA AAT CCC GAG CTG TCC TTC GCG TCG AAG TAT CGC TAT CCG GCC CTT GTG CGT TCG GGT TTC AAT CCC GAG TTC TTA ACA TAT ATT TCC AAT GAG AAA ACT AAC GAC AAG ACT CGC TTC GAA GTC ACC TAC ACT CGC AAC CAG GAC ATT CTG AAA AAC AAG CCT GGA ATT CAT TAC GGG CAA CCA ATT TTA GAG CAG AAT AAG GAT GGA CAG CGC TTT ATT GTG GTA TAT GAG GTG GAC TGG AAG AAT AAG ACA GTA AAA GTT GTG GAA AAG TAC TCT GAC CAG AAT AAG CCC TAT AAA GAA GGA
CC8 LukAΔ10C 111 GCT CAC AAA GAT TCT CAG GAT CAA AAT AAG AAG GAG CAC GTC GAC AAG TCT CAG CAG AAA GAC AAG CGT AAT GTT ACA AAC AAG GAC AAA AAC AGC ACT GCT CCA GAC GAC ATT GGA AAA AAC GGT AAG ATT ACT AAA CGC ACC GAA ACG GTA TAT GAC GAA AAA ACG AAC ATT TTG CAA AAC TTG CAG TTC GAT TTC ATT GAC GAC CCC ACT TAT GAC AAG AAT GTC CTT CTG GTG AAG AAG CAG GGC AGC ATT CAC TCA AAC TTG AAA TTT GAG TCT CAC AAG GAG GAG AAG AAC TCC AAT TGG CTG AAA TAC CCA TCA GAG TAC CAC GTT GAT TTT CAA GTG AAA CGT AAC CGC AAA ACG GAA ATT TTG GAC CAA TTG CCG AAA AAC AAG ATC TCC ACC GCG AAA GTA GAC TCA ACA TTC AGT TAC TCT TCC GGC GGA AAG TTC GAC AGC ACT AAG GGG ATC GGG CGC ACT TCT TCC AAT TCG TAC TCG AAA ACG ATT TCT TAC AAT CAG CAG AAT TAT GAC ACT ATC GCA TCT GGT AAA AAT AAT AAC TGG CAC GTG CAT TGG TCG GTG ATT GCT AAT GAT TTA AAG TAT GGA GGT GAG GTA AAA AAT CGT AAT GAC GAG CTG CTG TTT TAC CGT AAC ACT CGC ATC GCA ACC GTT GAA AAC CCG GAA TTG TCC TTT GCC TCG AAA TAC CGC TAC CCT GCA TTA GTT CGT TCA GGC TTT AAT CCC GAG TTT TTG ACT TAT CTT TCC AAT GAA AAA TCG AAC GAG AAG ACT CAG TTC GAG GTT ACG TAC ACC CGC AAT CAG GAC ATT TTG AAG AAC CGT CCG GGA ATT CAC TAT GCG CCT CCC ATC TTA GAG AAG AAT AAG GAT GGA CAA CGT TTG ATC GTT ACA TAT GAA GTT GAC TGG AAA AAT AAG ACC GTA AAG GTT GTG GAT AAG TAT
CC45 LukAΔ10C 112 GCAAATAAAGACTCTCAAGATCAGACTAAAAAGGAACATGTTGATAAGGCGCAACAAAAAGAAAAGCGTAATGTCAATGATAAGGACAAGAATACTCCGGGACCCGACGACATTGGCAAGAACGGAAAGGTGACAAAGCGTACCGTTAGTGAGTACGACAAGGAAACAAATATCCTGCAGAACTTACAGTTCGATTTTATTGACGATCCTACCTATGACAAGAATGTCCTGTTGGTGAAGAAACAGGGCAGCATTCATTCCAATTTAAAATTTGAAAGCCATCGTAACGAAACAAATGCATCTTGGCTTAAATACCCTTCTGAGTACCACGTAGATTTTCAGGTACAACGCAACCCAAAAACCGAAATTCTGGATCAACTGCCCAAGAATAAAATTTCTACGGCTAAAGTTGACAGTACATTTAGCTACAGTTTAGGGGGAAAGTTTGATAGTACAAAAGGAATTGGTCGTACTTCCAGTAACTCCTATTCGAAATCTATTTCCTATAATCAACAGAATTACGACACCATCGCATCCGGTAAAAACAATAATCGCCACGTACATTGGAGTGTTGTCGCGAATGACTTAAAGTACGGTAACGAAATCAAGAACCGCAACGACGAATTCTTATTCTATCGTAACACGCGTTTAAGCACCGTCGAGAACCCCGAGTTATCCTTTGCTAGCAAATATCGCTATCCTGCGTTAGTACGCTCAGGGTTCAATCCTGAGTTCTTAACCTACATCTCCAACGAGAAAACTAATGATAAGACACGCTTCGAGGTGACCTACACCCGTAATCAGGATATCCTTAAAAATAAACCGGGTATTCATTACGGGCAACCCATTTTAGAACAGAATAAGGACGGCCAACGTTTTATCGTGGTCTATGAGGTTGATTGGAAGAACAAGACAGTGAAAGTGGTTGAAAAGTAT
CC8 LukA W95 103   CATAAAGATTCGCAGGATCAAAATAAGAAGGAGCATGTTGACAAGAGCCAGCAGAAAGACAAGCGCAATGTTACAAACAAAGATAAGAACTCTACAGCGCCCGATGACATTGGTAAGAACGGCAAGATAACTAAGCGGACGGAAACCGTGTATGACGAGAAAACTAACATTCTGCAAAATTTGCAATTTGACTTTATCGACGATCCAACCTATGACAAGAATGTCTTGCTTGTCAAAATGCAAGGTTCGATTCATTCAAACCTTAAATTTGAATCCCACAAAGAGGAGAAAAACTCTAATTGGTTAAAGTATCCTTCAGAATATCACATAGATTTCCAGGTAAAGAGAAACCGTAAAACGGAGATACTGGATCAACTGCCTAAAAACAAGATCTCGACAGCTAAGGTGGACGCTACGTTCTCGTACTCGTCTGGTGGGAAGTTCGACTCGACCAAAGGCATTGGGCGTACATCATCAAATAGCTATTCAAAGACTATTAGCTATAATCAGCAGAACTATGATACGATAGCTTCGGGTAAGAATAACAACTGGCACGTTCATTGGTCGATCATTGCAAATGACTTGAAGTATGGCGGAGAGGTAAAGAATCGCAACGATGAGCTGTTATTCTATCGCAATACGAGAATTGCGACTGTAGAGAACCCGGAATTGTCTTTTGCCTCCAAATATCGGTACCCGGCATTGGTACGCTCTGGTTTCAATCCTGAGTTTTTAACTTACCTTTCCAACGAAAAGAGTAATGAGAAGACCCAATTTGAGGTTACCTACACCCGTAACCAGGATATTTTGAAGAATCGGCCGGGCATCCATTATGCCCCACCAATCCTGGAGAAAAATAAAGACGGTCAGCGGCTTATTGTGACTTACGAGGTCGATTGGAAAAATAAGACGGTCAAGGTAGTGGACAAATATTCTGATGACAATAAACCGTACAAAGCTGGC
CC45 LukA W95 104   GCTAATAAGGACTCCCAGGACCAGACAAAGAAGGAACACGTCGACAAAGCCCAGCAAAAAGAAAAACGCAACGTAAACGATAAGGACAAGAACACCCCAGGACCCGATGATATTGGGAAGAACGGTAAAGTCACAAAACGCACAGTGAGCGAGTACGATAAAGAAACAAATATCCTGCAAAATCTGCAATTTGACTTCATCGATGACCCTACCTATGATAAGAATGTGTTGTTGGTTAAGATGCAGGGAAGTATTCATTCCAACTTGAAATTCGAGAGCCACCGTAACGAAACGAATGCGAGTTGGTTAAAGTACCCTTCAGAATACCACATTGATTTTCAGGTGCAGCGTAACCCGAAAACCGAAATCTTAGACCAGCTGCCTAAAAACAAGATTTCTACGGCCAAGGTGGACGCAACTTTCAGTTATAGTCTTGGAGGAAAGTTCGACAGTACCAAAGGTATCGGCCGCACATCCTCAAACAGCTATTCGAAATCCATTTCTTACAACCAGCAAAATTATGACACGATCGCCTCAGGTAAGAACAACAATCGTCATGTGCATTGGAGCATCGTGGCTAACGATTTGAAATATGGTAACGAAATCAAAAATCGCAATGACGAGTTCTTGTTTTACCGCAATACTCGCCTTTCTACGGTAGAGAATCCTGAGCTTAGCTTTGCGAGCAAGTATCGTTACCCTGCTCTTGTACGTTCGGGTTTCAACCCAGAGTTCCTTACTTATATCTCCAATGAGAAGACGAACGATAAAACCCGTTTTGAAGTTACATACACGCGTAATCAGGACATCTTAAAGAATAAACCGGGGATTCATTATGGGCAGCCGATCTTAGAGCAAAATAAGGATGGACAGCGTTTCATTGTAGTGTATGAGGTTGACTGGAAGAACAAGACGGTAAAAGTAGTTGAAAAGTATTCCGACCAAAACAAGCCTTATAAGGCGGGT
CC8 LukA W97 W72 105 CACAAAGACAGCCAGGATCAAAACAAGAAAGAGCACGTGGACAAGAGCCAGCAAAAGGATAAACGTAACGTTACCAACAAGGACAAAAACAGCACCGCGCCGGACGATATCGGCAAGAACGGCAAAATTACCAAGCGTACCGAGACCGTGTACGATGAAAAAACCAACATCCTGCAGAACCTGCAATTCGACTTTATTGACGATCCGACCTGCGATAAAAACGTGCTGCTGGTTAAGATGCAGGGCAGCATCCACAGCAACCTGAAATTCGAAAGCCACAAAGAGGAAAAGAACAGCAACTGGCTGAAGTACCCGAGCGAGTATCACATTGACTTTCAGGTGAAACGTAACCGTAAGACCGAAATCCTGGATCAACTGCCGAAGAACAAAATTAGCACCGCGAAGGTTTGCGCGACCTTCAGCTACAGCAGCGGTTGCAAATTTGACAGCACCAAGTGCATCGGCCGTACCAGCAGCAACAGCTATAGCAAAACCATCAGCTACAACCAGCAAAACTATGATACCATTGCGAGCGGCAAGAACAACAACTGGCACGTGCACTGGAGCATCATTGCGAACGACCTGAAATACGGTGGCGAGGTTAAGAACCGTAACGATGAACTGCTGTTCTATCGTAACACCCGTATCGCGACCGTGGAGAACCCGGAACTGAGCTTTGCGAGCAAATACCGTTATCCGGCGCTGGTGCGTAGCGGTTTCAACCCGGAGTTTCTGGTTTACCTGAGCAACGAGAAAAGCAACGAAAAGACCCAGTTCGAAGTTACCTACACCCGTAACCAAGACATCCTGAAGAACCGTCCGGGTATCCACTATGCTCCGCCGATTCTGGAGAAGAACAAAGATGGCCAACGTCTGATTGTGACCTATGAAGTTGACTGGAAGAACAAAACCGTTAAAGTGGTTGATAAGTACAGCGACGATAACAAACCGTATAAGGCGGGT
CC45 LukA W97 W72 106 GCAAACAAAGACTCACAAGATCAGACAAAGAAAGAGCATGTAGACAAAGCTCAACAGAAGGAAAAGCGCAATGTGAACGACAAGGATAAAAATACTCCTGGTCCAGATGACATTGGTAAGAATGGTAAAGTTACTAAGCGGACCGTCTCTGAATATGATAAGGAGACAAATATTCTCCAGAATTTGCAATTCGATTTCATTGATGATCCGACGTGCGATAAGAACGTATTGCTCGTTAAAATGCAGGGCTCCATCCATTCGAATCTCAAGTTCGAATCCCATCGCAACGAGACAAACGCTTCCTGGCTCAAATATCCTAGCGAGTATCATATCGACTTCCAAGTTCAACGGAACCCTAAAACTGAAATCCTTGATCAACTCCCTAAGAACAAAATCTCAACTGCCAAGGTCTGTGCCACATTTTCTTATTCTCTTGGCTGCAAATTCGATTCAACAAAGTGTATTGGTCGTACATCAAGTAATAGCTATAGTAAAAGCATCAGTTATAACCAGCAAAACTATGATACAATCGCGTCAGGCAAAAACAATAATCGTCATGTCCATTGGTCCATTGTCGCGAACGACCTTAAGTACGGTAACGAAATTAAGAATCGGAACGATGAGTTTTTGTTCTATCGCAACACCCGTCTGTCTACTGTCGAAAACCCGGAGTTGTCCTTCGCAAGTAAATATCGCTATCCTGCTTTGGTACGTTCTGGGTTTAACCCGGAATTTCTCGTCTACATCAGCAACGAGAAAACAAATGACAAAACGCGCTTTGAAGTCACGTACACACGTAATCAGGACATCTTAAAAAATAAACCAGGGATTCACTATGGTCAGCCAATCTTGGAGCAGAATAAAGACGGCCAGCGTTTCATTGTCGTTTATGAAGTGGACTGGAAAAACAAAACTGTTAAGGTGGTTGAGAAATATTCCGACCAAAACAAACCGTATAAGGCCGGT
CC8 LukB wt 107   AAAATCAATTCTGAAATTAAGCAAGTGTCCGAAAAAAATTTGGATGGAGACACGAAGATGTATACGCGTACTGCTACGACGTCAGACTCCCAGAAGAACATTACACAGAGTCTGCAATTTAATTTTCTGACAGAACCAAACTATGACAAGGAAACTGTCTTTATTAAGGCTAAAGGGACTATCGGAAGCGGCTTACGCATTTTAGACCCCAACGGTTATTGGAATAGCACGCTGCGCTGGCCGGGCAGTTACTCAGTATCAATCCAAAATGTCGATGATAACAATAACACCAATGTTACCGATTTCGCCCCCAAGAACCAGGATGAATCGCGCGAGGTTAAATACACATACGGCTACAAGACAGGCGGTGACTTTAGCATCAACCGTGGGGGCTTGACAGGGAATATTACTAAGGAATCAAATTATAGTGAGACTATCTCTTATCAACAACCGTCCTATCGTACCTTATTAGACCAGAGTACCTCCCACAAAGGTGTAGGGTGGAAAGTTGAAGCGCACCTGATTAATAATATGGGTCACGATCACACACGCCAACTGACCAACGACAGTGACAACCGCACAAAAAGTGAAATTTTTAGTCTTACCCGTAACGGAAATCTGTGGGCCAAAGACAATTTTACACCGAAAGATAAGATGCCGGTCACTGTATCTGAGGGGTTCAATCCCGAGTTTTTAGCAGTAATGTCGCATGACAAAAAGGACAAAGGGAAATCCCAGTTTGTTGTCCACTATAAGCGTAGCATGGATGAATTCAAAATCGACTGGAACCGTCACGGTTTCTGGGGTTACTGGTCAGGTGAGAACCACGTAGACAAGAAAGAGGAGAAACTGAGCGCATTATATGAGGTTGATTGGAAAACGCACAATGTGAAATTTGTTAAAGTCCTGAATGACAACGAGAAAAAG
CC45 LukB wt 108   GAAATTAAGTCTAAGATCACAACAGTATCGGAGAAAAACCTGGATGGCGATACTAAGATGTATACACGCACCGCCACTACTTCGGACACGGAGAAGAAGATCTCACAATCGTTACAGTTTAATTTTCTTACAGAACCGAACTACGACAAAGAGACCGTCTTCATTAAAGCTAAAGGTACGATTGGTTCGGGATTAAAAATTCTGAATCCGAATGGCTATTGGAACAGTACCTTACGTTGGCCGGGGTCATATTCTGTATCCATTCAAAACGTGGACGACAATAACAACAGCACCAATGTGACAGATTTCGCTCCAAAGAATCAGGATGAGTCCCGCGAGGTGAAATATACCTATGGGTACAAAACAGGAGGTGACTTTAGCATTAACCGTGGTGGCTTGACTGGTAATATCACGAAGGAAAAAAATTACTCTGAGACTATTTCCTACCAACAGCCGTCGTATCGCACCTTGATCGACCAACCAACGACTAACAAAGGGGTCGCGTGGAAAGTTGAGGCCCACAGTATTAACAATATGGGCCACGATCACACTCGTCAGCTTACTAACGATTCGGATGACCGCGTCAAGTCGGAAATTTTCAGCCTGACGCGTAACGGAAATTTGTGGGCTAAAGACAATTTCACTCCTAAGAACAAGATGCCCGTGACTGTTTCCGAAGGCTTTAATCCCGAATTCTTAGCGGTGATGTCTCATGATAAAAATGATAAAGGAAAATCGCGCTTCATTGTGCATTATAAGCGTTCTATGGACGACTTCAAATTGGATTGGAATAAGCACGGATTCTGGGGGTACTGGTCCGGGGAAAATCACGTAGATCAAAAGGAAGAGAAGTTGTCCGCTTTGTATGAAGTGGACTGGAAGACTCACGACGTTAAGTTGATCAAGACCTTCAATGACAAAGAGAAGAAA
CC8 LukB Val53Leu 109   AAGATCAATTCGGAAATTAAACAGGTAAGTGAGAAAAATTTGGATGGCGATACCAAAATGTACACCCGCACCGCTACCACGTCAGATTCACAAAAAAATATTACACAGTCCTTGCAGTTCAATTTCCTGACAGAACCGAATTACGACAAGGAGACTTTGTTCATTAAAGCCAAGGGAACCATCGGGTCCGGATTGCGTATCTTGGACCCGAACGGATATTGGAACTCGACCTTACGTTGGCCGGGGTCTTACAGTGTTAGTATCCAAAACGTAGATGATAACAATAACACAAACGTGACAGATTTTGCACCTAAAAACCAGGACGAAAGCCGCGAGGTAAAGTACACATATGGGTATAAAACAGGGGGGGACTTTTCCATCAACCGTGGTGGTTTGACCGGGAACATCACCAAAGAGTCAAATTACAGTGAGACCATCAGTTATCAGCAGCCGTCCTATCGTACATTATTGGATCAGTCGACTTCACATAAAGGGGTCGGATGGAAAGTAGAGGCTCATTTGATCAACAACATGGGTCACGATCATACACGTCAGTTAACGAACGATAGCGATAATCGCACGAAGTCAGAAATCTTTAGTCTGACTCGTAACGGTAACTTGTGGGCCAAGGACAATTTCACGCCCAAAGATAAGATGCCTGTGACGGTATCGGAGGGGTTCAATCCAGAATTCCTTGCTGTAATGTCCCATGACAAAAAAGACAAGGGCAAATCGCAATTTGTAGTCCACTATAAGCGTTCTATGGACGAGTTCAAGATTGACTGGAACCGCCACGGCTTCTGGGGGTACTGGAGTGGTGAGAATCATGTGGATAAAAAGGAGGAGAAACTTAGCGCCCTGTATGAGGTAGATTGGAAAACACACAATGTCAAGTTCGTGAAAGTTCTTAATGACAACGAAAAAAAA
CC45 LukB Val53Leu 110   GAGATCAAGAGCAAAATTACCACCGTGAGCGAAAAGAACCTGGACGGTGATACCAAAATGTATACCCGTACCGCGACCACCAGCGACACCGAGAAGAAAATTAGCCAGAGCCTGCAATTCAACTTTCTGACCGAGCCGAACTACGATAAGGAAACCCTGTTCATCAAGGCGAAAGGCACCATTGGTAGCGGCCTGAAAATCCTGAACCCGAACGGTTATTGGAACAGCACCCTGCGTTGGCCGGGTAGCTACAGCGTGAGCATCCAGAACGTTGACGATAACAACAACAGCACCAACGTGACCGACTTCGCGCCGAAGAACCAAGATGAGAGCCGTGAAGTTAAATACACCTATGGTTACAAAACCGGTGGCGACTTTAGCATTAACCGTGGTGGCCTGACCGGCAACATCACCAAGGAGAAAAACTATAGCGAAACCATTAGCTATCAGCAACCGAGCTACCGTACCCTGATCGATCAGCCGACCACCAACAAGGGTGTGGCGTGGAAAGTTGAGGCGCACAGCATTAACAACATGGGCCACGACCACACCCGTCAACTGACCAACGATAGCGACGATCGTGTGAAGAGCGAAATCTTCAGCCTGACCCGTAACGGTAACCTGTGGGCGAAAGACAACTTTACCCCGAAGAACAAAATGCCGGTGACCGTTAGCGAGGGTTTCAACCCGGAATTTCTGGCGGTGATGAGCCACGACAAGAACGATAAGGGCAAAAGCCGTTTCATTGTTCACTACAAACGTAGCATGGACGATTTCAAGCTGGACTGGAACAAACACGGTTTTTGGGGCTATTGGAGCGGCGAGAACCACGTTGATCAGAAAGAGGAGAAACTGAGCGCGCTGTACGAAGTGGACTGGAAGACCCACGATGTTAAGCTGATCAAAACCTTTAACGATAAAGAAAAGAAA
在任意實施方案中,本文公開的免疫原性組合物包含編碼SpA多肽的多核苷酸。在任意實施方案中,所述多核苷酸編碼野生型或非變體SpA多肽。在任意實施方案中,所述多核苷酸編碼包含SEQ ID NO:55或48的氨基酸序列的SpA A結構域。在任意實施方案中,所述多核苷酸編碼SpA B結構域,其包含SEQ ID NO:56或49的氨基酸序列。在任意實施方案中,所述多核苷酸編碼SpA C結構域,該結構域包含SEQ ID NO:57或50的氨基酸序列。在任意實施方案中,所述多核苷酸編碼SpA D結構域,該結構域包含SEQ ID NO:58或51的氨基酸序列。在任意實施方案中,所述多核苷酸編碼SpA E結構域,該結構域包含SEQ ID NO:59或52的氨基酸序列。在任意實施方案中,編碼SpA多肽的多核苷酸包含至少兩個SpA IgG結構域、至少三個SpA IgG結構域、至少四個SpA IgG結構域或所有五個SpA IgG結構域。在任意實施方案中,所述多核苷酸編碼SpA多肽,其包含SEQ ID NO:53的氨基酸序列或與SEQ ID NO:53具有至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%序列同一性的序列。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼變體E、D、A、B和/或C結構域,其包含分別與SEQ ID NO:55或48、SEQ ID NO:56或49、SEQ ID NO:57或50、SEQ ID NO:58或51以及SEQ ID NO:59或52具有75%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的氨基酸序列。上文描述了示例性SpA變體E、D、A、B和C結構域。
在任意實施方案中,所述多核苷酸編碼具有變體E結構域的SpA變體多肽,所述變體E結構域包含SEQ ID NO:59的氨基酸第6、7、33和/或34位處的替換。在任意實施方案中,所述多核苷酸編碼具有變體D結構域的SpA變體多肽,所述變體D結構域包含SEQ ID NO:58的氨基酸第9、10、36和/或37位處的替換。在任意實施方案中,所述多核苷酸編碼具有變體A結構域的SpA變體多肽,所述變體A結構域包含SEQ ID NO:55的氨基酸第7、8、34和/或35位處的替換。在任意實施方案中,所述多核苷酸編碼具有變體B結構域的SpA變體多肽,所述變體B結構域包含SEQ ID NO:56的氨基酸第7、8、34和/或35位處的替換。在任意實施方案中,所述多核苷酸編碼具有變體C結構域的SpA變體多肽,所述變體C結構域包含SEQ ID NO:57的氨基酸第7、8、34和/或35位處的替換。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼SpA變體多肽,所述多肽包含與SEQ ID NO:53或72具有至少75%、至少80%、至少85%、至少90%(但非100%)序列同一性的氨基酸序列。在任意實施方案中,SpA變體多肽包含與SEQ ID NO:53或72或其片段具有91%、92%、93%、94%、95%、96%、97%、98%、99%同一性的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼SpA變體多肽,其包含SpA結構域D中的一個或多個氨基酸替換,或在其他SpA IgG結構域中的相應氨基酸位置,其中一個或多個氨基酸替換破壞或減少SpA變體多肽與IgG Fc的結合。在任意實施方案中,所述多核苷酸編碼SpA變體多肽,所述多肽進一步包含D結構域的VH3結合子域中的一個或多個氨基酸替換,或在其他IgG結構域中的相應氨基酸位置處的一個或多個氨基酸替換,其破壞或減少與VH3的結合。
在任意實施方案中,所述多核苷酸編碼包含變體A結構域(例如,包含SEQ ID NO:62、67、88或93的氨基酸序列的變體A結構域)的SpA變體多肽。在任意實施方案中,所述多核苷酸編碼包含變體B結構域(例如,包含SEQ ID NO:63、68、89或94氨基酸序列變體的B結構域)的SpA變體多肽。在任意實施方案中,所述多核苷酸編碼包含變體C結構域(例如,包含SEQ ID NO:64、69、90或95氨基酸序列的變體C結構域)的SpA變體多肽。在任意實施方案中,所述多核苷酸編碼包含變體D結構域(例如,包含SEQ ID NO:66、71、91或96的氨基酸序列的變體D結構域)的SpA變體多肽。在任意實施方案中,所述多核苷酸編碼包含變體E結構域(例如,包含SEQ ID NO:65、70、92或97的氨基酸序列的變體E結構域的)的SpA變體多肽。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼包含變體A、B、C、D和E結構域的SpA變體多肽,變體A、B、C、D和E結構域包含分別與SEQ ID NO:62或67、SEQ ID NO:63或68、SEQ ID NO:64或69、SEQ ID NO:66或71以及SEQ ID NO:65或70具有至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%相同的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼包含變體A、B、C、D和E結構域的SpA變體多肽,所述變體A、B、C、D和E結構域包含與SEQ ID NO:88或93、SEQ ID NO:89或94、SEQ ID NO:90或95、SEQ ID NO:91或96以及SEQ ID NO:92或97至少75%、至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、或至少99%相同的氨基酸序列。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼包含變體D結構域的SpA變體多肽,其中所述變體D結構域包含對應於SEQ ID NO:58的第9、10和/或33位氨基酸位置處的替換。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼SpA變體多肽,其包括(i)每個SpA A-E結構域中的穀氨醯胺氨基酸殘基(對應於SpA D結構域(SEQ ID NO:58)的第9和10位的氨基酸位置處)的賴氨酸替換;和(ii)每個SpA A-E結構域中的絲氨酸氨基酸殘基(與SpA D結構域(SEQ ID NO:58)的第33位相對應的氨基酸位置處)的谷氨酸替換。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:65氨基酸序列的SpA E結構域。在任意實施方案中,所述免疫原性組合物的多核苷酸編碼具有SEQ ID NO:66氨基酸序列的SpA D結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:62氨基酸序列的SpA A結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:63氨基酸序列的SpA B結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:64氨基酸序列的SpA C結構域。在任意實施方案中,所述免疫原性組合物的多核苷酸編碼具有SEQ ID NO:60氨基酸序列的SpA變體多肽。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼SpA變體多肽,其包括(i)每個SpA A-E結構域中穀氨醯胺氨基酸殘基(對應於SpA D結構域(SEQ ID NO:58)的第9和10位的氨基酸位置處)的賴氨酸替換;以及(ii)每個SpA A-E結構域中的絲氨酸氨基酸殘基(SpA D結構域(SEQ ID NO:58)第33位對應的氨基酸位置處)的蘇氨酸替換。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:70氨基酸序列的SpA E結構域。在任意實施方案中,所述免疫原性組合物的多核苷酸編碼具有SEQ ID NO:71氨基酸序列的SpA D結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:67氨基酸序列的SpA A結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:68氨基酸序列的SpA B結構域。在任意實施方案中,所述多核苷酸編碼具有SEQ ID NO:69氨基酸序列的SpA C結構域。在任意實施方案中,所述免疫原性組合物的多核苷酸編碼具有SEQ ID NO:61氨基酸序列的SpA變體多肽。
在任意實施方案中,所述免疫原性組合物的多核苷酸編碼包含變體A、B、C、D和/或E結構域的SpA變體多肽。在任意實施方案中,多所述核苷酸編碼SpA變體多肽,其包含與SEQ ID NO:60或61的氨基酸序列至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%相同的氨基酸序列。在任意實施方案中,多核苷酸編碼SpA變體多肽,其包含與SEQ ID NO:54的氨基酸序列至少80%、至少85%、至少90%、至少91%、至少92%、至少93%、至少94%、至少95%、至少96%、至少97%、至少98%、至少99%或100%相同的氨基酸序列。
在一些實施方案中,編碼本文所述金黃色葡萄球菌多肽的核酸分子是優化用於在哺乳動物細胞(優選人類細胞)中表達的密碼子。密碼子優化的方法是已知的,並且已經在之前描述過(例如,國際專利申請公開WO1996/09378,通過引用將其全部併入本文)。如果與野生型序列相比,至少有一個非優選密碼子被更優選的密碼子替換,則該序列被視為密碼子優化。在此,非優選密碼子是指在生物體中使用頻率低於編碼相同氨基酸的另一密碼子的密碼子,而更優選密碼子是指在生物體中使用頻率高於非優選密碼子的密碼子。特定生物體的密碼子使用頻率可在本領域已知且可用的密碼子頻率表中找到。優選地,一個以上的非優選密碼子,例如超過10%、40%、60%>、80%>的非優選密碼子,優選地,大多數(例如至少90%)或所有非優選密碼子被更優選的密碼子替換。優選地,生物體中最常用的密碼子以密碼子優化序列使用。由首選密碼子替換通常會導致更高的表達。
本發明的多核苷酸序列可使用常規分子生物學技術克隆,或通過DNA合成從頭生成,可由在DNA合成和/或分子克隆領域有業務的服務公司(例如GeneArt、GenScript、Invitrogen、Eurofins)使用常規程式執行。
在一些實施方案中,將前述核酸分子插入載體中,例如用於本文所述免疫原性組合物的表達載體。或者,可將這些核酸分子插入表達載體中,所述表達載體被轉化或轉染到適當的宿主細胞中,以表達和分離本文所公開的編碼SpA多肽、LukA變體多肽、LukB蛋白質或LukAB複合物(作為穩定的異二聚體)。
根據本發明的這一方面,編碼本文所述金黃色葡萄球菌多肽的核酸分子可包含在能夠表達由核酸序列構建物編碼的多肽的任何表達載體中。合適的表達載體包括控制、調節、引起或允許由這種載體編碼的多肽表達的核酸序列元件。這些組件可包括轉錄增強子結合位點、RNA聚合酶起始位點、核糖體結合位點和其他促進給定表達系統中編碼多肽表達的位元點。合適的載體包括但不限於DNA載體、質粒載體、線性核酸和病毒載體,例如腺病毒載體。
在一個實施方案中,所述表達載體是環形質粒(例如,參見Muthumni等人,“Optimized and Enhanced DNA Plas中層Vector Based In vivo Construction of a Neutralizing anti-HIV-1 Envelope Glycoprotein Fab,” Hum. Vaccin. Immunother. 9: 2253-2262 (2013),現通過引用將其全部併入本文)。所述質粒可以通過整合到細胞基因組或存在於染色體外而轉化靶細胞(例如,具有複製起源的自主複製質粒)。示例性質粒載體包括但不限於pCEP4、pREP4、pVAX、pcDNA3.0、provax或任何其他能夠表達由重組核酸序列構建體編碼的變體LukA和/或變體LukB蛋白質或多肽的質粒表達載體。
在另一個實施方案中,所述表達載體是線性表達盒(“LEC”)。LEC能夠通過電穿孔有效地傳遞給受試者,以表達本文所述重組核酸分子編碼的SpA、LukA和/或LukB多肽。LEC可以是任何沒有磷酸骨架的線性DNA。在一個實施方案中,所述LEC不包含任何抗生素抗性基因和/或磷酸鹽骨架。在另一個實施方案中,所述LEC不包含與所需基因表達無關的其他核酸序列。
LEC可以從任何能夠線性化的質粒中獲得。所述質粒能夠表達由本文所述重組核酸分子編碼的多肽。示例性質粒包括但不限於pNP(Puerto Rico/34)、pM2(New Caledonia/99)、WLV009、pVAX、pcDNA3.0或provax,或能夠表達重組核酸序列構建體編碼的多肽的任何其他表達載體。
在另一個實施方案中,所述表達載體是病毒載體。能夠表達多肽的合適病毒載體包括,例如,腺相關病毒(AAV)載體(參見Krause等人,“Delivery of Antigens by Viral Vectors for Vaccination,” Ther. Deliv.2(1):51-70 (2011); Ura 等人,“Developments in Viral Vector-Based Vaccines,” Vaccines2: 624-641 (2014); Buning等人, "Recent Developments in Adeno- associated Virus Vector Technology," J. Gene Med. 10:717-733 (2008),每一個都通過引用整體併入本文),慢病毒載體(參見,例如,Ura等人,“Developments in Viral Vector-Based Vaccines,” Vaccines2: 624-641 (2014);Hu等人,“Immunization Delivered by Lentiviral Vectors for Cancer and Infection Diseases,” Immunol. Rev.239: 45-61 (2011),全部通過引用併入),逆轉錄病毒載體(例如,見Ura等人,“Developments in Viral Vector-Based Vaccines,” Vaccines2: 624-641 (2014),全部通過引用併入),痘苗病毒,複製缺陷型腺病毒載體,以及無腸腺病毒載體(例如,參見美國專利No.5872005,通過引用將其全部併入本文)。本領域已知用於產生和分離適合用作載體的腺相關病毒(AAV)的方法(例如,參見Grieger & Samulski, "Adeno-associated Virus as a Gene Therapy Vector: Vector Development, Production and Clinical Applications," Adv. Biochem. Engin/Biotechnol. 99: 119-145 (2005); Buning等人,"Recent Developments in Adeno- associated Virus Vector Technology," J. Gene Med. 10:717-733 (2008),每一個都通過引用完整地併入本文)。
編碼本文所述SpA、LukA和/或LukB多肽的多核苷酸通常與表達載體結構中的啟動子、翻譯起始、3′非翻譯區、多聚腺苷酸化和轉錄終止序列結合,以實現最大表達。適用于驅動本文所述多肽表達的啟動子序列包括但不限於延伸因數1-α(EF1a)啟動子、磷酸甘油酸激酶-1(PGK)啟動子、巨細胞病毒立即早期基因啟動子(CMV)、嵌合肝臟特異性啟動子(LSP)、巨細胞病毒增強子/雞β肌動蛋白啟動子(CAG)、四環素反應啟動子(TRE)、轉甲狀腺素啟動子(TTR)、猿猴病毒40啟動子(SV40)和CK6啟動子。本領域已知的適於在宿主細胞中驅動基因表達的其他啟動子也適於併入本文公開的表達構建體中。
本發明的另一方面涉及包含編碼本文所述金黃色葡萄球菌多肽的核酸分子的宿主細胞,或包含這些多核苷酸的載體。如本文所述,編碼SpA、LukA和LukB蛋白質或多肽的表達構建體可被共轉染、連續轉染或單獨轉染到宿主細胞中。合適的宿主細胞包括但不限於原代細胞、細胞系細胞、混合細胞系細胞、永生化細胞群或永生化細胞克隆群,如本領域所知(例如,參見Ausubel等人,ed., Current Protocols in Molecular Biology, John Wiley & Sons, Inc., NY, N.Y. (1987-2001);Sambrook等人,Molecular Cloning: A Laboratory Manual, 2 ndEdition, Cold Spring Harbor, N.Y. (1989); Harlow and Lane, Antibodies, a Laboratory Manual, Cold Spring Harbor, N.Y. (1989); Colligan等人,eds., Current Protocols in Immunology, John Wiley & Sons, Inc., NY (1994-2001); Colligan等人,Current Protocols in Protein Science, John Wiley & Sons, NY, N.Y., (1997-2001),現將其全部內容通過引用併入本文)。這種宿主細胞可以是真核細胞、細菌細胞、植物細胞或古細菌細胞。
在一些實施方案中,本文所述金黃色葡萄球菌多核苷酸的合適宿主細胞為細菌細胞。合適的細菌宿主細胞包括但不限於大腸桿菌( Escherichia)宿主細胞、假單胞菌( Pseudomonas)宿主細胞、葡萄球菌( Staphylococcus)宿主細胞、鏈黴菌( Streptomyces)宿主細胞、分枝桿菌( Mycobacterium)宿主細胞和芽孢桿菌( Bacillus)宿主細胞。在一些實施方案中,宿主細胞是大腸桿菌宿主細胞。在一些實施方案中,所述宿主細胞是金黃色葡萄球菌宿主細胞。
在一些實施方案中,本文所述金黃色葡萄球菌多核苷酸的合適宿主細胞為真核細胞。典型的真核細胞可以是哺乳動物、昆蟲、鳥類或其他動物來源。哺乳動物真核細胞包括永生化細胞系,如雜交瘤或骨髓瘤細胞系,如SP2/0(美國典型培養物中心(ATCC),馬納薩斯(Manassas),維吉尼亞州,CRL-1581)、NSO(歐洲細胞培養物中心(ECACC),索爾茲伯里(Salisbury),威爾特郡,英國、ECACC編號85110503)、FO(ATCC CRL-1646)和Ag653(ATCC CRL-1580)小鼠細胞系。典型的人類骨髓瘤細胞系是U266(ATTC CRL-TIB-196)。其他有用的細胞系包括來自中國倉鼠卵巢(CHO)細胞的細胞系,如CHO-K1SV(Lonza Biologics,Walkersville,Md),CHO-K1(ATCC CRL-61)或DG44。
本文所述的SpA、LukA和LukB多肽可通過使用上文所述的分離多核苷酸、載體和宿主細胞的多種技術中的任何一種來製備。一般來說,蛋白質是通過標準克隆和細胞培養技術產生的,通常用於製備重組表達載體、轉染宿主細胞、選擇轉化子、培養宿主細胞以及從培養基中回收蛋白質或多肽。可以使用通常用於將外源DNA導入原核或真核宿主細胞的各種技術,例如通過電穿孔、磷酸鈣沉澱法、DEAE-葡聚糖轉染等來實施轉染宿主細胞。
本文所述的多肽可通過諸如糖基化、異構化、脫糖基化或非自然發生的共價修飾(例如添加聚乙二醇(PEG)部分(聚乙二醇化)和脂質化等過程進行翻譯後修飾。這種修飾可能發生在體內或體外。
在一些實施方案中,如本文所述的SpA、LukA和LukB多核苷酸和/或多肽優選為“分離的”多核苷酸和/或多肽。當用於描述本文公開的多核苷酸和多肽時,“分離的”是指已從其生產環境的組分中鑒定、分離和/或回收多核苷酸或多肽。優選地,分離的多核苷酸或多肽不與其生產環境中的其他組分結合。其生產環境中的污染成分,如重組轉染細胞產生的污染成分,通常會干擾藥物用途,可能包括酶、激素和其他蛋白質或非蛋白質溶質。通過已知方法從重組細胞培養物中回收和純化多核苷酸或多肽,包括但不限於蛋白質A純化、硫酸銨或乙醇沉澱、酸提取、陰離子或陽離子交換色譜、磷酸纖維素色譜、疏水相互作用色譜、親和色譜、,羥基磷灰石色譜和凝集素色譜。高效液相色譜法(HPLC)也可用於純化。 免疫原性組合物的佐劑
如本文所用,術語“佐劑”是指當與本文所述免疫原性組合物一起施用或作為其一部分施用時,增大(augment)、增強(enhance)和/或加強(boost)對SpA多肽、LukA多肽、LukB多肽和/或編碼它們的多核苷酸的免疫應答的化合物。然而,當單獨施用佐劑化合物時,它不會對上述多肽或多核苷酸產生免疫反應。佐劑可通過多種機制增強免疫應答,包括淋巴細胞募集、刺激B細胞和/或T細胞以及刺激抗原呈遞細胞。
本文所述的免疫原性組合物包含SpA、LukA和LukB多肽和/或編碼它們的多核苷酸,包含佐劑或與佐劑組合施用。與本發明免疫原性組合物組合施用的佐劑可在施用免疫原性組合物之前、伴隨施用或之後施用。
佐劑的具體示例包括但不限於鋁鹽(明礬)(例如氫氧化鋁、磷酸鋁、硫酸鋁和氧化鋁,包括包含明礬或納米明礬配方的納米顆粒)、磷酸鈣(例如Masson JD等人,Expert Rev Vaccines 16: 289-299 (2017),現將其全文通過引用合併),單磷醯脂質A(MPL)或3-脫-O-醯化單磷醯脂質A(3D-MPL)(參見英國專利GB2220211、EP0971739、EP1194166、US6491919,通過引用將其整體並如本文)、AS01、AS02、AS03和AS04(參見例如EP1126876、US7357936、EP0671948、EP0761231、US5750110,AS02,其通過引用整體併入本文),咪唑吡啶化合物(見WO2007/109812,其全部通過引用併入本文)、咪唑喹惡啉化合物(見WO2007/109813,其全部通過引用併入本文)、三角菊糖(delta-inulin,例如Petrovsky N和PD Cooper,疫苗33:5920-5926(2015),其全部通過引用併入本文),STING啟動合成環二核苷酸(例如US20150056224,其全部通過引用併入本文)、卵磷脂和卡波姆均聚物的組合(例如US6676958)以及皂苷,例如Quil A和QS21(參見例如Zhu D和W Tuo2016, Nat Prod Chem Res 3: e113 (doi:10.4172/2329-6836.1000e113),其全部通過引用併入本文),可選擇與QS7聯合使用(見Kensil等人Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY, 1995); US 5,057,540,通過引用將其全部併入本文)。在任意實施方案中,所述佐劑為弗氏佐劑(完全或不完全)。在任意實施方案中,所述佐劑包含Quil-A,例如可從Brenntag(現在的Croda)或Invivogen商業獲得。QuilA包含從皂樹( Quillaja saponariaMolina)樹中提取的皂苷的水提部分。這些皂苷屬於三萜皂苷類,具有共同的三萜骨架結構。已知皂苷可誘導對T依賴性和T非依賴性抗原的強烈佐劑反應,以及強烈的細胞毒性CD8+淋巴細胞反應,並增強對粘膜抗原的反應。它們還可以與膽固醇和磷脂結合,形成免疫刺激複合物(ISCOM),其中QuilA佐劑可以啟動抗體介導和細胞介導的免疫反應,以應對來自不同來源的多種抗原。在某些實施方案中,所述佐劑為AS01,例如AS01B。AS01是一種含有MPL(3-O-脫醯基-4'-單磷醯脂質A)、QS21(皂樹,組分21)和脂質體的佐劑系統。在某些實施方案中,AS01是商用的,或者可以按照WO 96/33739中的描述製造,通過引用將其全部併入本文。某些佐劑包含乳液,乳液是兩種不互溶液體(例如油和水)的混合物,其中一種以小液滴的形式懸浮在另一種中,並由表面活性劑穩定。水包油乳液中的水形成連續相,包圍著小油滴,而水包油乳液中的油形成連續相。某些水包油乳液包含角鯊烯(一種可代謝的油)。某些助劑包含嵌段共聚物,嵌段共聚物是兩個單體聚集在一起形成重複單元嵌段時形成的共聚物。由嵌段共聚物、角鯊烯和微粒穩定劑組成的油包水乳液的一個例子是TiterMax ®,該乳液可從Sigma Aldrich獲得。
可選地,乳劑可與進一步的免疫刺激成分(例如TLR4激動劑)結合或包含進一步的免疫刺激成分。在本文所公開的組合物中使用的佐劑組合的合適但非限制性實例包括也在MF59(參見例如EP0399843、US 6299884、US6451325)和AS03中使用的水包油乳液(例如角鯊烯或花生油),可選地與免疫興奮劑組合,如一磷酸脂A和/或QS21,如AS02(見Stoute等人,1997, N. Engl. J. Med. 336, 86-91,通過引用將其全部併入本文)。佐劑另外的實例是含有免疫刺激物的脂質體,例如MPL和QS21,例如AS01E和AS01B(例如US 2011/0206758,通過引用將其全部併入本文)。佐劑的其他實例為CpG和咪唑喹啉(例如咪喹莫特和R848)(參見Reed G等人,2013,Nature Med,19:1597-1608,通過引用將其全部併入本文)。在根據本發明的某些優選實施方案中,所述佐劑為Th1佐劑。
在任意實施方案中,佐劑包含皂苷,優選從皂樹中獲得的皂苷的可水提部分。在某些實施方案中,佐劑包含QS-21。
在任意實施方案中,本文所公開的免疫原性組合物的佐劑單獨或與另一佐劑組合含有toll樣受體4(TLR4)激動劑。TLR4激動劑在本領域是眾所周知的,參見例如Ireton GC and SG Reed, 2013, Expert Rev Vaccines 12: 793-807,通過引用將其全部併入本文。在任意實施方案中,佐劑是包含脂質A或其類似物或衍生物的TLR4激動劑。
如本文所用,術語“脂質A”指LPS分子的疏水性脂質部分,其包含葡萄糖胺,並通過酮基鍵與LPS分子內核中的酮基去氧戊四烯酸相連,酮基鍵將LPS分子錨定在革蘭氏陰性菌外膜的外小葉中。本文中使用的脂質A包括天然存在的脂質A、混合物、類似物、衍生物及其前體。該術語包括單糖,例如稱為脂質X的脂質A的前體;二糖脂質A;七醯基脂質A;六醯基脂質A;五醯基脂質A;四醯基脂質A,例如脂質A的四醯基前體,稱為脂質IVA;去磷酸化脂質A;單磷酸脂A;二磷酸脂質A,如大腸桿菌( Escherichia coli)和球形紅桿菌( Rhodobacter sphaeroides)的脂質A。一些免疫啟動脂質A結構包含6條醯基鏈。直接連接到氨基葡萄糖的四條主醯基鏈是3-羥基醯基鏈,長度通常在10到16個碳之間。另外兩條醯基鏈通常連接到主醯基鏈的3-羥基上。例如,大腸桿菌脂質A通常有四條連接到糖上C14 3-羥基醯基鏈,一條C12和一條分別連接到2'和3'號位的主醯基鏈的3-羥基上的C14。
如本文所用,術語“脂質A類似物或衍生物”指類似於脂質A的結構和免疫活性,但不一定在自然界中自然出現的分子。脂質A類似物或衍生物可改性為縮短或縮合,和/或用另一胺糖殘基(例如半乳糖胺殘基)替換其氨基葡萄糖殘基,以在還原端含有2-去氧-2-氨基葡萄糖酸鹽代替氨基葡萄糖-1-磷酸,在4'號位含有半乳糖醛酸部分而不是磷酸鹽。脂質A類似物或衍生物可由從細菌中分離的脂質A製備,例如通過化學衍生,或通過化學合成,例如通過首先確定優選脂質A的結構並合成其類似物或衍生物。脂質A類似物或衍生物也可用作TLR4激動劑佐劑(例如,見Gregg KA等人,2017, MBio 8, eDD492-17, doi: 10.1128/mBio.00492-17,通過引用將其全部併入本文)。
例如,脂質A類似物或衍生物可通過野生型脂質A分子的脫醯基(例如通過鹼處理)獲得。例如,脂質A類似物或衍生物可由從細菌中分離的脂質A製備。這種分子也可以通過化學方法合成。脂質A類似物或衍生物的另一個例子是從細菌細胞中分離出的脂質A分子,其含有參與脂質A生物合成和/或脂質A修飾的酶的突變、缺失或插入。
MPL和3D-MPL是脂質A類似物或衍生物,經過修飾以減輕脂質A毒性。脂質A、MPL和3D-MPL具有連接長脂肪酸鏈的糖主鏈,其中主鏈包含兩個糖苷鍵中的6-碳糖,以及4號位元的磷醯部分。通常,五到八個長鏈脂肪酸(通常為12-14個碳原子)附著在糖主鏈上。由於天然來源的衍生,MPL或3D-MPL可以以多種脂肪酸替代模式的複合物或混合物的形式存在,例如具有不同脂肪酸長度的七醯基、六醯基、五醯基等。這也適用于本文所述的一些其他脂質A類似物或衍生物,但是合成脂質A變體也可以定義為同質的。例如,MPL及其製造在US 4436727中進行了描述,通過引用將其整體併入本文。例如,3D-MPL在US 4912094B1中進行了描述(通過引用將其全部併入本文),其與MPL的不同之處在於選擇性地去除3-羥基肉豆蔻醯殘基,3-羥基肉豆蔻醯殘基是與3號位的還原端葡萄糖胺相連的酯。適於包含在本文所述免疫原性組合物中的脂質A(類似物、衍生物)的實例包括MPL、3D-MPL、RC529(例如,EP1385541,通過引用將其全部併入本文)、PET脂質A、GLA(吡喃糖基糖脂佐劑,一種合成二糖糖脂;參見例如US20100310602和US8722064,通過引用將其全部合併),SLA(參見例如Carter D等人,Clin. Transl. Immunology. 5: e108 (doi:10.1038/cti.2016.63),其整體通過引用併入本文,其描述了優化人類疫苗用TLR4配體的結構-功能方法)、PHAD(磷酸化六醯基雙糖;其結構與GLA相同)、3D-PHAD、3D-(6-醯基)-PHAD(3D(6A)-PHAD)(PHAD、3D-PHAD和3D(6A)PHAD是合成脂質A變體,還提供了這些分子的結構)、E6020(CAS號287180-63-6)、ONO4007、OM-174等。在某些優選實施方案中,TLR4激動劑佐劑包含脂質A類似物或選自3D-MPL、GLA或SLA的衍生物。在某些實施方案中,脂質A類似物或衍生物在脂質體中配製。
佐劑,優選包括TLR4激動劑,可以各種方式配製,例如在乳液中,例如油包水(w/o)乳液或水包油(o/w)乳液(示例為MF59、AS03)、穩定(納米)乳液(SE)、脂質懸浮液、脂質體、(聚合)納米顆粒、病毒體、明礬吸附、水性製劑(AF)等,代表佐劑和/或免疫原中免疫調節分子的各種輸送系統(參見Reed等人,2013,見上文;以及Alving CR等人,2012, Curr Opin Immunol 24:310-315,通過引用將其全部併入本文)。
在任意實施方案中,所述免疫刺激性TLR4激動劑可任選地與其他免疫調節成分組合,例如角鯊烯水包油乳劑(例如MF59;AS03);皂苷(如QuilA、QS7、QS21、Matrix M、Iscoms、Iscomatrix等);鋁鹽;其他TLR的啟動劑(例如咪唑喹啉、鞭毛蛋白、dsRNA類似物、TLR9激動劑,例如CpG等);以及類似的(參見Reed等人,見上文)。
在任意實施方案中,本文公開的免疫原性組合物的佐劑是TLR4激動劑(例如GLA)的組合,其配製為穩定的乳液(即GLA-SE)。GLA-SE中使用的穩定乳液為水包油乳液,其中油為角鯊烯(參見例如WO2013/119856)。在任意實施方案中,本文公開的免疫原性組合物的佐劑是TLR4激動劑(例如GLA)與皂苷(例如GLA-QS21)的組合。在任意實施方案中,前述佐劑可配製為脂質體。因此,示例性佐劑還包括GLA-LSQ,其包含與皂苷(例如QS21)組合的合成TLR4激動劑(例如MPL[GLA]),配製為脂質體。
用於本文所述免疫原性組合物(包含脂質A類似物或衍生物)中的其他示例性佐劑包括SLA-SE(合成MPL[SLA],角鯊烯油/水乳液)、SLA-納米明礬(合成MPL[SLA],鋁鹽)、GLA納米明礬(合成MPL[GLA],鋁鹽)、SLA-AF(合成MPL[SLA],水懸浮液)、GLA-AF(合成MPL[GLA],水懸浮液)、SLA明礬(合成MPL[SLA],鋁鹽)、GLA明礬(合成MPL[GLA],鋁鹽)、AS01(MPL,QS21,脂質體)、AS02(MPL,QS21,油/水乳液)、AS25(MPL,油/水乳液)、AS04(MPL,鋁鹽)和AS15(MPL,QS21,CpG,脂質體)。例如,見WO2008/153541;WO2010/141861;WO2013/119856;WO2019/051149;WO 2013/119856;WO 2006/116423;美國專利No.4987237;美國專利No.4436727;美國專利No.4877611;美國專利No.4866034;美國專利No.4912094;美國專利No.4987237;美國專利No.5191072;美國專利No.5593969;美國專利No.6759241;美國專利No.9017698;美國專利No.9149521;美國專利No.9149522;美國專利No.9415097;美國專利No.9415101;美國專利No.9504743;Reed G等人,2013,見上文;Johnson等人,1999, J Med Chem, 42:4640-4649,以及Ulrich和Myers,1995, Vaccine Design: The Subunit and Adjuvant Approach;Powell和Newman Eds.; Plenum: New York, 495-524,通過引用將其全部併入本文。 金黃色葡萄球菌免疫原性組合物和使用方法
在一個方面,本文所公開的免疫原性組合物包括本文所述的SpA多肽和LukA變體多肽中的任何一種或多種,或編碼本文所述多肽的一種或多種核酸分子。在另一方面,如本文所公開的免疫原性組合物包含如本文所述的SpA多肽和LukB變體多肽中的任何一種或多種,或編碼如本文所述多肽的一種或多種核酸分子。在另一方面,如本文所述的免疫原性組合物包含如本文所述的SpA多肽、LukA變體多肽和LukB多肽中的任何一種或多種,或如本文所述的編碼這些多肽的一種或多種核酸分子。
在任意實施方案中,所述免疫原性組合物包含一個或多個SpA多肽(變體或非變體)、CC45 LukA變體多肽、CC45 LukB多肽(變體或非變體)或編碼它們的多核苷酸。例如,本發明的免疫原性組合物可包含如本文所述的SpA變體多肽、CC45-LukA變體多肽、CC45-LukB非變體多肽或編碼其的多核苷酸。根據本實施方案的示例性免疫原性組合物含有包含至少一個SpA A、B、C、D或E結構域的SpA變體多肽,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukA變體多肽,其包含在與SEQ ID NO:2的第81位對應的氨基酸位置處的賴氨酸到蛋氨酸的替換,以及在與SEQ ID NO:2的第139位對應的氨基酸位置處的絲氨酸到丙氨酸的替換,在對應SEQ ID NO:2的第111和191位氨基酸位置處的纈氨酸到異亮氨酸替換,以及在對應於SEQ ID NO:2的第321位的氨基酸位置處的谷氨酸到丙氨酸替換。在任意實施方案中,所述LukA變體多肽具有SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukB多肽,例如SEQ ID NO:16的多肽,或與SEQ ID NO:16的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據前述實施方案的另一示例性免疫原性組合物包含SpA變體多肽、CC45-LukA變體多肽、CC45-LukB變體多肽或編碼本文所述多肽的多核苷酸。一種示例性免疫原性組合物含有包含至少一個SpA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukA變體多肽,其包含在與SEQ ID NO:2的第81位對應的氨基酸位置處的賴氨酸到蛋氨酸的替換,以及在與SEQ ID NO:2的第139位對應的氨基酸位置處的絲氨酸到丙氨酸的替換,在對應SEQ ID NO:2第111和191位的氨基酸位置處的纈氨酸到異亮氨酸替換,以及在對應於SEQ ID NO:2的第321位的氨基酸位置處的谷氨酸到丙氨酸替換。在一些實施方案中,所述LukA變體多肽具有SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukB變體多肽,其包含與SEQ ID NO:16中的Val53Leu相對應的氨基酸替換。在一些實施方案中,所述LukB變體多肽包含SEQ ID NO:18的氨基酸序列,或與SEQ ID NO:18的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的其他免疫原性組合物包含SpA變體多肽,其包含SEQ ID NO:60的序列、或與SEQ ID NO:60具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列;SEQ ID NO:2的CC45 LukA變體以及SEQ ID NO:16的CC45 LukB序列、或與SEQ ID NO:16具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在一些實施方案中,CC45 LukB變體序列包含選自SEQ ID NO:18、20和22的氨基酸序列。例如,在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:4的CC45-LukA變體、以及SEQ ID NO:16的CC45-LukB序列、或與SEQ ID NO:16的CC45-LukB具有>85%序列同一性的變體序列(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體序列)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:6的CC45-LukA變體以及SEQ ID NO:16的CC45-LukB序列或其與SEQ ID NO:16的CC45-LukB序列同一性>85%的變體(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體序列)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:8的CC45-LukA變體以及SEQ ID NO:16的CC45-LukB序列、或與SEQ ID NO:16的CC45-LukB序列同源性>85%的變體(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:10的CC45-LukA變體以及SEQ ID NO:16的CC45-LukB序列或其與SEQ ID NO:16的CC45-LukB序列同源性>85%的變體(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:11的CC45-LukA變體以及SEQ ID NO:16的CC45-LukB序列或其與SEQ ID NO:16的CC45-LukB序列同源性>85%的變體(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:12的CC45-LukA變體以及SEQ ID NO:16的CC45-LukB序列或其與SEQ ID NO:16的CC45-LukB序列同源性>85%的變體(例如,選自SEQ ID NO:18、20和22的CC45-LukB變體)。在一個實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:4氨基酸序列的CC45 LukA變體以及具有SEQ ID NO:16氨基酸序列的CC45 LukB。在一個實施方案中,免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:11氨基酸序列的CC45 LukA變體以及具有SEQ ID NO:16氨基酸序列的CC45 LukB。在一個實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:12氨基酸序列的CC45 LukA變體以及具有SEQ ID NO:16氨基酸序列的CC45 LukB。在一個實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:8氨基酸序列的CC45 LukA變體以及具有SEQ ID NO:16氨基酸序列的CC45 LukB。在一個實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:4氨基酸序列的CC45 LukA變體以及具有SEQ ID NO:18氨基酸序列的CC45 LukB變體。
在一些實施方案中,所述免疫原性組合物包含SpA多肽、CC8-LukA變體多肽和CC8-LukB多肽(變體或非變體)或編碼本文公開的多肽的多核苷酸。例如,所述免疫原性組合物包含如本文所述的SpA變體多肽、CC8-LukA變體多肽和CC8-LukB多肽或編碼它們的多核苷酸。一種示例性組合物包含有包含至少一個SpA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8 LukA變體多肽,其包含在對應於SEQ ID NO:1的第80位的氨基酸位置處的賴氨酸到蛋氨酸的替換、在對應於SEQ ID NO:1的位置138的氨基酸位置處的絲氨酸到丙氨酸的替換、在對應於SEQ ID NO:1第110和190位的氨基酸位置處的纈氨酸到異亮氨酸替換、以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的谷氨酸到丙氨酸替換。在任意實施方案中,所述LukA變體多肽包含SEQ ID NO:3的氨基酸序列、或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8 LukB多肽,例如SEQ ID NO:15的多肽、或與SEQ ID NO:15的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的另一種免疫原性組合物包括本文所公開的SpA變體多肽、CC8-LukA變體多肽、CC8-LukB變體多肽或編碼它們的多核苷酸。一種示例性免疫原性組合物含有包含至少一個SPA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8 LukA變體多肽,其包含在對應於SEQ ID NO:1的第80位的氨基酸位置處的賴氨酸到蛋氨酸的替換、在對應於SEQ ID NO:1的第138位的氨基酸位置處的絲氨酸到丙氨酸的替換、在對應於SEQ ID NO:1第110和190位的氨基酸位置處的纈氨酸到異亮氨酸替換、以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的谷氨酸到丙氨酸替換。在任意實施方案中,所述LukA變體多肽包含SEQ ID NO:3的氨基酸序列、或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8-LukB變體多肽,其在對應於SEQ ID NO:15第53位的氨基酸位置處包含纈氨酸到亮氨酸的氨基酸替換。在任意實施方案中,所述LukB變體多肽包含SEQ ID NO:17的氨基酸序列,或與SEQ ID NO:17的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的其他免疫原性組合物包含SpA變體多肽,其包含SEQ ID NO:60的序列,或與SEQ ID NO:60具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列、SEQ ID NO:1的CC8 LukA變體以及SEQ ID NO:為15的CC8 LukB序列、或SEQ ID NO:為15的變體序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%的序列同一性。在一些實施方案中,CC8 LukB序列變體序列包含選自SEQ ID No:17、19和21的氨基酸序列。例如,在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:3的CC8 LukA變體以及SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB具有85%或更多序列同一性的變體(例如,選自SEQ ID NO:17、19和21的CC8 LukB變體序列)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:5的CC8-LukA變體以及SEQ ID NO:15的CC8-LukB序列或其與SEQ ID NO:15的CC8-LukB序列同源性>85%的變體(例如,選自SEQ ID NO:17、19和21的CC8-LukB變體序列)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:7的CC8 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列同源性>85%的變體(例如,選自SEQ ID NO:17、19和21的CC8 LukB變體序列)。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:9的CC8 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列同源性>85%的變體(例如,選自SEQ ID NO:17、19和21的CC8 LukB變體序列)。
在一些實施方案中,所述免疫原性組合物包含SpA多肽(變體或非變體)、CC8 LukA變體多肽和CC45 LukB多肽(變體或非變體)或編碼本文所述的多肽的多核苷酸。例如,所述組合物包含SpA變體多肽、CC8 LukA變體多肽和CC45 LukB多肽或編碼該多肽的多核苷酸。根據本實施方案的示例性免疫原性組合物含有包含至少一個SPA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8 LukA變體多肽,其包含在對應於SEQ ID NO:1的第80位的氨基酸位置處的賴氨酸到蛋氨酸的替換,在對應於SEQ ID NO:1的第138位的氨基酸位置處的絲氨酸到丙氨酸的替換,在對應於SEQ ID NO:1第110和190位的氨基酸位置處的纈氨酸到異亮氨酸替換,以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的谷氨酸到丙氨酸替換。在任意實施方案中,所述LukA變體多肽包含SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukB多肽,例如SEQ ID NO:16的多肽,或與SEQ ID NO:16的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的另一種免疫原性組合物包括SpA變體多肽、CC8 LukA變體多肽和CC45 LukB變體多肽或編碼其的多核苷酸,如本文所公開。根據本實施方案的示例性免疫原性組合物含有包含至少一個SPA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC8 LukA變體多肽,其包含在對應於SEQ ID NO:1的第80位的氨基酸位置處的賴氨酸到蛋氨酸的替換,在對應於SEQ ID NO:1的第138位的氨基酸位置處的絲氨酸到丙氨酸的替換,在對應於SEQ ID NO:1第110和190位的氨基酸位置處的纈氨酸到異亮氨酸替換,以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的谷氨酸到丙氨酸替換。在任意實施方案中,所述LukA變體多肽包含SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukB變體多肽,其包含與SEQ ID NO:16中的Val53Leu相對應的氨基酸替換。在一些實施方案中,所述LukB變體多肽包含SEQ ID NO:18的氨基酸序列,或與SEQ ID NO:18的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的其他免疫原性組合物包含SpA變體多肽,其包含SEQ ID NO:60的序列,或具有SEQ ID NO:1的至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列,以及SEQ ID NO:16的CC45 LukB序列或與SEQ ID NO:16具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在一些實施方案中,CC45 LukB變體序列包含選自SEQ ID NO:18、20和22的氨基酸序列。例如,在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:3的CC8 LukA變體和SEQ ID NO:16的CC45 LukB序列或其與SEQ ID NO:16的CC45 LukB具有>85%序列同一性的變體,例如,選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:5的CC8 LukA變體和SEQ ID NO:16的CC45 LukB序列或其與SEQ ID NO:16的CC45 LukB序列同源性>85%的變體,例如,選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:7的CC8 LukA變體和SEQ ID NO:16的CC45 LukB序列或其與SEQ ID NO:16的CC45 LukB序列同源性>85%的變體,例如,選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:9的CC8 LukA變體和SEQ ID NO:16的CC45 LukB序列或其與SEQ ID NO:16的CC45 LukB序列同源性>85%的變體,例如,選自SEQ ID NO:18、20和22的CC45 LukB變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:16氨基酸序列的CC45 LukB變體。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、具有SEQ ID NO:5氨基酸序列的CC8 LukA變體和具有SEQ ID NO:20氨基酸序列的CC45 LukB變體。
在一些實施方案中,所述免疫原性組合物包含SpA多肽(變體或非變體)、CC45-LukA變體多肽和CC8-LukB多肽(變體或非變體)或編碼本文所述的多核苷酸。例如,本發明的免疫原性組合物可包含SpA變體多肽、CC45 LukA變體多肽和CC8 LukB多肽。一種示例性免疫原性組合物含有包含至少一個SPA A、B、C、D或E結構域的SpA變體多肽,其中至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。示例性SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。所述組合物進一步包含CC45 LukA變體多肽,其包含在與SEQ ID NO:2的第81位對應的氨基酸位置處的賴氨酸到蛋氨酸的替換,以及在與SEQ ID NO:2的第139位對應的氨基酸位置處的絲氨酸到丙氨酸的替換,在對應於SEQ ID NO:2第111和191位的氨基酸位置處的纈氨酸到異亮氨酸替換,以及在對應於SEQ ID NO:2的第321位的氨基酸位置處的谷氨酸到丙氨酸替換。在一些實施方案中,所述LukA變體多肽具有SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%的序列相似性的氨基酸序列。所述組合物還包含CC8 LukB多肽,例如SEQ ID NO:15的LukB多肽,或與SEQ ID NO:15的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。或者,所述組合物包含CC8-LukB變體多肽,其在對應於SEQ ID NO:15的第53位的氨基酸位置處包含纈氨酸到亮氨酸的氨基酸替換。在任意實施方案中,所述LukB變體多肽包含SEQ ID NO:17的氨基酸序列,或與SEQ ID NO:17的氨基酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的氨基酸序列。
根據本實施方案的其他免疫原性組合物包含SpA變體多肽,其包含SEQ ID NO:60的序列,或與SEQ ID NO:60具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列,SEQ ID NO:2的CC45 LukA變體與SEQ ID NO:15的CC8 LukB序列組合,或SEQ ID NO:15至少具有85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。在一些實施方案中,CC8 LukB變體序列包含選自SEQ ID No:17、19和21的氨基酸序列。例如,在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:4的CC45 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列具有>85%序列同一性的變體,例如,選自SEQ ID NO:17、19和21的變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:6的CC45 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列具有>85%序列同一性的變體,例如,選自SEQ ID NO:17、19和21的變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:8的CC45 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列具有>85%序列同一性的變體,例如,選自SEQ ID NO:17、19和21的變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:9的CC45 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列具有>85%序列同一性的變體,例如,選自SEQ ID NO:17、19和21的變體序列。在一些實施方案中,所述免疫原性組合物包含SEQ ID NO:60的SpA變體多肽、SEQ ID NO:10的CC45 LukA變體和SEQ ID NO:15的CC8 LukB序列或其與SEQ ID NO:15的CC8 LukB序列具有>85%序列同一性的變體,例如,選自SEQ ID NO:17、19和21的變體序列。
本發明的另一方面涉及一種免疫原性組合物,其包含如本文所述的SpA多肽和如本文所述的任何變體LukB蛋白質或多肽,或編碼如本文所述的SpA和LukB變體的核酸分子。具體而言,免疫原性組合物的變體LukB蛋白質或多肽包含本文所述的一個或多個氨基酸殘基插入、替換和/或缺失。在一些實施方案中,所述組合物包含SpA變體多肽和SEQ ID NO:15(CC8)的LukB變體,所述SpA變體多肽包含SEQ ID NO:60序列、或與SEQ ID NO:60具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性序列。示例性CC8 LukB變體包括但不限於SEQ ID No.17、19和21的LukB變體。在一些實施方案中,所述組合物包含SpA變體多肽和SEQ ID NO:16(CC45)的LukB變體,所述SpA變體多肽包含SEQ ID NO:60序列、或與SEQ ID NO:60具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的序列。示例性CC45 LukB變體包括但不限於SEQ ID No.18、20和22的LukB變體。
根據本實施方案的免疫原性組合物可進一步包含LukA蛋白或多肽。例如,如前段所述的包含SpA變體和LukB變體的組合物進一步包含SEQ ID NO:為1的CC8 LukA序列或與SEQ ID NO:1的序列具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。或者,如前段所述包含SpA變體和LukB變體的免疫原性組合物進一步包含SEQ ID NO:2的CC45 LukA序列或與SEQ ID NO:2具有至少85%、86%、87%、88%、89%、90%、91%、92%、93%、94%、95%、96%、97%、98%或99%序列同一性的變體序列。
如本文所述的免疫原性組合物可進一步包括一種或多種額外的金黃色葡萄球菌抗原。合適的金黃色葡萄球菌抗原包括但不限於血清型336多糖抗原、聚集因數A、聚集因數B、纖維蛋白原結合蛋白、膠原結合蛋白、彈性蛋白結合蛋白、MHC類似物蛋白、多糖胞內粘附因數、β-溶血素、δ-溶血素、Panton-Valentine殺白細胞素、殺白細胞素M、剝脫毒素A、剝脫毒素B、V8蛋白酶、透明質酸裂解酶、脂肪酶、葡萄激酶、腸毒素、腸毒素超抗原SEA、腸毒素超抗原SAB、中毒性休克綜合征毒素-1、聚N-琥珀醯β-1-6氨基葡萄糖、過氧化氫酶、β-內醯胺酶、磷壁酸、肽聚糖、青黴素結合蛋白、趨化抑制蛋白、補體抑制劑、Sbi、5型抗原、8型抗原和脂磷壁酸。包括在免疫原性組合物中的其他合適的金黃色葡萄球菌抗原包括但不限於CP5、CP8、Eap、Ebh、Emp、EsaB、ESC、EsxA、EsxB、EsxAB(融合)、IsdA、IsdB、IsdC、MntC、rTSST-1、rTSST-1v、TSST-1、SasF、vWbp、vWh-玻連蛋白結合蛋白、Aaa、Aap、Ant、自溶蛋白氨基葡萄糖苷酶、自溶蛋白醯胺酶、Can、膠原結合蛋白、Csa1A、EFB、彈性蛋白結合蛋白、EPB、FbpA、纖維蛋白原結合蛋白、纖維連接蛋白結合蛋白、FhuD、FhuD2、FnbA、FnbB、GehD、HarA、HBP、免疫顯性ABC轉運體、IsaA/PisA、層粘連蛋白受體、脂肪酶GehD、MAP、Mg2+轉運體、MHC II類似物、MRPII、NPase、RNA III啟動蛋白(RAP)、SasA、SasB、SasC、SasD、SasK、SBI、SEA外毒素、SEB外毒素、mSEB、SitC、Ni ABC轉運體、SitC/MntC/唾液結合蛋白、SsaA、SSP-1、SSP-2、Spa5、SpAKKAA、SpAkR、Sta006和Sta011。
本發明的免疫原性組合物是通過用醫藥上可接受的載體和可選的醫藥上可接受的賦形劑配製本文所述的SpA、LukA和/或LukB多肽來製備的。如本文所用,術語“醫藥上可接受的載體”和“醫藥上可接受的賦形劑”(例如,稀釋劑、免疫刺激劑、佐劑、抗氧化劑、防腐劑和增溶劑等添加劑)對以所用劑量和濃度施用組合物的受試者無毒。醫藥上可接受的載體的實例包括水,例如用磷酸鹽、檸檬酸鹽和另一種有機酸緩衝的水。在本發明中可能有用的醫藥上可接受的賦形劑的代表性示例包括抗壞血酸等抗氧化劑;低分子量(少於約10個殘基)多肽;蛋白質,如血清白蛋白、明膠或免疫球蛋白;親水性聚合物,如聚乙烯吡咯烷酮;氨基酸,如甘氨酸、穀氨醯胺、天冬醯胺、精氨酸或賴氨酸;單糖、雙糖和其他碳水化合物,包括葡萄糖、甘露糖或糊精;螯合劑,如EDTA;糖醇,如甘露醇或山梨醇;形成鹽的反離子,如鈉;和/或非離子表面活性劑。
本領域已知含有醫藥上可接受載體的醫藥活性成分的配方, Remington: The Science and Practice of Pharmacy(例如21版(2005)和任何更高版本)。附加成分的非限制性示例包括:緩衝劑、稀釋劑、溶劑、張力調節劑、防腐劑、穩定劑和螯合劑。一種或多種醫藥上可接受的載體可用于配製本發明的藥物組合物。
在任意實施方案中,如本文所述的免疫原性組合物為液體製劑。液體製劑的優選實例是水性製劑,即,包含水的製劑。液體配方可包括溶液、懸浮液、乳液、微乳液、凝膠等。水性配方通常包含至少50%w/w的水,或至少60%、70%、75%、80%、85%、90%或至少95%w/w的水。
在任意實施方案中,所述免疫原性組合物可配製為可注射物,可通過注射裝置(例如注射器或輸液泵)進行注射。例如,可以肌肉內、腹腔內、玻璃體內或靜脈內進行注射。
本發明的免疫原性組合物可配製用於腸外施用。所述組合物的溶液、懸浮液或乳液可在與表面活性劑(例如羥丙基纖維素)適當混合的水中製備。還可以在甘油、液體聚乙二醇及其在油中的混合物中製備分散體。說明性油是指石油、動物、植物或合成油,例如花生油、大豆油或礦物油。一般來說,水、生理鹽水、葡萄糖水溶液和相關糖溶液以及二醇(如丙二醇或聚乙二醇)是首選的液體載體,尤其是對於注射溶液。在正常儲存和使用條件下,這些製劑含有防腐劑,以防止微生物生長。
適合注射使用的藥物免疫原性組合物包括無菌水溶液或分散液以及用於臨時製備無菌注射溶液或分散液的無菌粉末。在所有情況下,所用形式必須是無菌的,並且必須是易於注射的流體。它必須在製造和儲存條件下保持穩定,並且必須防止細菌和真菌等微生物的污染作用。載體可以是含有例如水、乙醇、多元醇(例如甘油、丙二醇和液體聚乙二醇)、其適當混合物和植物油的溶劑或分散介質。
在任意實施方案中,如本文所述的免疫原性組合物為固體製劑,例如凍幹或噴霧乾燥組合物,其可按原樣使用,或醫生或患者在使用前向其添加溶劑和/或稀釋劑。固體劑型可包括片劑,例如壓片和/或包衣片劑,以及膠囊(例如硬膠囊或軟膠囊)。例如,免疫原性組合物還可以是小袋、糖衣丸、粉末、顆粒、錠劑或用於重組的粉末的形式。
免疫原性組合物的劑型可以是即釋的,在這種情況下,它們可以包含水溶性或分散性載體,也可以是延遲釋放、緩釋或改性釋放的,在這種情況下,它們可以包含水不溶性聚合物,調節劑型在胃腸道或皮膚下的溶解速率。
在其他實施方案中,所述免疫原性組合物可經鼻內、頰內或舌下遞送。
免疫原性組合物水溶液中的pH值可以在pH 3至pH 10。在一個實施方案中,免疫原性組合物的pH值為約7.0至約9.5。在另一個實施方案中,所述免疫原性組合物的pH值為約3.0至約7.0。
本發明的另一方面涉及使用本文所述免疫原性組合物的方法。因此,一個方面涉及一種治療或預防需要葡萄球菌感染的受試者的葡萄球菌感染的方法,其涉及施用有效量的如本文所公開的免疫原性組合物。另一方面涉及一種用於在有需要的受試者中誘導對葡萄球菌細菌的免疫應答的方法,其涉及施用有效量的如本文所公開的免疫原性組合物。另一方面涉及一種用於在有需要的受試者中去定植或防止葡萄球菌細菌定植或再定植的方法,其涉及施用有效量的如本文所公開的免疫原性組合物。根據這方面,本文所述的方法適合於防止葡萄球菌細菌在有需要的受試者中的短期和持久定植或再定植。
本發明的方法涉及施用上文所述的任何一種免疫原性組合物。根據本發明的這些方面,適合治療的受試者是有可能發展為金黃色葡萄球菌感染的受試者、有可能暴露於金黃色葡萄球菌細菌的受試者和/或暴露於金黃色葡萄球菌細菌的受試者。
根據本發明的這一方面,向受試者施用有效預防量的免疫原性組合物,以產生針對金黃色葡萄球菌感染的免疫應答。有效預防量是產生或誘導體液(即抗體介導的)和細胞(T細胞)免疫應答所需的量。誘導的體液應答足以預防或至少降低金黃色葡萄球菌感染的程度,否則在沒有這種應答的情況下,金黃色葡萄球菌感染會發展。優選地,施用預防性有效量的本文所述免疫原性組合物可在受試者中誘導針對金黃色葡萄球菌的中和免疫應答。為了在受試者中實現有效的免疫應答,所述組合物可進一步包含一種或多種額外的金黃色葡萄球菌抗原或佐劑,如上文所述。在替代實施方案中,在施用本發明組合物之前、之後或同時,將佐劑與組合物分開施用給受試者。
就本發明的這一方面而言,目標“受試者”包括任何動物,優選哺乳動物,更優選人類。在為預防、抑制或降低受試者中金黃色葡萄球菌感染和金黃色葡萄球菌定植的嚴重程度而施用免疫原性組合物的情況下,目標受試者包括任何有被金黃色葡萄球菌感染風險的受試者。特別易感的受試者包括免疫功能低下的嬰兒、青少年、成年人和老年人。然而,任何有金黃色葡萄球菌感染風險的嬰兒、少年、成人或老年人都可以按照本文所述的方法和免疫原性組合物進行治療。特別適合的受試者包括有感染耐甲氧西林的金黃色葡萄球菌(MRSA)或對甲氧西林敏感的金黃色葡萄球菌(MSSA)風險的人。其他合適的受試者包括可能患有或有可能患上由金黃色葡萄球菌感染引起的疾病的受試者,即與金黃色葡萄球菌相關的疾病,例如皮膚創傷和感染、組織膿腫、毛囊炎、骨髓炎、肺炎、燙傷皮膚綜合征、敗血症、敗血症性關節炎、心肌炎、心內膜炎和中毒性休克綜合征。
在一些實施方案中,受試者至少或最多為1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、56、57、58、59、60、61、62、63、64、65、67、68、70、71、72、74、75、76、77、78、79、80、85或90歲(或其中可衍生的任何範圍)。在某些實施方案中,本文所述的受試者或患者(例如人類受試者)是兒科受試者。兒科受試者定義為18歲以下。在一些實施方案中,兒科受試者t為2歲或以下。在一些實施方案中,兒科受試者小於1歲。在一些實施方案中,兒科受試者小於6月齡。在一些實施方案中,兒科受試者為2月齡或更少。在一些實施方案中,人類患者為65歲或以上。在一些實施方案中,人類患者是保健工作者。在一些實施方案中,患者將接受外科手術。
在有效誘導強烈免疫應答的條件下施用免疫原性組合物時,也可考慮許多其他因素。這些因素包括,例如但不限於,組合物中活性劑的濃度、施用方式和頻率,以及受試者的詳細資訊,如年齡、體重、整體健康和免疫狀況。例如,可以在International Conference on Harmonization和REMINGTON'S PHARMACEUTICAL SCIENCES(Mack Publishing Company 1990)的出版物中找到一般性指導,通過引用將其全部併入本文。臨床醫生可施用如本文所述的免疫原性組合物,直到達到提供所需或所需預防效果的劑量,例如所需抗體滴度。預防反應的進展可以很容易地通過常規檢測進行監測。
在本發明的一個實施方案中,預防性地施用本文所述的免疫原性組合物,以防止、延遲或抑制有感染金黃色葡萄球菌風險或有發展相關疾病風險的受試者發生金黃色葡萄球菌感染。在本發明的一些實施方案中,預防性施用免疫原性組合物可有效地完全預防個體中的金黃色葡萄球菌感染。在其他實施方案中,預防性施用有效地防止在沒有這種施用的情況下會發展的全部感染程度,即基本上防止或抑制個體中的金黃色葡萄球菌感染。
在使用預防性組合物預防金黃色葡萄球菌感染的情況下,所述組合物的劑量足以產生能夠中和金黃色葡萄球菌LukAB介導的細胞毒性和SpA介導的毒力活性的抗體滴度,並且能夠減少許多症狀,降低至少一種症狀的嚴重程度,或者至少一種症狀進一步進展的延遲,甚至感染的完全緩解。
本文所述免疫原性組合物的有效預防量將取決於是否聯合施用佐劑,在沒有佐劑的情況下需要更高劑量。SpA、LukA和LukB多肽和/或編碼它們的多核苷酸的施用量可在每位患者1μg-500μg之間變化。在一些實施方案中,每次人體注射使用5、10、20、25、50或100μg。偶爾,每次注射使用1-50 mg的更高劑量。在一些實施方案中,每次人體注射使用約10、20、30、40或50 mg。注射的時間可能會有很大差異,從每年一次到十年一次。通常,可以通過從受試者獲得液體樣本(通常是血清樣本)並測定針對SpA、LukA、LukB或LukAB產生的抗體的滴度來監測有效劑量,使用本領域眾所周知且易於適用於待測特定抗原的方法。理想情況下,在初次施用之前採集樣本,然後在每次免疫後採集後續樣本並進行滴度。一般來說,在血清稀釋率為1:100的情況下,提供至少四倍於對照或“背景”水準的可檢測滴度的劑量或施用方案是可取的,其中背景是相對於對照血清或相對於ELISA分析中的平板背景定義的。
本發明的免疫原性組合物可通過腸外、局部、靜脈注射、口服、腹腔內、鼻內或肌肉注射的方式進行預防性治療。 實施方案
實施方案本發明還提供以下非限制性實施方案。
實施方案1是一種免疫原性組合物,包括: (i)一種金黃色葡萄球菌蛋白A(SpA)多肽,以及 (ii)一種金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽包含對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基處的氨基酸替換。
實施方案2是兩種或兩種以上免疫原性組合物的組合,共同包含: (i)一種金黃色葡萄球菌蛋白A(SpA)多肽,以及 (ii)一種金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽包含對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基處的氨基酸替換。
實施方案3是實施方案1的免疫原性組合物或實施方案2的免疫原性組合物的組合,其中所述LukA變體多肽在對應於SEQ ID NO:25的Glu323的氨基酸殘基處包含氨基酸替換。
實施方案4是實施方案1-3中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113、Val193和Glu323的每個氨基酸殘基處的氨基酸替換。
實施方案5是實施方案4的免疫原性組合物或免疫原性組合物的組合,其中氨基酸替代包括Lys83Met、Ser141Ala、Val113Ile、Val193Ile和Glu323Ala。
實施方案6是實施方案1-5中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:3的氨基酸序列具有至少90%序列同一性的氨基酸序列或與SEQ ID NO:4的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案7是實施方案1-6中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽進一步包括在對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基處的氨基酸替換。
實施方案8是實施方案7的免疫原性組合物或免疫原性組合物的組合,其中氨基酸替換包括Tyr74Cys、Asp140Cys、Gly149Cys和Gly156Cys。
實施方案9是實施方案7或8的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:5的氨基酸序列具有至少90%序列同一性的氨基酸序列或與SEQ ID NO:6的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案10是實施方案1-9中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述變體LukA蛋白質或多肽進一步包括對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基處的氨基酸替換。
實施方案11是實施方案10的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:7的氨基酸序列具有至少90%序列同一性的氨基酸序列,與SEQ ID NO:8的氨基酸序列具有至少90%序列同一性的氨基酸序列,與SEQ ID NO:9的氨基酸序列具有至少90%的序列同一性的氨基酸序列,或與SEQ ID NO:10的氨基酸序列具有至少90%的序列同一性的氨基酸序列。
實施方案12是實施方案1-11中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中SpA多肽是SpA變體多肽。
實施方案13是實施方案12的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽具有破壞Fc結合的至少一個氨基酸替換和破壞VH3結合的至少一個第二氨基酸替換。
實施方案14是實施方案12或13的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SpA D結構域,所述SpA D結構域包含與SEQ ID NO:58的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案15是實施方案14的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽進一步包含SpA E、A、B和/或C結構域。
實施方案16是實施方案15的免疫原性組合物或免疫原性組合物的組合,其中SpA E結構域包含與SEQ ID NO:59的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:55的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:56的氨基酸序列具有至少90%同一性的氨基酸序列;SpA C結構域包含與SEQ ID NO:57的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案17是實施方案12或13的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SpA E、D、A、B或C結構域,其中SpA E結構域包含與SEQ ID NO:52的氨基酸序列具有至少90%同一性的氨基酸序列,其中SpA D結構域包含與SEQ ID NO:51的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:48的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:49的氨基酸序列具有至少90%同一性的氨基酸序列;SpA C結構域包含與SEQ ID NO:50的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案18是實施方案12-17中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽連續包含SpA E、D、A、B和C結構域。
實施方案19是實施方案18的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含SpA E、D、A、B和C結構域,並且具有與SEQ ID NO:53的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案20是實施方案12-17中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中每個SpA E、D、A、B和C結構域在對應於SEQ ID NO:58的氨基酸第9和10位的一個或兩個氨基酸位置處具有氨基酸替換。
實施方案21是實施方案20的免疫原性組合物或免疫原性組合物的組合,其中與SEQ ID NO:58的第9和10位相對應的一個或兩個氨基酸位置處的氨基酸替換是穀氨醯胺殘基到賴氨酸的替換。
實施方案22是實施方案21的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SpA E、D、A、B和C結構域,並且具有與SEQ ID NO:54的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案23是實施方案12-22中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第33位的氨基酸位置處的谷氨酸替換。
實施方案24是實施方案23的免疫原性組合物或免疫原性組合物的組合,其中SpA E結構域包含與SEQ ID NO:65的氨基酸序列具有至少90%同一性的氨基酸序列,其中SpA D結構域包含與SEQ ID NO:66的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:62的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:63的氨基酸序列具有至少90%同一性的氨基酸序列;SpA C結構域包含與SEQ ID NO:64的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案25是實施方案23的免疫原性組合物或免疫原性組合物的組合,其中SpA E結構域包含與SEQ ID NO:92的氨基酸序列具有至少90%同一性的氨基酸序列,其中SpA D結構域包含與SEQ ID NO:91的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:88的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:89的氨基酸序列具有至少90%同一性的氨基酸序列;SpA C結構域包含與SEQ ID NO:90的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案26是實施方案23的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案27是實施方案12-22中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第33位的氨基酸位置處的蘇氨酸替換。
實施方案28是實施方案27的免疫原性組合物或免疫原性組合物的組合,其中SpA E結構域包含與SEQ ID NO:70的氨基酸序列具有至少90%同一性的氨基酸序列,其中SpA D結構域包含與SEQ ID NO:71的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:67的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:68的氨基酸序列具有至少90%同一性的氨基酸序列;SpA C結構域包含與SEQ ID NO:69的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案29是實施方案27的免疫原性組合物或免疫原性組合物的組合,其中SpA E結構域包含與SEQ ID NO:97的氨基酸序列具有至少90%同一性的氨基酸序列,其中SpA D結構域包含與SEQ ID NO:96的氨基酸序列具有至少90%同一性的氨基酸序列,SpA A結構域包含與SEQ ID NO:93的氨基酸序列具有至少90%同一性的氨基酸序列,SpA B結構域包含與SEQ ID NO:94的氨基酸序列具有至少90%同一性的氨基酸序列,SpA C結構域包含與SEQ ID NO:95的氨基酸序列具有至少90%同一性的氨基酸序列。
實施方案30是實施方案27的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:61的氨基酸序列,或與SEQ ID NO:61的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案31是實施方案12-22中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中,所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第29位的氨基酸位置處的氨基酸替換。
實施方案32是實施方案1-31中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述組合物進一步包含金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體。
實施方案33是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中所述LukB多肽是SEQ ID NO:15的LukB多肽或SEQ ID NO:SEQ ID NO:16的LukB多肽。
實施方案34是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中所述LukB多肽是LukB變體多肽。
實施方案35是實施方案34的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含與SEQ ID NO:15的氨基酸序列具有至少85%序列相似性的氨基酸序列或與SEQ ID NO:16的氨基酸序列具有至少85%序列相似性的氨基酸序列。
實施方案36是實施方案35的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽在對應於SEQ ID NO:15和SEQ ID NO:16的第53位的氨基酸位置處包含氨基酸替換。
實施方案37是實施方案36的免疫原性組合物或免疫原性組合物的組合,其中氨基酸替換是纈氨酸到亮氨酸的替換。
實施方案38是實施方案34-37中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基處的氨基酸替換。
實施方案38是實施方案34-37中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的一個或多個氨基酸殘基處的氨基酸替換。
實施方案40是實施方案34-39中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含與選自SEQ ID No:17-22的氨基酸序列具有至少90%序列同一性的氨基酸序列。
實施方案41是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA變體多肽氨基酸序列SEQ ID NO:4、或與SEQ ID NO:4具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:16的氨基酸序列、或與SEQ ID NO:16具有至少90%序列同一性的氨基酸序列。
實施方案42是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA變體多肽氨基酸序列SEQ ID NO:3、或與SEQ ID NO:3具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:15的氨基酸序列、或與SEQ ID NO:15具有至少90%序列同一性的氨基酸序列。
實施方案43是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA變體多肽包含氨基酸序列SEQ ID NO:3、或與SEQ ID NO:3具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:18的氨基酸序列、或與SEQ ID NO:18具有至少90%序列同一性的氨基酸序列。
實施方案44是實施方案41-43中任一實施方案的免疫原性組合物或免疫原性組合物的組合,其中SpA多肽是SpA變體多肽。
實施方案45是實施方案44的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第33位的氨基酸位置處的谷氨酸替換。
實施方案46是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中(i)SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)LukA變體多肽包含CC8 LukA變體多肽,其包含與SEQ ID NO:1的第80位對應的氨基酸位置處的蛋氨酸替換、與SEQ ID NO:1的第138位對應的氨基酸位置處的丙氨酸替換、與SEQ ID NO:1的第110和190位對應的氨基酸位置處的異亮氨酸替換,以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的丙氨酸替換;和(iii)所述LukB多肽是CC45 LukB變體多肽,其包含與SEQ ID NO:16的第53位相對應的氨基酸位置處的亮氨酸替換。
實施方案47是實施方案46的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukA變體多肽包含SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukB變體多肽包含SEQ ID NO:18的氨基酸序列,或與SEQ ID NO:18的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案48是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中(i)SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)LukA變體多肽包含CC8 LukA變體多肽,其包含與SEQ ID NO:1的第80位對應的氨基酸位置處的蛋氨酸替換、與SEQ ID NO:1的第138位對應的氨基酸位置處的丙氨酸替換、與SEQ ID NO:1的第110和190位對應的氨基酸位置處的異亮氨酸替換,以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的丙氨酸替換;以及(iii)所述LukB多肽是CC8 LukB變體多肽,其在對應於SEQ ID NO:15的第53位的氨基酸位置處包含亮氨酸替換。
實施方案49是實施方案48的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukA變體多肽包含SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukB變體多肽包含SEQ ID NO:17的氨基酸序列,或與SEQ ID NO:17的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案50是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中(i)SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)LukA變體多肽包含CC8 LukA變體多肽,其包含與SEQ ID NO:1的第80位對應的氨基酸位置處的蛋氨酸替換、與SEQ ID NO:1的第138位對應的氨基酸位置處的丙氨酸替換、與SEQ ID NO:1的第110和190位對應的氨基酸位置處的異亮氨酸替換,以及在對應於SEQ ID NO:1的第320位的氨基酸位置處的丙氨酸替換;和(iii)LukB多肽是CC8 LukB多肽,包含SEQ ID NO:15的氨基酸序列。
實施方案51是實施方案50的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukA變體多肽包含SEQ ID NO:3的氨基酸序列,或與SEQ ID NO:3的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukB多肽包含SEQ ID NO:15的氨基酸序列,或與SEQ ID NO:15的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案52是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中(i)SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)所述LukA變體多肽包含CC45 LukA變體多肽,所述CC45 LukA變體多肽包含對應於SEQ ID NO:2第81位的氨基酸位置處的蛋氨酸替換、對應於SEQ ID NO:2第139位的氨基酸位置處的丙氨酸替換、對應於SEQ ID NO:2第111和191位的氨基酸位置處的異亮氨酸替換,以及在對應於SEQ ID NO:2的第321位的氨基酸位置處的丙氨酸替換;和(iii)所述LukB多肽是CC45 LukB變體多肽,其包含對應於SEQ ID NO:16的第53位的氨基酸位置處的亮氨酸替換。
實施方案53是實施方案52的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukA變體多肽包含SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukB變體多肽包含SEQ ID NO:18的氨基酸序列,或與SEQ ID NO:18的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案54是實施方案32的免疫原性組合物或免疫原性組合物的組合,其中(i)SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)所述LukA變體多肽包含CC45 LukA變體多肽,所述CC45 LukA變體多肽包含對應於SEQ ID NO:2第81位的氨基酸位置處的蛋氨酸替換、對應於SEQ ID NO:2第139位的氨基酸位置處的丙氨酸替換、對應於SEQ ID NO:2第111和191位的氨基酸位置處的異亮氨酸替換,以及在對應於SEQ ID NO:2的第321位的氨基酸位置處的丙氨酸替換;和(iii)所述LukB多肽為CC45 LukB多肽,包含SEQ ID NO:16的氨基酸序列。
實施方案55是實施方案54的免疫原性組合物或免疫原性組合物的組合,其中SpA變體多肽包含SEQ ID NO:60的氨基酸序列,或與SEQ ID NO:60的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukA變體多肽包含SEQ ID NO:4的氨基酸序列,或與SEQ ID NO:4的氨基酸序列具有至少90%序列相似性的氨基酸序列;LukB多肽包含SEQ ID NO:16的氨基酸序列,或與SEQ ID NO:16的氨基酸序列具有至少90%序列相似性的氨基酸序列。
實施方案56是實施方案1至55中任一實施方案的免疫原性組合物或免疫原性組合物的組合,進一步包含佐劑。
實施方案57是實施方案56的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含鋁鹽,例如氫氧化鋁、磷酸鋁、硫酸鋁和氧化鋁。
實施方案58是實施方案56的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含氫氧化鋁或磷酸鋁。
實施方案59是實施方案56的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含穩定的水包油乳液。
實施方案60是實施方案56的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含皂苷。
實施方案61是實施方案60的免疫原性組合物或免疫原性組合物的組合,其中皂苷為QS21。
實施方案62是實施方案56的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含TLR4激動劑。
實施方案63是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中TLR4激動劑是脂質A或其類似物或衍生物。
實施方案64是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中TLR4激動劑包含MPL、3D-MPL、RC529、GLA、SLA、E6020、PET脂質A、PHAD、3D-PHAD、3D-(6-醯基)-PHAD、ONO4007或OM-174。
實施方案65是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中TLR4激動劑是吡喃糖基脂佐劑(GLA)。
實施方案66是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含TLR4激動劑與穩定的水包油乳液的組合。
實施方案67是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含在穩定的水包油乳液中配製的TLR4激動劑。
實施方案68是實施方案65的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含GLA-SE。
實施方案69是實施方案62的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含TLR-4激動劑與皂苷的組合。
實施方案70是實施方案65的免疫原性組合物或免疫原性組合物的組合,其中佐劑包含GLA-LSQ。
實施方案71是一種免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含一個或多個分離的核酸分子,編碼實施方案1-55中任一實施方案的免疫原性組合物的金黃色葡萄球菌蛋白A(SpA)多肽或其變體、LukA變體多肽和LukB多肽或其變體。
實施方案72是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含編碼金黃色葡萄球菌蛋白A(SpA)多肽或其變體的一個或多個核酸分子和編碼LukAB異二聚體(RARPR-15)的核酸分子,其中,編碼所述LukAB異二聚體的核酸分子包含與SEQ ID NO:104的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地與具有至少85%、至少90%、至少95%、至少97%、或與SEQ ID NO:108的核苷酸序列至少99%的序列相似性的核苷酸序列偶聯。
實施方案73是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中所述組合物至少包含編碼金黃色葡萄球菌蛋白A(SpA)多肽或其變體的核酸分子和編碼LukAB異二聚體(RARPR-30)的核酸分子,其中,編碼所述LukAB異二聚體的核酸分子包含與SEQ ID NO:104的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地和與SEQ ID NO:110的核苷酸序列具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的核苷酸序列偶聯。
實施方案74是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含編碼金黃色葡萄球菌蛋白A(SpA)多肽或其變體的一個或多個核酸分子和編碼LukAB異二聚體(RARPR-32)的核酸分子,其中,編碼所述LukAB異二聚體的核酸分子包含與SEQ ID NO:103的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地和與SEQ ID NO:107的核苷酸序列具有至少85%、至少90%、至少95%、至少97%、或至少99%的序列相似性的核苷酸序列偶聯。
實施方案75是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含編碼金黃色葡萄球菌蛋白A(SpA)多肽或其變體的一個或多個核酸分子和編碼LukAB異二聚體(RARPR-33)的核酸分子,其中,編碼所述LukAB異二聚體的核酸分子包含與SEQ ID NO:103的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地和與SEQ ID NO:110的核苷酸序列具有至少85%、至少90%、至少95%、至少97%,或至少99%的序列相似性的核苷酸序列偶聯。
實施方案76是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含編碼金黃色葡萄球菌蛋白A(SpA)多肽或其變體的一個或多個核酸分子和編碼LukAB異二聚體(RARPR-34)的核酸分子,其中,編碼所述LukAB異二聚體的核酸分子包含與SEQ ID NO:103的核苷酸序列具有至少85%、至少90%、至少95%、至少97%或至少99%序列相似性的核苷酸序列,該核苷酸序列可操作地和與SEQ ID NO:109的核苷酸序列具有至少85%、至少90%、至少95%、至少97%,或至少99%的序列相似性的核苷酸序列偶聯。
實施方案77是實施方案71的免疫原性組合物或免疫原性組合物的組合,其中一個或多個核酸分子包含在一個或多個載體中。
實施方案78是實施方案71或77的免疫原性組合物,其中所述組合物包含宿主細胞,所述宿主細胞包含所述一個或多個核酸分子或所述一個或多個載體。
實施方案79是一種治療或預防需要的受試者中葡萄球菌感染的方法,該方法包括:向需要的受試者施用有效量的根據請求項1至78中任一項的免疫原性組合物或免疫原性組合物的組合。
實施方案77是一種在有需要的受試者中誘導對葡萄球菌細菌的免疫應答的方法,該方法包括:向需要的受試者施用有效量的根據請求項1至78中任一項的免疫原性組合物或免疫原性組合物的組合。
實施方案78是一種用於在需要的受試者中去定殖或防止葡萄球菌細菌定植或再定殖的方法,該方法包括:向需要的受試者施用有效量的根據請求項1至78中任一項的免疫原性組合物或免疫原性組合物的組合。
實施方案79是用於在受試者中產生針對金黃色葡萄球菌的免疫應答的方法中使用的實施方案1-78中任一實施方案的免疫原性組合物或免疫原性組合物的組合。
實施方案80是作為藥物使用的實施方案1-78中任一實施方案的免疫原性組合物或免疫原性組合物的組合。 實施例
提供以下實施例是為了說明本發明的實施方案,但絕不是為了限制其範圍。 實施例 1 :示例性 LukA 變體多肽、 LukB 變體多肽和穩定的 LukAB 異二聚體複合物
為了表達LukAB異二聚體蛋白,大腸桿菌BL21(DE3)細胞與克隆到pCDFDuet-1的LukA構建體和克隆到pETDuet-1的LukB構建體共轉化。轉化子在50µg/mL氨苄西林和50µg/mL大觀黴素中培養,分別在37℃的Luria Bertani肉湯中選擇pETDuet-1和pCDFDuet-1,並在190 rpm的轉速下振盪過夜。為了表達,新鮮的TB(Terrific Broth)培養基在37℃下接種1:50稀釋的過夜培養物,以190 rpm的轉速搖動,直到培養物達到OD 600=2。然後通過添加最終濃度為1 mM的異丙基β-d-1-硫代半乳糖吡喃糖苷誘導表達,並在37℃下繼續誘導5小時。在大腸桿菌Origami 2(DE3)細胞的細胞質中表達LukAB異二聚體,包括LukA和/或LukB中的成對半胱氨酸替換,以支持二硫鍵的形成。LukA單體在大腸桿菌BL21(DE3)的周質中的表達是通過在pD861 CH中轉化LukA構建體來實現的,並使用最終濃度為4 mM的鼠李糖在37℃下誘導4小時,在TB培養基(添加30µg/mL卡那黴素)中進行誘導。在誘導胞質和周質表達構建體後,通過在4℃下以4000 rpm離心15分鐘獲得細胞,然後在裂解緩衝液中重新懸浮(94%Bugbuster[EMD Millipore]+6%5 M NaCl+0.4% 4 M咪唑+蛋白酶抑制劑混合物[ProteaseRestart,G-Biosciences])。在室溫下裂解20分鐘後,將裂解產物在冰上培養45分鐘,然後在16100×g,4℃下離心35分鐘。使用AKTA Pure 25M FPLC和HisTrap柱,通過LukA N端的6×His標籤純化蛋白質,並使用咪唑梯度(50-500 mM咪唑溶於50 mM磷酸鈉緩衝液,pH 7.4,200 mM NaCl)洗脫。將含有SDS-PAGE測定的純化蛋白質的組分彙集在一起,並在4℃條件下,在50 mM磷酸鈉緩衝液、pH 7.4、200 mM NaCl、10%甘油中透析過夜。純化的蛋白質通過雙金雞納酸(BCA)蛋白質分析(PIERE)進行定量。 5. 本文所述研究中使用的示例性 LukA LukB LukAB 異二聚體複合物
類毒素/ 毒素名稱 LukA LukA替換 SEQ ID NO: LukB LukB替換 SEQ ID NO:
RARPR-013 CC45 W94 E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile 11 CC45 16
RARPR-015 CC45 W95 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile 4 CC45 16
RARPR-017 CC45 W96 E321A, Lys81Leu, Ser139Ala, Val111Ile, Val191Ile, Thr247Val 12 CC45 16
RARPR-019 CC45 W97 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val 8 CC45 16
RARPR-30 CC45 W95 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile 4 CC45 Val53Leu   18
RARPR-31 CC8 W95   E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile 3    
RARPR-32 CC8 W95 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile 3 CC8 15
RARPR-33 CC8 W95   E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile 3 CC45 Val53Leu   18
RARPR-34 CC8 W95   E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile 3 CC8 Val53Leu   17
LukA單體 CC8 W97 W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val, Tyr71Cys, Asp137Cys, Gly146Cys, Gly153Cys 9    
LukA單體 CC45 W97 W72 E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val, Tyr72Cys, Asp138Cys, Gly147Cys, Gly154Cys     10    
  CC8 W95 W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys 5 CC45 16
  CC8 W95 W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys 5 CC45 Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys 22
  CC8 W95 W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys 5 CC45 Val53Leu   18
  CC8 W95 W72 E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Tyr71Cys, Asp137Cys,  Gly146Cys, Gly153Cys 5 CC45 Val53Leu, Glu45Cys, Thr122Cys, Glu110Cys, Arg155Cys   20
CC8Δ10 CC8 C端殘基312-321的缺失 113 CC8 15
CC45Δ10 CC45 C端殘基312-321的缺失 114 CC45 16
CC8毒素 CC8 1 CC8 15
CC45毒素 CC45 2 CC45 16
實施例 2 :野生型、 LukA LukAB 類毒素的細胞毒性
LukAB類毒素蛋白(定義見表5)的細胞毒性是通過與野生型LukAB毒素進行比較來評估的,使用啟動子細胞系THP-1或新鮮分離的原代人類多形核白細胞(hPMN)。
在測試細胞毒性之前,在佛波醇12肉豆蔻酸13醋酸鹽存在下分化THP-1細胞。對於THP-1細胞毒性試驗,將50 L RPMI中的1×10 5個細胞添加到96孔板的每個孔中。將LukAB毒素和類毒素蛋白調整至標準蛋白質濃度,在冰冷的RPMI培養基中連續稀釋,並將50 L體積的每種蛋白質添加到適當的孔中。除僅RPMI陰性對照外,將Triton X-100添加至最終濃度0.1%作為陽性對照。平板在37℃、5% CO 2下培養2小時,然後使用CytoTox ONE分析(Promega)評估作為膜完整性標記的細胞質酶乳酸脫氫酶的釋放。
下表6提供了LukA和LukAB類毒素對分化的THP-1細胞的細胞毒性。分化的THP-1細胞對野生型毒素敏感,因為CC8和CC45-LukAB野生型毒素在毒素濃度低至0.313µg/mL時殺死30%或更多的細胞群。刪除LukA(Δ10)C端的最後10個氨基酸殘基可將CC8Δ10毒素的細胞毒性降低到40µg/mL時細胞死亡的5%以下,但不會降低CC45Δ10毒素對分化的THP-1的細胞毒性細胞。兩種LukA單體均未顯示出對分化的THP-1細胞的細胞毒性。這一結果是意料之中的,因為在沒有LukB的情況下,LukA不應形成活性孔隙複合體。每種LukAB二聚體類毒素,包括RARPR-33、RARPR-34和RARPR-15,對分化的THP-1細胞的細胞毒性顯著降低,在最高測試濃度(40µg/mL)下,每種測試的類毒素的細胞死亡率為1%或更低。 6. LukA LukAB 蛋白對分化的 THP-1 細胞的細胞毒性單核細胞系,使用標準劑量的毒素。資料以死細胞的百分比表示。
  LukAB濃度(µg/mL)
類毒素/Toxin 40 20 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.04 0.02
RARPR-15 -12 -12 -12 -14 -14 -15 -10 -14 -12 -11 -9 -7
RARPR-30 0 -1 0 0 0 0 0 0 0 0 0 0
RARPR-31 0 0 -1 0 0 0 -1 -1 0 0 -1 -1
RARPR-32 0 -1 -1 -1 0 0 0 0 0 0 0 0
RARPR-33 1 1 1 0 1 1 1 0 1 1 1 1
RARPR-34 1 0 1 1 1 1 0 1 1 0 0 1
CC8 LukA W97  (單體) 1 1 0 0 1 0 0 0 0 0 1 1
CC45 LukA W97 (單體) 1 1 0 0 0 0 0 0 0 1 1 2
CC8Δ10 4 3 1 1 0 0 0 0 0 -1 0 0
CC45Δ10 53 39 32 31 33 41 54 55 53 35 13 5
CC8毒素 41 44 43 39 39 38 37 30 15 6 2 1
CC45毒素 42 34 31 34 40 46 46 36 18 4 1 0
對於hPMN,在染毒之前,將所有毒素標準化為2.5 μg/mL(每個亞單位),然後用移液管將20μL毒素移到96孔板的頂部孔中,並在10μL 1X PBS中連續稀釋2倍。分離中性粒細胞,並將其標準化為每90μL RPMI(10mM HEPES+0.1%HSA)200000個細胞。然後用移液管將90μL中性粒細胞移入每個孔中,並將毒素中性粒細胞混合物在37˚C+5%CO 2培養箱中培養1小時。為了評估毒性,向96孔板中加入10μL CellTiter 96 Aqueous One溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的活性。
下表7提供了LukA單體和LukAB二聚體類毒素對人類原代PMN細胞的細胞毒性。在毒素濃度分別為0.313µg/mL和1.25µg/mL時,野生型CC8和CC45毒素對原代人類中性粒細胞的殺傷率超過90%。相比之下,每種LukAB類毒素和LukA單體對這些細胞的細胞毒性都顯著降低。刪除CC8-LukA中的10個C端殘基基本上消除了對分化的THP-1細胞的細胞毒性,而這種毒素保留了對hPMN的細胞毒性,在濃度等於或高於5 g/mL時觀察到的殺傷率超過20%。CC8和CC45-LukA單體對hPMN的細胞毒性很小,正如預期的那樣,類毒素缺乏對活性孔複合體的形成至關重要的LukB成分。與CC8和CC45野生型LukAB毒素相比,每種LukAB二聚體類毒素對hPMN細胞的細胞毒性都顯著降低。RARPR-33 LukAB類毒素以及相關類毒素RARPR-32和-34的細胞毒性低於CC8Δ10,在最高測試濃度(20 µg/mL)下,RARPR-33僅殺死15%的細胞群。 7. LukA LukAB 蛋白對人原代多形核細胞的細胞毒性白細胞使用標準劑量的毒素。資料以死細胞的百分比表示
  LukAB濃度(µg/mL)
類毒素/毒素 20 10 5 2.5 1.25 0.625 0.313 0.156 0.078 0.04 0.02
RARPR-15 42 36 31 20 14 11 11 11 6 10 11
RARPR-30 27 17 14 10 5 0 0 0 0 0 0
RARPR-31 12 2 1 0 0 3 0 0 0 0 0
RARPR-32 17 6 4 4 2 1 0 0 0 0 0
RARPR-33 15 8 6 3 1 0 0 0 0 0 0
RARPR-34 16 9 5 3 0 0 0 0 0 0 0
CC8 LukA W97  (單體) 5 3 2 1 2 1 1 2 0 2 1
CC45 LukA W97  (單體) 7 6 2 3 4 1 0 1 2 0 0
CC8Δ10 29 26 22 18 11 11 4 4 3 4 3
CC8毒素 93 96 97 96 97 93 90 87 75 52 29
CC45毒素 97 97 97 97 96 85 72 57 49 30 19
實施例 3 RARPR-33-LukAB 類毒素和其他 WT-LukAB 毒素變體的細胞毒性
進行了額外的實驗,以評估RARPR-33和不同的WT-LukAB毒素變體和LukA單體的細胞毒性和免疫原性。用小鼠進行免疫原性研究。
評估了LukAB毒素、類毒素和單體對人類中性粒細胞的細胞毒性。染毒前,將所有毒素標準化為100μg/mL(每個亞單位),然後用移液管將20μL毒素移到96孔板的頂部孔中,並在10μL 1X PBS中連續稀釋2倍。從不同捐贈者中分離PMN,並將其標準化為每90μL RPMI(10 mM HEPES+0.1%HSA)200000個細胞。將90μL中性粒細胞移液到每個孔中,將毒素中性粒細胞混合物在37˚C+5% CO 2培養箱中培養1小時。為了評估毒性,向96孔板中加入10μL CellTiter 96 Aqueous One溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的活性。通過減去背景(健康細胞+PBS)並通過相對Triton X100處理的細胞的標準化(設置為100%死亡),計算死亡細胞的百分比。
圖3示出了LukA單體和LukAB毒素對人類原代PMN細胞的細胞毒性。野生型LukAB CC8和CC45毒素在毒素濃度分別為2.5 µg/mL和5 µg/mL時,對原代人類中性粒細胞的殺傷率超過90%。LukAB雜合毒素CC8/CC45和CC45/CC8在2.5µg/mL時也觀察到最大殺傷率。相比之下,LukAB類毒素和LukA單體對這些細胞的細胞毒性顯著降低。CC8 LukA中10個C末端殘基的缺失保留了對hPMN的細胞毒性,在濃度等於或高於5 µg/mL時觀察到超過20%的殺傷作用。CC8和CC45 LukA單體以及這些單體的組合對hPMN的細胞毒性很小。RARPR-33 LukAB類毒素的細胞毒性低於CC8Δ10C,在最高測試濃度20 µg/mL時,RARPR-33僅殺死15%的細胞群。 實施例 4 :小鼠中 LukAB 變體的免疫原性
為了確定不同LukAB變體的免疫原性,對Envigo Hsd:ND4(4周齡)小鼠(n=5/抗原)皮下注射溶於50μl 10%甘油1X TBS混合50μl佐劑TiterMax ®Gold的20μg LukAB。一組5只小鼠也接受了模擬免疫,包括等量的10%甘油1X TBS和TiterMax ®Gold。在兩次同一抗原-佐劑混合物後強化(間隔兩周)後,通過心臟穿刺給小鼠放血,並獲得血清。
為了測定抗LukAB抗體滴度,進行ELISA。將WT LukAB CC8或CC45在1X PBS中稀釋至2μg/ml,並在96孔Immulon 2HB板(Thermo Fisher,分類號3455)中塗於100μl中,並在4˚C下培養過夜。然後用洗滌緩衝液(1X PBS+0.05%吐溫)洗滌培養皿3次,然後用200 μl封閉緩衝液(2.5%溶於1X PBS的牛奶)封閉培養皿1小時。從血清的1:500開始,在封閉緩衝液中產生五倍的連續稀釋液,並允許在搖床上培養1小時。然後將培養皿再次洗滌3次,加入在封閉緩衝液中稀釋1:5000的小鼠IgG HRP(Biorad)抗體,並在室溫下培養1小時。未結合的二級抗體用洗滌緩衝液連續洗滌三次。將TMB(100 μl)升至室溫,添加到每個孔中,並覆蓋培養25分鐘。反應完成後,向每個反應孔中加入等量的2N硫酸以停止反應。然後在Envision平板閱讀器上讀取450 nm吸亮度的平板。圖4A和4B所示的熱圖示出了重複測定的平均吸亮度值,黑色表示高吸亮度和抗體與塗層抗原結合,白色表示低吸亮度和無抗體結合。
RARPR-33誘導了強大的抗CC8和抗CC45 LukAB IgG抗體滴度(圖4A和圖4B)。與CC8 WT毒素、CC8/CC45混合毒素和CC8Δ10C類毒素免疫相比,RARPR-33免疫可產生類似的抗CC8 IgG反應。單個CC8-LukA單體誘導的抗CC8-LukAB IgG滴度沒有CC8-LukAB毒素或CC8/CC45雜合毒素、CC45/CC8雜合毒素和RARPR 33雜合抗原誘導的滴度高(圖4A)。
RARPR-33免疫小鼠的抗-cc45 LukAb滴度高於cc8/cc45 WT混合抗原誘導的抗體,與cc45 WT抗原引起的抗體水準一致。將CC8和CC45-LukA單體結合在一起,可產生針對CC8和CC45-LukAB的抗體滴度(圖4B)。然而,由CC8和CC45-LukA組合單體誘導的這些抗CC8和抗CC45-LukAB滴度沒有RARPR 33誘導的滴度高。單個CC45-LukA單體可誘導非常高的抗CC45-LukAB滴度—類似於CC45/CC8混合所誘導的水準,僅略低於RARPR-33或CC45-WT毒素所誘導的水準。這些結果表明,在RARPR-33免疫後,針對LukAB CC8和CC45的抗體反應都被誘導,且程度很高。 實施例 5 :抗體介導的毒素細胞毒性中和
用從如上實施例4所述免疫的小鼠獲得的血清評估抗體介導的毒素細胞毒性中和。熱滅活的混合血清在PBS中標準化為40%的血清,然後用移液管將20μL血清移到96孔板的頂部孔中,並在10 μL 1X PBS中連續稀釋2倍。在室溫下,將每個LukAB毒素克隆複合物序列變體的LD 90添加到平板(10 µL/孔)中15分鐘。然後將新分離的人原代多形核白細胞(hPMN)標準化為每80µL RPMI(10 mM HEPES+0.1%HSA)20萬個細胞,添加到血清-毒素混合物中,並在37˚C+5% CO 2下培養1小時。為了評估毒性,向96孔板中加入10μL CellTiter 96 Aqueous One溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的活性。抗體中和數據如圖5所示。
在所有抗原中,用RARPR-33免疫的小鼠血清表現出最強、廣泛的LukAB中和能力(圖5)。來自RARPR 33免疫小鼠的血清在低至0.25%的血清中強烈中和了所有11種LukAB變體的細胞毒性作用,並且對於大多數LukAB變體,在低至0.063-0.125%的血清中也提供了保護(圖5)。使用單個CC8和CC45 LukA單體進行免疫,產生具有高度偏好抗原骨架的LukAB中和能力的血清(圖5)。在每次免疫接種中,以20 μg每種單體(40μg總蛋白)給予CC8-LukA單體和CC45-LukA的組合產生具有廣泛和有效的LukAB中和能力的血清,以低至0.5%的血清中和所有11種LukAB變體(圖5),然而,這低於用RARPR-33免疫小鼠的血清觀察到的結果。
結合來看,實施例3-5中提供的資料示出,納入RARPR-33的CC8/CC45-LukAB骨架的衰減和穩定突變提高了CC8/CC45-WT-LukAB混合的廣泛免疫原性效應(圖4和5),同時也使RARPR-33與CC8/CC45-WT-LukAB毒素(圖3)相比高度減毒。 實施例 6 :抗血清毒素中和
抗體介導的毒素細胞毒性中和,使用從接種野生型LukAB、野生型LukAB混合(即CC8-LukA/CC45-LukB和CC45-LukA/CC8-LukB)、LukA單體或LukAB類毒素的小鼠獲得的血清進行評估。熱滅活的混合血清在PBS中標準化為40%的血清,然後用移液管將20μL血清移到96孔板的頂孔中,並在10μL 1X PBS中連續稀釋2倍。然後在室溫下,將每個LukAB毒素克隆複合物序列變體的LD 90添加到含有2%、1%或0.5%血清的培養皿(10µL/孔)中15分鐘。然後將從不同捐贈者新鮮分離的人原代多形核白細胞(hPMN)加入血清毒素混合物中,並在37˚C+5% CO 2下培養1小時,其標準化為每80µL RPMI(10 mM HEPES+0.1%HSA)20萬個細胞。為了評估毒性,向96孔板中加入10μL CellTiter 96 Aqueous One溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的活性。抗體中和數據如圖6A(2%抗體血清)、圖6B(1%抗體血清)和圖6C(0.5%抗體血清)的表格所示。
用野生型CC8和CC45 LukAB進行免疫可產生抗體,以反映免疫抗原序列組成的模式對LukAB毒素的天然序列變體進行中和。由CC8-LukAB毒素誘導的抗體能有效中和來自CC8、CC1、CC5和其他金黃色葡萄球菌譜系的毒素,但不能完全中和來自CC30、CC45或ST22A金黃色葡萄球菌的毒素。同樣,用CC45-LukAB毒素免疫可產生抗體,這些抗體可有效中和來自CC30、CC45或ST22A金黃色葡萄球菌譜系的毒素,但不能中和來自其他譜系的毒素。
用非天然雜交的LukAB(CC8-LukA與CC45-LukB組合或CC45-LukA與CC8-LukB組合)免疫小鼠,與自然產生的二聚體組合相比,產生的抗體示出出更廣泛的LukAB序列變體中和。在非天然雜交二聚體中,CC8-LukA和CC45-LukB表現出比相反組合略好的中和特性,這種模式保留在LukA倒數第二個殘基(E323A)中攜帶Glu-to-Ala替換的蛋白質中。正如針對野生型毒素誘導的抗體所觀察到的,LukA單體誘導的抗體誘導了能表明其序列組成的中和模式。CC8-LukA和CC45-LukA單體的組合(RARPR-31+CC45-LukA W97)誘導的抗體顯示出廣泛的中和模式,但與二聚體抗原相比,中和效力降低,這從1%或0.5%血清的中和水準降低可以明顯看出。
在二聚體類毒素中,RARPR-15、RARPR-33和RARPR-34對所有測試的LukAB序列變體示出出廣泛的中和抗體反應。非天然野生型二聚體組合也表現出廣泛的中和作用,儘管中和反應的效力不如在幾種類毒素中觀察到的效力。當在2%(圖6A)和1%(圖6B)血清中測試時,雜交野生型和類毒素抗原均示出出廣泛的中和特性,但當在0.5%血清中測試時,對類毒素的反應的效力明顯提高(圖6C)。在這個最低測試濃度下,RARPR-15、RARPR-32、RARPR-33和RARPR-34均顯示出廣泛的中和反應。尤其是RARPR-33誘導的血清保留了廣泛的中和反應,而雜交野生型抗原和E323A類毒素在0.5%的血清中未能誘導廣泛的保護反應,CC45類毒素RARPR-15在最低測試濃度下誘導的中和模式反映了其序列組成,因為只有CC30、CC45和ST22ALukAB 毒素的中和水準較高。混合二聚體類毒素RARPR-33誘導了一種有效且廣泛的中和免疫反應。 實施例 7 :高濃度 RARPR-33 的細胞毒性。 方法:
細胞毒性試驗:為了評估每個LukAB蛋白複合物的細胞毒性,新鮮分離的原代人類多形核白細胞(PMN)染毒金黃色葡萄球菌毒素。從不同捐贈者分離PMN,並將其標準化為每50μl RPMI(10 mM HEPES+0.1%HSA)200000個細胞。向細胞中添加溶於50μl PBS的毒素,並在37˚C+5% CO 2培養箱中培養毒素PMN混合物1小時。為了評估毒性,向96孔板中添加10μl CellTiter 96水溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的存活率通過減去背景(健康細胞+PBS)並相對TritonX處理的細胞進行標準化(設置為100%死亡),計算死亡細胞。
LDH 測定:為了評估每個LukAB蛋白複合物是否能引起細胞溶解,從不同捐贈者新鮮分離的原代人類多形核白細胞(PMN)被金黃色葡萄球菌LukAB毒素染毒,並測定LDH釋放。將WT毒素在PBS中連續稀釋2倍,並在5-0.0024 µg/ml的濃度範圍內進行測試。將LukAB類毒素在PBS中稀釋,並在2.5、2、1、1.5和0.5 mg/ml的濃度下進行測試。分離PMN,並將其標準化為每50µl RPMI(10 mM HEPES+0.1%HSA)20萬個細胞。然後用移液管將50µl PMN移到每個孔中,並在每個孔中添加50 µl稀釋毒素。將毒素PMN混合物在37˚C+5% CO 2培養箱中培養2小時。為了評估LDH釋放,以1500 rpm的速度離心培養皿5 min,然後從每個孔中取出25µl上清液,並轉移至96孔黑色透明底板。將25µl CytoTox ONE均質膜完整性試劑(Promega)添加到黑色透明底部96孔板中,並在黑暗中在室溫下培養該混合物10 min。通過記錄激發波長為560nm、發射波長為590nm的螢光,使用Perkinlemer EnVision 2103多標籤閱讀器評估細胞裂解通過減去背景(健康細胞+PBS)並相對TritonX處理的細胞進行標準化(設置為100%死亡),計算死亡細胞。 結果:
在之前的實施例中,測定了濃度高達20 µg/ml的LukAB類毒素RARPR-33對hPMN的細胞毒性。接下來,在RARPR-33濃度較高(高達2.5 mg/ml)的情況下監測人類PMN的細胞毒性。在用約0.156µg/ml毒素染毒1小時後,觀察到WT-LukAB CC8、CC45和CC8/CC45毒素對人類PMN(4-6名捐贈者)的最大細胞毒性(基於細胞滴度測定)(圖7A)。對於RARPR-33和CC8 LukA單體,在濃度為0.5 mg/ml時,用細胞滴度測定的死亡細胞百分比約為10%(圖7B)。培養濃度高達2.5 mg/ml RARPR-33或CC8 LukA單體的中性粒細胞不會進一步增加通過細胞滴度測定確定的死亡細胞百分比。
LD 15值表示導致15%細胞死亡的抗原濃度。LD 15通過線性回歸確定。對於CC8 WT LukAB,LD15為0.013µg/ml;對於CC45 WT LukAB,LD 15為0.004µg/ml;對於CC8/CC45 LukAB雜交物,LD 15為0.002µg/ml。對於LukAB RARPR-33,LD 15為2.5 mg/ml。通過將RARPR-33的LD 15濃度除以WT抗原的LD 15濃度來比較LD 15值。根據這些觀察結果,LukAB RARPR-33的毒性比LukAB CC8 WT低192308倍以上,比LukAB CC45 WT低625000倍以上,比LukAB CC8/CC45雜交物低1250000倍以上。
此外,在與不同的WT毒素、CC8 LukA單體或RARPR-33孵育兩小時後,進行LDH測定以評估質膜損傷。在暴露於WT毒素、CC8 WT、CC45 WT或CC8/CC45雜交毒素2小時後,誘導人類PMN的細胞毒性(圖7C)。在0.625µg/ml毒素濃度下觀察到LDH測定的最大細胞死亡。相比之下,在暴露于濃度高達2.5mg/ml的RARPR-33或CC8 LukA單體兩小時後,未觀察到人類PMN的質膜損傷(圖7D)。這些資料表明,RARPR-33在濃度高達2.5 mg/ml時是脫毒的,不能誘導人類中性粒細胞的細胞死亡。與CC8/CC45-WT-LukAB毒素相比,RARPR-33的CC8/CC45-LukAB骨架中的突變高度減弱了細胞毒性。 實施例 8 RARPR-33 D39A/R23E 類毒素的比較
生產一種基於CC8主幹的LukAB類毒素,其中所述LukA具有D39A突變,LukB具有R23E點突變。該“D39A/R23E類毒素”在Kailasan,S.等人“Rational Design of Toxoid Vaccine Candidates for Staphylococcus aureus Leukocidin AB (LukAB),” Toxins 11(6): (2019)中進行了描述,通過引用將其全部併入本文。這種類毒素是在LukAB CC8骨架上產生的,與WT CC8 LukAB毒素相比,毒性減弱了36000倍以上。使用分化為PMN樣的HL-60細胞系測定細胞毒性。在本實驗中,對D39A/R23E類毒素和RARPR-33進行了比較。測定了人多形核白細胞(PMN)的細胞毒性,並評估了免疫後誘導廣泛毒素中和抗體的能力。 方法:
細胞毒性試驗:為了評估每個LukAB蛋白複合物的細胞毒性,從不同捐贈者新鮮分離的原代人類多形核白細胞(PMN)被金黃色葡萄球菌毒素染毒。分離PMN,並將其標準化為每50μl RPMI(10mM HEPES+0.1%HSA)200000個細胞。向細胞中添加50 μl PBS中的毒素,並將毒素PMN混合物在37˚C+5% CO 2培養箱中培養2小時。為了評估毒性,向96孔板中添加10 μl CellTiter 96 Aqueous One溶液(CellTiter;Promega),並在37℃的5% CO 2中培養混合物1.5小時。使用Perkinlemer EnVision 2103多標籤閱讀器在492 nm的吸亮度下評估PMN的活性。通過減去背景(健康細胞+PBS)並相對TritonX處理的細胞進行標準化(設置為100%死亡),計算死亡細胞的百分比。
LDH 測定:為了評估每個LukAB蛋白複合物是否引起細胞溶解,從不同捐贈者新鮮分離的原代人類多形核白細胞(PMN)被金黃色葡萄球菌LukAB毒素染毒,並測定LDH釋放。將WT毒素在PBS中連續稀釋2倍,並在0.5µg/ml–0.00024µg/ml的濃度範圍內進行測試。將LukAB類毒素在PBS中稀釋至1 mg/ml–0.03125 mg/ml的濃度範圍內進行測試。分離PMN,並將其標準化為每50µl RPMI(10 mM HEPES+0.1%HSA)200000個細胞。然後用移液管將PMN(50µl)移到每個孔中,並在每個孔中添加50µl稀釋毒素。將毒素PMN混合物在37˚C+5% CO 2培養箱中培養2小時。為了評估LDH釋放,以1500 rpm的速度離心培養皿5分鐘,然後從每個孔中取出25µl上清液,並轉移至96孔黑色透明底板。將25µl CytoTox ONE均質膜完整性試劑(Promega)添加到黑色透明底部96孔板中,並在黑暗中在室溫下培養該混合物10分鐘。通過記錄激發波長為560 nm、發射波長為590nm的螢光,使用Perkinlemer EnVision 2103多標籤閱讀器評估細胞裂解。通過減去背景(健康細胞+PBS)並相對TritonX處理的細胞進行標準化(設定為100%死亡),計算死亡細胞的百分比。
小鼠免疫。Envigo Hsd:ND4(4周齡)小鼠(n=5/抗原)皮下注射溶於50μl 10%甘油1X TBS並混合50μl佐劑TiterMax ®Gold的20μg LukAB。在兩次相同抗原/佐劑混合物強化後,通過心臟穿刺將小鼠放血,並獲取血清用於毒素中和研究。
毒素中和試驗。從各組收集免疫小鼠的血清,並在55℃水浴中熱滅活30 min。然後用PBS將收集的熱滅活血清稀釋至40%。然後,在96孔板中,將40%的儲備液在10μl PBS中連續稀釋2倍,以進一步稀釋血清。將毒素(10μl)以0.156μg/ml毒素(LD 90)的最終濃度添加到血清孔中。向每個孔中加入80μl濃度為200000個細胞的hPMN(RPMI+0.1%HSA+10 mM HEPES)。然後在37ºC+5% CO 2培養箱中培養平板1小時。培養後,將細胞滴度添加到染毒物中,並培養1.5小時。培養後,在平板讀取器上以492 nm吸亮度讀取平板。通過減去背景(健康細胞+PBS)並相對TritonX處理的細胞進行標準化(設定為100%死亡),計算死亡細胞的百分比。 結果:
據報導,D39A/R23E類毒素的細胞毒性最高可達約12 µg/ml。這裡,RARPR-33和D39A/R23E類毒素在人類PMN上的細胞 毒性測定濃度為1 mg/ml。此外,還對WT LukAB CC8、CC45和CC8/CC45進行了比較測試。根據細胞滴度測定,在用~0.02µg/ml WT-LukAB CC8/CC45、約0.03µg/ml-LukAB CC8和0.125µg/ml-LukAB CC45染毒1小時後,觀察到人類中性粒細胞的最大細胞毒性(圖8A)。圖中示出了5名捐贈者的均值。對於D39A/R23E類毒素,在1 mg/ml濃度下培養時觀察到約22%的細胞毒性。對於RARPR-33,在1 mg/ml濃度下,用細胞滴度測定的死亡細胞百分比約為3%(圖8B)。
此外,在與不同的WT毒素D39A/R23E類毒素和RARPR-33孵育兩小時後,進行LDH測定以評估質膜損傷。在暴露於WT毒素、CC8 WT、CC45 WT和CC8/CC45雜交毒素2小時後誘導人類PMN的細胞毒性(圖8C)。在0.25µg/ml毒素濃度下,觀察到LDH測定的最大細胞死亡。當人類中性粒細胞暴露于濃度高達1 mg/ml的D39A/R23E類毒素2小時後,觀察到約8%的細胞死亡。當用類似濃度的RARPR-33培養人中性粒細胞時,未觀察到質膜損傷,表明沒有細胞死亡(圖8D)。這些結果表明,RARPR-33在檢測中衰減到低於檢測限,並且比D39A/R23E類毒素更弱。
用RARPR-33或D39A/R23E類毒素免疫的小鼠血清進行毒素中和試驗,以評估血清預防人類中性粒細胞毒素誘導細胞死亡的能力。在從4名捐贈者分離的中性粒細胞上測試了對16種不同LukAB毒素的中和作用。
在RARPR 33免疫小鼠的0.125%血清存在下,所有16種LukAB變體的細胞毒性效應均被中和(圖9)。在相似的血清濃度下,來自D39A/R23E類毒素免疫小鼠的血清僅與來自RARPR-33免疫小鼠的血清具有相同的保護作用,以抵抗LukAB CC8的細胞毒性作用。對於所有其他毒素,D39A/R23E類毒素免疫小鼠的血清未觀察到保護作用或保護作用低得多。這些結果表明,RARPR-33免疫比D39A/R23E類毒素免疫誘導更廣泛的毒素中和反應。 實施例 9 LukAB 類毒素的熱穩定性
與野生型蛋白質相比,LukAB類毒素的穩定性通過熱解折疊(thermal unfolding)實驗進行評估,使用固有色氨酸或酪氨酸螢光來估計熔融溫度(Tm),對應於蛋白質從折疊到解折疊狀態轉變的中點。使用NanoTemper's PromethiusNT.Plex儀(NanoTemper Inc.,德國)評估熱穩定性。對0.3至1 mg/mL(20µL,緩衝液:50 mM磷酸鈉緩衝液,200 mM NaCl,pH 7.4,10%甘油)的蛋白質樣品進行熱解折疊測定,每次重複兩次。Prometheus NanoDSF使用者介面(熔融掃描選項卡)用於設置運行的實驗參數。以1.0℃/min的速率對典型樣品進行熱掃描,掃描範圍為20℃至95℃。將用於樣品的同一緩衝液中的標準mAb(CNTO5825或NIST)作為對照,重複進行。使用供應商軟體PR.ThermControl分析熱熔化曲線,以確定50%蛋白質解折疊的溫度(Tm)。
表8A和8B示出了通過nanoDSF評估的LukA和LukAB類毒素蛋白質的熱穩定性。給出了蛋白質解折疊開始溫度(Tonset)和蛋白質解折疊轉變中點(Tm1),以及有無穩定性替換的可比結構之間Tm的差異(ΔTm)。 8A. CC45 遺傳背景中的單替換和雜交物 CC8/CC45 遺傳背景中的組合替換。
毒素名稱 LukA LukB 解折疊開始溫度( Tonset Tm1 ΔTm a
CC45毒素 CC45 LukA E321A CC45 LukB wt 40.3 47.3 --
CC8 / CC45毒素 CC8 LukA E320A CC45 LukB wt 37.7 43.9 --
  CC45 LukA E321A, Lys81Met CC45 LukB wt 40.5 47.4 0.1
  CC45 LukA E321A, Ser139Ala CC45 LukB wt 40.5 47.4 0.1
  CC45 LukA E321A, Val111Ile CC45 LukB wt 40.0 47.7 0.4
  CC45 LukA E321A, Val190Ile CC45 LukB wt 40.5 47.5 0.2
  CC45 LukA E321A, Thr247Val CC45 LukB wt 41.3 47.3 0
  CC45 LukA E321A CC45 LukB Val53Leu 40.7 47.8 0.5
RARPR-15 CC45 LukA E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile CC45 LukB wt 41.2 48.9 1.6
RARPR-33 CC8 LukA E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile CC45 LukB Val53Leu 40.0 47.9 4.0
LukA單體 CC8 LukA E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val, Tyr71Cys, Asp137Cys, Gly146Cys, Gly153Cys No LukB 45.2 61.8 --
LukA單體 CC45 LukA E321A, Lys81Met, Ser139Ala, Val111Ile, Val191Ile, Thr247Val, Tyr72Cys, Asp138Cys, Gly147Cys, Gly154Cys No LukB 51.9 58.1 --
aΔTm代表CC45或CC8/CC45毒素的Tm值與攜帶一個或多個替代物的相應LukAB蛋白質相比,在沒有穩定替換和二硫鍵的情況下的差異。 LukA單體包含一個N端PelB信號序列,可直接表達到大腸桿菌的周質中,以支持二硫鍵的形成。 在大腸桿菌Origami 2(DE3)細胞的細胞質中表達了攜帶成對半胱氨酸替換以支持二硫鍵形成的LukAB二聚體。 8B. CC8 遺傳背景中的單替換和雜交物 CC8/CC45 遺傳背景中的組合替換。
毒素名稱 LukA LukB 解折疊開始溫度 Tm1 ΔTm a
CC45毒素 CC45 LukA E321A CC45 LukB wt 37.8 45.3 --
CC8 / CC45毒素 CC8 LukA E320A CC45 LukB wt 35.3 42.2 --
  CC8 LukA E320A, Lys80Met CC45 LukB wt 38.8 44.9 2.7
  CC8 LukA E320A, Ser138Ala CC45 LukB wt 38.9 44.7 2.5
  CC8 LukA E320A, Val110Ile CC45 LukB wt 38.0 44.0 1.8
  CC8 LukA E320A, Val190Ile CC45 LukB wt 37.2 43.5 1.3
  CC8 LukA E320A, Thr246Ile CC45 LukB wt 36.4 43.1 0.9
  CC8 LukA E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile, Thr246Val CC45 LukB wt 40.5 46.8 4.6
RARPR-33 CC8 LukA E320A, Lys80Met, Ser138Ala, Val110Ile, Val190Ile CC45 LukB Val53Leu 38.8 46.3 4.1
結果:熱穩定性分析(表8A)示出,CC45 LukAE321A/CC45 LukB蛋白質的Tm值比CC8 LukAE321A/CC45 LukB雜交蛋白質的Tm值高3℃。在CC45 LukA中單獨替換,再加上CC45 LukBwt,導致Tm適度增加0至0.4℃。LukB中的Val53Leu替代導致Tm增加0.5℃。由於雜交LukAB類毒素包含CC8 LukA背景,因此在CC8 LukA中結合野生型CC45 LukB測試了單個氨基酸替換(表8B)。如CC45 LukA所示,CC8 LukA中的單個替換也使Tm值高於野生型LukAB。LukA(RARPR-15)中的替換組合產生的Tm值比CC45 LukA E321A/CC45 LukB蛋白質高1.6℃,CC8 LukA替換與LukB Val53Leu(RARPR-33)的組合產生的Tm值比CC8 LukA E321A/CC45 LukB雜交物高4℃。在兩個資料集中都觀察到RARPR-33的熱穩定性增加(表8A和8B)。儘管nanoDSF可能會對在低於50℃下解折疊的蛋白質產生一些變異,但使用每組中運行的對照測定的ΔTm在4.0和4.1℃的資料集上是一致的。LukA單體包括替換組合和成對的半胱氨酸替換,並且示出出較高的Tm值≥58℃,表明二硫鍵對提高熱穩定性的進一步貢獻。 實施例 1-9 的討論:
本文所述的穩定的LukAB變體異二聚體類毒素具有若干特徵,使其非常適合作為金黃色葡萄球菌疫苗抗原候選。
首先,與野生型毒素和其他已知類毒素(即CC8Δ10和CC45Δ10類毒素)相比,LukA單體和LukAB二聚體類毒素,包括RARPR-30、RARPR-31、RARPR-32、RARPR-33、RARPR-34和RARPR-15,對分化的人類THP-1和人類PMN的細胞毒性顯著降低。即使在濃度高達2.5 mg/ml時,RARPR-33仍然沒有細胞毒性,表明其完全減毒。
其次,在LukA和LukB變體蛋白質中引入的替換物的組合顯著增強了異二聚體RARPR複合物相對于僅含有單一替換物的相應類毒素的熱穩定性。特別是,LukA(RARPR-15)中的替換組合產生的Tm值比CC45 LukAE 321A/CC45 LukB蛋白質高1.6℃,CC8 LukA替換與LukB Val53Leu(RARPR-33)的組合產生的Tm值比CC8 LukA E321A/CC45 LukB雜交物高4℃。
除了減弱的細胞毒性和增強的熱穩定性外,本文所述的LukAB RARPR類毒素,尤其是RARPR-15、RARPR-33和RARPR-34,與野生型CC45和CC8毒素、野生型混合毒素和類毒素(包括E323A類毒素和D39A/R23E類毒素)相比,誘導了類似或更廣泛的毒素中和反應和更高的中和抗體滴度。
綜上所述,細胞毒性減弱、熱穩定性提高、免疫原性強和抗體廣泛中和,使得本文所述的LukAB-RARPR類毒素成為理想的候選疫苗抗原。 實施例 10:LukAB RARPR-33 SpA* GLA-SE 在外科傷口小型豬感染模型中的效力
該實驗的目的是評估Spa變異抗原和RARPR-LukAB二聚體(含或不含吡喃葡糖基脂質佐劑(GLA)以及toll樣受體4(TLR)激動劑)的組合是否能在哥廷根小型豬的金黃色葡萄球菌外科傷口感染模型中提供保護。測試的Spa變異抗原(Spa*)的氨基酸序列為SEQ ID NO:60。所測試的突變LukAB二聚體RARPR-33含有包含SEQ ID NO:3氨基酸序列的LukA變體多肽和包含SEQ ID NO:18氨基酸序列的LukB變體多肽。GLA佐劑在穩定的乳液(SE)中配製,含有10µg GLA和2%的SE。
體內實驗。按照圖10所示的方案,對雄性哥廷根小型豬(每組3頭豬)進行3次肌肉內免疫,每次間隔3周,免疫成分或組合如下: 1. 緩衝液對照(無佐劑,無LukAb RARPR-33,無Spa*) 2. LukAB RARPR-33(100µg)+Spa*(100µg)+佐劑GLA-SE(10µg) 3. LukAB RARPR-33(100µg)+Spa*(100µg),無佐劑 4. 僅佐劑GLA-SE(10µg)
接種疫苗後,用臨床相關的金黃色葡萄球菌菌株,即克隆複合物(CC)398對豬進行攻毒。在感染後第8天,對豬實施安樂死,並測定手術部位的細菌載量。
該研究的主要終點是在接種了LukAB+Spa變體(含或不含佐劑)的動物中,手術部位的細菌載量(cfu)減少。單獨接種佐劑或單獨接種配方緩衝液作為對照。 材料和方法:
小型豬外科傷口感染方法:將5至8個月大的雄性哥廷根小型豬(Marshall Biosciences,North Rose,紐約州)集體飼養,並在12小時的光/暗迴圈中自由飲水。手術當天上午,禁食的小型豬被鎮靜、插管,並在手術期間置於異氟醚麻醉下。在左大腿上進行手術,暴露肌肉層,並將一個5mm無刀片套管針(Endioth ®Xcel,Ethicon Endo Surgery,Guaynabo,波多黎各)推進到股骨深處。通過套管針(MILA International,Inc.,佛羅倫斯,肯塔基州)將20µl接種物(約6 log 10CFU/ml金黃色葡萄球菌)通過6英寸的MILA脊柱針(MILA International,Inc.,佛羅倫斯,肯塔基州)注入傷口(股骨頂部),然後取出。施用細菌攻毒後,用單絲縫合線封閉肌肉,用可吸收PDS縫合線封閉皮膚。八天后,在鎮靜狀態下,小豬被巴比妥類藥物安樂死。一旦確認死亡,器官就被分別進行微生物學處理。使用Bead Ruptor Elite(Omni International,肯尼索,佐治亞州,美國)將樣品在鹽水中均質,然後將其稀釋並用Autoplate 5000螺旋接種儀(Spiral Biotech,諾伍德,麻塞諸塞州,美國)置於TSA板上。培養皿在37℃下培養18-24小時,然後在QCount菌落計數器(Spiral Biotech,諾伍德,麻塞諸塞州,美國)上讀取。
採用Dunnett多重比較檢驗進行單因素方差分析,以檢驗多組之間的統計顯著性。ANOVA模型包含組和手術日期作為解釋因素。所有動物研究均由Janssen Spring House機構動物護理和使用委員會審查和批准,並存放在AALAC認證的設施內。 結果:
在小型豬外科傷口感染模型中的效力。為了測試有和沒有佐劑的疫苗的效力,在三次免疫和一株屬於克隆複合物CC398的金黃色葡萄球菌菌株攻毒後,測定了中深層肌肉中的菌落形成單位(cfu)數量。
在中層肌肉中,使用LukAB、Spa*+佐劑(log 10cfu/g中層肌肉的幾何平均值=1.61)的組合進行免疫,與未使用佐劑(log 10cfu/g中層肌肉的幾何平均值=6.03, P=0.0018)或僅使用佐劑(log 10cfu/g中層肌肉的幾何平均值=6.08, P=0.0017)的組相比,使用LukAB和Spa*免疫的組的cfu顯著減少(圖11A)。將緩衝液對照組(log 10cfu/g中層肌肉的幾何平均值=5.77)與僅佐劑組( P=0.8711)或LukAB RARPR-33+Spa*組( P=0.9392)進行比較時,未發現cfu有顯著差異。然而,在緩衝液對照組和接受LukAB RARPR-33、Spa*+佐劑的動物之間,發現cfu顯著降低( P=0.0006)。這些結果表明,佐劑本身並不能提供保護作用。
在深層肌肉中,不含佐劑的LukAB和Spa*聯合免疫導致cfu減少(log 10cfu/g深層肌肉的幾何平均值=4.18, P=0.1389)。使用LukAB RARPR-33、Spa*+佐劑聯合免疫,與未使用佐劑的LukAB和Spa*免疫組相比,cfu的下降幅度更大(log 10cfu/g深層肌肉的幾何平均值=1.58),與僅使用佐劑的組相比,cfu的下降幅度更大(log 10cfu/g深層肌肉的幾何平均值=6.37, P=0.0360)(圖11B)。將緩衝液對照組(log 10cfu/g深肌的幾何平均值=6.14)與僅佐劑組( P=0.9931)或LukAB RARPR-33+Spa*組( P=0.3953)進行比較時,未發現cfu有顯著差異。然而,在緩衝液對照組和接受LukAB RARPR-33、Spa*+佐劑的動物之間,發現cfu顯著降低( P=0.0137)。
這些結果表明,LukAB RARPR-33和Spa*組合可有效降低小型豬手術部位感染模型中的細菌載量,添加GLA-SE佐劑可進一步增強手術部位細菌載量的降低。
結論:為了測試疫苗組合物的效力,使用相關的金黃色葡萄球菌菌株測定了疫苗在小型豬外科傷口感染模型中減少細菌載量的能力。使用LukAB RARPR-33+Spa*組合疫苗組合物對小型豬進行免疫,在使用相關臨床金黃色葡萄球菌菌株攻毒後,導致肌肉中菌落形成單位的數量減少。在疫苗組合中添加GLA-SE佐劑進一步降低了細菌載量。因此,在小型豬手術部位感染模型中,含有LukAB類毒素和Spa*突變體的金黃色葡萄球菌、以及GLA-SE佐劑的候選疫苗,有效地防止了深部金黃色葡萄球菌感染。 實施例 11 :外科傷口小型豬感染模型中免疫原性成分誘導的免疫反應
該實驗的目的是評估Spa變異抗原和LukAB RARPR-33二聚體的組合與兩種不同佐劑的進一步組合是否在哥廷根小型豬的金黃色葡萄球菌外科傷口感染模型中提供保護。測試的Spa變異抗原(Spa*)的氨基酸序列為SEQ ID NO:60。所測試的LukAB RARPR二聚體含有包含SEQ ID NO:3氨基酸序列的LukA多肽和包含SEQ ID NO:18氨基酸序列的LukB多肽。在本實驗的一個組中,對AS01b佐劑進行了測試,該佐劑是許可的Shingrix疫苗(Leroux等人,2016)的一部分,含有TLR4激動劑MPL和QS-21。在實驗的另一部分中,對含有TLR4激動劑GLA的GLA-SE佐劑進行了測試,該佐劑是在穩定的乳液中配製的。穩定的乳液為水包油乳液,其中油為角鯊烯。
小型豬模型用於評估候選疫苗的免疫原性(與抗原特異性IgG的產生有關)和效力。小型豬由於其免疫系統、器官和皮膚結構與人類相似,在傳染病研究中得到了廣泛的應用。在這個模型中,在傷口感染金黃色葡萄球菌後,手術部位的肌肉和皮膚層會發生局部感染。還觀察到感染傳播到其他內臟器官,疾病的進展與人類非常相似。
LukAB對小型豬多形核中性粒細胞(PMN)的毒性與在人類PMN中觀察到的類似。這與在小鼠和兔中性粒細胞中觀察到的高度降低的LukAB毒性形成對比,這是由於毒素靶點的物種特異性。此外,由於豬經常攜帶葡萄球菌,與成年人類(但不是實驗室齧齒動物)類似的小型豬通常具有高水準的葡萄球菌抗原抗體(包括LukAB和其他金黃色葡萄球菌蛋白)。因此,與之前可用的齧齒動物模型相比,該模型可能是人類潛在疫苗保護的更可靠指標,尤其是對於含有LukAB和Spa變體的疫苗。
體內實驗。根據圖12所示的方案,雄性哥廷根小型豬(每組3頭豬)以3周的間隔進行三次單獨的肌肉內免疫,免疫成分或組合如下: 1. 緩衝液對照(無佐劑、無LukAB-RARPR、無Spa變體) 2. LukAB RARPR-33(100µg)+SpA*(100µg)+佐劑AS01b(25µg MPL+25µg QS-21) 3. LukAB RARPR-33(100 µg)+SpA*(100 µg)+佐劑GLA-SE(10 µg GLA)
接種疫苗後,用臨床相關的金黃色葡萄球菌菌株克隆複合物(CC)398對豬進行攻毒。在感染後第8天,對豬實施安樂死,並測定手術部位和內臟的細菌載量。
如圖12所示,在研究開始前和疫苗接種期間定期採集血樣。進行血清分析以評估血清免疫球蛋白的數量和功能。
該研究的主要終點是在接種了LukAB+SpA*和不同佐劑的動物中,手術部位/器官的細菌載量(CFU)減少。只接種緩衝液作為對照。 材料和方法:
通過酶聯免疫吸附試驗( ELISA )測定針對 LukAB SpA 的抗體反應:為了測定針對LukAB CC8和LukAB CC45的IgG抗體水準,384孔Nunc板(Thermo Fisher Scientific)在PBS中塗上1.0µg/ml LukAB CC8或LukAB CC45,並在2-8℃下培養1h。用PBS+0.05%吐溫20洗滌後,用2.5%脫脂牛奶封閉板,從1:10開始,將稀釋液緩衝液(2.5%(w/v)脫脂奶粉,1×PBS)中製備的洗滌和連續3倍稀釋的血清添加到孔中。將培養皿在室溫下培養1小時,清洗並添加1:10000稀釋的抗豬IgG HRP二級抗體(Sigma-Aldrich)。在室溫下培養1小時後,用TMB基質(Leinco Technologies)製備平板。通過添加1M硫酸停止反應。在450nm處讀取吸亮度。EC 50滴度(定義為最大有效濃度的一半)是根據重複的12步滴定曲線計算的,該曲線用4參數logistic(PL)非線性回歸模型分析。EC 50滴度低於30的樣品被截尾至30。在三次免疫後,使用潛在截尾值的Tobit模型來測試疫苗+佐劑組與僅緩衝液組之間的統計顯著性。使用Bonferroni校正進行多重比較。為了測定抗SpA*的抗體,96孔maxisorp平板在PBS中塗上0.25µg/ml SpA*,並在2-8℃下培養過夜。二級抗體是封閉緩衝液中1:10000稀釋的抗豬IgG HRP。其他步驟與上述測定抗LukAB抗體反應的步驟類似。在三次免疫後,使用潛在截尾值的Tobit模型來測試疫苗+佐劑組與僅緩衝液組之間的統計顯著性。使用Bonferroni校正進行多重比較。
LukAB 毒素中和試驗。CytoTox One試劑盒(Promega)用於測定膜受損細胞釋放乳酸脫氫酶(LDH)的情況。將THP-1細胞離心,並用RPMI重新懸浮至2×10 6個細胞/mL的密度。將細胞(50µL)添加到96孔培養板中,該培養板含有連續3倍稀釋的血清或3倍連續稀釋的參考LukAB單克隆抗體,起始濃度為2500 ng/mL。LukAB毒素CC8、CC45、CC22a,或將CC398添加到試驗孔中,最終濃度為40 ng/mL(CC8、CC22a、CC398)或20 ng/mL(CC45)。將裂解溶液(Promega)添加到裂解對照孔中。培養皿在37℃、5% CO 2存在下培養2小時。離心培養皿,將25µL上清液轉移到新培養皿中,並添加25µL CytotoxOne試劑(Promega)。平板在室溫下培養15分鐘,並向孔中加入終止溶液(Promega)。使用Biotek Synergy Neo 2閱讀器以單色讀取平板,激發波長為560,頻寬為5nm,發射波長為590,頻寬為10nm。增益設置為120-130。測定所有血清樣本和LukAB單克隆參考抗體的IC 50滴度,代表觀察到50%細胞毒性的濃度。相對效能滴度(代表血清樣本和參考單克隆抗體之間IC 50滴度的差異)用作輸出值。三次免疫後,比較疫苗組與緩衝組的相對效能滴度。採用Dunnett多重比較檢驗進行單因素方差分析,以檢驗疫苗組與緩衝組之間的統計顯著性。
小型豬外科傷口感染方法:將5至8個月大的雄性哥廷根小型豬(Marshall Biosciences,North Rose,紐約州)集體飼養並維持12小時的光/暗迴圈,可自由飲水。手術當天上午,禁食的小型豬被鎮靜、插管,並在手術期間置於異氟醚麻醉下。在左大腿上進行手術,暴露肌肉層,並將一個5 mm無刀片套管針(Endioth ®Xcel,Ethicon Endo Surgery,Guaynabo,波多黎各)推進至股骨深度。通過套管針(MILA International,Inc.,佛羅倫斯,肯塔基州)將20µL接種物(約6 log 10CFU/ml金黃色葡萄球菌)通過6英寸的MILA脊柱針(MILA International,Inc.,佛羅倫斯,肯塔基州)注入傷口(股骨頂部),然後取出。施用細菌攻毒後,用單絲縫合線封閉肌肉,用可吸收PDS縫合線封閉皮膚。八天后,在鎮靜狀態下,小豬被巴比妥類藥物安樂死。一旦確認死亡,器官就被分別進行微生物學處理。使用Bead Ruptor Elite(Omni International,肯尼索,佐治亞州,美國)將樣品在鹽水中均質,然後將其稀釋並用Autoplate 5000螺旋接種儀(Spiral Biotech,諾伍德,麻塞諸塞州,美國)置於TSA板上。培養皿在37℃下培養18-24小時,然後在QCount菌落計數器(Spiral Biotech,諾伍德,麻塞諸塞州,美國)上讀取。
使用Dunnett的多重比較試驗進行單因素方差分析,以檢驗緩衝液組和使用LukAB RARPR-33+SpA*+不同佐劑免疫的組之間cfu的統計顯著性。ANOVA模型包含組和手術日期作為解釋因素。所有動物研究均由Janssen Spring House機構動物護理和使用委員會審查和批准,並存放在AALAC認證的設施內。 結果:
針對 LukAB SpA* 誘導的抗體反應。上述幾組小型豬分別用LukAB RARPR-33(100µg)和SpA*(100µg)+佐劑AS01b(25µg MPL和25µg QS-21)或GLA-SE(10µg GLA,穩定乳劑)的組合免疫三次,間隔三周。對照組只接受緩衝液。第三次免疫後的三周,用金黃色葡萄球菌對動物攻毒。在每次免疫前和攻毒前採集血樣(圖12),並通過ELISA分析針對LukAB和SpA*的抗體反應。在僅用緩衝液免疫的動物中,測定到低水準的抗LukAB CC8和CC45 IgG抗體,表明存在預先存在的LukAB抗體(圖13A和13B)。在整個實驗過程中,血清中的抗體水準沒有隨時間增加。LukAB RARPR-33免疫,三次免疫後,與對照組相比,添加AS01b或GLA-SE的SpA*導致幾何平均值(Geomean)更高的抗LukAB CC8和LukAB CC45 IgG滴度(圖13A和13B,三次免疫後的IgG滴度幾何平均值LukAB CC8:LukAB RARPR-33+SpA*+AS01b:64637; P=0.0034 LukAB RARPR-33+SpA*+GLA-SE:116357, P=0.0003;緩衝液對照組:2931。三次免疫後IgG滴度幾何平均值LukAB RARPR-33+SpA*+AS01b:19764, P<0.0001;LukAB RARPR-33+SpA*+GLA-SE:11620, P<0.0001;緩衝液對照組:129)。
用緩衝液免疫的小型豬在任何時間點都沒有可測定的SpA*抗體(圖13C)。在三次免疫後,與對照組相比,使用LukAB RARPR-33、添加AS01b或GLA-SE的SpA*免疫組的幾何平均(Geomean)抗SpA*IgG滴度更高。(圖13C,三次免疫後的幾何平均值IgG SpA*:LukAB RARPR-33+SpA*+AS01b:7013, P<0.0001;LukAB RARPR-33+SpA*+GLA-SE:1770, P<0.0001;緩衝液對照組:30)。這些結果表明,LukAB+SpA*+佐劑疫苗可誘導SpA*特異性抗體。
LukAB 毒素細胞毒性活性的中和。LukAB是一種毒素,與中性粒細胞上的受體結合,在膜上形成孔隙,導致細胞溶解。為了評估試驗疫苗誘導的抗體的功能,測定了接種小型豬的血清抑制LukAB毒素誘導的THP-1細胞裂解的能力。檢測中的野生型LukAB毒素來自克隆複合物CC8或CC45。LukAB RARPR-33中的LukA來源於克隆複合物CC8,LukAB RARPR-33中的LukB來源於克隆複合物CC45。試驗中還使用了參考單克隆LukAB特異性抗體。測定血清樣品和參考抗體之間IC 50滴度的差異,代表測定50%細胞毒性的稀釋度,並繪製為相對效能滴度(RP滴度)。在實驗開始時,在小型豬的血清中檢測到針對LukAB CC8和LukAB CC45的中和抗體(免疫前相對緩衝液對照組LukAB CC8 RP滴度幾何平均值:1126;LukAB RARPR-33+SpA*+AS01b:1483;LukAB RARPR-33+SpA*+GLA-SE:896。LukAB CC45 RP滴度幾何平均值,免疫前緩衝液對照組:616;LukAB RARPR-33+SpA*+AS01b:954;LukAB RARPR-33+SpA*+GLA-SE:637)。在用緩衝液接種的動物中,只有RP滴度在實驗過程中沒有變化(三次免疫後,RP滴度幾何平均值,LukAB CC8:1497;LukAB CC45:884)。在接種LukAB+SpA*+佐劑的動物中,三次免疫後,血清中的RP滴度幾何平均值顯著升高(LukAB CC8 RP滴度幾何平均值,LukAB RARPR-33+SpA*+AS01b:17095, P=0.0007;LukAB RARPR-33+SpA*+GLA-SE:10285, P=0.0116。LukAB CC45 RP滴度幾何平均值,LukAB RARPR-33+SpA*+AS01b:20019, P=0.0022;LukAB RARPR-33+SpA*+GLA-SE:16612, P=0.0047)。這些結果如圖14A和14B所示,表明疫苗(RARPR-33)中的LukAB誘導功能性抗體,阻斷LukAB毒素的細胞毒性活性。
LukAB 毒素細胞毒性活性的交叉中和。接下來,我們評估了小型豬接種LukAB RARPR-33+SpA*和不同佐劑後誘導的抗體是否能夠交叉中和LukAB序列變體的細胞毒性,該毒性在RARPR-33骨架中不存在。為此,使用了LukAB序列變異CC22a和CC398。通過評估血清抑制LukAB毒素誘導的THP-1細胞裂解的能力來測定交叉中和。試驗中還使用了參考單克隆LukAB特異性抗體,並如上所述測定了相對效能。在實驗開始時,小型豬血清中可檢測到針對LukAB CC22a和LukAB CC398的交叉中和抗體(CC22a RP滴度幾何平均值,免疫前緩衝液對照組:541;LukAB RARPR-33+SpA*+AS01b:846;LukAB RARPR-33+SpA*+GLA-SE:436。LukAB CC398RP滴度幾何平均值,免疫緩衝液對照組:1061;LukAB RARPR-33+SpA*+AS01b:1090;LukAB RARPR-33+SpA*+GLA-SE:608)。在用緩衝液接種的動物中,只有RP滴度在實驗過程中沒有變化(三次免疫後,RP滴度幾何平均值,LukAB CC22a:761;LukAB CC398:1270)。在接種了LukAB+SpA*+佐劑(AS01b或GLA-SE)的動物中,三次免疫後,血清中的RP滴度幾何平均值顯著升高(LukAB CC22a RP滴度幾何平均值,LukAB RARPR-33+SpA*+AS01b:7524, P=0.0040;LukAB RARPR-33+SpA*+GLA-SE:5025, P=0.0312。LukAB CC398 RP滴度幾何平均值LukAB RARPR-33+SpA*+AS01b:14396, P=0.0005;LukAB RARPR-33+SpA*+GLA-SE:8051, P=0.0146)。這些結果如圖14C和14D所示,表明疫苗(RARPR-33)中的LukAB誘導交叉中和抗體,阻斷各種LukAB毒素序列變體的細胞毒性活性。
在小型豬外科傷口感染模型中的效力:為了測試疫苗效力,在三次免疫和來自克隆複合物CC398的金黃色葡萄球菌攻毒後,在肌肉(中層和深層)和脾臟的兩個部位測定菌落形成單位(cfu)的數量。使用LukAB RARPR-33+SpA*+AS01b佐劑(log 10cfu/g肌肉的幾何平均值(中層)=0.98, P=0.0057)或LukAB RARPR-33+SpA*+GLA-SE(log 10cfu/g肌肉(中層)的幾何平均值=0.83, P=0.0046)進行免疫,與僅使用佐劑的組(log 10cfu/g肌肉(中層)的幾何平均值=5.99)相比,中肌的cfu顯著降低(圖15A)。使用LukAB RARPR-33+SpA*+AS01b佐劑(log 10cfu/g肌肉(深層)的幾何平均值=0.58, P=0.0024)或LukAB RARPR-33+SpA*+GLA-SE(log 10cfu/g肌肉(深層)的幾何平均值=0.76, P=0.0031)進行免疫,與僅使用佐劑的組(log 10cfu/g肌肉(深層)的幾何平均值=6.10)相比,深層肌肉的cfu顯著減少(圖15B)。在脾臟中,與LukAB+SpA*+AS01b或LukAB+SpA*+GLA-SE(log 10cfu/g脾的幾何平均值=0.51, P=0.0138和0.45, P=0.0120)免疫相比,僅用佐劑免疫的對照組(log 10cfu/g脾的幾何平均值=2.20)的cfu水準更高(圖15C)。這些結果如圖15A–15C所示,表明試驗疫苗組合在小型豬手術部位感染模型中有效。疫苗還可以減少細菌向脾臟等器官的傳播。
結論:含有抗原LukAB RARPR-33和帶有佐劑的SpA*的疫苗組合物在小型豬中示出出免疫原性,因為其誘導了針對LukAB CC8、LukAB CC45和SpA*的IgG抗體。抗LukAB IgG抗體的增加與LukAB毒素的細胞毒性活性的交叉中和增加有關,表明誘導的IgG抗體具有功能性。為了測試疫苗組合物的效力,使用相關的金黃色葡萄球菌菌株測定疫苗在小型豬外科傷口感染模型中降低細菌載量的能力。用LukAB RARPR-33+SpA*+佐劑疫苗組合物對小型豬進行免疫後,試驗菌株攻毒後,肌肉中菌落形成單位的數量顯著減少。疫苗成分還導致脾臟中的cfu顯著減少。因此,在小型豬手術部位感染模型中,含有LukAB和SpA類毒素突變體的經測試金黃色葡萄球菌候選疫苗有效地防止了深部金黃色葡萄球菌感染和傳播。 實施例 12 LukAB RARPR-33 Spa* 在外科傷口小型豬感染模型中對金黃色葡萄球菌 USA300 菌株的效力
實施例10中的結果表明,在小型豬外科部位感染模型中,LukAB RARPR-33和Spa*的組合(不含佐劑)對金黃色葡萄球菌的攻毒提供了一些保護。本實驗的目的是評估在沒有佐劑的情況下,Spa*與LukAB RARPR-33聯合是否能在哥廷根小型豬的金黃色葡萄球菌外科傷口感染模型中針對不同的攻毒菌株提供保護。使用臨床相關的USA300金黃色葡萄球菌菌株。
測試的Spa變異抗原(Spa*)的氨基酸序列為SEQ ID NO:60。所測試的突變LukAB二聚體RARPR-33含有包含SEQ ID NO:3氨基酸序列的LukA變體多肽和包含SEQ ID NO:18氨基酸序列的LukB變體多肽。
體內實驗。根據圖16A所示的方案,雄性哥廷根小型豬(每組3頭豬)以3周的間隔,以3次不同的時間進行肌肉內免疫,其成分或組合如下(圖16B): 1.            緩衝液對照 2.            LukAB RARPR-33(100µg)+Spa*(100µg) 接種疫苗後,用臨床相關的金黃色葡萄球菌USA300菌株對豬進行攻毒。在感染後第8天,對豬實施安樂死,並測定手術部位的細菌載量。該研究的主要終點是在接種了LukAB和Spa變體的動物的手術部位減少細菌載量(cfu)。接種配方緩衝液作為對照。 材料和方法:
小型豬外科傷口感染方法:在小型豬外科傷口感染模型中,用金黃色葡萄球菌USA300菌株攻毒哥廷根小型豬。根據實施例10和11中的描述,進行攻毒和手術部位的細菌載量測定。 結果:
小型豬外科傷口感染模型的效力。為了測試疫苗抗原組合的效力,在三次免疫和金黃色葡萄球菌USA300菌株攻毒後,測定了中深層肌肉中的菌落形成單位(cfu)數量。
在中層肌肉中,與僅接受緩衝液的組相比,LukAB RARPR-33和Spa*(log 10cfu/g中層肌肉的幾何平均值=2.15)的聯合免疫導致cfu減少(log 10cfu/g中層肌肉的幾何平均值=5.73, P=0.2790)(圖16C)。
在深層肌肉中,與緩衝液對照組(log 10cfu/g深層肌肉的幾何平均值=6.21, P=0.0245)相比,LukAB RARPR-33,Spa*(log 10cfu/g深層肌肉的幾何平均值=3.65)的聯合免疫導致cfu顯著減少(圖16D)。這些結果表明,在沒有佐劑的情況下,在小型豬手術部位感染模型中,測試的疫苗組合對USA300菌株有效。
結論:為了測試疫苗抗原組合的效力,使用金黃色葡萄球菌USA300菌株測定了疫苗組合在小型豬外科傷口感染模型中降低細菌載量的能力。本研究中未使用佐劑。與緩衝液對照組相比,使用LukAB RARPR-33+Spa*對小型豬進行免疫後,試驗菌株攻毒後,肌肉中的菌落形成單位數量減少。這些結果表明,在沒有佐劑的情況下,LukAB RARPR-33和Spa*的組合可以在小型豬SSI模型中對金黃色葡萄球菌USA300菌株提供一定程度的保護。 實施例 13:LukAB RARPR-33 SpA* GLA-SE 在外科創傷小型豬感染模型中對 USA100 金黃色葡萄球菌菌株的效力
本實驗的目的是評估SpA變異抗原和RARPR-LukAB二聚體與葡糖吡喃脂質佐劑(GLA)、toll樣受體4(TLR)激動劑的組合,可在哥廷根小型豬的外科傷口感染模型中提供保護,以抵抗耐甲氧西林金黃色葡萄球菌(MRSA)USA100菌株的攻毒。USA100菌株是造成大部分醫療相關MRSA感染的原因。測試的Spa變異抗原(Spa*)的氨基酸序列為SEQ ID NO:60。所測試的突變LukAB二聚體RARPR-33含有包含SEQ ID NO:3氨基酸序列的LukA變體多肽和包含SEQ ID NO:18氨基酸序列的LukB變體多肽。GLA佐劑在穩定的乳液(SE)中配製,含有10µg GLA和2%的SE。
體內實驗。根據圖17A所示的方案,對雄性哥廷根小型豬(每組3頭豬)進行3次肌肉內免疫,每次間隔3周,使用以下成分或成分組合(圖17B): 1.            佐劑GLA-SE(10µg,2% SE)(不含LukAb RARPR-33,不含Spa*) 2.            LukAB RARPR-33(100µg)+Spa*(100µg)+佐劑GLA-SE(10µg,2% SE)
在接種疫苗後,用臨床相關的金黃色葡萄球菌USA100菌株(ST5)對豬進行攻毒。在感染後第8天,對豬實施安樂死,並測定手術部位的細菌載量。該研究的主要終點是,與單獨接種GLA-SE的動物相比,接種LukAB+Spa變體組合和GLA-SE的動物在手術部位的細菌載量(cfu)減少。 材料和方法:
小型豬外科傷口感染方法:在小型豬外科傷口感染模型中,用金黃色葡萄球菌USA100菌株攻毒哥廷根小型豬。根據實施例10和11中的描述,進行攻毒和對手術部位的細菌載量測定。為了檢驗兩組之間的統計顯著性,採用了方差分析模型。 結果:
小型豬外科傷口感染模型的效力。為了測試疫苗組合的效力,在三次接種金黃色葡萄球菌USA100並攻毒後,測定中深層肌肉中的菌落形成單位(cfu)數量。
在中層肌肉中,與單獨使用GLA-SE免疫的組相比,使用LukAB RARPR-33、Spa*+GLA-SE(log 10cfu/g中層肌肉的幾何平均值=0.88)的組合進行免疫可顯著降低cfu(log 10cfu/g中層肌肉的幾何平均值=5.27, P=0.0013)(圖17C)。同樣在深層肌肉中,與單獨使用GLA-SE免疫的組相比,使用LukAB RARPR-33、Spa*+GLA-SE(log 10cfu/g深層肌肉的幾何平均值=0.30)的組合進行免疫可顯著降低cfu(log 10cfu/g深層肌肉的幾何平均值=5.37, P<0.0001)(圖17D)。這些結果表明,在SSI模型中,LukAB RARPR-33、Spa*和GLA-SE的組合對金黃色葡萄球菌USA100菌株具有保護作用,並表明試驗疫苗對小型豬有效。
結論:為了測試LukAB RARPR-33、Spa*和GLA-SE組合的效力,使用相關的金黃色葡萄球菌USA100菌株測定了疫苗在小型豬外科傷口感染模型中降低細菌載量的能力。用LukAB RARPR-33+Spa*+GLA-SE佐劑疫苗組合物對小型豬進行免疫後,在試驗菌株攻毒後,肌肉中的菌落形成單位數量減少。結合前面實施例的結果,表明含有LukAB類毒素和Spa突變體的金黃色葡萄球菌疫苗組合可以有效地防止小型豬手術部位感染模型中各種臨床相關金黃色葡萄球菌菌株引起的深層感染。 實施例 14 LukAB-RARPR-33 Spa* 與不同佐劑組合的免疫原性
本實驗的目的是評估不同佐劑是否會提高Spa變體抗原和RARPR-LukAB二聚體組合的免疫原性。測試的Spa變異抗原(Spa*)的氨基酸序列為SEQ ID NO:60。所測試的突變LukAB二聚體RARPR-33含有包含SEQ ID NO:3氨基酸序列的LukA變體多肽和包含SEQ ID NO:18氨基酸序列的LukB變體多肽。測試了兩種含有TLR4激動劑的佐劑;AS01b(含5µg MPL和5µg QS-21)和GLA以穩定的乳液(GLA-SE,含1µg GLA,2%SE)配製。此外,還包括兩種基於明礬的佐劑:2%鋁Alhydrogel佐劑(氫氧化鋁凝膠)和佐劑磷佐劑(磷酸鋁凝膠)
體內實驗。按照圖18A所示的方案,對雌性Swiss Webster小鼠(每組5-10只小鼠)進行3次不同的皮下免疫,每次間隔2周,並使用以下組合物或組合物組合(圖18B): 1.            LukAB RARPR-33(5µg)+SpA*(5µg)+AS01b(5µgMPL+5µg QS-21) 2.            LukAB RARPR-33(5µg)+SpA*(5µg)+GLA-SE(1µgGLA,2% SE) 3.            LukAB RARPR-33(5µg)+SpA*(5µg)+Alhydrogel佐劑(50µl) 4.            LukAB RARPR-33(5µg)+SpA*(5µg)+Adju-Phos佐劑(50µl) 5.            LukAB RARPR-33(5µg)+SpA*(5µg) 6.            緩衝液+AS01b(5µg MPL和5µg QS-21) 7.            緩衝液+GLA-SE(1µgGLA,2% SE) 8.            緩衝液+Alhydrogel佐劑(50µl) 9.            緩衝液+佐劑磷(50µL) 10.       緩衝液 如圖18A所示,在研究開始之前以及第三次免疫後的2周採集血樣。進行血清分析以評估血清免疫球蛋白的數量和功能。接種佐劑或不含疫苗抗原的配方緩衝液作為對照。 材料和方法:
通過酶聯免疫吸附試驗( ELISA )測定針對 LukAB SpA 的抗體反應:為了測定針對LukAB CC8和LukAB CC45的IgG抗體水準,384孔Nunc板(Thermo Fisher Scientific)在PBS中塗上1.0µg/ml LukAB CC8或LukAB CC45,並在2-8℃下培養1h。用PBS+0.05%吐溫20洗滌後,用2.5%脫脂牛奶封閉板,將稀釋液緩衝液(1xPBS中2.5%(w/v)脫脂奶粉)中製備的洗滌和連續3倍稀釋的血清從1:90稀釋開始添加到孔中。將培養皿在室溫下培養1小時,清洗並添加1:2000稀釋的抗小鼠IgG-HRP二級抗體(Sigma-Aldrich)。在室溫下培養1小時後,用TMB基質(Leinco Technologies)製備平板。通過添加1M硫酸停止反應。在450nm處讀取吸亮度。EC 50滴度(定義為最大有效濃度的一半)是根據重複的12步滴定曲線計算的,該曲線用4參數logistic(PL)非線性回歸模型分析。EC 50滴度低於30的樣品被審查至30。
為了測定針對SpA*的抗體,384孔maxisorp板在PBS中塗上0.25µg/ml SpA*並在2-8℃下培養過夜。二級抗體是在封閉緩衝液中以1:2000稀釋的抗小鼠IgG HRP。其他步驟與上述測定抗LukAB抗體反應的步驟類似。
LukAB 毒素中和試驗。CytoTox One試劑盒(Promega)用於測定膜受損細胞釋放乳酸脫氫酶(LDH)的情況。將THP-1細胞離心,並用RPMI重新懸浮至2×10 6個細胞/mL的密度。將細胞(50µL)添加到96孔培養板中,該培養板含有連續3倍稀釋的血清或連續3倍稀釋的參考LukAB單克隆抗體,起始濃度為2500 ng/mL。將LukAB毒素CC8和CC45添加到測試孔中,最終濃度分別為40 ng/mL和20 ng/mL。溶解將溶液(Promega)添加到裂解對照孔中。培養皿在37℃、5% CO 2存在下培養2小時。離心培養皿,將25µL上清液轉移到新培養皿中,並添加25µL CytotoxOne試劑(Promega)。平板在室溫下培養15分鐘,並向孔中加入終止溶液(Promega)。使用Biotek Synergy Neo 2閱讀器以單色讀取平板,激發波長為560,頻寬為5nm,發射波長為590,頻寬為10nm。增益設置為120-130。測定所有血清樣本和LukAB單克隆參考抗體的IC 50滴度,代表觀察到50%細胞毒性的濃度。相對效能滴度(代表血清樣本和參考單克隆抗體之間IC 50滴度的差異)用作輸出值。 結果
針對LukAB和SpA*誘導的抗體反應。上述幾組小鼠分三次接種,每次間隔兩周,使用LukAB RARPR-33(5µg)和SpA*(5µg)聯合免疫,用或不用佐劑。作為對照,用佐劑和配方緩衝液或僅用配方緩衝液對動物進行免疫,這兩種情況下均不含抗原。見圖18B。
根據圖18A採集血樣,並通過ELISA分析血清對LukAB序列變異CC8和CC45以及SpA*的抗體反應。在免疫前,所有組均未檢測到LukAB或SpA*特異性預先存在的抗體(圖18C-E)。在僅用佐劑和/或配方緩衝液免疫的動物中,血清中的抗體水準在整個實驗過程中沒有隨時間增加(圖18C-E),這表明佐劑本身不會誘導特異性抗體反應,並且需要抗原。
為了評估佐劑是否能增強LukAB-RARPR-33和SpA*的免疫原性,我們比較了用LukAB-RARPR-33+SpA*免疫的動物在有或沒有佐劑的情況下對這些抗原的抗體IgG滴度。
與未使用佐劑(IgG LukAB CC8幾何平均值:315;IgG LukAB CC8幾何平均值:8079;IgG LukAB CC45幾何平均值:5012;IgG SpA*幾何平均值:31496)的LukAB RARPR-33、SpA*免疫的動物相比,使用LukAB CC8、CC45和SpA*(IgG LukAB CC8幾何平均值:8079;IgG LukAB CC45幾何平均值:5012;IgG SpA*幾何平均值:31496)免疫的動物的IgG滴度幾何平均值更高。
與用LukAB RARPR-33免疫的動物相比,用LukAB RARPR-33、SpA*與GLA-SE聯合免疫也導致LukAB CC8和CC45以及SpA*的IgG滴度幾何平均值更高(IgG LukAB CC8幾何平均值:1401;IgG LukAB CC45幾何平均值:3757;IgG SpA*幾何平均值:9012),不含佐劑的SpA*(IgG-LukAB CC8幾何平均值:315;IgG-LukAB CC45幾何平均值:141;幾何平均值IgG-SpA*:282)。這些結果表明,含有TLR4激動劑的佐劑可提高LukAB RARPR-33和SpA*的免疫原性。
與未使用佐劑(幾何平均值IgG-LukAB CC8:315;幾何平均值IgG-LukAB CC45:141)的LukAB RARPR-33、SpA*和Alhydrogel免疫的動物相比,使用LukAB CC8和CC45(幾何平均值IgG-LukAB CC8:595;幾何平均值IgG-LukAB CC45:263)的LukAB RARPR-33、SpA*免疫的動物的IgG滴度幾何平均值更高。對於SpA*特異性抗體應答,在用LukAB RARPR-33、SpA*和Alhydrogel(幾何平均值IgG SpA*:93318)免疫的動物組中觀察到最高的IgG滴度幾何平均值。
與未使用佐劑(IgG LukAB CC8幾何平均值:315;幾何平均值IgG LukAB CC45:141)的LukAB RARPR-33、Spa*聯合Adju-phos免疫的動物相比,使用LukAB CC8和CC45(IgG LukAB CC8幾何平均值:645;IgG LukAB CC45幾何平均值:593)的LukAB RARPR-33、Spa*免疫的動物的幾何平均滴度更高。對於Spa*,與未使用佐劑(IgG Spa*幾何平均值:282)的LukAB RARPR-33、Spa*和Adju-phos(IgG Spa*幾何平均值:11614)免疫組相比,使用LukAB RARPR-33、Spa*免疫的動物的IgG滴度幾何平均值更高。
這些結果表明,基於明礬的佐劑對Spa特異性抗體反應的影響大於對LukAB特異性抗體反應的影響。這裡測試的所有佐劑,無論是含有TLR4激動劑還是基於明礬的佐劑,都能提高LukAB RARPR-33和Spa*聯合疫苗的免疫原性。
LukAB 毒素的細胞毒性活性的中和。在毒素中和試驗中評估了免疫小鼠血清保護THP-1細胞免受細胞毒性劑量的LukAB CC8和CC45造成的細胞死亡的能力。僅包括在第42天(每組5只小鼠)用LukAB RARPR-33+SpA*免疫的動物的血清樣本,因為在這些組中,通過ELISA檢測到LukAB CC8和CC45的特異性抗體(圖18C-D)。 [01]試驗中包括一種參考單克隆LukAB特異性抗體。測定血清樣本和參考抗體之間IC 50滴度的差異,代表測定50%細胞毒性的稀釋度,並繪製為相對效能滴度(RP滴度)。
對於LukAB CC8,在用LukAB RARPR-33+SpA*加佐劑(AS01b:1281;GLA-SE:1502;Alhydrogel:476;Adju-Phos:425)免疫的組中,與用LukAB RARPR-33+SpA*不加佐劑(RP滴度幾何平均值:122)免疫的組相比,在三次免疫後的血清中測得更高的RP滴度幾何平均值(圖19A)。
對於LukAB CC45,在使用帶有佐劑的LukAB RARPR-33+SpA*免疫的組(AS01b:3392;GLA-SE:3470;Alhydrogel:365;Adju-Phos:298)中,與使用不含佐劑的LukAB RARPR-33+SpA*免疫的組(RP滴度幾何平均值:131)相比,在三次免疫後的血清中測得更高的RP滴度幾何平均值(圖19B)。
這些結果如圖所示。19A-B,表明疫苗(RARPR-33)中的LukAB誘導功能性抗體,阻斷LukAB毒素的細胞毒性活性,並且添加佐劑改善抗體的功能性,以中和LukAB毒性。
結論:測試不同類型的佐劑是否能提高由LukAB RARPR-33和SpA*組成的受試疫苗組合的免疫原性,在使用疫苗組合以及基於明礬的佐劑(氫氧化鋁或磷酸鋁)或含有TLR4激動劑(AS01b或GLA-SE)的佐劑免疫的小鼠的血清中測定抗體滴度和功能性。與不使用佐劑的免疫相比,向聯合疫苗中添加這兩種佐劑可提高疫苗特異性抗體滴度。此外,在佐劑存在下,LukAB特異性抗體具有更好的LukAB毒素中和能力。這些結果表明,使用不同的佐劑可以提高聯合疫苗的免疫原性。 參考文獻
以下參考文獻在一定程度上提供了補充本文所述內容的示例性程式或其他細節,通過引用具體併入本文。 1.     Nielsen, O.L., et al., A pig model of acute Staphylococcus aureus induced pyemia.Acta Vet Scand, 2009. 51: p. 14. 2.     Johansen, L.K., et al., A porcine model of acute, haematogenous, localized osteomyelitis due to Staphylococcus aureus: a pathomorphological study.APMIS, 2011. 119(2): p. 111-8. 3.     Svedman, P., et al., Staphylococcal wound infection in the pig: Part I. Course.Ann Plast Surg, 1989. 23(3): p. 212-8. 4.     Luna, C.M., et al., Animal models of ventilator-associated pneumonia.Eur Respir J, 2009. 33(1): p. 182-8. 5.     Meurens, F., et al., The pig: a model for human infectious diseases.Trends in microbiology, 2012. 20(1): p. 50-57. 6.     Leroux-Roels et al., Impact of adjuvants on CD4+ T cell and B cell responses to a protein antigen vaccine: Results from a phase II, randomized, multicenter trial.Clinical Immunology 169 (2016) 16–27.
儘管本文詳細描述了優選實施方案,但對於相關領域的技術人員來說,顯而易見的是,在不偏離本發明的精神的情況下,可以進行各種修改、添加、替換等,因此,這些都被視為在申請專利範圍中定義的本發明範圍內。
圖1是15種不同的金黃色葡萄球菌LukA氨基酸序列的比對,包括克隆複合物(CC)8(SEQ ID NO:1);CC45(SEQ ID NO:2);CC30的HMPREF0772_044(TCH60)(SEQ ID NO:27);CC30的SAR2108(MRSA252)(SEQ ID NO:36);CC45的SALG_02329(A9635)(SEQ ID NO:34);CC398的SAPIG2061(ST398)(SEQ ID NO:35);CC10的SATG_01930(D139)(SEQ ID NO:37);CC8的NEWMAN(SEQ ID NO:26);CC151的SAB1876C(RF122)(SEQ ID NO:32);CC5的SAV2005(Mu50)(SEQ ID NO:38);CC5的SA1813(N315)(SEQ ID NO:31);CC8的SACOL2006(SEQ ID NO:33);CC7的HMPRE0776_0173 USA300(TCH959)(SEQ ID NO:29);CC72的HMPREF0774_2356 TCH130(SEQ ID NO:28);以及CC1的MW1942(MW2)(SEQ ID NO:30)的LukA。通過比較比對的序列後產生的多數LukA序列的氨基酸序列如SEQ ID NO:25所示。本文所述氨基酸替換的位置也在每個LukA序列中被識別出來。 圖2是14種不同的金黃色葡萄球菌LukB氨基酸序列的比對,包括LukB CC8(SEQ ID NO:15);CC45(SEQ ID NO:16);CC45的A9635(SEQ ID NO:40);CC30的E1410(SEQ ID NO:43);CC30的MRSA252(SEQ ID NO:45);CC10的D139(SEQ ID NO:42);CC5的Mu.50(SEQ ID NO:46);CC239的JKD6008(SEQ ID NO:44);CC8的COL(SEQ ID NO:41);CC8的USA300_FPR3757(SEQ ID NO:115);CC8的NEWMAN(SEQ ID NO:116);CC151的RF122(SEQ ID NO:98);CC1的MW2(SEQ ID NO:47);以及CC72的TCH130(SEQ ID NO:99)的LukB。通過比較被比對的序列產生的多數LukB序列的氨基酸序列如SEQ ID NO:39所示。本文所述氨基酸替換的位置也在每個LukB序列中被識別。 圖3示出了用於免疫的不同LukAB變體的細胞毒性。用不同的LukAB變體滴定法對原代人類多形核白細胞(“PMN”)(n=4)染毒1小時。用細胞滴度測定細胞活力。資料為4名捐贈者的平均值±SEM,在2個單獨的實驗中獲得。 圖4A–4B示出了在用不同LukAB變體免疫的小鼠中針對LukAB CC8或CC45的抗體滴度。Envigo Hsd:ND4(4周齡)小鼠(n=5/抗原)皮下注射20μg LukAB和50μl 10%甘油1X TBS,並混合50μl佐劑TiterMax ®Gold。一組5只小鼠也接受了模擬免疫,包括等量的10%甘油1X TBS和TiterMax ®Gold。在對同一抗原-佐劑混合物進行兩次加強(兩次加強間隔為2周)後,通過心臟穿刺給小鼠放血並獲得血清。將帶有指定的免疫抗原的免疫小鼠的血清彙集並連續稀釋,以測定CC8-LukAB(圖4A)或CC45-LukAB(圖4B)的抗體滴度。平板塗有2μg/ml CC8或CC45-LukAB。熱圖示出了重複測定的平均吸亮度值。 圖5提供了用不同的LukAB變體免疫的小鼠血清對各種LukAB毒素的中和情況。用0.156μg/ml(LD 90)的指定的LukAB變體對人類中性粒細胞(n=4)染毒(intoxication)1小時,在用指定的抗原進行免疫的小鼠的4-0.031%血清存在下進行。使用前,將帶有指定的免疫抗原的免疫小鼠的血清彙集並熱滅活。用細胞滴度測定細胞活力。熱圖示出了4名捐贈者的平均死亡細胞百分比,黑色代表沒有細胞死亡,白色代表100%的細胞死亡。 圖6A–6C是表格,其示出了在不存在或存在2%(圖6A)、1%(圖6B)和0.5%(圖6C)小鼠血清的情況下,LukAB毒素序列變體LD 90染毒後死亡的人類多形核白細胞的百分比,這些小鼠血清來自用指定的抗原免疫的小鼠。資料以死亡細胞的百分比表示。沒有陰影的細胞代表最低的細胞死亡,最深灰色陰影的細胞代表最高的細胞死亡。 圖7A–7D示出了高濃度的LukAB RARPR-33染毒沒有細胞毒性。從健康捐贈者(n=4-6)新鮮分離的人類PMN與不同濃度的LukAB變體孵育1小時。通過細胞滴度的吸亮度測定細胞活力(圖7A和7B)。通過減去背景(健康細胞+PBS)並相對Triton X100處理的細胞進行標準化(設置為100%死亡),計算死亡細胞的百分比。圖中示出了平均值±SEM。將從健康捐贈者(n=4-6)分離的人中性粒細胞與不同濃度的LukAB變體孵育2小時。LDH釋放測定細胞活力(圖7C和7D)。圖中示出了平均值±SEM。 圖8A–8D示出高濃度下LukAB RARPR-33和D39A/R23E類毒素染毒。從健康捐贈者(n=5)新鮮分離的人類PMN與不同濃度的LukAB變體孵育2小時。通過細胞滴度的吸亮度測定細胞活力(圖8A和8B)。通過減去背景(健康細胞+PBS)並相對Triton X100處理的細胞進行標準化(設置為100%死亡),計算死亡細胞的百分比。圖中示出了平均值±SEM。從健康捐贈者(n=5)分離的人中性粒細胞與不同濃度的LukAB變體孵育2小時。通過LDH釋放測定細胞活力(圖8C和8D)。圖中示出了平均值±SEM。 圖9示出了用兩種不同的LukAB類毒素對各種LukAB毒素免疫的小鼠血清的中和情況。在用兩種不同抗原免疫的小鼠的0.125%血清存在下,用0.156μg/ml(LD 90)的指定的LukAB毒素變體對人類中性粒細胞(n=4)染毒1小時。用這兩種指定的免疫抗原免疫的小鼠血清在使用前被彙集並熱滅活。用細胞滴度測定細胞活力。柱狀圖示出了4名不同捐贈者的平均值+SEM。採用非配對t檢驗確定統計顯著性, P<0.05被認為是顯著的* P<0.05,** P<0.001,*** P<0.0001。 圖10是雄性哥廷根小型豬(Göttingen Minipigs)免疫方案的示意圖。哥根廷小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒(Challenge)。八天后,確定了細菌載量。圖14B的表格提供了所測試實驗組的概述。 圖11A–11B示出了LukAB RARPR-33和Spa*+/-GLA-SE在小型豬SSI模型中的功效。小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒。八天后,確定了細菌載量。中層肌肉(圖15A)和深層肌肉(圖15B)中的細菌載量在金黃色葡萄球菌攻毒後八天顯現。每個點代表一隻小型豬,並示出幾何平均值。虛線代表檢測限。採用方差分析和Dunnett事後檢驗確定統計顯著性,以校正多重比較,* P<0.05,** P<0.01,*** P<0.001。 圖12是雄性哥廷根小型豬免疫方案的示意圖。小型豬接受了三次肌肉內免疫,間隔3周。第三次免疫後的三周,在手術部位感染模型中,用10 6CFU金黃色葡萄球菌對動物進行攻毒。攻毒後8天(第71天)在手術部位和脾臟中測定細菌載量。在幾個時間點抽取血液並收集血清。該表示出了三個實驗組的詳細資訊。 圖13A–13C是示出LukAB RARPR-33和SpA*免疫原性的圖表。用100µg LukAB RARPR-33+100µg SpA*聯合AS01b(25µg MPL和25µg QS-21)或10µg GLA-SE對哥廷根小型豬(n=3)進行免疫。對照組接受抗原製劑緩衝液。每次免疫前和第三次免疫後的三周收集血清。通過ELISA測定對LukAB CC8(圖13A)、LukAB CC45(圖13B)或SpA*(圖13C)的特異性。示出了EC 50滴度。每個點代表一隻動物。各組的幾何平均值±幾何標準差被示出。虛線表示檢測限,設置為30。低於此值的樣本將被截取到30個。在用LukAB RARPR-33+SpA*與AS01b或GLA-SE聯合免疫的動物與緩衝液對照組之間進行三次免疫後,採用單向Tobit模型,通過Bonferroni校正進行多次比較,確定統計學意義,** P<0.01,*** P<0.001,***<0.0001。 圖14A–14D示出了疫苗誘導的抗體對LukAB進行了交叉中和。用100µg LukAB RARPR-33+100µg SpA*聯合AS01b(25µg MPL和25µg QS-21)或10µg GLA-SE對哥廷根小型豬(n=3)進行免疫。對照組接受抗原製劑緩衝液。每次免疫前和第三次免疫後的三周收集血清。在免疫前後,在小型豬的連續稀釋血清中,THP-1細胞與LukAB毒素的不同序列變體(CC8(圖14A)、CC45(圖14B)、CC22a(圖14C)、CC398(圖14D))一起孵育。代表血清樣本和參考LukAB單克隆抗體之間IC 50滴度(觀察到50%細胞毒性的血清稀釋度)差異的相對效能滴度被示出。圖示出了幾何平均值±幾何標準差。每個點代表一隻動物。在用LukAB RARPR-33+SpA*與AS01b或GLA-SE聯合免疫三次後,測定動物樣本的統計顯著性,並與緩衝液對照組進行比較。採用單因素方差分析和Dunnett事後檢驗對多重比較進行校正,* P<0.05,** P<0.01,*** P<0.001。 圖15A–15C示出了用LukAB RARPR-33+SpA*與不同佐劑聯合免疫並用金黃色葡萄球菌攻毒的動物的手術部位和脾臟的免疫反應的效力。用100µg LukAB RARPR-33和100µg SpA*免疫哥廷根小型豬(n=3),用AS01b(25µg MPL和25µg QS-21)或10µg GLA-SE佐劑。對照組只接受緩衝液。第三次免疫後的三周,在SSI模型中用10 6CFU金黃色葡萄球菌CC398對動物進行攻毒。攻毒8天后,在手術部位的中層肌肉(圖15A)、深層肌肉(圖15B)和脾臟(圖15C)測定細菌載量(Log10 CFU/g組織)。每個點代表一隻動物。示出各組的幾何平均值。採用方差分析和Dunnett事後檢驗確定統計顯著性,以校正多重比較,* P<0.05,** P<0.01。 圖16A是雄性哥廷根小型豬免疫方案的示意圖。哥廷根小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒。八天后,確定了細菌載量。圖16B的表格提供了所測試實驗組的概述。 圖16C–16D示出LukAB RARPR-33和Spa*在小型豬SSI模型中的功效。小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒。八天后,確定了細菌載量。金黃色葡萄球菌攻毒八天后的中層肌肉(圖16C)和深層肌肉(圖16D)中的細菌載量被示出。每個點代表一個小型豬,並示出幾何平均值。虛線代表檢測限。採用方差分析和Dunnett事後檢驗確定統計顯著性,以校正多重比較,* P<0.05。 圖17A是雄性哥廷根小型豬免疫方案的示意圖。哥廷根小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒。八天后,確定了細菌載量。圖17B的表格提供了所測試實驗組的概述。 圖17C–17D示出LukAB RARPR-33和SpA*在小型豬SSI模型中的效力。小型豬在3周內分別進行3次肌內免疫。在最終免疫後的三周,小型豬在SSI模型中接受金黃色葡萄球菌的攻毒。八天后,確定了細菌載量。金黃色葡萄球菌攻毒八天后的中層肌肉(圖17C)和深層肌肉(圖17D)中的細菌載量被示出。每個點代表一個小型豬,並示出幾何平均值。虛線代表檢測限。採用方差分析和Dunnett事後檢驗確定統計顯著性,以校正多重比較,** P<0.01,** P<0.0001。 圖18A-E示出了LukAB RARPR-33和SpA*與不同佐劑組合的免疫原性。實驗設置如圖18A所示,其中Swiss Webster小鼠在兩周內分別接受3次皮下免疫,在指定的時間點採集血液。圖18B所包含的組的概述。通過ELISA測定血清中對LukAB CC8(圖18C)、LukAB CC45(圖18D)或SpA*(圖18E)的抗體特異性。示出了EC 50滴度。每個點代表一隻動物。示出各組的幾何平均值±幾何標準差。虛線表示檢測限,設置為30。低於此值的樣本將被截尾(encore)到30。 圖19A和圖19B分別示出了LukAB CC8和CC45毒素中和測定,所述測定是用來自第1-5組(如圖18B所列)的5只小鼠的血清樣本進行的,血清在最終免疫後的兩周分離。代表血清樣本和參考LukAB單克隆抗體之間IC 50滴度(觀察到50%細胞毒性的血清稀釋度)差異的相對效能滴度被示出。圖示出了幾何平均值±幾何標準差。每個點代表一隻動物。
Figure 12_A0101_SEQ_0001
Figure 12_A0101_SEQ_0002
Figure 12_A0101_SEQ_0003
Figure 12_A0101_SEQ_0004
Figure 12_A0101_SEQ_0005
Figure 12_A0101_SEQ_0006
Figure 12_A0101_SEQ_0007
Figure 12_A0101_SEQ_0008
Figure 12_A0101_SEQ_0009
Figure 12_A0101_SEQ_0010
Figure 12_A0101_SEQ_0011
Figure 12_A0101_SEQ_0012
Figure 12_A0101_SEQ_0013
Figure 12_A0101_SEQ_0014
Figure 12_A0101_SEQ_0015
Figure 12_A0101_SEQ_0016
Figure 12_A0101_SEQ_0017
Figure 12_A0101_SEQ_0018
Figure 12_A0101_SEQ_0019
Figure 12_A0101_SEQ_0020
Figure 12_A0101_SEQ_0021
Figure 12_A0101_SEQ_0022
Figure 12_A0101_SEQ_0023
Figure 12_A0101_SEQ_0024
Figure 12_A0101_SEQ_0025
Figure 12_A0101_SEQ_0026
Figure 12_A0101_SEQ_0027
Figure 12_A0101_SEQ_0028
Figure 12_A0101_SEQ_0029
Figure 12_A0101_SEQ_0030
Figure 12_A0101_SEQ_0031
Figure 12_A0101_SEQ_0032
Figure 12_A0101_SEQ_0033
Figure 12_A0101_SEQ_0034
Figure 12_A0101_SEQ_0035
Figure 12_A0101_SEQ_0036
Figure 12_A0101_SEQ_0037
Figure 12_A0101_SEQ_0038
Figure 12_A0101_SEQ_0039
Figure 12_A0101_SEQ_0040
Figure 12_A0101_SEQ_0041
Figure 12_A0101_SEQ_0042
Figure 12_A0101_SEQ_0043
Figure 12_A0101_SEQ_0044
Figure 12_A0101_SEQ_0045
Figure 12_A0101_SEQ_0046
Figure 12_A0101_SEQ_0047
Figure 12_A0101_SEQ_0048
Figure 12_A0101_SEQ_0049
Figure 12_A0101_SEQ_0050
Figure 12_A0101_SEQ_0051
Figure 12_A0101_SEQ_0052
Figure 12_A0101_SEQ_0053
Figure 12_A0101_SEQ_0054
Figure 12_A0101_SEQ_0055
Figure 12_A0101_SEQ_0056
Figure 12_A0101_SEQ_0057
Figure 12_A0101_SEQ_0058
Figure 12_A0101_SEQ_0059
Figure 12_A0101_SEQ_0060
Figure 12_A0101_SEQ_0061
Figure 12_A0101_SEQ_0062
Figure 12_A0101_SEQ_0063
Figure 12_A0101_SEQ_0064
Figure 12_A0101_SEQ_0065
Figure 12_A0101_SEQ_0066
Figure 12_A0101_SEQ_0067
Figure 12_A0101_SEQ_0068
Figure 12_A0101_SEQ_0069
Figure 12_A0101_SEQ_0070
Figure 12_A0101_SEQ_0071
Figure 12_A0101_SEQ_0072
Figure 12_A0101_SEQ_0073
Figure 12_A0101_SEQ_0074
Figure 12_A0101_SEQ_0075
Figure 12_A0101_SEQ_0076
Figure 12_A0101_SEQ_0077
Figure 12_A0101_SEQ_0078
Figure 12_A0101_SEQ_0079
Figure 12_A0101_SEQ_0080
Figure 12_A0101_SEQ_0081
Figure 12_A0101_SEQ_0082
Figure 12_A0101_SEQ_0083
Figure 12_A0101_SEQ_0084
Figure 12_A0101_SEQ_0085
Figure 12_A0101_SEQ_0086
Figure 12_A0101_SEQ_0087
Figure 12_A0101_SEQ_0088
Figure 12_A0101_SEQ_0089
Figure 12_A0101_SEQ_0090
Figure 12_A0101_SEQ_0091
Figure 12_A0101_SEQ_0092
Figure 12_A0101_SEQ_0093
Figure 12_A0101_SEQ_0094
Figure 12_A0101_SEQ_0095
Figure 12_A0101_SEQ_0096
Figure 12_A0101_SEQ_0097
Figure 12_A0101_SEQ_0098
Figure 12_A0101_SEQ_0099
Figure 12_A0101_SEQ_0100
Figure 12_A0101_SEQ_0101
Figure 12_A0101_SEQ_0102
Figure 12_A0101_SEQ_0103
Figure 12_A0101_SEQ_0104
Figure 12_A0101_SEQ_0105
Figure 12_A0101_SEQ_0106
Figure 12_A0101_SEQ_0107
Figure 12_A0101_SEQ_0108
Figure 12_A0101_SEQ_0109
Figure 12_A0101_SEQ_0110
Figure 12_A0101_SEQ_0111
Figure 12_A0101_SEQ_0112
Figure 12_A0101_SEQ_0113
Figure 12_A0101_SEQ_0114
Figure 12_A0101_SEQ_0115
Figure 12_A0101_SEQ_0116
Figure 12_A0101_SEQ_0117
Figure 12_A0101_SEQ_0118
Figure 12_A0101_SEQ_0119
Figure 12_A0101_SEQ_0120
Figure 12_A0101_SEQ_0121
Figure 12_A0101_SEQ_0122
Figure 12_A0101_SEQ_0123
Figure 12_A0101_SEQ_0124
Figure 12_A0101_SEQ_0125
Figure 12_A0101_SEQ_0126
Figure 12_A0101_SEQ_0127
Figure 12_A0101_SEQ_0128
Figure 12_A0101_SEQ_0129
Figure 12_A0101_SEQ_0130
Figure 12_A0101_SEQ_0131
Figure 12_A0101_SEQ_0132
Figure 12_A0101_SEQ_0133
Figure 12_A0101_SEQ_0134
無。

Claims (55)

  1. 一種免疫原性組合物,包括: (i)              金黃色葡萄球菌蛋白A(SpA)多肽,以及 (ii)            金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽在對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193一個或多個氨基酸殘基處包含氨基酸替換。
  2. 兩種或兩種以上免疫原性組合物的組合,其共同包含: (i)               金黃色葡萄球菌蛋白A(SpA)多肽,以及 (ii)            金黃色葡萄球菌LukA變體多肽,所述LukA變體多肽在對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113和Val193的一個或多個氨基酸殘基處包含氨基酸替換。
  3. 根據請求項1所述的免疫原性組合物或根據請求項2所述的免疫原性組合物的組合,其中所述LukA變體多肽在對應於SEQ ID NO:25的Glu323的氨基酸殘基處包含氨基酸替換。
  4. 根據請求項1至3中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽在對應於SEQ ID NO:25的氨基酸殘基Lys83、Ser141、Val113、Val193和Glu323的每個氨基酸殘基處包含氨基酸替換。
  5. 根據請求項4所述的免疫原性組合物或免疫原性組合物的組合,其中所述氨基酸替換包含Lys83Met、Ser141Ala、Val113Ile、Val193Ile及Glu323Ala。
  6. 根據請求項1至5中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:3的氨基酸序列具有至少90%序列同一性的氨基酸序列或與SEQ ID NO:4的氨基酸序列具有至少90%序列同一性的氨基酸序列。
  7. 根據請求項1至6中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽: 在對應於SEQ ID NO:25的氨基酸殘基Tyr74、Asp140、Gly149和Gly156的一個或多個氨基酸殘基處進一步包含氨基酸替換。
  8. 根據請求項7所述的免疫原性組合物或免疫原性組合物的組合,其中所述氨基酸替換包含Tyr74Cys、Asp140Cys、Gly149Cys及Gly156Cys。
  9. 根據請求項7或8所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:5的氨基酸序列具有至少90%序列同一性的氨基酸序列或與SEQ ID NO:6的氨基酸序列具有至少90%序列同一性的氨基酸序列。
  10. 根據請求項1至9中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述變體LukA蛋白質或多肽: 在對應於SEQ ID NO:25的氨基酸殘基Thr249的氨基酸殘基處進一步包含氨基酸替換。
  11. 根據請求項10所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukA變體多肽包含與SEQ ID NO:7的氨基酸序列具有至少90%序列同一性的氨基酸序列或與SEQ ID NO:8的氨基酸序列具有至少90%序列同一性的氨基酸序列。
  12. 根據請求項1至11中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA多肽是SpA變體多肽。
  13. 根據請求項12所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽具有破壞Fc結合的至少一個氨基酸替換及破壞VH3結合的至少第二氨基酸替換。
  14. 根據請求項12或13所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含與SEQ ID NO:58的氨基酸序列具有至少90%同一性氨基酸序列的SpA D結構域。
  15. 根據請求項14所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽在對應於SEQ ID NO:58的第9和10位的一個或兩個氨基酸位置處具有氨基酸替換。
  16. 根據請求項14或15所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽進一步包含SpA E、A、B或C結構域。
  17. 根據請求項16所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含SpA E、A、B及C結構域,且具有與SEQ ID NO:54的氨基酸序列具有至少90%同一性的氨基酸序列。
  18. 根據請求項16或17所述的免疫原性組合物或免疫原性組合物的組合,其中每個SpA E、A、B和C結構域在對應於SEQ ID NO:58的氨基酸第9和10位的一個或兩個氨基酸位置處具有氨基酸替換。
  19. 根據請求項15至18中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中,對應於SEQ ID NO:58的第9和10位的一個或兩個氨基酸位置處的氨基酸替換是穀氨醯胺殘基的賴氨酸替換。
  20. 根據請求項12至19中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第33位的氨基酸位置處的谷氨酸替換。
  21. 根據請求項1至20中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述組合物進一步包含金黃色葡萄球菌殺白細胞素B(LukB)多肽或其變體。
  22. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB多肽是SEQ ID NO:15的LukB多肽或SEQ ID NO:16的LukB多肽。
  23. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB多肽是LukB變體多肽。
  24. 根據請求項23所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含與SEQ ID NO:15的氨基酸序列具有至少85%序列相似性的氨基酸序列或與SEQ ID NO:16的氨基酸序列具有至少85%序列相似性的氨基酸序列。
  25. 根據請求項24所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽在對應於SEQ ID NO:15及SEQ ID NO:16的第53位的氨基酸位置處包含氨基酸替換。
  26. 根據請求項25所述的免疫原性組合物或免疫原性組合物的組合,其中所述氨基酸替換是纈氨酸到亮氨酸的替換。
  27. 根據請求項23至26中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽在對應於SEQ ID NO:15的氨基酸殘基Glu45、Glu109、Thr121和Arg154的一個或多個氨基酸殘基處包含氨基酸替換。
  28. 根據請求項23至26中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽在對應於SEQ ID NO:16的氨基酸殘基Glu45、Glu110、Thr122和Arg155的一個或多個氨基酸殘基處包含氨基酸替換。
  29. 根據請求項23至26中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述LukB變體多肽包含與選自SEQ ID No:17-22的氨基酸序列具有至少90%序列同一性的氨基酸序列。
  30. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA多肽包含氨基酸序列SEQ ID NO:4、或與SEQ ID NO:4具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:16的氨基酸序列、或與SEQ ID NO:16具有至少90%序列同一性的氨基酸序列。
  31. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA變體多肽包含氨基酸序列SEQ ID NO:3、或與SEQ ID NO:3具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:15的氨基酸序列,或與SEQ ID NO:15具有至少90%序列同一性的氨基酸序列。
  32. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含LukA變體多肽和LukB多肽,所述LukA變體多肽包含氨基酸序列SEQ ID NO:3、或與SEQ ID NO:3具有至少90%序列同一性的氨基酸序列,所述LukB多肽包含SEQ ID NO:18的氨基酸序列、或與SEQ ID NO:18具有至少90%序列同一性的氨基酸序列。
  33. 根據請求項30至32中任一項所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA多肽是SpA變體多肽。
  34. 根據請求項33所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,並且其中所述至少一個結構域具有(i)對應於SEQ ID NO:58的第9和10位的穀氨醯胺殘基處的賴氨酸替換和(ii)對應於SEQ ID NO:58的第33位的氨基酸位置處的谷氨酸替換。
  35. 根據請求項21所述的免疫原性組合物或免疫原性組合物的組合,其中(i)所述SpA變體多肽包含至少一個SpA A、B、C、D或E結構域,其中,所述至少一個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換;(ii)LukA變體多肽包含CC8 LukA變體多肽,所述CC8 LukA變體多肽包含對應於SEQ ID NO:1第80位的氨基酸位置處的蛋氨酸替換、對應於SEQ ID NO:1第138位氨基酸位置處的丙氨酸替換、對應於SEQ ID NO:1第110和190位的氨基酸位置處的異亮氨酸替換,以及對應於SEQ ID NO:1第320位的氨基酸位置處的丙氨酸替換;和(iii)所述LukB多肽是CC45 LukB變體多肽,所述CC45 LukB變體多肽包含對應於SEQ ID NO:16的第53位的氨基酸位置處的亮氨酸替換。
  36. 根據請求項35所述的免疫原性組合物或免疫原性組合物的組合,其中所述SpA變體多肽連續包含SpA E、D、A、B及C結構域,每個結構域在對應於SEQ ID NO:58的第9和10位的氨基酸位置處具有賴氨酸替換,並且在對應於SEQ ID NO:58的第33位的氨基酸位置處具有谷氨酸替換。
  37. 根據請求項1至34中任一項所述的免疫原性組合物或免疫原性組合物的組合,其進一步包含佐劑。
  38. 根據請求項37所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑是穩定的水包油乳液,
  39. 根據請求項37所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含皂苷。
  40. 根據請求項39所述的免疫原性組合物或免疫原性組合物的組合,其中所述皂苷是QS21。
  41. 根據請求項37所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含TLR4激動劑。
  42. 根據請求項41所述的免疫原性組合物或免疫原性組合物的組合,其中所述TLR4激動劑是脂質A或其類似物或衍生物。
  43. 根據請求項41所述的免疫原性組合物或免疫原性組合物的組合,其中所述TLR4激動劑是吡喃糖基脂質佐劑(GLA)。
  44. 根據請求項41所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含TLR-4激動劑與穩定的水包油乳液的組合。
  45. 根據請求項43所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含GLA-SE。
  46. 根據請求項41所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含TLR-4激動劑與皂苷的組合。
  47. 根據請求項43所述的免疫原性組合物或免疫原性組合物的組合,其中所述佐劑包含GLA-LSQ。
  48. 一種免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含一個或多個核酸分子,其編碼請求項1至6中任一項的免疫原性組合物的金黃色葡萄球菌蛋白A(SpA)多肽或其變體、LukA變體多肽和LukB多肽或其變體。
  49. 根據請求項48所述的免疫原性組合物或免疫原性組合物的組合,其中所述一個或多個核酸分子被包含在一個或多個載體中。
  50. 根據請求項48或49所述的免疫原性組合物或免疫原性組合物的組合,其中所述組合物包含宿主細胞,其中所述宿主細胞包含所述一個或多個核酸分子或一個或多個所述載體。
  51. 一種需要治療或預防葡萄球菌感染的受試者的葡萄球菌感染的方法,所述方法包括: 向有需要的受試者施用有效量的根據請求項1至50中任一項所述的免疫原性組合物或免疫原性組合物的組合。
  52. 一種在有需要的受試者中誘導對葡萄球菌細菌的免疫應答的方法,所述方法包括: 向有需要的受試者施用有效量的根據請求項1至50中任一項所述的免疫原性組合物或免疫原性組合物的組合。
  53. 一種在有需要的受試者中去定植或防止葡萄球菌細菌定植或再定植的方法,所述方法包括: 向有需要的受試者施用有效量的根據請求項1至50中任一項所述的免疫原性組合物或免疫原性組合物的組合。
  54. 根據請求項1至50中任一項所述的免疫原性組合物或免疫原性組合物的組合,其用於在受試者中產生針對金黃色葡萄球菌的免疫應答的方法。
  55. 作為藥物使用的實施方案1至50中任一實施方案的免疫原性組合物或免疫原性組合物的組合。
TW111112917A 2021-04-02 2022-04-01 金黃色葡萄球菌疫苗組合物 TW202241496A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202163170089P 2021-04-02 2021-04-02
US63/170,089 2021-04-02
US202163249452P 2021-09-28 2021-09-28
US63/249,452 2021-09-28

Publications (1)

Publication Number Publication Date
TW202241496A true TW202241496A (zh) 2022-11-01

Family

ID=83456741

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112917A TW202241496A (zh) 2021-04-02 2022-04-01 金黃色葡萄球菌疫苗組合物

Country Status (10)

Country Link
EP (1) EP4313303A1 (zh)
JP (1) JP2024512751A (zh)
KR (1) KR20230165808A (zh)
AU (1) AU2022246874A1 (zh)
BR (1) BR112023019605A2 (zh)
CA (1) CA3215751A1 (zh)
IL (1) IL307178A (zh)
TW (1) TW202241496A (zh)
UY (1) UY39714A (zh)
WO (1) WO2022212667A1 (zh)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566519B1 (en) * 2010-05-05 2016-09-07 New York University Staphylococcus aureus leukocidins, therapeutic compositions, and uses thereof
US11421021B2 (en) * 2017-06-13 2022-08-23 Integrated Biotherapeutic Vaccines, Inc. Immunogenic compositions comprising Staphylococcus aureus leukocidin LukA and LukB derived polypeptides

Also Published As

Publication number Publication date
AU2022246874A9 (en) 2024-01-11
AU2022246874A1 (en) 2023-09-21
IL307178A (en) 2023-11-01
EP4313303A1 (en) 2024-02-07
BR112023019605A2 (pt) 2023-12-05
JP2024512751A (ja) 2024-03-19
WO2022212667A1 (en) 2022-10-06
KR20230165808A (ko) 2023-12-05
CA3215751A1 (en) 2022-10-06
UY39714A (es) 2022-10-31

Similar Documents

Publication Publication Date Title
US11357844B2 (en) Isolated polypeptide of the toxin A and toxin B proteins of C. difficile and uses thereof
JP2022078317A (ja) Staphylococcus aureusに対して免疫化するための組成物
KR102239207B1 (ko) 장내 병원균에 대한 면역 반응을 증진시키는 조성물 및 방법
JP2021035950A (ja) 変異体ブドウ球菌抗原
Jing et al. Oligomerization of IC43 resulted in improved immunogenicity and protective efficacy against Pseudomonas aeruginosa lung infection
JP2023025066A (ja) ワクチン構築物およびブドウ球菌感染症に対するその使用
TW202241496A (zh) 金黃色葡萄球菌疫苗組合物
CN117355328A (zh) 金黄色葡萄球菌疫苗组合物
US20240050546A1 (en) Variant staphylococcus aureus luka and lukb polypeptides and vaccine compositions
TW202313660A (zh) 變異的金黃色葡萄球菌LukA和LukB多肽和疫苗組合物
WO2013034682A1 (en) Vaccine based on staphylococcal superantigen- line 3 protein (ssl3)
US20240042002A1 (en) Compositions and methods for the prevention of S. aureus infection
CN115151559A (zh) 葡萄球菌肽和使用方法
WO2016112065A1 (en) Immunogenic composition comprising engineered alpha-hemolysin oligopeptides